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Abstract

Vision-language models (VLMs) can achieve
high accuracy in medical applications but can
retain demographic biases from training data.
While multiple works have identified the pres-
ence of these biases in many VLM, it remains
unclear how strong their impact at the infer-
ence level is. In this work, we study how well
a task-level explainability method based on
linear combinations of words can detect mul-
tiple types of biases, with a focus on medi-
cal image classification. By manipulating the
training datasets with demographic and non-
demographic biases, we show how the adopted
approach can detect explicitly encoded biases
but fails with implicitly encoded ones, partic-
ularly biological sex. Our results suggest that
such a failure likely stems from misalignment
between sex-describing features in image ver-
sus text modalities. Our findings highlight lim-
itations in the evaluated explainability method
for detecting implicit biases in medical VLMs.

1 Introduction

Foundation and vision-language models (VLMs)
have found many successful applications in the
general and medical domains (Radford et al., 2021;
Wang et al., 2022; Huang et al., 2023; Kim et al.,
2024; Moor et al., 2023; Chen et al., 2023; Huang
et al., 2023; Khattak et al., 2024; Abbaspourazad
et al., 2024; Wang et al., 2024; Li et al., 2025b,a;
Khan et al., 2025). While powerful, VLMs can
encode harmful demographic biases and stereo-
types (Berg et al., 2022; Ruggeri and Nozza, 2023;
Mandal et al., 2023; Alabdulmohsin et al., 2024;
Hamidieh et al., 2024; Bartl et al., 2025), that
can also expand to systems that rely on them as
backbone structure, such as text-to-image models
(Bianchi et al., 2023; Tanjim et al., 2024). Recently,
Yang et al. (2024a) found similar patterns in the
medical domain, showing how general and med-
ical VLMs can under-diagnose marginalized de-
mographic groups, adopting bias learned from the
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training data. Analogous evidences were found by
multiple studies, which show how different types
of machine learning models used in the medical
field tend to encode and produce harmful biased
predictions against underrepresented demographic
groups (Larrazabal et al., 2020; Seyyed-Kalantari
etal., 2021; Yang et al., 2024b).

These results highlight the strong need for mech-
anisms to trace and quantify possible biased be-
haviours and knowledge encoded in VLMs, es-
pecially when a validation set is unavailable for
a given task. Aside from tracing and mitigating
biased distribution in training sets, and using ad-
hoc metrics (see Bartl et al. (2025) for a review),
instance-level explainability (XAI) methods based
on saliency maps are among the most adopted meth-
ods to trace biases in VLMs (Agarwal et al., 2023;
Mandal et al., 2023; Tanjim et al., 2024; Bartl et al.,
2025). While instance-based XAI methods can ef-
fectively and intuitively convey their findings, they
struggle to reveal broader patterns on how a model
is systematically impacted during a classification
task, across a full dataset.

These limitations are addressed by concept-
based and task-level XAI methods (Kim et al.,
2018; Ghorbani et al., 2019; Yan et al., 2023; Agar-
wal et al., 2023; Menon and Vondrick, 2023), which
focus on gathering descriptions of the differences
between a task’s classes. Since visual explanations
can be less effective in conveying cross-category
differences, Agarwal et al. (2023) have proposed a
word-based task-level XAI methodology leverag-
ing a VLM’s joint embedding space. The proposed
approach aims at reconstructing the coefficients of
a logistic regression, fit to discriminate between
images of healthy and clinical patients, by learn-
ing a linear combination of word embeddings (see
Figure 1). Intuitively, this will result in learning
which subset of a pre-defined vocabulary is more
descriptive of one category (e.g., disease patient)
versus another (e.g., healthy patient).
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In their work, Agarwal et al. (2023) show how
this approach can capture meaningful aspects of
medical diagnosis, such as the one between the
roundness of a skin lesion and the high likelihood
of it being benign, or its asymmetry and the high
probability of such lesion being malignant. In this
study, we propose to further test such an approach,
to trace and quantify more implicit features and
biases encoded in both individual images and over-
all datasets. We do so with two experiments, both
injecting controlled amounts and types of biases
in an X-Ray-based classification task. In the first
experiment, we focus on explicitly quantifiable im-
age characteristics, namely brightness and blurri-
ness, while for the second experiment, we focus
on controlling the association between a specific
biological sex and the likelihood of such group of
patients to be diseased or healthy.

Using both a general and a medical VLM, our
results show how the adopted approach can detect
biases that are explicitly encoded in the images
(i.e., brightness and blurriness), but fails at detect-
ing more implicit biases connected to biological sex
imbalance in the data, producing incoherent predic-
tions, with highly variable and inconsistent patterns
that resist straightforward interpretation. These
findings highlight the need for more robust method-
ologies before making definitive claims about bias
quantification in medical VLMs.

2 Related Work

Demographic biases in VLMs Ruggeri and
Nozza (2023) proposed the first multimodal analy-
sis and metrics to detect and quantify demographic
biases in VLLMs across the two modalities, show-
ing how these biases are not only independently
encoded in each separate modality, but can influ-
ence and propagate across modalities. Mandal et al.
(2023) study the effectiveness of data-balancing
methods for debiasing VLMs. Results show that
fine-tuning can be effective against some type of
biases, though the impact on quality is not always
positive. Mandal et al. (2023) used GradCAM (Sel-
varaju et al., 2017), to show how CLIP (Radford
et al., 2021) encodes societal gender bias, for ex-
ample by associating concepts like programmer
to male figures, and gossipy or homemaker to fe-
male ones. Yang et al. (2024a) found that a med-
ical VLM for chest X-ray diagnosis consistently
underdiagnosed marginalized groups, especially
those with intersectional identities like black fe-

male patients. Crucially, the analysis of the word
embedding reveals that the model consistently en-
coded demographic information with an accuracy
exceeding human radiologists, creating bias across
multiple pathologies and patient populations.

Demographic bias in medical AI Alongside re-
search on VLMs, research on bias in medical Al
systems has grown increasingly comprehensive.
Larrazabal et al. (2020) demonstrated how gender
imbalances in training data lead to biased convolu-
tional neural network (CNN) classifiers for chest
X-ray images. Seyyed-Kalantari et al. (2021) ex-
panded the analysis to examine how Al systems
underperform across broader demographic dimen-
sions including age, sex, and ethnicity. Yang et al.
(2024b) further revealed that CNN-based visual
classifiers often exploit demographic characteris-
tics as shortcuts when making disease classifica-
tions, compromising diagnostic accuracy.

Concept-based XAI Kim et al. (2018) intro-
duced Concept Activation Vectors to interpret im-
age classification by associating user-defined con-
cept classes with neural network activations. A
linear classifier separates activations of images con-
taining the concept from those that do not, to un-
derstand how concepts influence the model’s pre-
dictions.Yan et al. (2023) expanded on Kim et al.
(2018) to build a human-in-the-loop diagnostic tool,
based on enhancing confounding behaviours, and
limiting spurious correlations, focusing on a skin
cancer diagnosis task. To do so, the authors built a
model learning an interpretable space able to detect
concept (e.g., darker border) distributions in each
class (e.g. benign). Being based on a CNN, the
method still lacks any form of language knowledge,
and hence, concepts are still defined post hoc, based
on the CNN kernels. Agarwal et al. (2023) recently
proposed to alleviate the limitation of vision-only
concept discovery by leveraging VLMs, that also
possess language-based knowledge. The core idea
(see Figure 1) is to reconstruct the logistic classifier
trained to discriminate between benign/malignant
images, encoded with the a VLM’s images encoder,
by learning a linear combination of pre-selected
words, encoded with the VLMs’ text encoder. Sim-
ilarly to Kim et al. (2018), this procedure will learn
which concepts are more associated with a class or
another, but offer more plasticity and robustness,
as the only human intervention is limited to the
dictionary selection, which can contain more inter-
pretable and reliable general or medical concepts.
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Figure 1: Experimental method. Agarwal et al. (2023)’s method for task-level explainability is composed of three
main steps: 1) image encoding, and logistic regression (Figure 1a); ii) word encoding and linear modelling (Figure
1b); iii) interpretation of linear model’s coefficients (Figure 1c). Diagrams adapted from Agarwal et al. (2023).

3 Bias Statement

From the medical and diagnostic perspective, we
consider as bias the spurious association, created
by the model, or contained in the data, between
non clinically relevant traits or characteristics and
disease likelihood. As demonstrated throughout
the previous sections, such conditions appear to
afflict medical datasets and Al models, manifesting
through systematically different prediction rates
across demographic groups when controlling for
actual disease prevalence.

These biases are harmful because they do not
necessarily reflect real-world distributions (Yang
et al., 2024a), and can perpetuate or amplify ex-
isting health disparities through several mecha-
nisms: 1) Resource inequality: biased predictions
lead to inequitable distribution of healthcare re-
sources, with some demographic groups receiving
more accurate diagnoses and timely interventions
than others (Obermeyer et al., 2019); 2) Care qual-
ity gaps: systematic performance differences com-
promise care quality for certain groups of people
(Fiscella and Sanders, 2016); 3) System distrust:
consistent misdiagnosis of certain demographic
groups undermines trust in Al systems within those
communities and potentially exacerbates histor-
ical mistrust in healthcare systems (Richardson

et al., 2021). 4) Policy misalignment: if biased
Al-systems were used to inform health policies
(without awareness/quantification of the underly-
ing biases), their results may fail in appropriately
capturing actual population needs and in return
might create regulatory gaps that undermine the
goal of ensuring equitable healthcare.

4 Experimental Set-Up

This work has two main experiments, both using
the method proposed by Agarwal et al. (2023). The
first experiment is designed as a proof of concept
or stress-test of the original work. The second ex-
periment examines the method’s ability to detect
gender biases. Both experiments have the same
core process, models, base dataset, and list of ex-
plainable words. These aspects are explained in
more detail in the following subsections.

4.1 Method

The method is composed of three main steps: i)
image encoding, and logistic regression (Figure
1a); i) word encoding and linear modeling (Figure
1b); iii) interpretation of linear model’s coefficients
(Figure 1c). The method is graphically summarized
by Figure 1’s diagrams.

More formally, assuming a training set Dfllzl =
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{(i1,01), -, (iq,1q) }, with I, and [ being an im-
age and its classification label, a pre-trained dual-
encoder VLM, with an image encoder F, and a
text encoder 7', and a set of pre defined words
Vv, = {w,..,w,}, Agarwal et al. (2023)’s
method use F to encode all images in D, and fita
logistic regression (Figure 1a), obtaining a vector
3, containing the logistic regression’s coefficients.
Then, use 71" to embed V' in the joint embedding
space, and use the obtained word embedding to fit
a linear model approximating 3 (E) (Figure 1b).
Lastly, we interpret the linear model’s coefficients
(e.g., c1 in Figure 3) for each word vector. Fol-
lowing Agarwal et al. (2023), we interpret positive
weights as alignment with class 1 prediction. We
include significance levels for each coefficient of
the linear model.

Agarwal et al. (2023)’s method also includes
a solution to select prototypical images for each
word. The original approach calculates the residu-
als between the dot product computed between all
images and all words, and the predicted dot prod-
uct, obtained by fitting a linear regression using
all images and all words but one, i.e. the “target”
word. The higher the residual, the worse the fit;
the image corresponding to the highest residual is
considered the worst represented image by the set
of words used in the linear regression and should
hence be the most prototypical of the “target” word.
However, since this approach considers the signed
values of the residuals, the highest one would al-
ways be the largest positive residual. We therefore
use the absolute value of the residuals to ensure that
we capture the overall largest distance between the
dot products. Aside from this minor modification,
we adopt the original method and source code.

4.2 Models

The original work of Agarwal et al. (2023) adopts
CLIP (Radford et al., 2021), since their method as-
sumes a VLM with a joint embedding space and the
possibility of using the frozen encoders for down-
stream tasks, such as image classification. In addi-
tion to CLIP, we adopt UniMedCLIP (Khattak et al.,
2024), a general-purpose medical VLM trained in
multiple medical fields, including X-Ray.

4.3 Data

We focus on X-Ray images due to their extensive
use in Al and machine learning research, using the

widely adopted CheXpert-5X200 dataset ! (Khat-
tak et al., 2024), which was derived from full CheX-
Pert dataset (Irvin et al., 2019) following an es-
tablished procedure (Huang et al., 2021). More
in detail, CheXpert-5X200 is a dataset containing
1,000 X-ray images randomly sampled from the
main dataset, comprising 200 images for each of
five medical conditions: atelectasis, cardiomegaly,
edema, pleural effusion, and pneumonia. To align
with our binary classification approach, we selected
cardiomegaly as our target condition, where 1 in-
dicates the presence and O indicates the absence of
the condition.

We selected cardiomegaly as our target condi-
tion because it exhibited the smallest sex dispar-
ity among positive diagnoses (class 1). Since our
work focuses on studying biological sex biases, we
hence added extra filtering to the data to balance
the distribution of sex across the two classes. We
then randomly split this data into an 80-20% ratio
between training and test set.

4.4 Words

Agarwal et al. (2023)’s work adopts a list of words
automatically generated with ChatGPT (Brown
et al., 2020), obtained by asking the model for rele-
vant image-property words (e.g., color), and subse-
quently requesting positive and negative adjectives
describing such properties (e.g., light, dark). This
approach can be effective for both general and med-
ical purposes explanations, as it can span across
diverse datasets as demonstrated in Agarwal et al.
(2023)’s work. However, we focus on a single con-
dition: cardiomegaly. For this reason, we generate
a new selection of words. Mirroring Agarwal et al.
(2023)’s method, we prompted Claude 3.7 Sonnet
(Anthropic, 2025) to generate properties and ad-
jectives useful to describe cardiomegaly, resulting
in the list presented in Table 1. Code and data are
available here?.

S Experiment 1: Image Feature Bias

Agarwal et al. (2023) provided evidence that their
method can efficiently model explicit or semantic
image properties, such as “round”. While an ob-
ject’s roundness can be mathematically quantified,
this becomes challenging with images depicting
skin lesions due to factors like camera angle. Eval-
uating such properties would require human experts
1https://github.com/mbzuai—oryx/UniMed—CLIP/

blob/main/local_data/chexpert-5x200.csv
Zhttps://github.com/jrcf7/GeBNLP_25
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Figure 2: Experiment 1 results. Normalized word coefficients for CLIP (top row), and UniMedCLIP (bottom
row) for original images (baseline, leftmost column) and systematically altered images (blurred: columns 2-3;
brightened: columns 4-5). Plots display words (y-axis) and corresponding normalized coefficient values (x-axis).
Positive coefficients (red bars) and negative coefficients (blue bars) indicate the direction of association. Panels’
header displays performance metrics (F1 and Cosine Similarity). Asterisks indicate statistical significance (~*:
08 < p <.05; *: p < .05; ¥*: p < .01; #¥%: p < .001; *¥***: p < .0001).

Property Adjective 1 Adjective 2
Size narrow wide
Shape angular globular
Border indistinct sharp
Width Ratio  proportional  disproportional
Position peripheral central
Contour concave convex
Distribution balanced unbalanced
Silhouette compact expanded

Table 1: List of selected words shared across experi-
ments. Each row represents a visual property of car-
diomegaly in X-ray images with the corresponding op-
posing adjective pair (adjective 1 and adjective 2).

to assess the method’s effectiveness for characteris-
tics like “roundness” or “symmetry” — an effective
approach which lacks efficiency and objectivity. To
better assess the method’s stability, we tested its
ability to detect fully controllable biases by apply-
ing quantifiable transformations to images: light
alteration and blurriness.

Words The experiment includes the addition of
specific words to the original set: “bright”,“dark”,
“blurred”, “sharp”, “cardiomegaly”, and “pleural
effusion”. These words were chosen to evaluate
the models’ performance based on both visual at-

tributes and clinically relevant features.

Dataset manipulation A new dataset was cre-
ated to introduce controlled variations in brightness
and sharpness. This dataset includes images with
added blur and altered light intensity to assess the
models’ robustness to these perturbations and their
ability to associate textual concepts with visual al-

terations. See Appendix A for more details.

5.1 Results

The results of the experiment on altered brightness
and blurriness are presented in Figure 2.

UniMedCLIP outperforms CLIP on baseline im-
ages (unaltered) with higher F1-score and cosine
similarity, which is expected given that it has been
trained on the same dataset of radiography im-
ages (Irvin et al., 2019). This alignment allows
UniMedCLIP to correctly associate the words “car-
diomegaly” and “pleural effusion” with their cor-
responding classes. Furthermore, UniMedCLIP
assigns statistically significant weights to the most
influential words, whereas none of the word associ-
ations appear statistically significant for CLIP.

When blurred images from classes 0/1 (no car-
diomegaly/cardiomegaly) are analyzed, (second
and third columns of Figure 2 respectively), CLIP
assigns greater weight to the word “blurred”, in-
dicating stronger visual feature alignment. In
contrast, UniMedCLIP shows minimal, and non-
significant association with this term. With bright-
ness alterations (Figure 2, fourth and fifth columns),
both models respond to these manipulations. CLIP
associates “dark” with relatively reduced bright-
ness in either class, while UniMedCLIP links
“bright” with relatively increased brightness.

Collectively, the results of this experiment show
that the method proposed by Agarwal et al. (2023)
is sensitive to induced visual biases in CLIP and
UniMedCLIP for the set of X-ray cardiomegaly
images, showing the expected alignment between
the relevant words and the modified image features.
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Unbiased CLIP F1:71.3 CoSim:0.18

Biased (5%) CLIP F1:71.3 CoSim:0.2

Biased (15%) CLIP F1:70.3 CoSim:0.19 Biased (25%) CLIP F1:66.5 CoSim:0.19
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Figure 3: Experiment 2 results. Normalized word coefficients for CLIP (top row), and UniMedCLIP (bottom
row) for unbiased (leftmost column) and sex-biased (in a proportion of 5, 15 and 25%) datasets. Plots display
words (y-axis) and their corresponding normalized coefficient (x-axis). Positive coefficients (red bars) and negative
coefficients (blue bars) indicate the direction of association. Panels’ header displays performance metrics (F1 and
Cosine Similarity). Asterisks indicate statistical significance (~*: .08 < p < .05; *: p < .05; **: p < .01; ***;

p < .001; #*¥**: p < .0001).

6 Experiment 2: Biological Sex Bias

In this experiment, we test the ability of Agarwal
et al. (2023)’s method to trace sex-based stereo-
types. While biological sex may not be as imme-
diately obvious as characteristics like roundness
in images, certain sex-based anatomical features
may still be detectable in chest X-rays, such as
differences in breast tissue.

Words We added “female” and “male” to refer to
biological sex rather than gender. This distinction
follows established guidelines for scientific preci-
sion (DG RTD, European Commission, 2020).

Dataset manipulation In Experiment 1, we in-
jected the bias by manipulating images belonging
to one of the two classes. For Experiment 2, we
create a disparity in the proportion of sex distribu-
tion within each class. To do so, we manipulate
the starting dataset, described in Section 4.3, so
that a specific sex is more represented in class 1 by
increasing percentages. To mimic real-world distri-
butions (Fairweather et al., 2023), we increase the
percentage of males with pathology instances while
simultaneously decreasing the instances of healthy
males. In other words, we built a series of datasets
with a bias toward male sex being a predictor for
sickness (class 1) and female sex being a predic-
tor for the absence of the cardiomegaly condition
(class 0). See Appendix B for more details.

6.1 Results

Following the same format of results as in Sec-
tion 5.1, the results for normalized word coef-
ficients for different models (rows) and datasets
(columns) are presented in Figure 3. More in detail,
UniMedCLIP shows higher, more stable perfor-
mance across datasets with consistently higher co-
sine similarity scores than CLIP. This indicates how
well the linear model built with word embeddings
(B, Figure 1b) approximates the logistic classifier
B (Figure 1a). Only the linear models built with
UniMedCLIP embeddings produce significant co-
efficients. These results suggests that UniMedCLIP
is more reliable for this approach—expected given
its training on X-Ray data.

Single coefficients analysis leads to similar con-
clusions. To reiterate, positive coefficients for a
word indicate alignment with class 1 prediction
(i.e., cardiomegaly). UniMedCLIP results show
coherence, with relevant adjectives like “globu-
lar” and “sharp” having the highest positive scores
and significance compared to CLIP. However, both
models show unexpected sex-describing words re-
sults. We expected no impact in the unbiased
dataset, with increasing “male” and decreasing ‘“‘fe-
male” coefficients as bias increased. Instead, both
models show little to no impact on the two coef-
ficients across datasets and attribute higher coeffi-
cients to “female” than “male”, with CLIP showing
“male” as the most negative coefficient.

These findings might suggest that models do not
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use sex information in the inference process despite
our bias injection. However, results from Agarwal
et al. (2023), our previous experiment, and the re-
ported significance in one of the UniMedCLIP test,
where “female” showcases a strongly positive and
significant coefficient, might suggest that the sys-
tem may simply fail to detect the models’ use of sex
bias. To clarify these findings, we conduct in the
following subsections quantitative and qualitative
analyses of textual and visual encodings associated
with sex-related words.

6.1.1 Quantitative analysis: prototypical
images

As mentioned in Section 4.1, we adopt a modified
version of Agarwal et al. (2023)’s system, to extract
the N most prototypical images for each word. We
compared the system’s prediction of male/female
images (i.e., that a given image is prototypical of,
and hence belongs to, a male/female patient) with
patient’s actual biological sex. This helps deter-
mine whether models are able to extract sex infor-
mation implicitly or whether the inconsistencies
in Figure 3 stem from poor sex encoding. As the
original work does not indicate a strategy for deter-
mining the optimal number of prototypical images
per dataset, we retrieve the top 100 prototypical im-
ages for “male” and “female”, and evaluated their
alignment with metadata.

1.0 T Model
H —— UniMedCLIP
i CLIP

0.8 b Word
‘\‘ —— male

06 \‘ ——- female

F1 Score
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Figure 4: Experiment 2, prototypical image analysis.
F1 scores (y-axis) as a function of the number of top N
prototypical images (x-axis) extracted for words “male”
(solid line) and “female” (dashed line) for UniMedCLIP
(green) and CLIP (pink) models. Shades indicate stan-
dard deviation across tested datasets.

Figure 4 shows the weighted F1 scores as a func-
tion of the number of top 100 prototypical images.
The models produce remarkably different results,

which appear specular within each model. For
UniMedCLIP, “male” and “female” start at oppo-
site extremes (0 and 1 respectively) before con-
verging to similar scores at around 20 prototypical
images. CLIP exhibits comparable initial boundary
conditions (1 for “male” and O for “female’), fol-
lowed by rapid inversions that eventually stabilize
with scores remaining distinctly separated beyond
20 images. Overall, performance generally remains
poor, even when considering 20 or fewer prototypi-
cal images. The near-perfect or near-zero initial re-
sults suggest the system is essentially guessing the
sex of patients. This indicates that the method fails
to detect the injected sex bias due to its inability to
extract sex information encoded in the multimodal
embeddings. Overall, these results suggest that
the method is inconsistent for detecting biological
sex bias, as evidenced by the unstable performance
metrics and the system’s apparent inability to reli-
ably extract injected imbalanced sex information
encoded in the multimodal embeddings.
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Figure 5: Experiment 2, cosine similarity analysis. Dis-
tributions of the cosine similarity scores obtained com-
paring each image from the unbiased train and test set
with the word “male” and “female”.

6.1.2 Quantitative analysis: similarity scores

To further investigate the limitations of the
prototype-based approach for detecting gender bias,
we analysed the underlying similarity distributions
between image embeddings and gender-specific
textual representations. Figure 5 provides a po-
tential partial explanation for the method’s short-
comings by summarising the distribution of the
cosine similarity scores between each image and
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(b) Female

(a) Original

(c) Male (d) Lungs

Figure 6: Experiment 2, qualitative analysis: CLIP attention maps. Each diagram summarizes the internal activation
of CLIP when the image encoder is prompted with the same image (6a) (female patient), and the textual encoder is
prompted with “female” (6b), “male” (6¢), and “lungs” (6d).

the words “female” or “male”.

As shown in the figure, despite having drasti-
cally different shape, both models demonstrate a
marked preference for one of the two word, in
this case “male”. This imbalance in the similar-
ity distribution suggests an inherent bias in how
the models encode gender-related concepts, regard-
less of the actual gender information present in the
medical images. The skewed distributions could
explain why the prototypical image extraction pro-
cess yields inconsistent F1 scores as observed in
our previous analysis.

6.1.3 Qualitative analysis: attention maps

To complement our quantitative findings and gain
deeper insights into how these models process sex
information, we conducted a qualitative analysis of
model attention. By visualizing where the model
focuses when prompted with “female” and “male’
terms, we can better understand potential discon-
nects between human anatomical understanding
and model representation. We applied the attention
visualization method from Chefer et al. (2021) to
study the activation patterns in the image encoder.
We analyzed the same chest X-ray image from a
female patient using three different input words:
“female”, “male”, and “lungs”. Due to implementa-
tion constraints in the code, we limit the analysis
to CLIP. Results are presented in Figure 6.

The results reveal that attention patterns for
“male” and “female” prompts are strikingly sim-
ilar, which is not entirely unexpected. However,
these patterns do not seem to align with anatom-
ical expectations for gender recognition in chest
X-rays, such as focus on the breast area. Con-
versely, the attention pattern for “lungs” appears
coherent and anatomically appropriate, suggest-
ing that the model may have learned meaningful
representations for organ structures but not for sex-

specific features in this medical imaging context.
These findings further support previous results and
suggest that the selected VLMs may not be encod-
ing biological sex information in ways that align
with human anatomical understanding. This mis-
alignment between model attention and expected
anatomical features could explain the poor perfor-
mance in detecting injected sex data imbalance
observed in our previous experiments.

7 Discussion and Conclusions

A consistent body of evidence has shown how many
Al models, including VLMs, can encode harmful
biases and stereotypes based on demographic fea-
tures, such as ethnicity or biological sex. These
biases have been shown to negatively impact the
performance of these models, and it is hence es-
sential to trace and quantify their impact at infer-
ence time, especially in a crucial field as medical
decision-making. In our work, we have focused on
a task-level approach to explainability, aiming at
understanding if it can coherently trace explicitly
(e.g. brightness) or implicit (i.e., biological sex)
bias distributions that we have injected in a medical
image classification task. Our experiments, which
use the task-level explainability method proposed
by Agarwal et al. (2023), reveal important limita-
tions in this method for detecting implicit biases in
medical VLMs. While Experiment 1 demonstrated
the method’s effectiveness in detecting explicit vi-
sual modifications like brightness and blurriness
(see Figure 2), Experiment 2 exposed its failure
to detect sex-based biases. Despite deliberately
manipulating the datasets to enhance the associa-
tion between a specific biological sex and disease
presence, the method failed to detect these manipu-
lations in both CLIP and UniMedCLIP models.
Such failure could indicate that the models are
not using biological sex information in the classifi-

118



cation process, so we performed a detailed analysis.
Results strongly suggest a fundamental issue: the
misalignment between how biological sex is repre-
sented in these models versus how humans would
interpret it. To start, the prototypical image anal-
ysis produced remarkably poor performance (see
Figure 4), indicating the system was essentially
guessing patients’ biological sex rather than detect-
ing meaningful patterns. Moreover, our qualitative
investigation showed how CLIP’s image encoder
internal activations appear remarkably similar for
the two sexes. While this evidence is in line with
the basic assumption behind distributional model-
ing (i.e., similar concepts occupy a close position
in the latent space), we notice how the “behaviour’
of the model appears poorly aligned with our ex-
pectation on where we might focus to make a dis-
tinction between biological-sex in a chest image
(see Figure 6). Such evidence might seem in con-
trast with the intuition that VLMs might hold bet-
ter and more grounded knowledge, thanks to their
dual-modality modeling. However, recent prelim-
inary evidence suggests that VLMs might in fact,
be less aligned with human internal representations
(Bavaresco and Ferndndez, 2025).

bl

To conclude, this work presented an extensive
analysis of the ability of a task-level explainabil-
ity method based on linear combination of word
embeddings to detect implicit and explicit biases
by focusing on injecting quantifiable biases, such
as brightness and blurriness altering, and more im-
plicit biases, such as patients’ biological sex. The
first experiment’s results are in line with the origi-
nal work, showing that the system is able to detect
imbalances in the data when they are related to ex-
plicit features. However, results from the second
experiment showed how the method is not able to
coherently detect implicitly encoded biases such as
the biological sex. Our analysis suggested that this
is likely due to a misalignment of the concept in
the two modalities.

Limitations

The limitations of our study stem primarily from
two fundamental sources, namely the inherent con-
straints of our chosen methodological approach and
the characteristics of the available data, which are
detailed in the following paragraphs.

Fixed vocabulary and dichotomisation Our
methodology favors binary descriptors. For hu-
man interpretability though, this is not strictly re-

quired. While biological sex (male/female) and
some clinical features might work in this format, de-
mographic factors like age and ethnicity are harder
to force into binary distinctions. This limitation
is particularly relevant given the growing body of
evidence that intersectional demographic factors
significantly impact healthcare outcomes (Vohra-
Gupta et al., 2022).

Disease-specific image characteris-
tics/vocabulary Each medical condition presents
unique visual characteristics that demand tailored
descriptive vocabulary. The adjectives appropriate
for describing cardiomegaly features (such as
“enlarged”, “prominent”, or “distended”) differ
substantially from those that would effectively
characterize other conditions like pneumonia
or fractures. Our approach did not rely on a
universal set of descriptive words across different
pathologies, as the visual manifestations vary
dramatically. This complicates cross-condition
comparisons and demands expert knowledge to
select appropriate terms for each studied condition.

Sex representation Due to the lack of metadata,
or study focus on biological sex as a binary variable
(male/female), which poses inherent limitations for
comprehensive bias analysis. This approach fails
to account for non-binary individuals and diverse
anatomical variations.

Gender representation We assume that the
metadata available from CheXpert corresponds to
biological sex only and does not take into account
gender representation. That is why we consider the
potential impact of sex on our results only. How-
ever, in medical contexts, "sex" and "gender" are
often used interchangeably, but we are unable to
distinguish between them, so we rely on the sex
variable. Additionally, since our analysis does not
capture the complexities of gender identities and
expressions, it may not be representative of indi-
viduals whose gender identity does not align with
their assigned sex at birth.

Metadata availability The validation of our
methodology heavily depends on the availability of
demographic metadata in medical imaging datasets.
While such information is crucial for comprehen-
sive bias analysis, it is often not publicly available
due to privacy concerns and data protection regu-
lations. This limitation constrains the broader ap-
plicability of our approach and highlights the need
for balanced solutions that address both privacy
requirements and the imperative for algorithmic
fairness assessment. Initiatives such as the one
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developed by Luo et al. (2024), which introduced
the Harvard-FairVLMed dataset, are highly encour-
aged in this aspect, since they offered a dataset that
includes demographic attributes, ground-truth la-
bels, and clinical notes.

Ethical considerations

Our research on bias detection in medical Al ad-
heres to responsible Al principles. We used only
medical images hosted in public repositories. We
acknowledge the limitations of binary categoriza-
tions and recognize that bias detection itself carries
assumptions. As our findings may influence clini-
cal systems, we emphasize this work is a starting
point for ongoing evaluation, not a comprehensive
solution. We remain committed to developing med-
ical Al that benefits all patients equitably, requiring
continuous assessment across diverse populations.
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A Image Feature Alteration Dataset

As described in Section 5, we conducted Exper-
iment 1 using a modified version of the original
image dataset in which controlled alterations were
applied to evaluate model sensitivity to specific vi-
sual features. These alterations included brightness
enhancement and blurring. To increase brightness,
we clipped low pixel intensity values across the im-
age volume. Specifically, all values below a fixed
threshold, set at vp,x = 1.5 above the image mini-
mum, were raised to that threshold. To introduce
blurring, we applied Gaussian filtering using a two-
dimensional convolutional kernel of size 9 x 9 and
a standard deviation of ¢ = 5. An example of the
corresponding alteration is given in Figure 7.
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Figure 7: Experiment 1 image samples. Comparison
of the brightened and blurred version of an image from
CheXpert-5x200 used in Experiment 1, and produced
with the procedure described in Appendix A.

B Biological Sex Dataset

As described in Section 6, the datasets used for
Experiment 2 inject an increasing percentage of bi-
ases based on biological sex. More formally, given
a target label [/, a biological sex b, and a percentage
p, our procedure increases the amount of instance
in class [, having biological sex b, by p%, while
decreasing the number of instances in the oppo-
site class having the opposite biological sex, by
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Figure 8: Experiment 2 dataset distribution. Visualisa-
tion of the biological sex distribution among the two
classes in the dataset with 25% bias injection.

the same percentage p. To balance out the num-
ber of training and test instances with the baseline
dataset, share across experiments, the instances are
removed from, and placed in, the test set. in this
work, we adopt [ = 1, b = male, and gather three
dateset with p = {5, 15, 25}. As mentioned in Sec-
tion 6, we do so to mimic distributions reported in
the literature, showing how the selected label (i.e.,
cardiomegaly) (Fairweather et al., 2023). Figure 8
shows the training set obtained for p = 25.
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