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Abstract

Large language models (LLMs) remain prone
to factual inaccuracies and computational er-
rors, including hallucinations and mistakes in
mathematical reasoning. Recent work aug-
mented LLMs with tools to mitigate these short-
comings, but often requires curated gold tool-
use demonstrations. In this paper, we inves-
tigate whether LLMs can learn to use tools
without demonstrations. First, we analyse zero-
shot prompting strategies to guide LLMs in tool
utilisation. Second, we propose a self-training
method to synthesise tool-use traces using the
LLM itself. We compare supervised fine-tuning
and preference fine-tuning techniques for fine-
tuning the model on datasets constructed us-
ing existing Question Answering (QA) datasets,
i.e., TriviaQA and GSM8K. Experiments show
that tool-use enhances performance on a long-
tail knowledge task: 3.7% on PopQA, which is
used solely for evaluation, but leads to mixed
results on other datasets, i.e., TriviaQA, GSM8K,
and NQ-Open. Our findings highlight the poten-
tial and challenges of integrating external tools
into LLMs without demonstrations.1

1 Introduction

Large language models (LLMs) have shown state-
of-the-art performance in many natural language
processing tasks and demonstrated “emergent abil-
ities”: the capability to perform new tasks with-
out updating their parameters via gradient descent
(Brown et al., 2020; Scao et al., 2023; Chowdh-
ery et al., 2023; Touvron et al., 2023). Specifi-
cally, by simply being provided with task instruc-
tions, sometimes supplemented with a few exam-
ples, LLMs can achieve comparable performance
to fine-tuning-based methods (Brown et al., 2020;
Wei et al., 2022; Akyürek et al., 2023; Von Oswald
et al., 2023). Despite the remarkable performance,
LLMs may still generate inaccurate or unfactual

1Code available at github.com/neneluo/llm-tool-use.
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Figure 1: The overall workflow of our work. SFT: su-
pervised fine-tuning; PFT: preference fine-tuning.

texts, i.e., hallucinations (Lewis et al., 2020; Hong
et al., 2024) or perform incorrect computations
(Gao et al., 2023) if they solely rely on their in-
ternal parametric knowledge. Motivated by these
shortcomings, we explore approaches that augment
LLMs with external tools (Mialon et al., 2023)—
such as a calculator or a search engine—to enhance
their reasoning and problem-solving abilities.

Augmenting LLMs with tools has become an ac-
tive research area in recent years (Mialon et al.,
2023; Schick et al., 2023; Qin et al., 2024; Li
et al., 2024). Current methods primarily follow
two approaches (Wang et al., 2024b): (i) prompt-
ing, which leverages the in-context learning ability
of large-scale models (Yao et al., 2023; Lu et al.,
2023); and (ii) fine-tuning, with a primary focus
on Supervised Fine-Tuning (SFT), which trains
LLMs on datasets of tool-use examples. These
datasets are typically sampled from large-scale data
(Schick et al., 2023) or generated from more ad-
vanced LLMs, such as ChatGPT (Yang et al., 2023;
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Qin et al., 2024; Li et al., 2024). While these ap-
proaches are highly effective and demonstrate im-
pressive performance, they are resource-intensive
and challenging to generalise.

Additionally, SFT with tool-use datasets alone
can be suboptimal, as tool-use for LLMs is an in-
herently open-ended task: there is no oracle tool-
use trace that specifies a single, unique solution to
a given problem with specific tools. Many tools
share overlapping functionality, and each tool can
be used in multiple ways. Also, the helpfulness
of tools depends on the LLM itself (Schick et al.,
2023). This led us to consider optimising the model
in a way that better captures the open-ended feature
of tool-use, where Preference Fine-Tuning (PFT)
generally helps. While concurrent work applied
PFT to augment the LLMs’ ability in specific do-
mains, e.g., as math agents (Xiong et al., 2025;
Wang et al., 2024a), its potential in general tool-
use scenario remains under-explored.

Inspired by these challenges, we explore whether
LLMs can learn tool-use without demonstrations,
leveraging different optimisation objectives; that is,
we answer the question: can we teach LLMs to use
tools without oracle tool-use traces?

First, we study zero-shot prompting approaches
that utilise LLMs’ instruction-following ability.
This serves as a baseline for the tool-use perfor-
mance of LLMs without performing gradient up-
dates. Second, we propose a self-training approach
to synthesise datasets containing tool-use traces via
the LLM itself, which could be used for model fine-
tuning. To improve data quality, we further explore
employing different filtering strategies based on
the final output and additional criteria. Then, we
explore different fine-tuning objectives: SFT and
PFT. Figure 1 shows an overview of our work.

Our experimental results across multiple Ques-
tion Answering (QA) datasets, including TriviaQA,
GSM8K, NQ-Open and PopQA, show that zero-shot
prompting alone enables LLMs to use tools to some
extent but may lead to degraded performance, de-
pending on the model scale and tasks. The pro-
posed self-training method for tool-use, which
trains the model on the synthetic datasets gener-
ated from TriviaQA and GSM8K, improves model
performance on a long-tail knowledge task PopQA
but yields mixed performance on other datasets.
These findings suggest that the LLMs learn tool-use
even without explicit demonstrations, but the per-
formance gain is mainly shown when the model’s
knowledge may be insufficient to solve a task,

while inappropriate tool-use can introduce addi-
tional challenges.

2 Background

In this section, we review two common methods
used to fine-tune LLMs.

Supervised Fine-Tuning. SFT is performed after
the pre-training of LLMs and generally enhances
the model performance in specific downstream
tasks, such as summarization, QA, etc (Brown et al.,
2020). Instruction fine-tuning is a special form of
SFT that aims to optimise the LLMs to follow hu-
man instructions, treating instruction following as a
type of downstream task (Wei et al., 2022). Given
an instruction fine-tuning dataset, such as SUP-
NATINST (Wang et al., 2022), the training of the
LLM under SFT optimises model parameters θ by
minimising the negative log-likelihood loss LSFT,
defined as follows:

LSFT = −
n∑

i=1

logP (wi|s, w0, · · · , wi−1; θ), (1)

where s is an instruction, wi is the i-th token in the
response, and n is the response length.

Preference Fine-Tuning. PFT is a post-training
technique used in addition to SFT, aligning model
responses with human preferences by fine-tuning
LLMs on pairwise preference data. The method
is initially introduced as Reinforcement Learning
from Human Feedback (RLHF; Ouyang et al.,
2022). Given an instruction, preference data are
collected by annotating the human preference be-
tween two responses. Instead of strictly optimising
LLMs to follow specific responses, LLMs are op-
timised to adhere to a policy of favouring human-
preferred responses. In this way, LLMs learn to
better capture the open-ended characteristics of
conversations and better align with human values.

Rafailov et al. (2023) introduce Direct Prefer-
ence Optimization (DPO), an RL-free algorithm
that directly optimises the policy πθ of LLMs by
implicitly adjusting the likelihood of preferred and
dispreferred responses. The DPO loss is derived by
directly approximating the optimal policy accord-
ing to the preference data, significantly simplifying
the RLHF pipeline. Given the preference dataset
D, instruction x, preferred response yp and dispre-
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ferred response yd, the DPO loss is defined as:

LDPO =− E
(x,yp,yd)∼D

[
log σ

(
β log

πθ(yp | x)
πREF(yp | x)

− β log
πθ(yd | x)
πREF(yd | x)

)]
(2)

where σ is the sigmoid function, β controls the di-
vergence between the policy πθ to be optimised and
the reference policy πREF, a lower value indicates
higher divergence.

3 Approach

In this section, we introduce the tools used to aug-
ment LLMs, and describe the procedure for gener-
ating tool-use datasets for model fine-tuning.

3.1 Tools

Inspired by the tool-use setting in (Schick et al.,
2023; Li et al., 2024), we developed a set of tools
that can be used by LLMs, including a calculator, a
Wikipedia search engine, and a machine translator.
The tools serve the purpose of aiding LLMs in
various areas, such as mathematical calculation,
real-world information retrieval, and low-resource
language understanding.

Calculator. The calculator assists LLMs by pro-
ducing accurate mathematical calculation results.
It supports basic operations between numbers like
addition, subtraction, etc. Given a mathematical
formula, the output is the computation result.

Wikipedia Search Engine. The Wikipedia
search engine assists LLMs in searching for rel-
evant information from Wikipedia documents. The
Wikipedia search engine was implemented with a
BM25-based information retrieval model. Given a
query, the information retrieval model retrieves the
most relevant Wikipedia documents.2

Machine Translator. The machine translator is
defined as the setting of translating low-resource
languages into English, which can potentially aid
LLMs in understanding low-resource languages.
The machine translator was implemented with
the open-source multilingual machine translation
model No Language Left Behind (NLLB; Costa-
Jussà et al., 2022), which supports 200 languages.

2The documents are from a pre-built Wikipedia dump
wikipedia-kilt-doc with index version lucene-index.wikipedia-kilt-
doc.20210421.f29307.tar.gz.

We used a distilled version3 for computational ef-
ficiency. Given a query, the machine translator
outputs its corresponding English translation.

3.2 Synthesising Tool-use Dataset

Given an instruction fine-tuned LLM4, we gener-
ated synthetic tool-use datasets via the model itself
through the following steps:

1. Tools collection: First, we created a tool pool by
defining a set of functions that the model could
utilise as tools. For each tool, we provided a
concise usage description, showing the type of
problem the tool can help with, as well as its
input and output format.

2. QA datasets collection: Second, we collected
some QA datasets from existing NLP datasets,
e.g., GSM8K, that were likely to benefit from
tool integration. These datasets include ques-
tions that external tools, e.g., calculator, could
potentially improve the model’s ability to pro-
duce accurate answers.

3. Data generation: Third, we generated the syn-
thetic dataset with the instruction fine-tuned
LLM. Specifically, for each question from the
QA dataset, we prompted the model with in-
structions that describe the available tools, en-
couraging the model to provide an answer that
potentially utilises tools.

4. Data filtering: Then, we designed a data filter-
ing process to ensure data quality. In this step,
we used the correctness of the answer given a
question to serve as a proxy for identifying “cor-
rect” tool-use traces, similar to Zelikman et al.
(2022). If the model provided a correct final
answer, we inferred the solution path is valid.
The specific data filtering strategies for SFT and
PFT are described in §3.3.

3.3 Learning to Use Tools

We describe the prompting approach we use to
enable zero-shot tool-use and outline how we create
synthetic datasets for fine-tuning LLMs through
SFT and PFT.

3huggingface.co/facebook/nllb-200-distilled-600M.
4We used the Llama-3-8B-Instruct model as the LLM to

synthesise data in the following experiments. The model
is available at: huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct.
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You are an advanced AI agent designed to answer ques-
tions. You can use your own knowledge to answer the
questions, or use external tools to gather information
before answering. However, you can only request the
use of tools once. Answer in a few words. Let’s think
step by step.

Respond in the following format:
Thought: decide whether to answer using your own
knowledge or utilise external tools.
Action: specify the tool here using the format ‘Tool-
Name[query]’ if you decide to use tools.
Rationale: justify your answer by providing interme-
diate reasoning steps for your answer, based either on
your own knowledge or the received tool responses.
Answer: (1) if using your own knowledge, provide your
answer here; (2) if using tools, leave this part empty
until the tool’s response is received.

Below are the external tools you can use:
1. Calculator[query]: this tool helps you perform simple
mathematical computations with real numbers. Use the
formula as the input query, the tool response will be the
result.
2. WikipediaSearch[query]: this tool helps you search
for information from Wikipedia. Use a short keyword
as the input query, the tool response will be the corre-
sponding information.
3. MachineTranslator[query]: this tool helps you un-
derstand low-resource languages by translating them to
English. Use the sentence you want to translate as the
input query, the tool response will be the translation.

Table 1: System prompt for single-step tool-use.

Prompting. As the instruction fine-tuned LLMs
were already optimised to follow human instruc-
tions, we hypothesised that the LLM could obtain
the tool-use ability to some extent by solely learn-
ing from instructions, i.e., prompts. We used the
following prompt format: a short QA task descrip-
tion, an expected response format, and a brief de-
scription of the tools’ applicable domain. The task
description suggests the goal of the task is to an-
swer questions briefly. We employed zero-shot
prompting without providing any tool-use exam-
ples and adopted the zero-shot Chain-of-Thought
(CoT) method (Kojima et al., 2022). The LLMs’
response format design was inspired and adapted
from (Yao et al., 2023; Li et al., 2024). Table 1
provides an example of the tool-use prompt that
enables the LLM to perform single-step tool-use,
either to request a single tool or multiple tools si-
multaneously. Variants of the prompt used for abla-
tion studies are shown in Appendix F.

Supervised Fine-Tuning. For SFT, we experi-
mented with two training data filtering strategies
under the same data generation procedure (prompt-
ing with Table 1): (i) SFT (tools data): the training

data contains the instances from the training set of
QA datasets where the model uses tools and pro-
vides a correct answer; and (ii) SFT (mixture data):
the training data contains the instances where the
model answers correctly regardless of whether or
not the tool is used during the process. After data
filtering, we re-constructed the full conversation
history of the filtered cases to be the training data.

Preference Fine-Tuning. The triplet format data
are required to form the PFT dataset: a prompt (the
question), a preferred response and a dispreferred
response. To generate this dataset, we conducted
system inference on the training sets of QA datasets
under two conditions: with and without the use of
tools. We then filtered the generated data based
on the following criteria: (i) the model provided
the correct answer with access to tools (using the
prompt in Table 1); (ii) the model provided the
wrong answer for the same question without ac-
cess to tools (using the prompt in Table 13). Then,
we experimented with fine-tuning the model on
tool-use data with DPO under two data format set-
tings: (i) DPO (conversation): the preferred and
dispreferred data encompass the entire conversa-
tion following the question; (ii) DPO (response):
the preferred and dispreferred data are the model’s
single response following the question.

4 Experimental Setup

In this section, we describe the datasets we use for
experiments and detail our research questions.

4.1 Datasets

To effectively benchmark the tool-use LLMs, we
employed datasets from two categories of tasks that
could potentially benefit from tool integration. The
detailed dataset statistics are shown in Appendix A.

Open-domain QA. We experimented with three
open-domain QA datasets: TriviaQA (Joshi et al.,
2017), Natural Question-Open (NQ-Open; Lee
et al., 2019) and PopQA (Mallen et al., 2023). Ques-
tions in TriviaQA require trivia knowledge. NQ-
Open contains real-world questions asked by actual
Google Search users. PopQA consists of questions
requiring knowledge of long-tail Wikipedia enti-
ties. Thus, these datasets can potentially benefit
from the use of knowledge from external tools, e.g.,
Wikipedia search engine and machine translator.
We used NQ-Open and PopQA solely for model
evaluation. For model training, we randomly sam-
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pled a subset from the original training set for Trivi-
aQA to match the scale of another dataset category.
Similarly, we randomly selected portions from the
original validation sets or test sets to be validation
sets and test sets.

Mathematical Reasoning. We experimented
with the Grade School Math dataset (GSM8K;
Cobbe et al., 2021), a QA dataset composed of
grade school math word problems, which could
potentially benefit from the usage of a calculator.
For our experiments, we used the original train-
ing set for model training and randomly split the
original test set into the validation and test set in
approximately equal proportions.

4.2 Experiments

In the following section, we break the main re-
search question into three sub-research questions
and conduct corresponding experiments:

• RQ1 (§5.1): Can we instruct LLMs to use tools
without training them?

• RQ2 (§5.2): Can we further improve LLMs’ tool-
use ability by conducting SFT in a self-training
manner?

• RQ3 (§5.3): Can we use PFT to teach LLMs to
use tools?

All experiments were conducted on the Llama 3
instruction fine-tuned models (Grattafiori et al.,
2024). The model fine-tuning details on the syn-
thetic datasets are shown in Appendix B. Inference
details are shown in Appendix C. For evaluation,
we employed two sets of automatic evaluation met-
rics to evaluate both the tool-use ability and gen-
eration quality of LLMs, which are defined in Ap-
pendix D.

5 Results and Analysis

In this section, we present the experimental results
and analysis of approaches for teaching LLMs to
use tools without demonstrations.

5.1 Prompting

The experimental results in Table 2 and Table 3
showed an initial effort to instruct LLMs to use
tools by prompting the instruction fine-tuned Llama
3 models with different instructions. The detailed
prompts are shown in Appendix F.

Prompt Size TriviaQA GSM8K

EM Acc EM Acc

No tool 8B 62.6 73.6 1.4 36.5
No tool + CoT 8B 52.8 77.9 8.6 66.9
Tools + Single-step 8B 56.9 75.8 22.0 64.2
- w/o Rationale 8B 35.7 72.1 2.9 56.6
Tools + Multi-step 8B 27.7 54.8 19.1 53.1

No tool 70B 70.4 87.8 3.1 66.0
No tool + CoT 70B 79.6 88.8 21.2 45.8
Tools + Single-step 70B 57.6 77.7 51.8 75.1

Table 2: Experimental results of Llama 3 instruction
fine-tuned models on the validation sets in zero-shot set-
ting given different prompts. EM: exact match; Acc: ac-
curacy. The detailed prompts are shown in Appendix F.
All numbers shown in the table are in percentages.

Prompt Size TriviaQA GSM8K

IR PR AR IR PR AR

Tools + Single-step 8B 14.5 99.3 55.2 7.2 72.3 12.8
- w/o Rationale 8B 29.2 99.7 55.5 13.5 75.0 13.6
Tools + Multi-step 8B 78.3 99.4 63.9 55.7 72.9 16.6

Tools + Single-step 70B 48.5 99.0 63.1 53.8 70.6 36.9

Table 3: Experimental results of Llama 3 instruction
fine-tuned models on the validation sets in zero-shot
setting given different prompts. IR: invoke rate; PR:
pass rate; AR: answerable rate. The detailed prompts
are shown in Appendix F. All numbers shown in the
table are in percentages.

Results on Llama-3-8B-Instruct. When we
prompted the LLM to answer questions with its
own knowledge, zero-shot CoT prompting showed
an improvement compared to the prompt of not
using CoT, especially in the math dataset, i.e.,
GSM8K, where the model benefited greatly from
using explicit intermediate reasoning steps. Under
the tool-use setting, results in Table 3 show that
the LLM had a positive invoke rate and pass rate
for tools, indicating that the LLM was aware of the
existence of tools and knew how to use them to
some extent. Table 4 shows an example that the
model called the calculator correctly and yielded
the right answer after getting responses from the
tool, although we had not fine-tuned the LLM on
tool-use datasets yet. However, we observed a per-
formance drop in Table 2 when we allowed the
model to use tools in both single-step and multi-
step tool-use scenarios. This phenomenon indicates
that the model can be harmed if it uses tools inap-
propriately. We provide extended analysis on the
results of single-step tool-use in Appendix E.
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NON-TOOL-USE EXAMPLE
User:
Hannah slips on a banana peel and breaks her arm. The
doctor charges her $200 for the cast, $300/hour for a
30-minute visit, $4/pill for 30 painkillers, and $6/hour
for a mandatory minimum of 2 hours of parking. How
much does the doctor’s visit cost total?
Assistant:
Thought: Let’s break down the costs into separate com-
ponents and calculate the total.
Answer: $200 (cast) + $45 (30-minute visit) + $120 (30
painkillers) + $12 (2 hours of parking) = $477. (wrong
answer)

TOOL-USE EXAMPLE
User:
Hannah slips on a banana peel and breaks her arm. The
doctor charges her $200 for the cast, $300/hour for a
30-minute visit, $4/pill for 30 painkillers, and $6/hour
for a mandatory minimum of 2 hours of parking. How
much does the doctor’s visit cost total?
Assistant:
Thought: I will use external tools to help me with the
calculation.
Action: Calculator[(30*300)/60 + 200 + (30*4) + (6*2)]
Rationale: To calculate the total cost, I will first cal-
culate the doctor’s visit fee, which is 30 minutes *
$300/hour = $150. Then, I will add the cost of the
cast ($200), the painkillers ($4/pill * 30 = $120), and
the parking fee ($6/hour * 2 hours = $12).
Answer:
User:
Response from tool Calculator[(30*300)/60 + 200 +
(30*4) + (6*2)] are: 482.0
Assistant:
Answer: 482.0 (correct answer)

Table 4: An example of the model getting the right an-
swer when using tools from the validation set of GSM8K.

Results on Llama-3-70B-Instruct. Results in
Table 2 show the accuracy of the 70B model with
tool-use dropped on TriviaQA and increased on
GSM8K compared to not using tools. The invoke
rates showed in Table 3 were much higher for the
70B model than the 8B model, indicating increased
tool integration in larger models. In TriviaQA, the
model shows a similar pattern as in the 8B model.
However, in GSM8K, we notice that the 70B model
showed abnormally lower accuracy compared to
the 8B model in no tool CoT prompting, where the
model was also asked to follow a specific answer
format. This could be because the provided human-
written prompts were suboptimal and had hurt the
model’s performance by constraining it from fol-
lowing the designed answer format, which aligns
with prior research that constrained answer formats
can negatively influence model performance (Tam
et al., 2024). Therefore, the 70B model performed
worse because its better instruction-following abil-
ity makes it more sensitive to prompts. The tools

appeared helpful for the 70B model in GSM8K, sug-
gesting that even with prompting-based methods
alone, tools can be beneficial for large models in
complex reasoning tasks.

5.2 Supervised Fine-Tuning

SFT on Tools Data. For the model trained on
tool-use data, the results in Table 5 show that the
model performance on TriviaQA, GSM8K and NQ-
Open has degraded. The results in Table 6 show that
the tool invoke rates increased significantly after
SFT, indicating that training on tool-use data made
the model learn to use tools intensively. While
SFT teaches the LLM the behaviour of using tools,
simply using these tools does not directly correlate
with improved answers. This could be because (i)
misusing tools may hurt model performance; (ii)
the LLM might already have the essential knowl-
edge to answer most of the questions from these
two datasets, as these are typically composed of
popular knowledge that could have been learned
from the pre-training process. This assumption
can be supported by the strong performance of the
model given the prompt that no tool is allowed from
Table 5. Also, based on the results from GSM8K,
where no tool-use was involved, we observe the
LLM can perform simple mathematical calcula-
tions, though not entirely error-free. As a result,
the helpfulness of the provided tools can be lim-
ited in TriviaQA, GSM8K and NQ-Open. However,
the results on PopQA, which contains questions in-
volving long-tail knowledge, showed a consistent
increase after using tools and fine-tuning the model
on tool-use data, suggesting that the model is likely
to benefit from tools when questions are less likely
to be answered by its internal knowledge alone.

SFT on Mixture Data. For the model trained on
the mixture of tool-use and non-tool-use data, the
results in Table 5 show the model outperformed the
one fine-tuned on tool-use data in all datasets in
terms of accuracy. The model also showed a mi-
nor accuracy improvement over the not fine-tuned
system. However, the tool usage has significantly
declined in TriviaQA, GSM8K and NQ-Open, and
slightly decreased in the PopQA dataset. To deter-
mine whether the performance improvement was
due to enhanced tool-use ability or simply train-
ing on a larger dataset, we conducted an additional
experiment using only no tool data for training.
We can observe that the accuracy of models trained
with tool data on PopQA is higher than the model of
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System TriviaQA GSM8K NQ-Open PopQA

EM Acc EM Acc EM Acc EM Acc
Prompting (no tool) 52.8 77.9 8.6 66.9 11.6 40.3 18.0 31.6
Prompting (tools) 56.9 75.8 22.0 64.2 15.6 38.9 22.3 34.2
SFT (tools data) 35.0 65.9 16.6 48.6 10.1 37.7 18.1 35.0
SFT (mixture data) 56.1 75.9 17.5 64.6 14.0 40.3 22.4 35.7
SFT (no tool data) 56.8 77.6 17.8 64.6 15.0 39.5 22.3 33.6

DPO (conversation) 56.1 74.5 21.1 62.2 14.5 38.4 22.3 34.6
SFT + DPO 56.8 73.6 17.4 64.2 15.5 39.1 22.3 33.0

DPO (response) 56.4 75.4 18.2 62.9 14.4 37.8 22.6 35.1
DPO β = 0.01 54.8 73.3 19.1 64.0 14.7 38.0 23.6 35.6
DPO β = 0.5 53.9 73.0 17.7 64.2 14.9 38.7 23.0 35.6

Table 5: Experimental results of Llama-3-8B-Instruct models on the validation sets. EM: exact match; Acc: accuracy.
Prompting (no tool): the non-tool-use CoT prompt (Table 14), other prompts: the single-step tool-use prompt
(Table 1). The β (defined in eq. (2)) for DPO was set to 0.1 unless specified. All numbers shown in the table are in
percentages.

System TriviaQA GSM8K NQ-Open PopQA

IR PR AR IR PR AR IR PR AR IR PR AR
Prompting (tools) 14.5 99.3 55.2 7.2 72.3 12.8 16.5 98.8 41.2 36.2 99.4 37.8

SFT (tools data) 67.0 99.3 64.6 75.2 68.1 20.4 62.1 98.9 44.9 84.8 99.8 37.9
SFT (mixture data) 6.6 98.5 54.5 5.1 72.7 21.2 6.4 98.4 45.3 34.7 99.4 37.5
SFT (no tool data) 1.5 100.0 53.3 0.5 100.0 0.0 1.8 100.0 44.4 9.6 100.0 36.5

DPO (conversation) 15.7 99.4 55.4 7.8 62.7 15.7 19.2 100.0 50.5 33.8 99.7 37.6
SFT + DPO 15.1 99.3 57.6 9.5 74.2 19.4 18.5 100.0 46.5 33.5 99.7 37.0

DPO (response) 16.3 98.8 61.3 8.9 79.3 17.2 17.3 99.4 45.1 38.9 99.7 38.6
DPO β = 0.01 18.1 97.8 59.7 10.6 72.5 17.4 20.4 100.0 46.6 36.9 99.7 41.7
DPO β = 0.5 16.9 100.0 58.0 9.7 63.5 11.1 16.9 100.0 41.4 37.0 99.5 40.8

Table 6: Experimental results of Llama-3-8B-Instruct models on the validation sets. IR: invoke rate; PR: pass rate;
AR: answerable rate. All prompts are the single-step tool-use prompt (Table 1). The β (defined in eq. (2)) for DPO
was set to 0.1 unless specified. All numbers shown in the table are in percentages.

SFT on no tool data, suggesting the improvement
stems from better tool-use ability, likely because
the model has learned when to use tools.

5.3 Preference Fine-Tuning
PFT on tool-use Data with Conversation For-
mat. From the experimental results of the model
optimised with DPO on conversation format tool-
use data, we can observe a performance decline in
the TriviaQA, GSM8K and NQ-Open, and a marginal
accuracy improvement in PopQA, which shows a
pattern similar to the model trained with SFT on
tool-use data: When we used DPO with the SFT
model trained on the mixture of tool-use and non-
tool-use data as the base model, the results did not
improve in all datasets when we compare to basing
DPO on the instruction fine-tuned model.

PFT on tool-use Data with Single Response For-
mat. We can observe that PFT on a single re-
sponse yields better results in terms of accuracy
compared to the model fine-tuned on the full con-
versation in TriviaQA, GSM8K and PopQA. This

could be attributed to the fact that the DPO loss
calculated on a whole conversation includes re-
sponses from tools that are redundant in the loss
calculation, as we want to optimise the LLM’s be-
haviour. Setting the preference to a single response
is also suboptimal, as this did not allow the model
to learn how to answer a question based on the tool
responses. Therefore, how to optimise the model in
the multi-turn dialogues with PFT remains an open
research question. We also conducted an ablation
study on the hyperparameter β by exploring differ-
ent values, showing that the choice of β slightly
impacts model accuracy.

5.4 Results on the Test Sets

We evaluated the proposed approaches of teach-
ing LLMs to use tools on the test sets of TriviaQA,
GSM8K, NQ-Open and PopQA, and the experimen-
tal results are shown in Table 7 and Table 8. The
SFT system was fine-tuned on the mixture of tool-
use and non-tool-use data, and the PFT system was
fine-tuned with tool-use data. For the PFT system,
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System TriviaQA GSM8K NQ-Open PopQA

EM Acc EM Acc EM Acc EM Acc

Prompting (no tool) 52.2 77.5 6.9 63.2 10.5 41.1 17.1 31.6

Prompting (tools) 56.0 75.0 17.8 58.4 13.8 38.3 21.2 33.1
SFT (mixture data) 56.0 78.9 14.9 61.3 12.2 40.6 20.3 35.3
PFT (tools data) 54.8 73.9 17.3 57.1 12.3 37.8 20.2 33.5

Table 7: Experimental results of Llama-3-8B-Instruct models on the test sets. EM: exact match; Acc: accuracy.
Prompting (no tool): the non-tool-use CoT prompt (Table 14), other prompts: the single-step tool-use prompt
(Table 1). All numbers shown in the table are in percentages.

System TriviaQA GSM8K NQ-Open PopQA

IR PR AR IR PR AR IR PR AR IR PR AR

Prompting (tools) 14.5 98.6 53.1 10.3 69.6 13.0 16.9 100.0 38.5 37.0 98.1 35.4
SFT (mixture data) 7.3 97.3 50.7 4.6 64.5 25.8 7.9 98.7 39.2 35.5 98.9 30.1
PFT (tools data) 17.3 98.3 57.8 11.2 65.3 17.3 18.5 100.0 41.1 38.0 98.9 32.4

Table 8: Experimental results of Llama-3-8B-Instruct models on the test sets. IR: invoke rate; PR: pass rate; AR:
answerable rate. All prompts are the single-step tool-use prompt (Table 1). All numbers shown in the table are in
percentages.

the data was constructed with the single response
setting and trained with β = 0.5 for DPO. The ex-
perimental results mostly showed a similar pattern
to those on the validation sets, where the accuracy
of tool-use systems on the TriviaQA, GSM8K, and
NQ-Open was lower than the non-tool-use system,
and the accuracy on the PopQA was better, except
for the SFT system. Among the methods of teach-
ing LLMs to use tools, the model trained with SFT
showed the best accuracy, suggesting that SFT is
a reasonable method to approach the task when
using a limited number and variety of tools. The
model trained with PFT showed better accuracy
in PopQA than the prompting-based system under
our experimental setting, showing the potential of
using PFT to teach LLMs to use tools.

6 Related work

Prompting LLMs to Use Tools. One line of re-
search focused on investigating prompting-based
methods to teach LLMs to use tools by providing
tool documentation (Hsieh et al., 2023) or tool de-
scriptions and few-shot examples, e.g., ReAct (Yao
et al., 2023), Chameleon (Lu et al., 2023), Hugging-
GPT (Shen et al., 2023), etc. In these work, large-
scale models, such as PaLM-540B (Chowdhery
et al., 2023) and ChatGPT (OpenAI, 2023), were
prompted to use tools. These studies suggested the
feasibility and benefits of integrating LLMs with
external tools. However, a gap remains in exploring
whether a smaller model can effectively learn to

use tools from prompting. Compared to prior work,
our work evaluated the effectiveness of prompting
LLMs across different scales to use tools.

SFT for Tool Learning. Another line of research
applied fine-tuning-based methods to teach smaller
models to use tools with curated tool-use datasets.
Toolformer (Schick et al., 2023) utilised the few-
shot in-context learning ability of LLMs to generate
tool-use datasets by sampling on the pre-training
data and then applied data filtering. In other work
where pre-training data of LLMs were inaccessi-
ble, they mainly employed more advanced LLMs,
such as ChatGPT, as a teacher model to synthe-
sise tool-use datasets and conducted supervised
fine-tuning on the collected datasets (e.g., ToolL-
LaMA (Qin et al., 2024), Gorilla (Patil et al., 2023),
GPT4Tools (Yang et al., 2023), inter alia). In con-
trast, our work began with zero-shot prompting
and then leveraged tool-use datasets generated by
the model itself, thereby alleviating the need for
accessing tool-use examples.

RLHF and Tool Learning. The intersection be-
tween RLHF and tool learning is a promising
yet under-explored area. TARM (Li et al., 2024)
showed augmenting the Reward Model (RM) in
RLHF with tools enhances the agreement of RM
and human judgement. TRICE (Qiao et al., 2024)
leveraged tool execution feedback with reinforce-
ment learning for tool learning to mitigate the prob-
lem of tool misuse adversely influencing model
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performance. However, an advanced LLM was still
employed to synthesise tool-use datasets. Some
concurrent work explored applying preference fine-
tuning methods, e.g., DPO and its variant, on learn-
ing to use tools to improve mathematical reasoning
ability of LLMs (Xiong et al., 2025; Wang et al.,
2024a), showcasing the benefit of utilising prefer-
ence to guide model behaviour. Our work differs
from these works in two aspects: (i) our work al-
leviates the reliance on tool-use datasets synthe-
sised from advanced LLMs; (ii) our work explores
a more comprehensive fine-tuning framework for
tool learning across a broader range of tasks.

7 Conclusion

In this work, we studied methods for teaching
LLMs to use tools without demonstrations. First,
we explored teaching LLMs to use tools solely
from instruction. Then, we proposed a self-training
approach to synthesise datasets containing tool-use
traces by instructing the LLM to use tools on two
existing QA datasets, i.e., TriviaQA and GSM8K, and
applying filtering strategies to improve data quality
based on the final output and additional criteria.
We then investigated methods to improve LLM’s
tool-use ability by fine-tuning the model with the
synthetic datasets. Starting from the standard SFT
objective, we then studied an under-explored ap-
proach for teaching LLMs to use tools: PFT. Exper-
imental results suggest that proposed approaches
are feasible for teaching LLMs to use tools. How-
ever, while tool-use enhances the performance of
LLMs on a long-tail QA dataset, i.e., PopQA, it
leads to mixed results on other datasets, i.e., Trivi-
aQA, GSM8K and NQ-Open.

Limitations

This work has several limitations. First, we em-
ployed a limited number of tools. Although we
believe the selected tools are representative of real-
world applications, as they have a relatively large
action space, the generalisation of tools across var-
ious domains remains a significant research topic,
which could be investigated in future work by in-
cluding a broader range of tools. Second, the cur-
rent tool-use dataset size in our experiments is rel-
atively small. Although the results show the po-
tential of using PFT to teach LLMs to use tools,
future work could benefit from exploring a larger
and more diverse training set, better ways of con-
structing training data and better loss estimation

methods to fully release the power of DPO and fur-
ther verify its effectiveness. Third, the self-training
method, i.e., using the data generated by the mod-
els themselves to improve them, typically contains
multiple iterations. While we only experimented
with the first iteration, future work could potentially
benefit from the multiple-iteration setting.

Ethics Statement

This work generally does not raise ethical concerns.
The proposed approaches for augmenting LLMs
with external tools could potentially reduce the
risk of LLMs generating inaccurate information.
However, there remains a possibility of potential
misuse by malicious individuals using this method
to enable LLMs to interact with tools for harmful
purposes.
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A Dataset Statistics

The dataset statistics are shown in Table 9.

B Training Details

Supervised Fine-Tuning. During experiments,
the LLM was trained for 3 epochs over the cu-
rated dataset with the auto-regressive language
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Dataset Type Training Set Validation Set Test Set

Open-domain QA
TriviaQA trivia knowledge questions 10,000 1,000 1,000
NQ-Open real users questions - 1,000 1,000
PopQA long-tail Wikipedia knowledge questions - 1,000 1,000

Mathematical reasoning
GSM8K grade school math questions 7,473 650 669

Table 9: The statistics of the datasets used in experiments.

modelling objective. We utilised Low-rank Adapta-
tion (LoRA; Hu et al., 2022), which is one type
of the Parameter-Efficient Fine-Tuning (PEFT)
method, as fine-tuning the full parameters of LLMs
would be expensive and time-consuming. LoRA ac-
celerates model training by adapting the low-rank
decomposition to leverage the burden of updating
full parameters to update two trainable low-rank
matrices instead. For LoRA training, the hyperpa-
rameter r was set to 16, and the target fine-tuning
modules were set to q_proj and v_proj, which
are the default settings. As a result, around 0.08%
parameters out of the total parameters were trained.
The optimiser was AdamW (Loshchilov and Hutter,
2019). The training loss was computed on the com-
pletion only, i.e., the non-LLM response messages,
such as tool responses, were disregarded during
loss calculation. During model training, the maxi-
mum sequence length was set to 8192 tokens. The
batch size for the model was set to 4, with gradi-
ent accumulation steps of 4, so the effective batch
size was 16. We also used gradient checkpoint-
ing and FlashAttention-2 (Dao, 2024) for more
memory-efficient model training. All experiments
were conducted on 2 A100 GPUs.

Preference Fine-Tuning. The model was trained
for 3 epochs over the curated dataset with the DPO
objective. We employed DPO instead of RLHF, as
the DPO pipeline is more straightforward and re-
quires fewer computation resources. The same op-
timiser, LoRA setting, maximum sequence length
restriction, and memory-efficient tricks as in the
SFT experiments were used for model training. The
batch size was set to 1 with gradient accumulation
steps of 16, leading to an effective batch size of
16, which is also the same as in the SFT experi-
ments. The maximum prompt length was set to
128, which was the default setting. All experiments
were conducted on 2 A100 GPUs.

C Inference Details

We experimented with the instruction fine-tuned
Llama 3 models with 8B5 and 70B6 parameters.
For LLM inference, we used a default decoding
setting: batch size 1, Nucleus Sampling method
(Holtzman et al., 2020) with a temperature of 0.6
and top_p of 0.9. The maximum generated token
length was set to 512. For the 70B model, we
truncated the conversation length to a maximum of
8192 tokens for computational efficiency and kept
other inference settings the same as the 8B model.

The conversation list fed to LLM was in a stan-
dard chat format, composing three role compo-
nents: system, user, and assistant. If tool-use is
allowed, the system message was the prompt sug-
gesting the task description, the assistant answer
format, and tool lists with short descriptions if tools
are allowed. The LLM then decided whether to use
tools, which tools to use, and what arguments to
pass. The LLM’s response can contain the calling
of one tool or a sequence of multiple tools. We
applied a post-processing function on the LLM’s
response to parse it and extract tool usages with a
regular expression. If tool-use information is de-
tected, the corresponding tools will be executed
with the arguments written by the LLM. Next, the
tool responses, along with the past conversation
history, were fed back into the LLM to generate the
subsequent response. We experimented with two
types of tool-use scenarios: single-step tool-use
and multi-step tool-use. In the single-step tool-use
scenario, the LLM can only get tool responses once
but can ask for multiple tool calls simultaneously.
In the multi-step tool-use scenario, the LLM can
receive tool responses as many times as it wants.

5huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct.
6huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct.
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D Evaluation Metrics

D.1 Measuring tool-use Ability
Invoke Rate: This is a rate to measure the fre-
quency of LLMs calling external tools when re-
sponding. We calculated this metric based on the
tool usage amount in the first response from LLMs.
The metric is defined as:

invoke_rate =
#tool_usage
#response

× 100. (3)

Pass Rate: This is a rate to measure the per-
centage of LLMs successfully executing the tools,
regardless of whether the content of the tool re-
sponses was related to the current conversation.
We considered all tool-use instances that returned
non-error responses as successful tool usage. The
metric is defined as:

pass_rate =
#pass

#tool_usage
× 100. (4)

Answerable Rate: This is a rate to measure the
percentage of tool responses containing the ground
truth answers, i.e., determine whether the question
is answerable based on the tool responses. The
metric can be partial, as the LLM may employ tools
to conduct intermediate steps during the question-
solving process. The metric is defined as:

answerable_rate =
#answerable
#tool_usage

× 100. (5)

D.2 Measuring Generation Quality
Exact Match: This is an accuracy commonly
adopted in the realm of QA, evaluating whether
the model answer is exactly the same as one of
the ground truth answers. Following the normal-
isation process provided in the TriviaQA codebase
(Joshi et al., 2017), the answers were normalised
by removing underscores, converting into lower-
case characters, removing punctuations, removing
articles and then removing extra whitespaces. We
applied the same normalisation process to answers
of all datasets. When the normalised model answer
matches one of the normalised answers from the
ground truth answer list, the Exact Match score
(ScoreEM) of the sample equals 1; otherwise, 0.
Then, we computed the Exact Match (EM) based
on the following equation:

EM =

(∑N
i=1 ScoreEM,i

N

)
× 100, (6)

where N is the sample amount, and ScoreEM,i is
the EM score for the i-th sample in the dataset.

Accuracy: This is an accuracy to comparing the
model answer and ground truth answers. We com-
puted the Accuracy in slightly different manners
given different task types to match task scenarios
better. The details are as follows:

• Open-domain QA: For open-domain QA
datasets, i.e., TriviaQA, NQ-Open and PopQA, the
accuracy is calculated based on the subspan score
(Scoresubspan), i.e., check whether the model an-
swer contains the ground truth answers, similar
to Liu et al. (2024). The intuition is that the
model answer may contain some descriptive sen-
tences, e.g., the background of the question. If
the normalised model answer contains one of the
normalised answers from the ground truth answer
list, Scoresubspan equals 1, otherwise 0. Then, the
Accuracy (AccQA) is computed over the whole
dataset, defined as follows:

AccQA =

(∑N
i=1 Scoresubspan,i

N

)
× 100, (7)

where N is the sample amount, and Scoresubspan,i
is the subspan score for the i-th sample in the
dataset.

• Mathematical Reasoning: For the dataset that
involves mathematical computation, i.e., GSM8K,
the accuracy is computed based on the EM score
of normalised extracted answer (ScoreEMextract)
compared to the normalised ground truth answer.
The intuition is that the model answer might con-
tain some intermediate reasoning steps that di-
vide the questions into several sub-questions to
compute the mathematical computation step-by-
step in order to generate the final answer. We
extracted the last digit number as the model an-
swer, as this is the case in most cases where the
model puts the answer. The Accuracy (AccMath)
is computed on the whole dataset, defined as fol-
lows:

AccMath =

(∑N
i=1 ScoreEMextract,i

N

)
×100, (8)

where N is the sample amount, and
ScoreEMextract,i is the EM score of the extract
answer for the i-th sample in the dataset.
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Figure 2: The distribution of tool usage by the Llama-3-
8B-Instruct model on the validation sets of TriviaQA and
GSM8K.

Error type TriviaQA GSM8K

No error 0 5
Hallucination 23 0
Reasoning error 0 23
Argument error 0 1
Low-quality retrieval 7 0
Too-long context 0 0
Infeasible actions 0 1
Misunderstanding the tool’s response 3 0

Table 10: The statistics of the erroneous instances ran-
domly selected from the Llama-3-8B-Instruct model’s
output on the validation sets of TriviaQA and GSM8K.
The instance is considered erroneous when Accuracy
(defined in Appendix D.2) equals 0. “No error” indicates
that the model answer is correct, but marked incorrect
due to parsing error during the answer extraction pro-
cess or the ground truth answer is erroneous.

E Extended Results Analysis

Does the model understand the functionality of
the provided tools? We analysed the tool us-
age distribution on the results, shown in Figure 2.
The distribution suggests that the LLM understands
the functionality of given tools under our setting
in most cases. Given the TriviaQA dataset, the
Wikipedia search engine would be a natural choice
for tools to search for trivia knowledge, and the
model chose to use it at all times. In the GSM8K
dataset, the calculator would be the most benefi-
cial tool. Therefore, it is also good to see that the
tool usage on the dataset was dominated by it. In
addition, we can observe that the model did not
use the machine translator frequently, though it
was provided in the tool list. This phenomenon
also supports that the LLM did not randomly select
tools from the provided tool list, but more likely
used them based on their functionality.

Error type analysis. We examined the error type
of the model under both tool-use and non-tool-
use settings from randomly selected erroneous in-
stances from the validation sets of TriviaQA (30

instances) and GSM8K (30 instances) on the Llama-
3-8B-Instruct model, and summarised the number
of common error types into Table 10. The cate-
gories of error types were adapted and modified
from Zhuang et al. (2023). We used ChatGPT (Ope-
nAI, 2024) to assist with the annotation process.
For TriviaQA, we can observe that the error is domi-
nated by “Hallucination”, which is when the model
answers with made-up facts. Also, there were sev-
eral instances in which both the tools responded
with low-quality information, and the model mis-
understood the low-quality tool responses led to in-
correct answers. The results suggest that the model
would benefit from improving the tool-use ability,
i.e., deciding when to invoke external tools and
understanding tool responses better. For GSM8K,
the main error type is “Reasoning error”, in which
the model performed inaccurate intermediate steps
during the problem-solving process or performed
incorrect calculations. Also, there were instances
in which the model performed infeasible actions or
passed wrong arguments to tools. The results sug-
gest that the model could benefit from improving
reasoning ability and tool-use ability.

Case study. We examined the instances when
tool-use led to inaccurate answers on the Llama-
3-8B-Instruct model, and showed how low-quality
retrieval and inappropriate tool-use affect the an-
swer quality. An example from Table 11 shows
the LLM chose not to provide an answer when the
tool response was irrelevant information, while the
model provided the correct answer when not using
tools. The example suggests that low-quality tool
responses might adversely affect the performance
of the LLM. An example in Table 12 shows that the
model provided a correct answer when it did not
have access to tools. However, the tool response
misled the reasoning process when the model ac-
cessed tools and sent an inappropriate query to the
tool, although the reasoning steps were correct. It
suggests that using tools might mislead the reason-
ing process of the model if it misuses tools.

F Prompts

In addition to the single-step tool-use prompts,
shown in Table 1, we experimented with some vari-
ations based on it for ablation. Table 13 shows a
prompt instructing the model to answer without
tool-use and answer format. Table 14 shows a
prompt with zero-shot CoT instructing the model
to answer without tool-use, but with answer format.
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NON-TOOL-USE EXAMPLE
User:
Although both her parents are Australian, in which US state was Nicole Kidman born?
Assistant:
Thought: I will think about the birthplace of Nicole Kidman, considering she is an Australian-born actress.
Answer: Hawaii (correct answer)

TOOL-USE EXAMPLE
User:
Although both her parents are Australian, in which US state was Nicole Kidman born?
Assistant:
Thought: I don’t have the information about Nicole Kidman’s birthplace, so I’ll use external tools to gather the information.
Action: WikipediaSearch[Nicole Kidman]
Rationale: I’ll use the WikipediaSearch tool to find information about Nicole Kidman’s birthplace.
Answer:
User:
Response from tool WikipediaSearch[Nicole Kidman] are: Rabbit Hole (film) Rabbit Hole is a 2010 American tragedy
film starring Nicole Kidman, Aaron Eckhart, and Dianne Wiest, and directed by John Cameron Mitchell; . . .
Assistant:
Thought: The text provided by the WikipediaSearch tool is about the movie “Rabbit Hole” (2010) starring Nicole Kidman,
but it does not directly answer the question about Nicole Kidman’s birthplace.
Action: None needed, as the information provided is not relevant to the question.
Rationale: The text provides information about the movie “Rabbit Hole”, including its plot, cast, production, and reception.
However, it does not mention Nicole Kidman’s birthplace.
Answer: None (wrong answer)

Table 11: An example from the validation set of TriviaQA where a tool response misleads the Llama-3-8B-Instruct
model. The latter part of the tool response is abbreviated with “. . . ” for space efficiency.

NON-TOOL-USE EXAMPLE
User:
Zack’s locker is half as big as Timothy’s locker. Peter’s locker is 1/4 as big as Zack’s locker. If Peter’s locker is 5 cubic
inches, how big is Timothy’s locker in cubic inches?
Assistant:
Thought: To solve this problem, I’ll start by identifying the given information. Peter’s locker is 5 cubic inches, and it’s
1/4 as big as Zack’s locker. This means Zack’s locker is 5 x 4 = 20 cubic inches. Since Zack’s locker is half as big as
Timothy’s locker, Timothy’s locker is 2 x 20 = 40 cubic inches.
Answer: 40 cubic inches. (correct answer)

TOOL-USE EXAMPLE
User:
Zack’s locker is half as big as Timothy’s locker. Peter’s locker is 1/4 as big as Zack’s locker. If Peter’s locker is 5 cubic
inches, how big is Timothy’s locker in cubic inches?
Assistant:
Thought: I will use external tools to solve this problem.
Action: Calculator[1/4 * 5] to find the size of Zack’s locker.
Rationale: Since Peter’s locker is 1/4 as big as Zack’s locker, and we know Peter’s locker is 5 cubic inches, we can multiply
5 by 4 to find the size of Zack’s locker.
Answer: (I will wait for the tool’s response before providing the answer)
User:
Response from tool Calculator[1/4 * 5] are: 1.25
Assistant:
Thought: Now that I have the size of Zack’s locker, I will use external tools to find the size of Timothy’s locker.
Action: Calculator[2 * 1.25] to find the size of Timothy’s locker.
Rationale: Since Zack’s locker is half as big as Timothy’s locker, and we know Zack’s locker is 1.25 cubic inches, we can
multiply 1.25 by 2 to find the size of Timothy’s locker.
Answer: 2.5 (wrong answer)

Table 12: An example of the Llama-3-8B-Instruct model getting the wrong answer when using tools from the
validation set of GSM8K.

Table 15 shows a prompt instructing the model to
answer questions with single-step tool-use but with-
out showing “Rationale”. Table 16 is a multi-step
variant of the single-step tool-use prompt.
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You are an advanced AI agent designed to answer questions. Please use your own knowledge to answer the question.
Answer in a few words.

Table 13: System prompt for no tool-use without answer format.

You are an advanced AI agent designed to answer questions. Please use your own knowledge to answer the question.
Answer in a few words. Let’s think step by step.

Respond in the following format:
Thought: describe your thoughts on how to solve the question.
Answer: provide your answer here.

Table 14: System prompt for no tool-use with zero-shot CoT.

You are an advanced AI agent designed to answer questions. You can use your own knowledge to answer the questions, or
use external tools to gather information before answering. However, you can only request the use of tools once. Answer in
a few words. Let’s think step by step.

Respond in the following format:
Thought: describe your thoughts on how to solve the question, and decide whether to answer using your own knowledge
or utilise external tools.
Action: specify the tool here using the format ‘ToolName[query]’ if you decide to use tools.
Answer: (1) if using your own knowledge, provide your answer here; (2) if using tools, leave this part empty until the
tool’s response is received.

Below are the external tools you can use:
1. Calculator[query]: this tool helps you perform simple mathematical computations with real numbers. Use the formula
as the input query, the tool response will be the result.
2. WikipediaSearch[query]: this tool helps you search for information from Wikipedia. Use a short keyword as the input
query, the tool response will be the corresponding information.
3. MachineTranslator[query]: this tool helps you understand low-resource languages by translating them to English. Use
the sentence you want to translate as the input query, the tool response will be the translation.

Table 15: System prompt for single-step tool-use without using “Rationale” in the response format.

You are an advanced AI agent designed to answer questions. You can use your own knowledge to answer the questions, or
use external tools to gather information before answering. You can request the use of tools as many times as you want.
Answer in a few words. Let’s think step by step.

Respond in the following format:
Thought: decide whether to answer using your own knowledge or utilise external tools.
Action: specify the tool here using the format ‘ToolName[query]’ if you decide to use tools.
Rationale: justify your answer by providing intermediate reasoning steps for your answer, based either on your own
knowledge or the received tool responses.
Answer: (1) if using your own knowledge, provide your answer here; (2) if using tools, leave this part empty until the
tool’s response is received.

Below are the external tools you can use:
1. Calculator[query]: this tool helps you perform simple mathematical computations with real numbers. Use the formula
as the input query, the tool response will be the result.
2. WikipediaSearch[query]: this tool helps you search for information from Wikipedia. Use a short keyword as the input
query, the tool response will be the corresponding information.
3. MachineTranslator[query]: this tool helps you understand low-resource languages by translating them to English. Use
the sentence you want to translate as the input query, the tool response will be the translation.

Table 16: System prompt for multi-step tool-use.
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