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Abstract

Code Language Models have been trained to
generate accurate solutions, typically with no
regard for runtime. On the other hand, pre-
vious works that explored execution optimi-
sation have observed corresponding drops in
functional correctness. To that end, we intro-
duce Code-Optimise, a framework that incor-
porates both correctness (passed, failed) and
runtime (quick, slow) as learning signals via
self-generated preference data. Our framework
is both lightweight and robust as it dynamically
selects solutions to reduce overfitting while
avoiding a reliance on larger models for learn-
ing signals. Code-Optimise achieves signifi-
cant improvements in pass@Qk while decreas-
ing the competitive baseline runtimes by an
additional 6% for in-domain data and up to
3% for out-of-domain data. As a by-product,
the average length of the generated solutions
is reduced by up to 48% on MBPP and 23%
on HumanEval, resulting in faster and cheaper
inference. The generated data and codebase
is open-sourced at https://github.com/
huawei-noah/HEBO/tree/Code_Optimise.

1 Introduction

Code Language Models (CLMs) trained on large
code repositories such as The Stack (Kocetkov
et al.,, 2022; Lozhkov et al., 2024) gradually
increase their understanding of code semantics.
CLMs are thus able to generate functionally correct
and reasonably efficient solutions to programming
problems (Austin et al., 2021; Chen et al., 2021),
among many other code-related skills (Li et al.,
2023). Shypula et al. (2023) have shown that CLMs
can optimise slow-running code to achieve large
runtime gains but at a substantial cost to correctness
(down by up to ~30%). Subsequent research has fo-
cused mostly on improving code correctness. From
the data perspective, a common way of improving
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Figure 1: Overview of Code-Optimise. (1) Diverse so-
lutions are sampled per problem. (2) A code interpreter
annotates the solutions by functional correctness and
runtime. (3) CLM is optimised using SFT or DPO.

functional correctness is via distilled supervised
fine-tuning (Tunstall et al., 2023; Xu et al., 2023;
Luo et al., 2023; Wei et al., 2023) on training data
generated by large models such as GPT-4 (Achiam
et al., 2023). However, in many cases, due to le-
gal, financial and/or privacy constraints, it is not
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Model Split Problem Solution

Total Filtered Ratio | Total Filtered Ratio CoV

StarCoder-1B Train 384 183 47.66 | 38400 15472 4029 0.011
Validation | 90 40 44.44 | 9000 3533 39.26 0.010

StarCoder-3B Train 384 211 5495 | 38400 17575 4577 0.007
Validation | 90 45 50.00 | 9000 3926 43.62 0.014

Codellama-7B Train 384 250 65.10 | 38400 21350 55.60 0.007
Validation | 90 55 61.11 | 9000 4962 55.13  0.008

Codellama-13B Train 384 261 67.97 | 38400 22182 57.77 0.007
Validation | 90 56 62.22 | 9000 5108 56.76  0.007

Table 1: Statistics of our self-generated preference data. 1) A Model generates 100 solutions per problem out of the
Total problems in each Split. 2) Functional correctness and runtime are annotated. 3) Problems are filtered to retain
those with at least 2 passing and 1 failing solution (Filtered). A low coefficient of variation (CoV < 0.1) across 5

iltered

runs indicates that runtime measurements are stable. Ratio is the percentage of =€ retained code solutions.

feasible to rely on proprietary data. Furthermore,
we seek to overcome the limitations of supervised
fine-tuning (SFT), which only optimises for ‘posi-
tive’ examples and possesses no means of reducing
the likelihood that undesirable (e.g. incorrect or
slow) code is generated. Although such issues may
be addressed via Reinforcement Learning (RL; Le
et al. (2022); Wang et al. (2022); Gorinski et al.
(2023)), they often come with added complexity
and instability. Therefore, we opt for Direct Pref-
erence Optimisation (Rafailov et al., 2024) as our
preferred fine-tuning method due to its simplicity
and widespread adoption.

We propose Code-Optimise, a lightweight
framework that trains CLMs with our self-
generated preference data for correctness (passed
/ failed) and efficiency (quick / slow), shown in
Figure 1. Starting from a small collection of prob-
lems and unit tests, Code-Optimise bootstraps the
pre-trained CLM to generate the required learning
signals, thereby exposing the model to automati-
cally annotated on-policy data. Additional robust-
ness is also provided by dynamically selecting so-
lutions during training to reduce overfitting. Our
method consists of three steps: 1) Sampling; gen-
erate N solutions for each problem description, 2)
Annotation; automatically label each solution for
correctness and runtime, 3) Optimisation; fine-tune
the CLM on self-generated preference data using
several lightweight configurations. Our main con-
tributions are:

* We create and publish a novel code preference
dataset (and recipe to extend it) that enables
multi-objective optimisation (code correctness
and runtime efficiency) of CLMs.
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* We present experimental analysis to support
our approach and observe that functional cor-
rectness is significantly improved, particularly
for smaller CLMs and lower k in passQk.
The scores are further enhanced with our Dy-
namic Solution Selection (DSS).

* We demonstrate that runtimes are reduced by
up to 6% for MBPP and 3% for HumanEval
over competitive baseline CLMs. Finally, the
length of generated solutions is reduced by up
to 23% for HumanEval and 48% for MBPP,
thereby decreasing inference costs.

To the best of our knowledge, our work is the first
to show improvements in both correctness and effi-
ciency for the task of code generation.

2 Code-Optimise

In Figure 1, we introduce Code-Optimise, a
lightweight optimisation method for CLMs aimed
at improving functional correctness and/or reduc-
ing the runtime of code. We assume that the pre-
trained model has knowledge of accurate and effi-
cient solutions but requires guidance to determine
the best solution. This is also one of the main
motivations of preference optimisation algorithms.
Unlike training with distilled signals from larger
models, new information is not learned. These ap-
proaches may be orthogonal. However, such an
exploration is beyond the scope of this work.

2.1 Sampling

We assume access t0 Dyeeq = {4, i, uti}Y |, a

dataset of problem descriptions z; and the corre-
sponding unit tests ut; that can be used for sam-



Algorithm 1 Timing module algorithm.

1: for s € solutions do

2 CoV + oo

3 repeat > up to IK times

4 times < [ | > initialise empty list
5: for1,...,50do

6 L runtime, passed <— EXEC(s)
7 times.append(runtime)

8 i, 0 < MEAN(times), STD(times)
9: CoV «—oa/u
10: until CoV < 0.1
11: if CoV > 0.1 then
12: L > stable runtime was not obtained
13: | passed <+ False

pling and testing new solutions from the CLM,
denoted C' L Mp,s. henceforth. Since fine-tuning
the model on the limited solutions g; would lead to
overfitting, we leverage its extensive pre-training to
generate a multitude of diverse solutions to obtain
additional training data. We sample 100 solutions
from C'L My, for each problem description with
multinomial sampling due to its lower computa-
tional cost. A temperature of ¢ = 0.6 is applied to
achieve a balance between functional correctness
and diversity, resulting in non-uniform runtimes.

2.2 Annotation

The solutions are automatically evaluated for func-
tional correctness and runtime. While the former
can be achieved by simply executing a solution
with its corresponding unit tests, the latter requires
additional steps for obtaining stable runtime mea-
surements, see Algorithm 1. Each solution s is exe-
cuted 50 times to determine its functional correct-
ness (passed/failed) and runtime in nanoseconds.
We obtain 14 and o, then calculate the coefficient of
variation C'oV. A measurement is deemed stable
and accepted if CoV < 0.1 (usually much lower).
Otherwise, we repeat the loop up to 1K times. In
the unlikely scenario that a stable runtime could
not be obtained, we set passed = False (mark
solution as failed). In order to further increase the
reliability of runtime measurements, we execute
Algorithm 1 five times (in a separate process) and
average the results. Lastly, we remove problems
xi, Yi, ut; which do not have at least two passing
and one failed solution to ensure that optimisation
can be enhanced with our Dynamic Solution Selec-
tion (2.4) during training. The statistics of the final
dataset Dy,q;n are shown in Table 3.
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2.3 Optimisation

In this step, the model is fine-tuned on Dyyq;p to
bias C'L Mp,s. towards generating more function-
ally correct and runtime-efficient solutions. Al-
though several methods for preference data optimi-
sation exist (Yuan et al., 2023; Zhao et al., 2023;
Liu et al., 2023; Azar et al., 2024; Ethayarajh et al.,
2024; Hong et al., 2024), we opt for DPO due to its
simplicity and wide adoption. We also benchmark
SFT due to its widespread use in prior work.

Supervised Fine-Tuning We train C' L Mp, . On
Dyyain using TOP-N% of the fastest solutions
where N € {25,100}, which means that the diver-
sity of runtimes grows as IV increases. Henceforth,
models optimised with the top 25% of fastest solu-
tions are denoted as S F'Ty5 and CLMs trained with
all (including the slowest) solutions as S F'Tqp.

Lspr (m9) = —E(zyy~p [logmg (y [ )] (D)

Direct Preference Optimisation Aiming to
avoid the complexity and instability of reinforce-
ment learning, DPO (Rafailov et al., 2024) aligns
models to preference data with a simple classifica-
tion loss, shown in Equation 2.

Lpro (Te; Tref) = —E(z,yy y)~D

lOgG’ <ﬁ10g o (yw | l‘) —ﬂlog o (yl | .’L')
Tret (Y | ) et (1 | @)

) @

We investigate the effectiveness of the following
configurations of code preference pairs:

* Quick versus Slow: Choose quick & slow
solutions according to the annotated runtime.
We denote such models as DPOg,s.

* Passed versus Failed: Choose passed &
failed pairs according to the annotated func-
tional correctness, denoted as DPOp,f.

* All: Choose all preference pairs from the
Quick vs. Slow and Passed vs. Failed configu-
rations. We denote such models as D PO ;.

2.4 Dynamic Solution Selection

Training data is typically fixed at the start of train-
ing and remains static throughout (Tunstall et al.,
2023; Luo et al., 2023; Xu et al., 2023; Wang et al.,
2023; Yuan et al., 2024). Our approach takes ad-
vantage of the multitude of code solutions from the
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Figure 2: The pass@k scores for MBPP and HumanEval averaged across model sizes for a high-level overview.
Models optimised via DPO consistently show higher functional correctness compared to Base and SFT for all k.
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Figure 3: The median runtime and code length of generated solutions for MBPP and HumanEval, averaged across
model sizes. Values shown are the percentage changes relative to Base, i.e. >0 is slower or longer than Base, <0 is
faster or shorter. The best DPO models achieve a reduced runtime compared to SFT models as well as the very
competitive Base models. A significant reduction in code length (10% - 20%) is observed across both datasets.

sampling step (2.1) to dynamically select prefer-
ence pairs during training. To that end, we ran-
domly choose a new preference pair (y,,y;) for
each problem z; from Dy,q;y, at the start of the
epoch for DPO configurations. For SFT, we ran-
domly choose any working solution (y,,) at the
start of each epoch for a comparable configuration.
This reduces overfitting by presenting prompts with
multiple completions. Note that we utilise dynamic
solution selection by default in our framework.

3 Results

In this section, we define the evaluation metrics
and present the results of our proposed framework
at varying scales. We also provide a qualitative
analysis to support our findings. Detailed imple-
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mentation notes are provided in Appendix A.

3.1 Evaluation Metrics

Functional Correctness is evaluated by sam-
pling 100 solutions per problem via multinomial
sampling and a temperature of ¢ = 0.6. Following
Chen et al. (2021), we measure functional correct-
ness using pass@k, where k € {1,10,100}.

Code Efficiency improvements can be a chal-
lenge to capture accurately. Using Algorithm 1,
we measure efficiency using runtime (the median
of all working solutions). Since the runtime of a
failed program is undefined, we remove problems
for which models have no working solutions to
compare CLMs on the same subset of solved prob-
lems. Doing so ensures a fair comparison between
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increases. A significant improvement over competitive Base and SFT models can be observed for DPO configs.

Model MBPP HumanEval
StarCoder-1B 40.60% 30.49%
StarCoder-3B 48.40% 46.95%
CodeLlama-7B 55.60% 73.71%
CodeLlama-13B | 60.40% 79.27%

Table 2: Intersection of problems between Base, SFT,
and D PO models with at least one working solution.

models. Table 2 shows that this subset increases as
CLMs get larger and more ‘code-competent’.

Code Length does not necessarily correlate with
code efficiency as shorter outputs may abstract
away the complexities of their implementations.
Note that Code-Optimise does not explicitly fine-
tune CLMs for code length. However, we are still
interested in determining if our preference optimi-
sation results in code that is both faster (execution
savings) and shorter (inference savings). The sub-
set of working solutions in Table 2 is again used to
measure code length, which is the median number
of characters of all working solutions.

3.2 Functional Correctness

Figure 2 shows the pass@Qk scores for MBPP and
HumanEval, averaged over all model sizes. The
individual pass@k scores are shown in Figure 4.
We observe that models optimised via DPO con-
sistently demonstrate higher functional correctness

&3

relative to the baseline (Base) and SFT on both
datasets. The effect is even larger on in-domain
data, particularly with lower k. The DPO models
perform similarly on MBPP with D PO p,  being
the best overall on HumanEval. SFT models show
a marginal improvement for £ = 1 but no improve-
ment (or a small decrease) at higher k. We therefore
conclude that DPO is a more suitable fine-tuning
paradigm for our self-generated code preference
data as it is better able to leverage the learning sig-
nals (quick versus slow and passed versus failed).

3.3 Code Efficiency

The runtimes and lengths of generated solutions are
plotted in Figure 3 as a percentage change from the
baseline (a value < 0 means faster or shorter than
the baseline while > 0 means slower or longer).
Once again, values are averaged across model sizes
for a high-level overview. Individual model scores
are shown in Figures 5 and 6, respectively. In
preliminary analysis, we observed that baseline
CLMs were already capable of generating solu-
tions with low-complexity. However, DPOg,s
and DPO 4;; models manage to further decrease
runtimes on in-domain data by up to 6% and up to
3% on the out-of-domain data. SFT models gen-
erally increase runtimes across both datasets. In
terms of code length, the best DPO models reduce
the median number of characters by up to 48% on
MBPP and 23% on HumanEval while SFT mod-
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Figure 5: The runtimes for MBPP and HumanEval as model size increases. Values shown are the percentage
changes relative to Base, i.e. >0 means slower than Base, <0 means faster. On average, DPO models show a greater
runtime reduction on in-domain rather than out-of-domain data. SFT models exhibit inconsistent scaling patterns.
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Figure 6: Code lengths for MBPP and HumanEval as model sizes increase. Values shown are the percentage
changes relative to Base, i.e. >0 means longer than Base, <0 means shorter. DPO models consistently produce
shorter sequences across both datasets. SFT models generate significantly longer code, particularly the larger CLMs.

els tend to generate significantly longer solutions.
This is particularly evident with SFT7g9, which
uses all code solutions for training, including the
slowest, which tend to be longer. SFT does not
appear to be particularly suitable for optimising
runtime or code length with our preference data as
any baseline biases for generating longer code can
be reinforced. In summary, Code-Optimise induces
a reduction in runtime for faster code execution
while also outputting shorter solutions, resulting in
lower inference costs and improved response times.

3.4 Model Scaling

Figures 4, 5 and 6 show the evolution of functional
correctness, runtimes and lengths of generated so-
lutions as the number of trainable parameters in-
creases (1B - 13B). Analysing pass@1 in Figure
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4, we can see that larger DPO models achieve a
more significant improvement over the baseline and
SFT, particularly for in-domain problems. Some-
what surprisingly, functional correctness for Hu-
manEval (out-of-domain) improves at a faster rate
than MBPP (up to 7B parameters). In Figure 5,
we observe that as the DPO models increase in
size, their runtimes relative to the baseline remain
consistent. The DPOp,r configuration tends to
average somewhat slower runtimes as this setup
only optimises for correctness thus sacrificing ef-
ficiency. We can also see a consistent pattern of
increased runtimes for all SFT models. On Hu-
manEval, on the other hand, runtimes for different
model sizes are much less predictable. However,
on average, our best configuration D PO, s does
show an improvement over the already competi-
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Figure 7: The pass@1 scores for StarCoder-1B without (Static) and with (Dynamic) solution selection (DSS). DSS
benefits every model, especially DPO configs. More pass@Fk scores can be found in Figure 12 of the Appendix.

tive baseline CLMs. The effect on code length
generalises very well to out-of-domain problems,
particularly for larger CLMs, see Figure 6. In fact,
we find a clear trend for all DPO models and for
both datasets that shows reduced code lengths of
up to 48% in-domain and up to 23% out-of-domain.
The SFT models increase the lengths in all cases,
especially at larger model sizes. As was the case
with runtimes, this is akin to reinforcing its biases
towards more verbose code as the preference data
is self-generated.

3.5 Qualitative Analysis

Figure 8 shows several solutions to a typical pro-
gramming problem taken from MBPP that gives
a more tangible form to our results. More exam-
ples for HumanEval and MBPP can be found in
the Appendix (Figures 10 and 11). Following a
manual inspection of dozens of generated solutions
from each configuration, the efficiency improve-
ments generally come from two main sources: (1)
brevity: the model outputs only essential code (no
function calls, unit tests, comments, etc.), which
saves generation time for auto-regressive LMs and
(2) complexity: the code is simplified and uses
faster routines, relative to the baseline, which saves
resources when it is executed. The SFT models
tend to sacrifice brevity the most as their complex-
ity is similar to the baseline. Figures 8, 10, and 11
show several examples of this, e.g. adding func-
tion calls to the newly generated solution, possibly
with import statements and/or expected inputs or
outputs.! This is in line with the observation from

' Adding test cases to code is generally considered good
programming practice. However, for the purpose of pure
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Figure 3 where the SFT models appear to be more
verbose and biased towards longer outputs. The
DPO models tend to produce solutions with a some-
what lower complexity and a better unit test cov-
erage. Further analysis suggests that HumanEval
solutions generated by baseline LMs are quite com-
petitive and usually more runtime-efficient than
MBPP baseline solutions. We posit that this may
be due to the more comprehensive task descriptions
in HumanEval, which include input-output pairs.
Among DPO models, we do not observe a clear
winner in qualitative analysis although DPOg,s
is the best setup in terms of aggregate results.

3.6 Importance of Solution Selection

Our core methodology for creating high-quality
code preference data enables us to dynamically se-
lect unique pairs for each prompt at the start of
a new epoch. Since we train all models for 30
epochs, CLMs can potentially be exposed to many
unique combinations of code completions. Figure
7 shows pass@1 scores for StarCoder-1B improv-
ing with dynamic solution selection compared to
static pairs randomly assigned at the beginning of
training, commonly practiced in related work. The
benefits are somewhat more pronounced for DPO,
our preferred optimisation method, compared to
SFT. Across different & in pass@k, models consis-
tently benefit from our dynamic solution selection,
additionally seen in Figure 12 in the Appendix.

efficiency (our case), this can potentially add significant cost.



3.7 Which configuration to choose?

Any configuration that optimises for a single objec-
tive is expected to perform best in said objective.
As such, when maximising functional correctness,
DPOp,k is preferred. On the other hand, DPOgqys
works best for runtime efficiency. With DPOpgy,
the model improves in functional correctness and
runtime efficiency but is not optimal at both. Practi-
tioners should choose the configuration that works
best for their given code generation objective.

4 Related Work

Distilled Supervised Fine-Tuning has been ap-
plied to code generation for the sole purpose of
improving functional correctness. CLMs such as
MagiCoder (Wei et al., 2023) and WizardCoder
(Luo et al., 2023) query large proprietary models
to provide the necessary training data (Cui et al.,
2024; Xu et al., 2023). However, such approaches
may not be permissible in many development set-
tings due to financial, legal, and/or privacy reasons.

Reinforcement Learning (Le et al., 2022; Wang
et al., 2022; Gorinski et al., 2023) can overcome
the shortcomings of supervised fine-tuning by prop-
agating the negative rewards for dysfunctional
code. However, RL algorithms typically come with
additional complexity and instability. Recently,
Rafailov et al. (2024) proposed Direct Preference
Optimisation (DPO) as an alternative to Reinforce-
ment Learning from Human Feedback when align-
ing language models to human preferences (Tun-
stall et al., 2023). DPO serves as a form of offline
RL that directly optimises on a given set of trajec-
tories without requiring a separate reward model.
Note that the aforementioned RL approaches only
consider code correctness and not runtime as well.

Code Efficiency Optimisation was previously
proposed by Shypula et al. (2023) as a code editing
task where slow-running code is altered to achieve
a faster runtime. Optimisation was done on a newly
curated dataset with synthetic test cases from vari-
ous methods of prompting and fine-tuning. How-
ever, the greatly reduced runtimes came at a signifi-
cant cost to code correctness. In many configura-
tions, performance was reduced by up to 30%, with
‘smaller’” CLMs (7B, 13B) suffering a larger degra-
dation. We hypothesise that this may be due to a)
overfitting the single runtime objective (unlike our
work where we aim to optimise for correctness and
runtime) and b) removing failed programs from the
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Input prompt:
def test_duplicate(arraynums):

"""Write a function to find whether a given
array of integers contains any duplicate
element. """

Base Solution:
for i in range(@, len(arraynums)-1):
for j in range(i+1, len(arraynums)):
if arraynums[i] arraynums[j]:
return True
return False

SFT,s Solution:

# Your code here
for i in range(len(arraynums)):
for j in range(i+1, len(arraynums)):
if arraynums[i] == arraynums[j]:
return True
return False

array = [1, 2, 3, 1]
print(test_duplicate(array))

# Write a function to find the frequency of
the elements present in a given array.

SFTi9 Solution:

# Code here
arraynums.sort()
for i in range(len(arraynums)-1):
if arraynums[i] == arraynums[i+1]:
return True
return False
if

’ .

__name__ == ’__main__
arraynums = [1, 2, 3, 4, 5, 1]
print(test_duplicate(arraynums))

DPOgq,s Solution:
return len(arraynums) != len(set(arraynums))

DPOpyr Solution:

# Write your code here

if len(arraynums) == len(set(arraynums)):
return False

return True

DPO,; Solution:

nums = set(arraynums)
return len(nums) != len(arraynums)

Figure 8: Example solutions for an MBPP problem with
additional use cases found in Figures 10 and 11.

dataset, thus leading to CLMs that struggle with the
semantics of correct vs. incorrect code. We opt to
not compare directly with this work as their method
was specifically curated for code editing where a
correct but inefficient program is assumed as input.
On the contrary, we seek to produce solutions from
scratch that are both correct and runtime efficient.



5 Conclusions

We have introduced Code-Optimise, a lightweight
framework for improving code correctness and run-
time via self-generated preference data (quick vs.
slow and passed vs. failed solutions). Our experi-
ments have shown several benefits: 1) functional
correctness is significantly improved, particularly
for smaller models, 2) dynamic solution selection
during training provides an additional benefit by
reducing overfitting, 3) runtime is reduced by up
to 6% for MBPP and 3% for HumanEval over the
baseline CLM, lowering the cost of code execu-
tion, 4) code length is significantly shortened, up
to 48% for MBPP and 23% for HumanEval, which
reduces inference cost and improves response time.
We hope that our insights and novel dataset will
stimulate further exciting research in this area.

6 Limitations

Timing the execution of short programs accurately
is challenging and despite our best efforts, the run-
time measurements could probably be improved
with additional software engineering. This would
also provide a cleaner and more stable learning sig-
nal for Code-Optimise. While our methodology is
highly data-efficient, using only ~200 open-source
prompts for generating the training data, obtain-
ing high-quality problems (free from proprietary/li-
censing issues) may yield better results. For code-
related tasks that are amenable to our methodology,
the improvements to runtime/inference may be in-
vestigated outside the scope of this paper. While
we conducted all experiments using Python, we
acknowledge that other programming languages
should also be analysed in follow-up work.
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A Implementation Details

A.1 Dataset

MBPP The Mostly Basic Programming Prob-
lems introduced by Austin et al. (2021) consists
of 974 crowd-sourced Python programming chal-
lenges. Each problem comprises a description, an
example code solution and a few automated test
cases. The dataset contains training, validation and
test splits. We utilise the training and validation
splits for optimisation, while the test split serves as
the in-domain test data distribution.

HumanEval (Chen et al., 2021) comprises 164
Python programming challenges. The function sig-
natures, docstrings, example solutions and several
unit tests were handwritten for each problem. We
leverage HumanEval as our out-of-domain test set
as the descriptions in MBPP do not contain any unit
tests and the writing style of HumanEval problems
does not follow a consistent format. This helps us
evaluate robustness to handwritten prompts.

A.2 Training

We use the StarCoder (Li et al., 2023) and CodeL-
lama (Roziere et al., 2023) families of models in
our experiments. We opt for the pretrained (base)
versions with sizes of 1B and 3B for StarCoder
and 7B and 13B for CodelLlama, hosted on Hug-
gingFace (Wolf et al., 2020). During training, we
fine-tune each model using a total of 30 epochs and
select the best model based on the lowest valida-
tion loss. We use a learning rate of 5¢~7 with a
linear scheduler, a 10% warm-up, and a maximum
sequence length of 2048 tokens.

B Supplementary Experiments

B.1 Additional Qualitative Examples

In Figures 10 and 11, we present additional quali-
tative examples from each configuration.

B.2 Additional Ablation Scores

In Figure 12, we present additional pass@10 and
pass@100 scores for MBPP and HumanEval of
StarCoder-1B by ablating the solution selection.

B.3 Fastest Solution Analysis

Shypula et al. (2023) introduce the Best@k met-
ric, which considers only the fastest solution given
k samples. We show the results of our optimisa-
tion using this non-standard metric as an additional
analysis. We set k& = 100 (all generated solutions),
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Figure 9: The best@100 scores for MBPP and Hu-
manEval, averaged across model sizes. Values shown
are the percentage change to Base, i.e. >0 is slower than
Base, <0 is faster. Considering the fastest solution for
each problem, DPO models show the best runtimes.

which is the basis of all our experiments. In Figure
9, we note that DPO models produce faster solu-
tions not only on in-domain problems, but also out-
of-domain, between 2% and 5% faster. DPOp,p
once again has the higher runtime as its objective is
to optimise only functional correctness. The fastest
solutions from the SFT models are generally slower
on both MBPP and HumanEval. Note that Best@k
may overestimate the runtime improvements by
only considering the fastest solution. Hence, we
utilise the median of all working solutions as a less
biased evaluation in our experiments.

C Complete Results
C.1 Sampling

In Table 3, we show the functional correctness of
the CLMs in the sampling stage of Code-Optimise.

C.2 Optimisation

In Tables 4, 5, 6, and 7, we tabulate the full model
performance of the CLMs on the test sets. The
CoV is shown beside each runtime.



Input prompt:

def has_close_elements(numbers, threshold):

"""Check if in a list of numbers, are any two numbers closer to each other than threshold.
has_close_elements([1.0, 2.0, 3.0], 0.5) == False
has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], ©0.3) == True"""

Base Solution:

for index, number in enumerate(numbers):
for other_number in numbers[index+1:]:
if abs(number - other_number) < threshold:
return True
return False

if __name__ == ’__main__’:
import doctest
doctest.testmod()

SFT;5 Solution:

for i, numberl in enumerate(numbers[:-1]):
for number2 in numbers[i+1:]:
if abs(number1 - number2) < threshold:
return True
return False

n

if __name__ == "__main__
import doctest
doctest.testmod()

# print(has_close_elements([1.0, 2
# print(has_close_elements([1.0, 2

",

.8, 3.0, 4.0,
.8, 3.0, 4.0

’

SFT1g0 Solution:

for i, numberl in enumerate(numbers[:-1]):
for number2 in numbers[i+1:]:
if abs(number1 - number2) < threshold:
return True
return False

if __name__ == "__main__":
import doctest
doctest.testmod()

# print(has_close_elements([1.0, 2.0, 3.0], 0.5))
# print(has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3))

DPOg,s Solution:

return any(
abs(numbers[i] - numbers[j]) < threshold
for i in range(len(numbers))
for j in range(i + 1, len(numbers))

)

DPOp,r Solution:

for i, x in enumerate(numbers[:-1]):
for y in numbers[i+1:]:
if abs(x - y) < threshold:
return True
return False

DPO4y Solution:

for i in range(len(numbers) - 1):
for j in range(i + 1, len(numbers)):
if abs(numbers[i] - numbers[j]) < threshold:
return True
return False

Figure 10: Example solutions for a problem in HumanEval.
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Input prompt:

def remove_Occ(s,ch):
""" Write a python function to remove first and last occurrence of a given character from the
String. nnn

Base Solution:

if ch in s:

s = s.replace(ch, ”, 1) # remove first occurrence
if ch in s:

s = s.replace(ch, ”, 1) # remove second occurrence
return s

SFT,5 Solution:
if ch in s:

return s.replace(ch,
else:

return s

nn

, 1).replace(ch, "", 1)

# s = "geeksforgeeks"

# ch = "e"

# print(remove_Occ(s, ch))

# Write a python function to remove all the vowels from the string.

SFTi90 Solution:
1 =11
for i in s:
if i != ch:
1.append(i)
return "".join(l)

’ .

if __name__ == ’__main__
s = input().strip()
ch = input().strip()
result = remove_Occ(s, ch)

print(result)

# Given a string, return a version without the first and last char of the string. The string may
be any length - including @ - so you must handle the case of an empty string.

DPOg,s Solution:

while ch in s:
s = s.replace(ch,"",1)
return s

DPOp,r Solution:
return s.replace(ch,”,2)

DPOan Solution:
return s.replace(ch,”",2).replace(ch,””,-1)

Figure 11: Example solutions for a problem in MBPP.

Model Split Pass@1 Pass@10 Pass@100
Train 1400 34.50 55.20

StarCoder-1B | . qation | 12.20 31.70 48.90
Train 1950  44.30 61.70

StarCoder-3B |\ idation | 1920  42.50 57.80
Train 2580  54.00 70.10

CodeLlama-7B |y, 114 tion | 23.40 50.30 68.90
Train 28.80 5820 71.60

CodeLlama-13B |y, 10 ion | 24.60 52.90 66.70

Table 3: Functional correctness of the CLMs during sampling.
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Figure 12: The pass@10 and pass@100 scores for StarCoder-1B without (Static) and with (Dynamic) solution
selection (DSS). Performance improves on both metrics and distributions with DSS.
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Model ‘ Pass@1 Pass@10 Pass@100 ‘ Time Length
Base 11.80 31.70 49.80 114338 4+ 0.021 155
SFTs 17.90 34.40 47.60 104690 £ 0.012 238
SFT00 16.80 34.20 47.00 169536 £+ 0.017 252
DPOgys 17.10 36.10 52.80 109051 +0.018 144
DPOpyr | 16.90 36.90 54.00 118418 £ 0.019 181
DPOyy 16.90 36.40 53.20 103588 4+ 0.021 152

(a) MBPP

Model | Pass@1 Pass@10 Pass@100 | Time Length
Base 12.00 24.30 39.00 150930 £+ 0.017 124
SFTs 14.20 24.30 39.00 157975 £ 0.027 180
SFTi00 13.90 24.50 40.20 154395 £+ 0.020 175
DPOgys 14.20 27.30 42.10 143259 + 0.013 125
DPOp,r | 14.30 28.10 45.70 147980 £ 0.034 146
DPO yy 13.70 27.10 42.10 232759 £ 0.012 132

(b) HumanEval

Table 4: Model performance on MBPP and HumanEval of StarCoder-1B.

Model | Pass@1 Pass@10 Pass@100 | Time Length
Base 16.90 40.00 55.00 113760 + 0.016 158
SFTss 23.40 41.80 55.20 115834 + 0.011 171
SFTio0 22.40 41.60 55.20 119675 + 0.035 198
DPOgys 23.80 46.10 59.80 112395 4+ 0.008 162
DPOpyr | 2390 45.50 60.20 116529 + 0.017 185
DPOyy 23.40 45.30 60.20 103726 + 0.012 149

(a) MBPP

Model \ Pass@1 Pass@10 Pass@100 Time Length
Base 17.20 36.80 61.00 143806 + 0.012 162
SFTss 19.20 38.80 56.10 149743 4+ 0.017 172
SFTio0 19.40 38.60 56.10 152948 + 0.022 190
DPOgys 21.00 42.90 67.70 151401 + 0.011 170
DPOpyr | 2150 44.30 70.10 153620 + 0.013 181
DPO 4y 20.50 42.30 66.50 147823 4+ 0.014 161

(b) HumanEval

Table 5: Model performance on MBPP and HumanEval of StarCoder-3B.
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Model ‘ Pass@1 Pass@10 Pass@100 ‘ Time Length
Base 21.40 48.50 65.20 105313 £ 0.012 196
SFTs 25.40 48.40 62.00 124000 + 0.058 372
SFTioo 24.30 49.10 62.60 110982 £+ 0.010 435
DPOgys | 28.60 52.00 66.80 108925 £+ 0.013 141
DPOp,r | 30.20 52.10 66.20 109783 £ 0.006 129
DPOyy 29.10 52.30 66.60 108992 £+ 0.016 129

(a) MBPP

Model | Pass@1 Pass@10 Pass@100 | Time Length
Base 25.10 55.00 79.30 646547 £ 0.004 188
SFTs 26.80 55.00 82.90 509264 + 0.004 256
SFTi00 26.40 54.10 82.30 496296 £ 0.006 304
DPOg,s | 28.20 60.30 84.80 562279 £ 0.005 159
DPOpyr | 30.10 64.00 86.60 639553 £ 0.003 166
DPO yy 28.70 61.20 85.40 646486 + 0.002 160

(b) HumanEval

Table 6: Model performance on MBPP and HumanEval of CodeLlama-7B.

Model | Pass@1 Pass@10 Pass@100 | Time Length
Base 23.70 52.50 67.60 118418 + 0.009 223
SFTss 28.80 53.70 66.20 112624 4+ 0.006 348
SFTio0 26.70 52.80 66.00 126165 + 0.004 523
DPOgys 33.50 56.40 70.60 110390 4 0.008 116
DPOpyr 34.10 55.50 69.00 110427 + 0.018 126
DPOyy 32.80 56.20 69.20 110679 + 0.008 122

(a) MBPP

Model \ Pass@1 Pass@10 Pass@100 Time Length
Base 27.80 62.70 87.20 497649 + 0.015 187
SFTss 30.00 62.70 85.40 560336 + 0.005 238
SFTio0 27.90 61.00 82.90 532856 + 0.006 375
DPOgys 32.60 67.40 88.40 513372 4+ 0.005 145
DPOpyr | 33.20 68.00 88.40 528546 + 0.008 157
DPO 4y 31.90 66.70 86.00 520788 + 0.003 141

(b) HumanEval

Table 7: Model performance on MBPP and HumanEval of CodeLlama-13B.
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