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Abstract

Multi-step reasoning through in-context learn-
ing strategies have been extensively explored,
highlighting the abilities of Large Language
Models (LLMs) to generate answers derived
from step-by-step reasoning. These studies fo-
cus the attention on LLMs’ forward reason-
ing abilities epitomised in a series of general
premises leading to a final solution.

In this paper, by taking the reverse perspec-
tive, we study the backward reasoning abilities
of LLMs, namely the inference that leads to
the causal hypothesis. Behind formalising the
backward problems, we analyse whether the
LLMs are able to reason about the conclusion
and reconstruct the original question that led to
the delivery of the final answer. Operating with
question-answering tasks involving symbolic
reasoning, understanding, and commonsense
abilities, we observe that the proposed models
reveal robust comprehension capabilities man-
aging different kinds of input; however, they
are not always able to reason in the backward
direction. Finally, to challenge this limitation,
we demonstrate that instructing LLMs to gen-
erate the answer by reconsidering the structure
of the problem allows for improved backward
reasoning direction.

1 Introduction

Multi-step reasoning through Chain-of-Thought
(CoT) (et alia) have been extensively explored, un-
derlining the abilities of Large Language Models
(LLMs) to solve problems in a step-wise manner.
These strategies enable LLMs to generalise on out-
of-domain tasks, demonstrating versatility in di-
verse assignments such as sentence completion,
multiple-choice text comprehension, and mathe-
matical reasoning by delivering multi-step forward
responses. Specifically, each in-context demonstra-
tion is complemented by several steps represented
in natural language. At inference time, the verifi-
cation question is added to the prompt and fed to

an LLM, mimicking the provided demonstrations
and delivering reasoning steps before the final re-
sult. Many works have been proposed to improve
its effectiveness and efficiency (Wu et al., 2023;
Wang et al., 2023) in mono- and multi-lingual
spaces (Ranaldi et al., 2024b,c). In parallel, multi-
ple works study the impact of different in-context
problem-solving frameworks such as Program-
Aided Language Models (PAL) (Gao et al., 2023),
or ensembling techniques, self-verification strate-
gies (Qiao et al., 2023; Zhou et al., 2023) with the
collective aim of achieving better results.

While these methods demonstrate considerable
improvements across various benchmarks and dis-
play proficiency in generating linguistic patterns
that mimic human logical reasoning, they remain
constrained to a forward generative process. They
forget to explore the potential of deriving under-
lying rules from given outcomes by adopting a
backward reasoning perspective.

This leads to the target research questions:
RQ1 Can the well-known question-answering

tasks be employed to observe the reasoning abili-
ties of LLMs to study the effect in the backward
direction?

RQ2 Do the different complexities of forward
and backward reasoning observed in human minds
also reflected in LLMs?

RQ3 Could LLMs’ reasoning abilities be em-
powered using the structure of the inputs and the
generated answers?

In this paper, we investigate whether LLMs are
able to deliver answers by performing backward
reasoning steps, which consist of developing hy-
potheses from a set of facts and deducing the most
probable cause or the most plausible explanation.
We introduce question-answering tasks with Mul-
tiple Choice Questions (MCQ) structures and ex-
tend the evaluation to further Math Word Problem
(MPW) task. Hence, we propose two different ap-
proaches (i.e., Blanking and Hiding).
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Tf

Context:Henry made two stops during 
his 60-mile bike trip. He first 
stopped after 20 miles. His second 
stop was 15 miles before the end of 
the trip. 
Question: How many miles did he 
travel between his first and second 
stops?
Answer:

Henry traveled 25 miles

Henry traveled 25 miles

Q A

TbH

Fill in the blank value given the following problem.
Context: Henry made two stops during his 60-mile bike 
trip. He first stopped after X miles. His second stop was 
15 miles before the end of the trip. 
Question: How many miles did he travel between his first 
and second stops?

Answer: 25

QH AH

The value is 20.

The value is 18.

TCoT

Context:Henry made two stops during 
his 60-mile bike trip. He first 
stopped after 20 miles. His second 
stop was 15 miles before the end of 
the trip. 
Question: How many miles did he 
travel between his first and second 
stops?
Answer: Let's think step-by-step.

To solve this we need 
[...]
Henry traveled 25 miles

[...]
Henry traveled 25 miles

QCoT ACoT

TbB

Fill in the blank value given the following problem.
Context: Henry made two stops during his 60-mile bike trip. 
He first stopped after X miles. His second stop was 15 
miles before the end of the trip. 
Question: X
Answer: 25

QB AB
The question is:
How many miles did Henry 
travel between his first 
and second stops?

Question: What is the 
distance between 
Henry's first and 
second stops on his 
60-mile bike trip?

Henry made two stops during his-..
........................

He traveled 25 miles between his first and second stops

To find the distance between the Henry's 
........................

Therefore, the distance is 25 miles.

Figure 1: Overview of our proposed approaches.

The study of the backward process, i.e., recon-
structing the questions from the outcomes, delivers
evidence of the ability to understand the process
and profitability of LLMs that are systematically
posed to different elicitation approaches. Thus,
to have a comprehensive overview, we operate on
different versions of the best-known LLMs exem-
plified by GPT (OpenAI, 2023), Llama-2 (Touvron
et al., 2023), Mistral (Jiang et al., 2023) and Orca2
(Mitra et al., 2023).

Following extensive analysis, we show a discrep-
ancy regarding the performances obtained from
forward and backward prompting. Therefore, we
propose a series of approaches to stimulate the mod-
els to rephrase the problem by considering different
shapes and achieving noticeable improvements.

Our contributions can be outlined as follows:

• Formalization of the backward reasoning
problem and proposal of two intervention ap-
proaches in nine benchmarks commonly used
to test forward generative abilities of LLMs.

• Study about divergences between forward
reasoning obtained through standard prompt-
ing and backward way via our Hiding and
Blanking approaches on different models.

• Demonstration of performance improvement
via prompt operation approaches that elicit
LLMs to reason about the input structures for
the given problems.

2 Problem Formulation

A reasoning-based question-answering (QA) task
is defined as a tuple Tf = (Q,O,A), where Q is
the question, that could contain context C, such as

the necessary background for answering a ques-
tion; O = (o1, o2, .., cn) are answer choices if
Q is a multiple choice (n) problem (C and O
could be optional depending on the task); and A
is the target answer. Given Q as input, Large Lan-
guage Models (LLMs) generate the answer (output)
that is a sequence of tokens Tout = (t1, t2, ..., tn).
The generated answer is correct if and only if the
(ti, .., tm) ⊆ T matches the ground truth A. Re-
cent works like Chain-of-Thought (CoT) (Wei et al.,
2023) leverage prompt engineering in the context
C to elicit LLMs to generate the intermediate rea-
soning process in Tout, which benefits their perfor-
mance across diverse reasoning tasks. In this case,
Tout consists of a set of m intermediate reasoning
steps, which we denote as S = (s1, s2, ..., sm) .
Each step si can be represented by a subsequence
of the generated tokens si = (t1, t2, ...tn) ⊆ Tout.
The generated solution is correct if the predicted fi-
nal answer in si matches the ground truth A. Given
the forward generative nature, the premise of C and
Q, and the conclusion generated in the sequence T ,
it is possible to describe this as a deductive process
(Huang and Chang, 2023; Ling et al., 2023).

In our work, we introduce Tb that is the opposite
of Tf . Starting from a QA task, given the answer
A as evidence, we want to infer the rule (or, in
our case, the question Q) that generated A. As
described in §3, we propose two different versions
of Tb: in TbH = (QH , O,AH), the relaxed ver-
sion, we contextualize the generation of Q using
QH , that is Q with a strategic hide part with a place-
holder x and in a strict version TbB = (QB, O,AB)
we do not use Q or its derivates. Hence, in the first
version, the final goal is to find out the x omitted
from the prompt, and in the second, the goal is to
generate QB , as in the backward reasoning process
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Prompt: Multiple Choices Question Tf
Question: <Question>
Choices:
a) <Option1>
b)...
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer A or ACoT

Prompt: Math Word Problem Tf
Question: <Question>
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer A or ACoT

Table 1: Example of prompt for MCQs (left) and MWPs (right) Question Answering tasks.

Prompt: Hiding Approach TbH
Fill in the blank value given the
following problem.
Context: t1, t2, . . . , x, . . . , tn−1, tn
Question: <final question>
Answer: A

+ Let’s think step by step (CoT Prompt)

Prompt: Blanking Approach TbB
Fill in the blank given the following
answer. Find the question that
generates it.
Context: t1, t2, . . . , tn−1, tn
Question: x
Answer: A or ACoT

+ Let’s think step by step (CoT Prompt)

Table 2: Example of prompt for Hiding Approach TbH and Blanking Approach TbH .

(Huang and Chang, 2023; Qiao et al., 2023).
In this scenario, we prompt the LLMs, as shown

in Figure 1, to elicit them to reconstruct or generate
the rule using the final evidence that is exemplified
respectively by the question Q and answer A.

3 Method

To observe LLMs’ backward abilities, we propose a
prompting intervention based on deducing the orig-
inal Q using the target answer A and the context
provided by task C. Hence, we define the general
problem Tb in §2, and the applications TbB (§3.2)
and TbH (§3.1).

3.1 Hiding Approach
To elicit LLMs to retrieve the original Q by rea-
soning in a backward way, we propose TbH =
(QH , O,AH). We restrict the generation of Q us-
ing QH , i.e., Q with an hide part with a place-
holder x. We replace the target AH with x. How-
ever, the hiding approach differs according to the
nature of the question-answering task.

Math Word Problem The MWP tasks are char-
acterized by a tuple (Q,A) where numerical values
represent the strategic information. Following the
approaches from the previous work (Deb et al.,
2024), we mask the numerical value in the prompt
with x (placeholder value). Hence, we produce
the prompts using QH and A. Where QH is very
close to Q, with the numerical value replaced by

an x (detailed in Appendix B.1). Then, we evalu-
ate the accuracy by performing a string matching
between the generated answer and x (x used as a
placeholder in the prompt).

Multiple Choices Question In the MCQ setting,
it is more challenging to determine which strategic
part to blank. The datasets introduced in §4.1 are
characterized by tuples (Q,O,A). In each Q, a
strategic concept S is presented that is generally
provided in the dataset but is not used for the eval-
uation. We replace S ∈ Q with x deriving Qx

(detailed in Appendix B.1). We evaluate the accu-
racy by performing a string matching between the
generated answer and x.

3.2 Blanking Approach

Furthermore, we propose a stricter version of
the tasks. Starting from Tb we propose TbH =
(QB, O,AB). We do not alter Q using the hiding
approach but blank the entire Q, i.e., QB , and reply
with x. Consequently, the final target A, in our
formulation AB , is the original Q blanked with x.
Then, we construct the input prompt, as shown in
Figure 1 and in Table 2.

However, it is not possible to apply the Blank-
ing approach directly to all tasks, for example, on
MWPs that have only a numerical A target, and it
is impossible to generate Q (or AB) without hav-
ing context. To solve this problem, we introduce
A described in §3.3 for the Math Word Problem
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Figure 2: Accuracies (%) on Math Word Problem and Multiple Choices Questions proposed in §4.1 using Standard
prompting approach and Hiding approach (§3.1).

and the Multiple Choices Question tasks. Finally,
we estimate the correctness of generated answers
using BERTScore (Zhang et al., 2020) between the
blanked question Q and the generated answer Tout.

3.3 Backward Answer

Behind proposing the TbH approach for construct-
ing altered prompts to evaluate the abilities of
LLMs, we introduce a Blanking approach, TbB .
However, LLMs need more context that targets A
alone cannot supply. Therefore, we introduce A
by constructing it by prompting the LLMs with
prompts (as in Figure 1, Table 1, and Table 2).
Moreover, we use the multi-step reasoning abilities
by also proposing ACoT that is based on the Chain-
of-Thought prompt technique (Wei et al., 2023).
Then, we use the generated answers, A and ACoT ,
as a component to produce TbB as shown in Figure
1 (all passages are detailed in Appendix B.2).

4 Experiments

To analyse the different types of reasoning abili-
ties of Large Language Models (LLMs), we pro-
pose two backward approaches in Math Word Prob-
lem (MWP) and Multiple Choices Question (MCQ)
tasks introduced in §4.1. Then, we systematically
prompt different LLMs as described in §4.2 by

evaluating the answers generated using §4.3’s eval-
uation methods.

4.1 Data

We propose our experimental setup by adapting
the method proposed in §3 to two typologies of
Question-answering (QA) tasks:

QA Math Word Problem MPW tasks are char-
acterized by a question (a mathematical problem)
in natural language and a target answer, which in
most cases is a number. We select five different
datasets with this type of structure. Following Deb
et al. (2024) we use GSM8K (Cobbe et al., 2021),
SVAMP (Patel et al., 2021), MultiArith (Roy and
Roth, 2015); and Jiang et al. (2024) we use AddSub
(Hosseini et al., 2014) AQuA (Ling et al., 2017),
GAIA (Mialon et al., 2023).

QA Multiple Choices Question In contrast to
the previous works, we have introduced additional
tasks. These are exemplified by MCQ tasks that,
unlike MWPs, have different structures. This type
of task consists of a question, a context that is op-
tional, and multiple choices. In our work, we select
four resources: CommonSenseQA (Talmor et al.,
2019) (CSQA) and OpenBookQA (Mihaylov et al.,
2018) (OBQA) regarding commonsense reason-
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Strategy Model GSM8KH SVAMPH M.ArithH AQua-RATH AddSubH GAIAH

Hiding (0-shot) GPT-3.5 33.8±.4 36.3±.2 18.4±.1 69.4±.3 20.3±.1 16.5±.2

Hiding (5-shot) GPT-3.5 35.4±.3 38.4±.4 20.5±.3 70.6±.4 22.1±.3 18.6±.3

CoT (5-shot) GPT-3.5 34.5±.4 35.3±.4 19.5±.1 70.2±.3 19.4±.5 15.9±.1

Complex-CoT (0-sh.) GPT-3.5 40.5±.1 39.9±.1 21.7±.2 73.7±.3 24.5±.6 21.2±.4

Complex-CoT (5-sh.) GPT-3.5 43.5±.2 41.3±.2 26.4±.2 76.6±.3 24.8±.2 26.3±.4

Paraphrasing (2-sh.)
GPT-3.5 50.2±.3 45.8±.4 36.8±.3 79.2±.4 26.7±.2 29.8±.2

Llama2-70 29.3±.2 37.2±.3 25.6±.2 76.3±.1 29.2±.2 29.2±.1

Mixtral 28.9±.2 31.5±.1 30.1±.2 69.9±.1 29.0±.0 30.0±.1

Paraphrasing (5-sh.)
GPT-3.5 56.7±.1 50.3±.1 41.9±.4 83.8±.2 32.1±.1 33.9±.4

Llama2-70 34.1±.1 44.1±.2 31.7±.3 80.1±.1 33.1±.3 35.0±.3

Mixtral 33.9±.1 38.9±.2 33.3±.1 73.8±.4 33.7±.1 36.2±.5

Self-Refine (2-sh.)
GPT-3.5 53.8±.2 49.1±.3 40.1±.4 80.1±.3 30.4±.2 30.1±.4

Llama-2-70 34.1±.4 40.1±.1 31.7±.3 78.2±.3 30.1±.3 33.2±.3

Mixtral 32.1±.2 36.1±.1 30.1±.5 72.5±.2 33.1±.6 32.1±.3

GPT-3.5 66.2±.3 58.8±.1 45.9±.3 82.6±.4 39.3±.1 32.9±.2

Paraphrasing Llama2-70 33.9±.1 42.3±.1 35.9±.3 78.7±.1 36.5±.5 36.1±.1

+Self-Refine (2-shot) Mixtral 39.1±.5 44.3±.1 31.6±.4 75.1±.2 35.1±.5 31.3±.2

Table 3: Improvements in accuracy with various prompting strategies in the Hiding approach.

ing, Physical Interaction Question Answering (Seo
et al., 2018) (PIQA) regarding physical reasoning.

Finally, we systematically construct TbH and TbB
(see Table 2), as described in §3 and detailed in
Appendix B.

4.2 Models

To produce a complete analysis, we test different
LLMs. We select different models by attempting
to get at least two models from the same families
but with differing parameters. In particular, we
select: two GPT models (OpenAI, 2023) (GPT-4
and GPT-3.5-turbo), two Llama-2 models (Touvron
et al., 2023) (Llama-2-70 and -13), two Mistral
models (Jiang et al., 2023) (Mixtral and Mistral-
7b) and finally two Orca2 models (Mitra et al.,
2023) (Orca2-7b and -13b). For more details on
the parameters, see Appendix A.

4.3 Evaluation

We evaluate the performance of the LLMs intro-
duced in §4.1 on the tasks defined in §4.2. The
evaluation is conducted using the accuracy for the
Hiding approach TbH and (F1-score) of BERTScore
(Zhang et al., 2020) for the Blanking approach TbB .
We use BERTScore because the entire question can
be generated correctly, even if it is delivered using
different terminology. In addition, in Appendix H,
we discuss an additional analysis performed with
an LLM (GPT-4) as a judge.

5 Results

Large Language Models (LLMs) are able to seek
hypotheses that best approximate the explanation

of a set of observations; indeed, they deliver an-
swers when elicited to consider the fact that caused
the final evidence as observed in the Blanking ex-
periments in Figure 3. On the other side of the
coin, the same behaviour does not emerge when
the nature of the task is related to a more in-depth
understanding of the context in the prompt, as oc-
curs in the Hiding experiments in Figure 2. The
nature of the differences between the final results
of the Blanking and Hiding (§6.1) approaches
can be traced back to the structure of the prompt.
Therefore, in §6, we analyse the role of in-context
examples and how they impact the answers deliv-
ered by the models. Therefore, we show that input
paraphrasing techniques might benefit, aid compre-
hension, and have a positive impact on the tasks
analysed (§6.2). Finally, we observe that these
findings also emerge when the nature of in-context
demonstrations varies (Cross-Blanking in §6.3).

6 Analysis & Discussion

The results obtained downstream of the proposed
approaches (i.e., Blanking and Hiding) reveal that
LLMs are able to understand the given task and
deliver reasoned answers by solving the input prob-
lem. However, an in-depth analysis of the results
highlights divergences as discussed in §6.1. How-
ever, the discrepancies seem to be related to the
understanding of the task. In fact, through manip-
ulation of the prompt in specific paraphrasing of
the input, different scenarios emerge, as shown in
§6.2. Finally, in §6.3, we reconsider the Blanking
approach by proposing the Cross-Blanking Test
that stresses the LLMs’ understanding abilities.

6590



Figure 3: Performances (BERTScore F1) on Math Word Problem and Multiple Choices Questions proposed in §4.1
using Standard prompting approach (as shown in Table 1) and Blanking approach proposed in §3.2

6.1 Blanking & Hiding Results

Blanking LLMs are able to reason about the evi-
dence delivered in a multi-step way by reconstruct-
ing initial assumptions. As shown in Figure 3,
the correctness of the Blanking approach (§3.2)
is, on average, high when the prompts are formed
with ACoT , i.e., answers generated via CoT (Wei
et al., 2023). To have a term of comparison, we
have reported the same evaluations, F1 BERTScore
(Zhang et al., 2020), as well as the forward prompt-
ing approaches (described in Figure 1 and Table 2).
On the other hand, the Blanking approach version
constructed using the answer A as evidence does
not have the same results. Indeed, A alone is too
context-poor to allow LLMs to reason about the
prior blanked questions. Although the scores are,
on average, high, motivation could lie in the pres-
ence of critical parts of the question in the evidence
we provide in the inputs.

Although this result could be expected or mis-
taken as a data contamination problem, we in-
troduce a cross-evaluation to better study the
in-context comprehension abilities displayed by
LLMs. To observe whether LLMs can reason in the
opposite direction, we introduce Cross-Blanking
experiment in §6.3. Specifically, we deliver as
ACoT the responses generated by other LLMs to
perform the Cross-Blank evaluation as in Table 7.

Hiding LLMs fail to retrieve the hidden infor-
mation in prompts. Table 3 shows the accuracies
of different LLMs presented in §4.2. A difference
emerges between the standard prompts, where mod-
els are prompted with a problem to generate an
answer, and the Hiding approach, where the mod-
els are asked to reconstruct the hidden part of the
question. A significant difference emerges because
there is a smaller gap in the MCQ tasks than in
MWP. This phenomenon leads to the study of the
input composition, as we hypothesize that these av-
erage differences can be traced back to the present
content. In the MCQ tasks, there is more context
(e.g., the choices) than in MWP, where the answer
is coincident.

Backward beyond standard benchmarks The
performances in the tasks proposed in §4.1 can
also be similarly observed on lesser-known tasks,
such as reasoning in medical question-answering,
as discussed in Section 7.

6.2 Prompting Approaches

Manipulation of the prompt structure leads LLMs
to better reasoning in a backward direction. Table 3
shows the performance of the different techniques,
in zero-shot and few-shot (In-context Learning
(ICL)), that made final improvements over those
discussed in §6.1. We discuss different approaches
tested via GPT-3.5 and Llama-2-70 as models.
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Generator Task Evaluator

GPT-4 GPT-3.5 Llama-2-70 Llama-2-13b Mixtral Mistral-7b

GPT-4 GSM8K 94.3±.1 92.5±.3 84.4±.6 83.3±.3 78.2±.2 76.3±.2

CSQA 88.6±.5 87.4±.4 75.6±.1 74.5±.2 67.9±.3 66.3±.2

GPT-3.5 GSM8K 90.9±.2 85.4±.5 72.3±.2 69.4±.4 67.3±.3 65.2±.2

CSQA 81.9±.3 82.5±.3 71.9±.1 68.5±.3 64.7±.2 63.6±.3

Llama-2-70 GSM8K 76.1±.3 75.6±.5 78.6±.3 78.5±.2 62.9±.4 60.9±.1

CSQA 65.3±.3 65.8±.5 75.4±.3 74.3±.2 61.9±.2 59.4±.2

Llama-2-13 GSM8K 81.4±.3 80.6±.2 75.3±.4 73.4±.2 60.9±.1 59.2±.4

CSQA 82.2±.3 81.9±.3 70.9±.3 67.7±.1 59.1±.5 58.2±.2

Mixtral GSM8K 83.8±.3 81.6±.5 68.3±.2 65.8±.3 79.8±.1 77.9±.3

CSQA 74.8±.2 72.3±.3 65.3±.4 63.2±.3 82.2±.3 81.3±.2

Mistral-7b GSM8K 78.7±.3 77.9±.3 67.5±.3 66.6±.1 73.9±.4 72.1±.1

CSQA 69.4±.4 67.8±.1 62.3±.2 61.8±.4 76.4±.4 72.7±.3

Table 4: Performances Cross-Blanking test. In this test, we elicit the models to generate the Blanked question (§3.2)
using the A delivered from other LLMs. "Generator" refers to the model that generates the A. "Evaluator" refers to
the model that is prompted to generate the initial question (example shown in Appendix G).

CoT vs Complex-CoT CoT approaches in both
zero-shot and few-shot scenarios do not contribute
to substantially increasing baseline performances
by highlighting the limitation of the input struc-
ture (Tables 3). Moreover, we observe the same
tendency for Complex-CoT (Fu et al., 2023). We
hypothesize that these are the consequences of the
LLMs’ difficulty processing the prompt proposed
in the Hiding approach (§3.1).

Paraphrasing Rephrasing the prompt helps
LLMs understand the problem to be addressed. We
detected an increase in downstream performances
of the Paraphrasing technique as in Table 3 (method
described in Appendix C).

Self-Refine Although paraphrasing prompts sup-
port LLMs in understanding the problem, itera-
tively reconsidering the feedback until a predeter-
mined condition is reached (Self-Refine) has over-
powered all approaches. We notice improvements
by adapting the original Self-Refine to our Hiding
approach (Tables 3).

6.3 Cross-Blanking Test

LLMs are able to reconstruct the initial problem
and perform the reasoning in a backward direction
by understanding the answers delivered by other
LLMs. This is shown in Table 4. We have revisited
the Blanking Approach from a Cross-perspective.
Hence, we construct the prompts as described in
§3.2, but instead of providing ACoT generated by

the evaluating LLM, we cross-reference the demon-
strations (see Table 7 in Appendix G). We repro-
duce the experiments using one mathematical and
one multiple-choice question task. From the results
in Table 4 it emerges an in-family phenomenon.
The models of the same family seem to achieve
similar performances, which is not observable in
the out-family models. However, the models obtain
sustainable performances.

6.4 Metrics Error Analysis & Limitations

The results in §6.1 demonstrate LLMs’ ability
to provide answers while considering backward-
facing problems. Following the various techniques
used to elicit generation in different scenarios, we
qualitatively analyse the results obtained and the
metrics behind them, highlighting limitations and
strengths.

BERTScore vs LLMs-judge In the Blanking
Task (§3.2), we employ BERTScore. However,
this metric may have limitations, as there could be
multiple valid questions for a given context and
response, and it is not clear if BERTScore can dis-
tinguish between two semantically different ques-
tions with the same answer. In Table 10, we discuss
using GPT-4 as an evaluator judge, revealing that
the results do not differ.

Numerical Limitation On the side of the Hiding
approach, we consider the responses generated by
different LLMs in the MWP tasks. A potential lim-
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itation is associated with evaluating the generated
placeholders. The placeholders generated could be
numerical values but not in numeric format, rather
nominal. To avoid this phenomenon, we (i) include
the keyword [num] in the input prompts and (ii)
implement a secondary check using a conversion
function described in Appendix B.

Error Analysis Paraphrasing the prompt has its
benefits. As shown in Table 3 and Appendix C,
the approach proposed in §3.1 appears to work in
the case of a few-shot scenario reinforced with a
self-refined approach. At the same time, it seems
to lead to misleading and incorrect responses when
the approaches are employed alone.

7 Application and Future Work

Our contribution was to analyse the reasoning abil-
ities of different LLMs. In particular, by propos-
ing variants of the original tasks, we aimed to test
the LLMs’ understanding and generative abilities.
The tests in the main contribution were conducted
on nine benchmarks widely used to assess various
types of LLM capabilities (mathematical, symbolic,
and commonsense reasoning abilities).

Application However, the application of our find-
ings goes beyond just benchmarking tests. Table
5 shows the application of our tests to tasks con-
cerning medical-reasoning QA (Jin et al., 2020),
where backward comprehension abilities support
the choice of the final diagnosis.

8 Related Work

Question Answering Problem QA tasks are gen-
erally defined by a natural language description
that can be a question in the case of Multiple
Choice Questions (MCQ) or a mathematical prob-
lem (MWP) tasks (Lu et al., 2023). The descrip-
tion expresses the relations between various entities
or quantities followed by a query. To respond to
the query, one must represent the relationship be-
tween entities and quantities. The resolution of the
problem requires a semantic understanding of the
natural language description. Koncel-Kedziorski
et al. (2015); Roy and Roth (2018) parse the de-
scription using statistical learning techniques to
identify suitable models for generating answers.
Behind the advent of sequence-to-sequence models
(Sutskever et al., 2014), for automatic translation,
the approaches for solving these tasks diverge. For
MWP, Wang et al. (2017); Jie et al. (2022) propose

Model fo
rw

ar
d

Hi
di
ng

Bl
an
ki
ng

GPT-4

- 93.5 67.9 62.8
CoT 96.2 75.3 90.2
Paraphrasing - 79.5 -
Para+Self - 82.6 -

GPT-3.5

82.3 61.8 56.6
CoT 86.4 65.4 74.9
Paraphrasing - 76.1 -
Para+Self - 79.7 -

Llama-2-70

- 58.2 43.2 24.2
CoT 62.4 46.8 47.8
Paraphrasing - 50.2 -
Para+Self - 55.8 -

Llama-2-13
- 48.2 24.6 19.6
CoT 47.8 32.3 36.8

Mixtral8x7
- 51.8 36.7 20.6
CoT 52.6 38.2 43.2
Paraphrasing - 44.3 -
Para+Self - 49.8 -

Mistral-7
- 50.2 18.6 16.8
CoT 49.4 22.3 46.3

Orca2-13
- 51.8 23.8 17.1
CoT 52.6 27.2 44.8

Orca2-7
- 50.2 16.8 13.4
CoT 49.4 23.4 42.3

Table 5: Performances on MedQA (Jin et al., 2020)
accuracies for Hiding and BertScoreF1 for Blanking
approaches. Moreover, we evaluate additional strategies
as in Table 3. (* we called (Para+Self) the approach
(Paraphrasing+Self-Refine).

encoder-decoder frameworks that translate the nat-
ural language description of MWPs into equations.
In MCQ, Banerjee et al. (2019); Abujabal et al.
(2018) propose methods for retrieving or generat-
ing answers from knowledge bases.

Large Language Models (LLMs) Recently
LLMs (OpenAI, 2023; Touvron et al., 2023)
achieved outstanding performance in both MWPs
and MCQs tasks without using external knowledge
bases or additional methods. They employ the
ability to create context-based instances via a few-
shot iteration and prompting methods.Welleck et al.
(2022); Madaan et al. (2023) use LLMs involve
verifying the response provided by the LM, either
using the model itself or external verifiers like com-
pilers or proof checkers (Zheng et al., 2023; Weng
et al., 2023).

Reasoning Direction We focus on a precise case
of backward reasoning with a single answer (Qin
et al., 2020; Thayaparan et al., 2021) consists of
inferring which of the explanations is the most
plausible. Previous works have mainly focused on
textual reasoning under constraints. In arithmetic
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tasks, Weng et al. (2023) used abductive reasoning
to improve the accuracy of forward reasoning by
involving the backwards. Our work, on the other
hand, addresses backward reasoning as an indepen-
dent problem. Following foundational work, we
extend the study to tasks beyond math problems
and scale the tests. Our interest is analysing the
inherent complexities of reasoning and creating
practical solutions to deal with them.

9 Future Works

The study of LLMs’ reasoning capabilities is an ac-
tive area. In parallel contributions to this work, we
have studied and proposed techniques for aligning
reasoning capacities between models in both En-
glish (teacher-student paradigms (Ranaldi and Fre-
itas, 2024a,b)) and multilingual settings (Ranaldi
and Pucci, 2023). In the future, we would like to
use abductive methods to enhance the deductive
abilities of LLMs.

On the other side of the coin, we study topics rel-
evant to data contamination (Ranaldi et al., 2024a),
memorisation (Ranaldi et al., 2023; Ranaldi and
Zanzotto, 2024) and effect to persuasion or better
defined as sycophancy (Ranaldi and Pucci, 2024)
of LLMs. In this case, one objective is to use the
generations of LLMs as an analysis tool by expand-
ing the Cross-Banking task proposed in §6.3.

10 Conclusion

This paper explores Large Language Models
(LLMs) behaviour in forward and backward gen-
erative ways. By operating via two approaches
(Hiding and Blanking), we challenge LLMs to in-
fer the original question from the answers. The
experiments reveal insights into the LLMs’ abili-
ties; while they show proficiency in forward rea-
soning, their performances in backward ways vary
significantly. The Hiding approach, which partially
obscures the original question, demonstrates that
LLMs could reconstruct missing elements. Instead,
the Blanking approach, which presents a challeng-
ing scenario by completely removing the original
question, highlights the practical abilities. Our re-
search delves into various prompting techniques
to empower the LLMs’ performance by eliciting
the LLM to understand and challenge the problems
better. Our study opens new avenues for under-
standing and improving the reasoning abilities of
LLMs. It also raises important questions about
the future directions of LLM development, particu-

larly in areas requiring complex, multi-directional
reasoning abilities.

Limitations

We analysed the abilities of Large Language Mod-
els (LLMs) in solving reverse question-answering
and math word problems. Specifically, starting
from the original settings where a question is pro-
vided and the LLM is required to generate an an-
swer, we examined the reverse task. This analy-
sis reveals the strengths and weaknesses of LLMs
in generating reverse reasoning. Potentially, re-
verse reasoning could be useful when faced with
evidence and one wishes to trace back to the phe-
nomenon that caused them by reasoning backward.
In this work, we used the BERTScore and the
judgment-based assessment of GPT-4 as judgment
metrics. In future work, we will study the effect of
additional metrics in order to improve the evalua-
tive aspect.
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A Model and Hyperparameters

As introduced in §4.2, we used:

• two models from the GPT family (OpenAI,
2023): GPT-4 and GPT-3.5-turbo (GPT-3.5)
used via API.

• two models from the Llama-2 family (Tou-
vron et al., 2023): Llama-2-70b and Llama-
2-13b using versions of the quantized to 4-bit
models using GPTQ.

• two models of the Orca2 family (Mitra et al.,
2023): Orca2-7b and Orca2-13b.

• two models of the MistralAI family: Mistral-
7b and Mixtral using official version on huffin-
gface versions of the quantized to 4-bit models
using GPTQ.

For all experiments performed only in infer-
ence, we use a closed-source API or the 4-bit
GPTQ quantized version of the model on two 48GB
NVIDIA RTX A6000 GPUs. All experiments use
a generation temperature of [0, 0.5] for (mostly) de-
terministic outputs, with a maximum token length
of 256. The other parameters are left unchanged
as recommended by the official resources. We will
release the code and the dataset upon acceptance
of the paper.

B Dataset Construction

We use six different Math Word Problem datasets:
GSM8K (Cobbe et al., 2021), SVAMP (Patel et al.,
2021), MultiArith (Roy and Roth, 2015), AddSub
(Hosseini et al., 2014), AQuA (Ling et al., 2017),
MathQA (Amini et al., 2019). We describe the
generation methodology of the final composition
of TbH in §B.1 and TbB in §B.2. Downstream of the
generation methodologies, we filtered the original
datasets by removing the examples we could not
parse optimally (see Table 9).

B.1 Generation for Hiding Approach
Math Word Problems As introduced in §3.1,
in TbH = (QH , AH) (in MWP there are not O),
we construct QH from Q. For each question of
Dataset:

{(Qi, Ai)}ni=1|Qi ∈ Σ∗, Ai ∈ R}

We propose a method to create Dataset′k:

{(Q′
i, Ai, (H

0
i , . . . ,H

k
i ))}ni=1|Q′

i ∈ Σ∗, Hj
i ∈ R}

To convert Q in QH and extract the numerical
subparts H0

i , . . . , B
k
i , we split QH into its con-

stituent tokens. Hence, we consider all numeric
tokens as tokens that encode a number. Numeric
tokens may be alphanumeric, such as 150 or 2.23,
or alphabetic, such as three, twice, or half. Us-
ing this heuristic for numeric tokens, we ignore
the first numeric token and extract the following
k tokens sequentially. We skip that question-and-
answer pair if we cannot extract k tokens. It is
worth noting that for the datasets we use, k = 1,
we only consider the problem of backwardly infer-
ring one missing number in the question, given the
answer. To simplify the process and better adapt it
to the subsequent Blanking approach as well, when
possible, we differentiate the main question of the
problem (structurally defined by the "?" character
that ends the sentence or sub-sentence) by splitting
the Question and the Concept as shown in Figure
1.

Multiple Choice Question As introduced in
§3.1, MCQ tasks do not always have easily mask-
able symbols, such as numerical values. Here, our
contribution is different. Given TbH = (QH , AH),
we construct QH from Q. For each question of
Dataset:

{(Qi, Ai)}ni=1|Qi ∈ Σ∗, Ai ∈ C}
where C represents the set of choice options in
MCQs. We propose a method to create Dataset′k:

{(Q′
i, Ai, (P

0
i , . . . , P

k
i ))}ni=1|Q′

i ∈ Σ∗, P j
i ∈ Σ∗}

To convert Q in QH and extract the noun sub-
parts P 0

i , . . . , P
k
i , we split QH into its constituent

tokens and perform part-of-speech (POS) tagging.
We specifically identify nouns, which may be sub-
jects or objects, as our primary tokens of interest.
These tokens are processed and tagged using a POS
tagging algorithm. We sequentially extract the first
k identified noun tokens for each question. We skip
that question-and-answer pair if we cannot extract
k noun tokens. Again, we use k = 1, meaning we
focus on the challenge of inferring a single missing
noun in the question, given the answer.

B.2 Generation for Blanking Approach
As introduced in the §3.1, in TbB = (AB, O,QB),
we replicate Q with x as shown in Table 2. How-
ever, to contextualize the generation, we substitute
the A with A or ACoT for the target generated via
the CoT prompt. We propose this approach for
both task types.
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C Paraphrasing Prompting

To test if prompting approaches could infer the final
answer, our initial strategy concerns transforming
the problem through paraphrasing, as also proposed
by (Deb et al., 2023). This method simplifies the
complex reasoning challenge into a more suitable
forward reasoning task. As a result, we apply the
LLM to this more manageable, rephrased forward
reasoning problem rather than grappling with the
more arduous backward reasoning task.

In the case of a TbH = (AH , O,QH), we prompt
the language model to generate a different prompt
P . This rephrased prompt integrates the forward
answer AH into the original question QH , altering
the goal from discovering the answer AH to deter-
mining the value of the blank. We then direct the
language model to address this rephrased problem
P , bypassing the initial problem.

The results, as illustrated in Table 3 and Table ??,
reveal that changing the problem and changing the
problem by posing the value of x and instructing
the LLM to ascertain the value of x, as illustrated in
Table 8, yields better results than classic prompting
strategies.

D Self-Refine

Moreover, we utilize the Self-Refine framework
proposed by Madaan et al. (2023). This approach
is also employed in Self-Verification prompting by
(Weng et al., 2023). This iterative prompting tech-
nique alternates between refinement and feedback
until a predefined condition is met. We have modi-
fied the technique to perform backward reasoning
on our tasks as done in (Deb et al., 2023).

E Paraphrased Self-Refine Prompting

To test whether prompting approaches can infer
the final answer, our initial strategy involves trans-
forming the problem through paraphrasing. This
method simplifies the complex challenge of abduc-
tive reasoning into a simpler deductive reasoning
task. Consequently, we apply the LLM to this more
manageable and reformulated reasoning problem
instead of tackling the more arduous abductive rea-
soning task. Hence, we propose a further experi-
ment by including paraphrase and self-consistency
to obtain higher accuracy (Table 3 and Table ??).

F GPT-4 as a Judge

In §6.3, we discuss the results obtained using
BERTScore to evaluate the performances achieved

by different models in the Blanking task introduced
in §3.2. In this additional experiment, we replicate
the Cross-Blanking test using GPT-4 as the judge.
Given the original question and the question gener-
ated by the LLM under test, GPT -4 will produce a
positive or negative judgment that we will define
as accuracy.

Table 10 reports the accuracies obtained. Hence,
we can observe no sensible differences compared
to Table 4. Therefore, even though the two metrics
are not directly comparable, BERTScore approx-
imates the accuracy of a GPT-4 evaluator well in
this scenario.
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G Prompting Approaches

Prompt: MCQ Tf to M1

Question: <Question>
Choices:
a) <Option1>
b)...
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer M1 (A′ or A′

CoT )

Prompt: MCQ Tf to M2

Question: <Question>
Choices:
a) <Option1>
b)...
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer M2 (A′′ or A′′

CoT )

Table 6: Example of input-prompt for Cross-Blanking Task.

Prompt: Cross-Blanking Approach on M1

Fill in the blank given the following
answer find the question that generates
it.
Context: t1, t2, . . . , tn−1, tn
Question: x
Answer: A′′ or A′′

CoT

Prompt: Cross-Blanking Approach on M2

Fill in the blank given the following
answer find the question that generates
it.
Context: t1, t2, . . . , tn−1, tn
Question: x
Answer: A′ or A′

CoT

Table 7: Example of Cross-Blanking Task where we provide to M1 the A′′
CoT generated from M2 , and vice versa.

Paraphrase Prompting

Question: A grove has 15 trees. Today, grove workers will add x trees. What will
be the total number of trees after this addition? Answer: 21
Paraphrased: A grove has 15 trees. Grove workers added x trees today. The total
becomes 21 trees. Calculate the value of x.
Answer: Originally, there are 15 trees. After planting, the total is 21 trees.
Therefore, x = 21 - 15 = 6 trees. The solution is 6.
Question: he parking lot currently holds 3 cars. If x additional cars arrive,
what is the total number of cars in the parking lot? Answer: 5
Paraphrased: There are 3 cars in the parking lot initially, and x additional cars
arrive, making a total of 5 cars. Determine x.
Answer: Initially, there are 3 cars. After x cars arrive, 3 + x = 5, hence x = 5
- 3 = 2. The solution is 2.
Question: <Question>
Answer: <Answer>
Paraphrasis:

Table 8: Paraphrasis prompting.

Name URL total examples used examples
GSM8k https://huggingface.co/datasets/gsm8k 1320 1270
AddSub https://huggingface.co/datasets/allenai/lila/viewer/addsub 109 105
MultiArith https://huggingface.co/datasets/ChilleD/MultiArith 420 350
AQuA-RAT https://huggingface.co/datasets/aqua_rat 360 316
SVAMP https://huggingface.co/datasets/MU-NLPC/Calc-svamp 1000 1000
GAIA https://huggingface.co/datasets/gaia-benchmark/GAIA 466 195
CSQA https://huggingface.co/datasets/commonsense_qa 1100 1100
OBQA https://huggingface.co/datasets/openbookqa 500 500
PIQA https://huggingface.co/datasets/piqa 3000 2000

Table 9: We report the sources where we download the datasets used in our work. For each dataset containing many
instances, we randomly composed a subset.
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H Cross-Blanking test using LLM as a judge

Generator Task Evaluator

GPT-4 GPT-3.5 Llama-2-70 Llama-2-13b Mixtral Mistral-7b

GPT-4 GSM8K 95.3 94.3 87.2 84.5 81.6 79.8
CSQA 92.3 89.5 79.7 78.9 71.3 69.6

GPT-3.5 GSM8K 92.1 89.2 75.6 72.3 70.6 69.8
CSQA 82.3 84.1 73.3 70.2 69.7 69.3

Llama-2-70 GSM8K 77.6 78.7 81.3 80.5 66.7 62.1
CSQA 66.4 67.2 78.4 76.3 62.9 62.3

Llama-2-13 GSM8K 83.2 81.7 76.8 76.4 63.1 61.3
CSQA 83.4 82.6 72.3 69.1 61.3 60.4

Mixtral GSM8K 84.3 85.6 71.4 67.9 82.3 79.3
CSQA 76.3 74.5 66.2 66.9 83.4 85.3

Mistral-7b GSM8K 79.4 80.1 69.5 68.6 75.5 73.5
CSQA 71.3 69.6 66.4 64.3 77.9 76.8

Table 10: Performances Cross-Blanking test using GPT-4 as a judge. In this test, we elicit the models to generate the
Blanked question (§3.2) using the A delivered from other LLMs. "Generator" refers to the model that generates the
A. "Evaluator" refers to the model that is prompted to generate the initial question (example shown in Appendix G).
Unlike Table 4, we use GPT-4 as the judge (accuracy) instead of the previously used BERTScore in this experiment.
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