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Abstract

Causal inference has been a pivotal challenge
across diverse domains such as medicine and
economics, demanding a complicated integra-
tion of human knowledge, mathematical rea-
soning, and data mining capabilities. Recent
advancements in natural language processing
(NLP), particularly with the advent of large lan-
guage models (LLMs), have introduced promis-
ing opportunities for traditional causal infer-
ence tasks. This paper reviews recent progress
in applying LLMs to causal inference, encom-
passing various tasks spanning different levels
of causation. We summarize the main causal
problems and approaches, and present a com-
parison of their evaluation results in different
causal scenarios. Furthermore, we discuss key
findings and outline directions for future re-
search, underscoring the potential implications
of integrating LLMs in advancing causal infer-
ence methodologies.

1 Introduction

1.1 NLP, LLM, and Causality
Causal inference is an important area to uncover
and leverage the causal relationships behind obser-
vations, enabling a deep understanding of the un-
derlying mechanism and potential interventions in
real-world systems. Different from most classical
statistical studies, causal inference presents unique
challenges due to its focus on "causation instead of
correlation", which intricates a complicated integra-
tion of human knowledge (e.g., domain expertise
and common sense), mathematics, and data mining.
Due to the inherent proximity to the human cogni-
tive process, causal inference has become pivotal
in many high-stakes domains such as healthcare
(Glass et al., 2013), finance (Atanasov and Black,
2016), and science (Imbens and Rubin, 2015).

Traditional causal inference frameworks, such
as structural causal model (SCM) (Pearl, 2009) and
potential outcome framework (Imbens and Rubin,

2015) have systematically defined causal concepts,
quantities, and measures, followed up with multi-
ple data-driven methods to discover the underly-
ing causal relationships (Spirtes and Zhang, 2016;
Nogueira et al., 2022; Vowels et al., 2022) and
estimate the significance of causal effects (Win-
ship and Morgan, 1999; Yao et al., 2021). De-
spite their success, existing causal methods still
fall short of matching human judgment in several
key areas, such as domain knowledge, logical in-
ference, and cultural context (Kıcıman et al., 2023;
Zečević et al., 2023; Jin et al., 2023a). Besides,
most traditional causal inference approaches only
focus on tabular data, lacking the ability to ad-
dress causality in natural language. However, the
demand for causal inference in natural language
has persisted, offering numerous potential appli-
cations. For example, clinical text data from elec-
tronic health records (EHR) holds valuable causal
information for healthcare research. Causal infer-
ence in NLP is a promising direction, offering both
challenges and benefits. Advancements in large
language models (LLMs) provide new opportuni-
ties to enhance traditional methods, bridging the
gap between human cognition and causal inference
(Feder et al., 2022).

1.2 Challenges of Causal Inference in NLP

Although LLMs have shown eye-catching success,
causal inference poses unique challenges for LLM
capabilities. Unlike regular data, natural language
is unstructured, high-dimensional, and large-scale,
making traditional causal methods ineffective. Be-
sides, causal relationships in the text are often ob-
scure, and the complex semantics require advanced
language models to uncover them. These chal-
lenges create significant hurdles for causal tasks
in NLP and require new approaches, presenting
transformative opportunities for advancing causal
inference research.
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Figure 1: Representative causal tasks, their positions in the causal ladder, and examples of prompts w.r.t. mode,
question type, and prompting strategy. PCD = pairwise causal discovery; CA=causal attribution; ATE=average treat-
ment effect; CDE=controlled direct effect; BAJ=backdoor adjustment; CE=causal explanation; CR=counterfactual
reasoning; NDE=natural direct effect.

1.3 Benefits Brought by LLMs

Despite the challenges, the increasing sophistica-
tion of LLMs has enhanced their ability in causal
inference from linguistic data. LLMs bring the
following key benefits to causal inference:
Domain knowledge. Traditional causal methods
focus on numerical data, but domain knowledge
is crucial in fields like medicine for identifying
causal relationships. LLMs can extract this knowl-
edge from large-scale text, reducing dependence
on human experts for causal inference.
Common sense. LLMs can capture human com-
mon sense, which aids causal reasoning across con-
texts. For instance, legal cases require logic, and
common sense often identifies abnormal events as
causes (Kıcıman et al., 2023).
Sematic concept. Natural language, with its nu-
ances and complexity, presents challenges for iden-
tifying causal relationships. Advances in NLP and
LLMs, particularly in semantic modeling, offer
new opportunities for deeper causal analysis.
Explainable causal inference. LLMs can provide
tools for more intuitive, natural language-based ex-
planations of causal reasoning, making complex
concepts more accessible and enhancing user inter-
action with causal inference results.

1.4 Contribution and Uniqueness

Contribution. This survey systematically reviews
existing research on using LLMs for causal infer-
ence with main contributions including: (1) We pro-
pose a clear categorization of studies, organized by
tasks (Section 2) and technologies (Section 3). (2)

We present a detailed comparison of existing LLMs
(Section 4) and highlight key insights, connections,
and observations. (3) We provide a comprehensive
summary of benchmark datasets, focusing on key
aspects for further study (Table 1). (4) We identify
limitations and future research directions (Section
5), offering new perspectives on underexplored ar-
eas and opportunities.
Differences from existing surveys. Several previ-
ous surveys cover related topics (Liu et al., 2024;
Kıcıman et al., 2023), while our survey differs as
follows: (1) Main scope: We focus on "LLMs for
causality," while other surveys with similar topic
like (Liu et al., 2024), focus more on "causality for
LLMs." (2) Structure and content: Our survey
uniquely organizes research around tasks, meth-
ods, datasets, and evaluation, offering a clearer and
more comprehensive review. (3) Up-to-date: We
include the latest advancements, providing an up-
to-date perspective on current trends and progress.

2 Preliminaries

2.1 Causality

Structural causal model. Structural causal model
(SCM) (Pearl, 2009) is a widely used model to
describe the causal relationships inside a system.
An SCM is defined with a triple (U, V, F ): U is a
set of exogenous variables, whose causes are out
of the system; V is a set of endogenous variables,
which are determined by variables in U ∪ V ; F =
{f1(·), f2(·), ..., f|V |(·)} is a set of functions (a.k.a.
structural equations). For each Vi ∈ V , Vi =
fi(pai, Ui), where “pai ⊆ V \ Vi” and “Ui ⊆ U"
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Causal Discovery
(§4.1)

Pairwise Causal Discovery

GPT-4 (Jin et al.; Cai et al.; Liu et al.; Gao et al.; Zečević et al.;
Kıcıman et al.; Chen et al.), GPT-4 turbo (Cai et al.),
GPT-3.5 (Liu et al.; Jin et al.; Cai et al.; Gao et al.; Kıcıman et al.; Chen et al.),
GPT-3 (Long et al.; Gao et al.; Zečević et al.; Kıcıman et al.),
Ada, Babbage, Curie, Davinci, Text-ada-001, Text-babbage-001, Text-curie-001,
Text-davinci-001, Text-davinci-002, Text-davinci-003 (Chen et al.),
LLaMa2-13B (Cai et al.; Chen et al.), Claude 2 (Cai et al.),
Alpaca-7B (Jin et al.), FLAN-T5 (Liu et al.), Luminous (Zečević et al.),
BERT-Base, RoBERTa-Base (Gao et al.), OPT (Zečević et al.; Liu et al.),
Mistral-7B (Cai et al.), Mistral-7B+Fine-tuning (Cai et al.),
Causal agent (Han et al., 2024), Causal-Copilot (Wang et al., 2024)

Full Graph Discovery

GPT-4 turbo (Zhou et al.), GPT-4 (Jin et al.; Ban et al.; Kıcıman et al.;
Zhou et al.), GPT-3.5 (Jin et al.; Ban et al.; Kıcıman et al.; Zhou et al.),
GPT-3 Instruct (Jin et al.), LLaMa-7B (Jin et al.; Zhou et al.), LLaMa-13B,
LLaMa-33B, OPT series, Falcon series, InternLM series (Zhou et al.),
Claude+, GPT-4+MINOBSx, GPT-4+CaMML (Ban et al.),
GPT-4+BFS (Jiralerspong et al.), LACR (GPT-4o+RAG) (Zhang et al.),
Causal agent (Han et al., 2024), Causal-Copilot (Wang et al., 2024)

Causal Effect
Estimation (§4.2)

Causal Effect in Data

Alpaca (Jin et al.), LLaMa (Jin et al.; Chen et al.), GPT-4 (Jin et al.; Chen et al.),
Ada, Babbage, Curie, Davinci, Text-ada-001, Text-babbage-001, Text-curie-001,
Text-davinci-001, Text-davinci-002, Text-davinci-003 (Chen et al.),
GPT-3.5, GPT-3, GPT-3 Instruct, GPT-4+CausalCoT (Jin et al.),
GPT-3.5 turbo+RAG, (Pawlowski et al.), Causal agent (Han et al., 2024)

Causal Effect in Model GPT-2, GPT-Neo, GPT-3 Instruct, LLaMA, Alpaca (Stolfo et al.)

Other Causal
Tasks (§4.3)

Causal Attribution

GPT-4 turbo (Cai et al.), GPT-4 (Cai et al.; Chen et al.),
GPT-3.5 (Liu et al.; Cai et al.; Chen et al.),
Ada, Babbage, Curie, Davinci, Text-ada-001, Text-babbage-001, Text-curie-001,
Text-davinci-001, Text-davinci-002, Text-davinci-003 (Chen et al.),
OPT-1.3B, FLAN-T5 (Liu et al.), LLaMa2-13B, Claude 2 (Cai et al.)

Counterfactual Reasoning

GPT-4 (Kıcıman et al.; Jin et al.; Chen et al.), GPT-3.5 (Kıcıman et al.; Jin et al.,
Chen et al.), Ada, Babbage, Curie, Davinci, Text-ada-001, Text-babbage-001,
Text-curie-001, Text-davinci-001, Text-davinci-002, Text-davinci-003 (Chen et al.),
GPT-3 (Kıcıman et al.; Jin et al.), GPT-3 Instruct (Jin et al.), T0pp (Kıcıman et al.),
Alpaca (Jin et al.), LLaMa (Jin et al.; Chen et al.), GPT-4+CausalCoT (Jin et al.)

Causal Explanation

GPT-4, GPT-3.5 (Gao et al.; Chen et al.), GPT-3 (Gao et al.; Ho et al.),
GPT-2 (Gao et al.; Ho et al.), Ada, Babbage, Curie, Davinci, Text-ada-001,
Text-babbage-001, Text-curie-001, Text-davinci-001, Text-davinci-002,
Text-davinci-003 (Chen et al.), LLaMA 7B (Gao et al.; Chen et al.),
FLAN-T5 11B (Gao et al.), Causal-Copilot (Wang et al., 2024)

Figure 2: The major causal tasks and LLMs evaluated for these tasks. Noticeably, the citations in the figure
correspond to the work of evaluations, rather than the original work of these models themselves. The strategies that
are not merely based on prompting are highlighted in orange.

are variables that directly cause Vi. Each SCM is
associated with a causal graph, which is a directed
acyclic graph (DAG), where each node stands for a
variable, and each arrow is a causal relationship.
Ladder of causation. The ladder of causation
(Pearl and Mackenzie, 2018; Bareinboim et al.,
2022) defines three rungs (Rung 1: Association;
Rung 2: Intervention; Rung 3: Counterfactuals) to
describe different levels of causation. Each higher
rung indicates a more advanced level of causal-
ity. The first rung "Association" involves statistical
dependencies, related to questions like "What is
the correlation between taking a medicine and a
disease?". Rung 2 "Intervention" moves further
to allow interventions on variables, with questions
like "If I take a certain medicine, will my disease
be cured?". Rung 3 "Counterfactuals" relates to

imagination or retrospection queries like "What if
I had acted differently?", "Why?". Answering such
questions requires knowledge related to the corre-
sponding SCM. Counterfactual ranks the highest
because it subsumes the first two rungs. A model
that can handle counterfactual queries can also han-
dle associational and interventional queries.

2.2 Causal Tasks and Related Rungs in
Ladder of Causation

Causal inference involves various tasks. Figure 1
shows an overview of these tasks and their positions
in the ladder of causation. We also show some
examples of prompts w.r.t. mode, question type,
and prompting strategy. We list several main causal
tasks as follows:
Causal discovery. Causal discovery aims to infer
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causal relationships from data. It includes discover-
ing the causal graph and the structural equations as-
sociated with these causal relationships. Although
causal discovery is not explicitly covered in the lad-
der of causation, it is often considered as "Rung 0"
as it serves as a fundamental component in causal
inference. Typical causal discovery questions in-
clude pairwise causal discovery (PCD) that only
focuses on a pair of variables, and full graph discov-
ery involving variables in the whole data system.
Causal effect estimation. Causal effect estimation
(a.k.a. treatment effect estimation) aims to quantify
the strength of the causal influence of a particu-
lar intervention or treatment on an outcome. In
different scenarios, researchers may focus on the
causal effect of different granularities, such as indi-
vidual treatment effect (ITE, i.e., treatment effect
on a specific individual), conditional average treat-
ment effect (CATE, i.e., average treatment effect on
a certain subgroup of population), average treat-
ment effect on the treated group (ATT), and average
treatment effect (ATE, i.e., average treatment effect
on the entire population). Besides, people are also
interested in the direct/indirect causal effects in cer-
tain scenarios, such as natural direct effect (NDE),
controlled direct effect (CDE), and natural indirect
effect (NIE). Another task related to causal effect
estimation is backdoor adjustment (BAJ), which
aims to block all backdoor paths (Pearl, 2009) from
the treatment to the outcome to exclude non-causal
associations. Causal effect estimation tasks often
span over Rung 2 and Rung 3.
Other tasks. There are many other tasks in causal
inference. Among them, causal attribution (CA)
refers to the process of attributing a certain outcome
to certain events. Counterfactual reasoning (CR)
investigates what might have happened if certain
events or conditions had been different from what
actually occurred. It explores hypothetical scenar-
ios by considering alternative outcomes based on
changes in “what if" circumstances. Causal expla-
nation (CE) aims to generate explanations for an
event, a prediction, or any causal reasoning process.
This task often needs to answer causal questions
in a specified human-understandable form or plain
language. It is often in Rung 2 or 3, depending on
the specific context. It is worth noting that, in many
cases, different causal tasks may exhibit natural
overlap in their scope. For instance, causal attri-
bution and explanation commonly intersect with
causal discovery and causal effect estimation. How-
ever, each task maintains a distinct focus.

3 Methodologies

Recent efforts (Kıcıman et al., 2023; Chen et al.,
2024a; Gao et al., 2023) have explored leverag-
ing LLMs for causal tasks. Unlike traditional
data-driven or expert knowledge-based approaches,
LLMs introduce novel methodologies, offering new
perspectives for discovering and utilizing causal
knowledge. Figure 2 lists LLMs developed or eval-
uated for causal tasks. We categorize current LLM
methodologies for causal tasks as follows:
Prompting. Most existing works on causal reason-
ing with LLMs (Chen et al., 2024a; Kıcıman et al.,
2023; Long et al., 2023; Jin et al., 2023a) focus
on prompting, as it is the simplest approach. This
includes regular strategies (like basic prompting,
In-Context Learning (ICL) (Brown et al., 2020),
and Chain-of-Thought (CoT) (Wei et al., 2022))
and causality-specific strategies (Jin et al., 2023a).
For regular prompting, basic prompts (i.e., directly
describing the question without any example or
instruction) are most frequently used. There are
also other efforts to devise more advanced prompt-
ing strategies. Among them, CaLM (Chen et al.,
2024a) has tested 9 prompting strategies including
basic prompt, adversarial prompt (Wallace et al.,
2019; Perez and Ribeiro, 2022), ICL, 0-shot CoT
(e.g., "let’s think step by step" without any exam-
ples) (Kojima et al., 2022), manual CoT (i.e., guide
models with manually designed examples), and ex-
plicit function (EF) (i.e., using encouraging lan-
guage in prompts) (Chen et al., 2024a). Other
works (Kıcıman et al., 2023; Long et al., 2023;
Gao et al., 2023; Ban et al., 2023) also design
different prompt templates. These works show
substantial improvement potential of prompt en-
gineering in causal reasoning tasks. For example,
studies (Kıcıman et al., 2023; Chen et al., 2024a;
Long et al., 2023) highlight that simple phrases
like "you are a helpful causal assistant" can sig-
nificantly boost performance. Additionally, there
are causality-specific strategies, such as CausalCoT
(Jin et al., 2023a), which combine CoT prompting
with causal inference principles (Pearl and Macken-
zie, 2018). Prompting-based methods can quickly
and flexibly adapt to different causal tasks, but are
still limited by the specificity of the prompt and
thus easily lead to inconsistent causal responses.
Fine-tuning. Fine-tuning, as a widely recognized
technique in general LLMs, is now also starting
to gain attention for its application in causal tasks.
Cai et al. (2023) propose a fine-tuned LLM for
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Dataset Task Size (Unit) Domain Real Sources Citations

CEPairs (2016) CD 108 (P) Meteorology, etc. R 37 (2016; 2023; 2023; 2023)
Sachs (2024) CD 20 (R) Biology R 1 (2023; 2024; 2024)
Corr2Cause (2023b) CD 200K (S) Math S 1 (2023b)
CLADDER (2023a) Rung 1∼3 10K (S) Dailylife, etc. S 1 (2023a; 2023b)
BN Repo (2022) CD 4∼84 (R) Health, etc. R 8 (2023)
COPA (2011) CD 1K (Q) Commonsense R 1 (2023; 2011)
E-CARE (2022) CD, CE 21K (Q) Commonsense R 1 (2023; 2022)
Asia (1988) CD 8 (R) Health R 1 (1988; 2024; 2024)
CausalNet (2016) CD 62M (R) Web text S 1 (2016; 2022)
CausalBank (2021) CD 314M (P) Web text S 1 (2021; 2022)
WIKIWHY (2022) CD,CE 9K (Q) Wikipedia R 1 (2022)
Neuro Pain (2019) CD 770 (R) Health S 1 (2019; 2023; 2023)
Arctic Ice (2021) CD 48 (R) Climate R 1 (2021; 2023)
CRASS (2022) CR 275 (Q) Commonsense R 1 (2022)
CausalQA (2022) CD, CE 1.1M (Q) Web text, etc. R 10 (2024; 2022; 2024)
CALM-Bench (2023) CD, CA 281K (Q) Science, etc. R 6 (2023)
CausalBench (2024b) Corr, CD 4∼195 (R) Health, etc. R 15 (2024b)
CaLM (2024a) Rung 1∼3 126K (S) Commonsense, etc. R&S 20 (2024a)

Table 1: Datasets for LLM-related causal inference, with publication year, applicable tasks (CD=causal discovery;
CR=counterfactual reasoning; CE=causal explanation), dataset size (as these datasets are not in a consistent form,
we show the size w.r.t. different units, where P=causal pairs; R=causal relations; S=samples; Q=questions), domain,
generation process (R: real-world; S: synthetic), number of data sources, and citations.

the pairwise causal discovery task (PCD, intro-
duced in Section 4.1). This method generates a
fine-tuning dataset with a Linear, Non-Gaussian,
Acyclic Model (Shimizu et al., 2006), uses Mistral-
7B-v0.2 (Jiang et al., 2023) as LLM backbone, and
runs instruction finetuning with LoRA (Hu et al.,
2021). The results achieve significant improvement
compared with the backbone without fine-tuning.
However, effective fine-tuning requires large com-
putational resources, and may also suffer from over-
fitting problems.
Combining traditional causal methods. A line
of studies combines LLMs with traditional causal
methods. Considering causal inference often heav-
ily relies on numerical reasoning, an exploration in
Ban et al. (2023) leverages LLMs and data-driven
causal algorithms such as MINOBSx (Li and Beek,
2018) and CaMML (O’Donnell et al., 2006). This
method outperforms both original LLMs and data-
driven methods, indicating a promising future for
combining the language understanding capability
of LLMs and the numerical reasoning skills of data-
driven methods in complicated causal tasks. Jiraler-
spong et al. (Jiralerspong et al., 2024) combine
LLM with a breadth-first search (BFS) approach
for full graph discovery. It considers each causal
relation query as a node expansion process, and
gradually constructs the causal graph by travers-
ing it with BFS. This method significantly reduces
the time complexity from O(n2) to O(n), where
n is the number of variables. While it does not
require access to observational data, their exper-

iments show that the performance can be further
enhanced with observational statistics. Recently,
there have been increasing efforts on causality-
driven LLM-based agents such as Causal Agent
(Han et al., 2024) and Causal-Copilot (Wang et al.,
2024) that automatically use LLMs to invoke causal
tools for causal problems. This line of methods can
potentially answer more complex causal questions
than traditional methods and plain LLMs, but har-
monizing between LLMs and data-driven causal
approaches can also be a subtle problem.
Knowledge augmentation. LLMs with aug-
mented knowledge can often better execute tasks
for which they are not well-suited to perform by
themselves, particularly for causal tasks that re-
quire domain-specific knowledge. Pawlowski et
al. (2023) introduced two types of knowledge aug-
mentation: context augmentation, which provides
causal graphs and ITEs in the prompt, and tool
augmentation, offering API access to expert sys-
tems for causal reasoning. Tool augmentation per-
forms more robustly across varying problem sizes,
as the LLM relies on the API for reasoning in-
stead of reasoning through the graph itself. LACR
(Zhang et al., 2024) applies retrieval augmented
generation (RAG) to enhance the knowledge base
of LLM for causal discovery, where the knowledge
resources are from a large scientific corpus contain-
ing hidden insights about associational/causal rela-
tionships. Similar approaches (Samarajeewa et al.,
2024) employ causal graphs as external sources
for causal reasoning. Knowledge augmentation is

5905



Model CEPairs E-CARE COPA CALM-CA Neuro Pain

Binary Choice Binary Choice Binary Binary Choice

ada 0.50 0.48 0.49 0.49 0.49 0.57 0.40
text-ada-001 0.49 0.49 0.33 0.50 0.35 0.48 0.50
Llama2 (7B) - 0.53 0.50 0.41 0.35 0.32 -
Llama2 (13B) - 0.52 0.50 0.44 0.36 0.42 -
Llama2 (70B) - 0.52 0.44 0.50 0.45 0.49 -
Qwen (14B) - 0.66 0.52 0.77 0.53 0.52 -
babbage 0.51 0.49 0.36 0.49 0.40 0.58 0.50
text-babbage-001 0.50 0.50 0.50 0.49 0.50 0.56 0.51
curie 0.51 0.50 0.50 0.50 0.50 0.58 0.50
text-curie-001 0.50 0.50 0.50 0.51 0.50 0.58 0.50
davinci 0.48 0.50 0.49 0.50 0.51 0.58 0.38
text-davinci-001 0.50 0.50 0.50 0.50 0.50 0.52 0.50
text-davinci-002 0.79 0.66 0.64 0.80 0.67 0.69 0.52
text-davinci-003 0.82 0.77 0.66 0.90 0.77 0.80 0.55
GPT-3.5-Turbo 0.81 0.80 0.66 0.92 0.66 0.72 0.71
GPT-4 - 0.74 0.68 0.90 0.80 0.93 0.78

0-shot ICL - 0.83 0.71 0.97 0.78 0.90 -
1-shot ICL - 0.81 0.70 0.93 0.76 0.90 -
3-shot ICL - 0.71 0.70 0.80 0.81 0.91 -
0-shot CoT - 0.77 0.68 0.91 0.79 0.92 -
Manual CoT - 0.79 0.73 0.97 0.82 0.95 -
EF - 0.83 0.71 0.98 0.80 0.92 0.84

Table 2: Performance (accuracy) of LLMs for causal discovery. Datasets include CausalEffectPairs (CEpairs),
E-CARE, COPA, CALM-CA, and Neuro Pain. The white columns evaluate LLMs on PCD; in the gray column,
on causal attribution; and in the cyan column, on full graph discovery. The upper part shows results with basic
prompts; the lower part shows GPT-4 results with different prompting strategies. The tasks are shown in either
binary "yes/no" or multi-choice formats. Results are drawn from Kıcıman et al. (2023) and Chen et al. (2024a).

especially effective for domain-specific tasks, as
seen in RC2R (Yu et al., 2024) for financial risk
analysis and CausalKGPT (Zhou et al., 2024a) for
aerospace defect analysis. However, high-quality
causal knowledge sources are hard to collect, which
can limit the LLM performance and also increase
the method complexity.

4 Evaluations of LLMs in Causal Tasks
This section summarizes recent evaluation results
of LLMs in causal tasks. We mainly focus on
causal discovery and causal effect estimation, and
also introduce several representative tasks spanning
Rung 1∼3. A collection of datasets used in LLM-
related causal tasks is shown in Table 1. In Table
2 and Table 4, we compare the performance of dif-
ferent LLMs in different tasks (including causal
discovery and other tasks spanning different rungs)
on multiple datasets. The mentioned LLMs in-
clude ada, babbage, curie, davinci (Brown et al.,

2020), Qwen (14B) (Bai et al., 2023), text-ada-001,
text-babbage-001, text-curie-001, text-davinci-001,
text-davinci-002, text-davinci-003 (Ouyang et al.,
2022), Llama 2 (7B, 13B, 70B) (Touvron et al.,
2023), OpenAI’s GPT series (Achiam et al., 2023;
OpenAI, 2022), Mistral (7B) (Jiang et al., 2023),
and Claude 2 (Models, 2023).

4.1 LLM for Causal Discovery
Unlike traditional causal discovery methods that
rely solely on data values (Spirtes et al., 2000, 2013;
Chickering, 2002), LLMs can also leverage meta-
data (e.g., variable names, problem context) to un-
cover implicit causal relationships, making their
reasoning closer to human cognition. Many studies
have explored LLMs for causal discovery (Kıcı-
man et al., 2023; Cai et al., 2023; Gao et al., 2023;
Jin et al., 2023b; Long et al., 2023), focusing on
pairwise causal discovery and full causal graph dis-
covery, often framed as multi-choice or free-text
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Model Accuracy

GPT-3.5 0.58
GPT-4 0.76
GPT-4-Turbo 0.82
Llama2 (13B) 0.74
Claude 2 0.74
Mistral (7B) v0.2 0.75
Fine-tuned Mistral (7B) v0.2 0.90

Table 3: Accuracy of LLMs and a fine-tuned Mistral in
PCD. The results are sourced from Cai et al. (2023).

question-answering tasks.
Pairwise causal discovery (PCD). PCD focuses
on inferring the causal direction (A → B or
A ← B) or determining the existence of a causal
relationship. Kıcıman et al. (2023) use variable
names in prompts, showing that LLMs (e.g., GPT-
3.5, GPT-4) outperform state-of-the-art methods on
datasets like CauseEffectPairs (Mooij et al., 2016)
and domain-specific datasets like neuropathic pain
(Tu et al., 2019). With proper techniques such as
fine-tuning (as the example of fined-tuned Mistral
shown in Table 3), the performance of PCD can
be improved significantly. However, some stud-
ies (Zečević et al., 2023) suggest LLMs often act
as "causal parrots", merely repeating embedded
causal knowledge. Jin et al. (2023b) proposes
a correlation-to-causation inference (Corr2Cause)
task, where LLMs performed close to random. Al-
though fine-tuning improved their performance,
they still struggle with generalization in out-of-
distribution scenarios. In summary, many stud-
ies Gao et al. (2023); Kıcıman et al. (2023); Jin
et al. (2023b,a); Chen et al. (2024a) take a nuanced
stance, acknowledging LLMs’ strengths in PCD
tasks while highlighting their limitations in reliably
determining the existence of causal relationships.
Full causal graph discovery. Compared with
PCD, identifying the full causal graph is a more
complicated problem. In a preliminary exploration
(Long et al., 2023), GPT-3 shows good perfor-
mance in discovering the causal graph with 3-4
nodes for well-known causal relationships in the
medical domain. In more complicated scenarios,
the ability of different versions of GPT to discover
causal edges (Kıcıman et al., 2023) has been val-
idated on the neuropathic pain dataset (Tu et al.,
2019) with 100 pairs of true/false causal relations.
LLM-based discovery (GPT-3.5 and GPT-4) on
Arctic sea ice dataset (Huang et al., 2021) has

comparable or even better performance than rep-
resentative baselines including NOTEARS (Zheng
et al., 2018) and DAG-GNN (Yu et al., 2019). In
Ban et al. (2023), the combination of the causal
knowledge generated by LLMs and data-driven
methods brings improvement in causal discovery
in data from eight different domains with small
causal graphs (5∼48 variables and 4∼84 causal re-
lations). However, similar to PCD, LLMs also face
many debates about their true ability to discover
full graphs (Zhou et al., 2024b; Jin et al., 2023b).

4.2 LLM for Causal Effect Estimation

Although comparatively underexplored, LLMs
have also shown impressive performance in causal
effect estimation. These works can be mainly cat-
egorized into two branches: (1) Causal effect in
data: LLMs estimate causal effects within data
(Lin et al., 2023; Kıcıman et al., 2023) by lever-
aging their reasoning capabilities and large-scale
training data. CLADDER (Jin et al., 2023a) bench-
marks LLMs for causal effect estimation tasks (e.g.,
ATE in Rung 2, and ATT, NDE, NIE in Rung 3).
Although this task remains challenging, techniques
like CoT prompting (Jin et al., 2023a) significantly
improve performance. (2) Causal effect in mod-
els: This branch investigates causal effects involv-
ing LLMs themselves, such as the impact of input
data, neurons, or learning strategies on predictions
(Vig et al., 2020; Meng et al., 2022; Stolfo et al.,
2022). These studies help understand LLM behav-
ior and support bias elimination (Vig et al., 2020),
model editing (Meng et al., 2022), and robustness
analysis (Stolfo et al., 2022). For example, Stolfo
et al. (2022) explores the causal effect of input (e.g.,
problem description and math operators) on output
solutions in LLM-based mathematical reasoning.
In Vig et al. (2020), a causal mediation analysis for
gender bias is conducted in language models.

4.3 LLM for Other Causal Tasks

Experiments (Chen et al., 2024a; Jin et al., 2023a;
Kıcıman et al., 2023) have shown that there are
various other causal tasks that LLMs can bring ben-
efits to. (1) Causal attribution: LLMs show their
capability in attribution tasks (Kıcıman et al., 2023;
Cai et al., 2023) typically in the forms of "why" or
"what is the cause" questions. Related tasks also
include identifying necessary or sufficient causes
(Liu et al., 2023; Kıcıman et al., 2023). By embed-
ding human knowledge and cultural common sense,
the results show that LLMs have the potential to
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Model CLADDER CaLM CLADDER CaLM CRASS E-CARE

Corr ATE CDE BAJ CR NDE CR CE

ada 0.26 0.02 0.03 0.13 0.30 0.05 0.26 0.22
text-ada-001 0.25 0.01 0.01 0.29 0.28 0.01 0.24 0.33
Llama2 (7B) 0.50 0.03 0.02 0.18 0.51 0.03 0.11 0.42
Llama2 (13B) 0.50 0.01 0.01 0.19 0.52 0.02 0.20 0.39
Llama2 (70B) 0.51 0.09 0.09 0.13 0.52 0.13 0.17 0.42
Qwen (14B) 0.45 0.12 0.12 0.30 0.39 0.10 0.34 0.39
babbage 0.39 0.03 0.04 0.15 0.31 0.06 0.26 0.24
text-babbage-001 0.35 0.04 0.04 0.34 0.32 0.07 0.28 0.37
curie 0.50 0.01 0.04 0.23 0.49 0.01 0.22 0.30
text-curie-001 0.50 0.00 0.09 0.40 0.49 0.00 0.28 0.39
davinci 0.50 0.07 0.08 0.25 0.50 0.12 0.27 0.32
text-davinci-001 0.51 0.07 0.08 0.38 0.51 0.14 0.19 0.39
text-davinci-002 0.51 0.17 0.13 0.39 0.53 0.19 0.57 0.40
text-davinci-003 0.53 0.52 0.33 0.54 0.57 0.30 0.80 0.43
GPT-3.5-Turbo 0.51 0.38 0.40 0.44 0.58 0.30 0.73 0.51
GPT-4 0.55 0.60 0.31 0.74 0.67 0.42 0.91 0.46

0-shot ICL 0.60 0.19 0.25 0.72 0.65 0.27 0.85 0.48
1-shot ICL 0.66 0.24 0.30 0.70 0.71 0.38 0.78 0.41
3-shot ICL 0.61 0.70 0.70 0.75 0.69 0.29 0.70 0.40
0-shot CoT 0.57 0.57 0.28 0.73 0.66 0.43 0.90 0.53
Manual CoT 0.66 0.93 0.91 0.69 0.77 0.80 0.89 0.48
EF 0.60 - - 0.72 0.70 - 0.87 0.53

Table 4: Performance (accuracy) of LLMs in causal tasks across the ladder of causation (Rung 1∼3) on datasets in-
cluding CLADDER, CaLM, CRASS, and E-CARE. The gray column shows results for Rung 1 (corr=correlation),
the white columns for Rung 2 (ATE=average treatment effect; CDE = controlled direct effect; BAJ= backdoor ad-
justment), and the cyan columns for Rung 3 (CR=counterfactual reasoning; NDE=natural direct effect; CE=causal
explanation). The upper part shows results with basic prompts, while the lower part presents GPT-4 results with
different prompting strategies. Data is sourced from Chen et al. (2024a) and Jin et al. (2023a).

flexibly address attribution problems in specific
domains (such as law and medicine) where con-
ventional methods may fall short (Kıcıman et al.,
2023). (2) Counterfactual reasoning: Recent
studies (Kıcıman et al., 2023; Jin et al., 2023a) ex-
plore different counterfactual reasoning scenarios,
which are often in "what if" questions. While this
task is one of the most challenging causal tasks, the
improvement in LLMs compared to other methods
is noteworthy. (3) Causal explanation: Many re-
cent works explore causal explanations with LLMs
(Bhattacharjee et al., 2023; Gat et al., 2023; Cai
et al., 2023; Gao et al., 2023). Despite ongoing
debates regarding LLM’s actual ability for causal
reasoning, most empirical studies positively indi-
cate that LLMs serve as effective causal explainers
(Gao et al., 2023). Such achievement is powered
by LLMs’ capability of analyzing language logic
and answering questions with natural language.

4.4 Main Observations and Insights
From the evaluation above and results shown in
Table 2 ∼ Table 4, we summarzie the main ob-
servations as follows: (1) Model performance:
In general, many LLMs exhibit impressive per-
formance in various causal tasks, especially in
causal discovery, even with basic prompts. In
some cases, their performance can be comparable
to or even surpass human-level reasoning (Kıcı-
man et al., 2023). However, as the task difficulty
increases from Rung 1∼3, their performance be-
comes less satisfactory in higher-level complicated
causal reasoning tasks (Chen et al., 2024a). (2) En-
hancement through proper techniques: The per-
formance of LLMs can be significantly enhanced
with effective prompting strategies (such as few-
shot ICL and CoT) and other techniques like fune-
tuning. These approaches enable models to be
more causality-focused, with improved ability of
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leveraging context and adaptively following correct
steps in different causal reasoning tasks. Addition-
ally, these models can provide valuable insights
through causal explanations. (3) General patterns:
While no definitive laws determine model perfor-
mance universally, certain trends are still observ-
able. For instance, scaling laws suggest that larger
models generally perform better, although this is
not always that straightforward. These trends pro-
vide valuable insights that can guide the future
design and development of models. (4) Variabil-
ity in model effectiveness: There is currently no
universally superior LLM or strategy for causal
tasks, as their effectiveness can vary significantly
depending on the specific scenario. These obser-
vations highlight the need for more nuanced and
adaptable approaches. (5) Common issues: Cur-
rent LLMs still struggle with many issues in causal
tasks. For example, the answers often lack robust-
ness and are sensitive to changes in prompts (Kıcı-
man et al., 2023; Jin et al., 2023a). Furthermore,
these models frequently default to memorizing and
repeating information rather than actual causal rea-
soning (Zečević et al., 2023), which can limit their
effectiveness in complex causal scenarios. Besides,
LLMs often fail to generate self-consistent causal
answers, i.e., the answers from LLMs often conflict
with each other. Ongoing debates about whether
LLM truly performs causal inference also compel
more in-depth analysis.

5 Discussion and Future Prospects
In general, LLMs offer intriguing perspectives on
causal inference, but current research also reveals
many limitations, pointing to potential directions
for future work that could advance the field (Zhang
et al., 2023; Kıcıman et al., 2023).
Involving human knowledge: A more comprehen-
sive integration of human knowledge into LLMs
can improve causal reasoning, enabling analysis
across both general and specialized fields like fi-
nance, health, and law (Chen et al., 2024b).
Improving data generation: Real-world data of-
ten lacks verified causal relations and counterfactu-
als. LLMs can generate diverse, realistic data with
reliable causal relationships, enriching datasets and
improving causal reasoning model training.
Addressing hallucinations: In causal reasoning,
hallucinations are commonly generated and diffi-
cult to detect, leading to misleading causal conclu-
sions. Reducing them is essential to improve the
reliability of LLM in causal tasks.

Improving explanation and interactivity: De-
veloping interpretable and instructable LLMs for
causal reasoning is crucial. Techniques like fine-
tuning, probing, prompt engineering, and optimiz-
ing reasoning chains can foster more collaborative
and controllable causal inference.
Exploring multimodal causality: Real-world
causal scenarios often involve multiple modali-
ties. Recent studies have begun exploring causal-
ity across different modalities, such as images (Li
et al., 2024) and videos (Lam et al., 2024). Future
research could further investigate these multimodal
approaches to enhance causal reasoning.
Developing a unified causal benchmark: There
is currently a lack of unified and widely recog-
nized benchmarks for evaluating causal perfor-
mance for LLMs. Creating a comprehensive bench-
mark would facilitate LLM assessment.
Advancing causality-specialized models: Most
current methods use original LLMs without suf-
ficient focus on causality-centric model designs.
There is a significant opportunity for further re-
search and development in specialized causal
LLMs to deepen their causal understanding and
improve their effectiveness in causal inference.

6 Limitations
In this survey, it is important to acknowledge cer-
tain limitations that shape the scope and focus of
our review. First, our analysis is primarily cen-
tered on the application of LLMs for causal infer-
ence tasks, thereby excluding exploration into how
causality is utilized within LLMs themselves. This
decision provides a targeted perspective on leverag-
ing LLMs to enhance causal inference but does not
delve into the internal mechanisms or implementa-
tions of causal reasoning within these models.

Second, while we comprehensively examine
the technical aspects and methodological advance-
ments in using LLMs for causal inference, we do
not extensively discuss ethical considerations or
potential societal impacts associated with these ap-
plications. Ethical dimensions, such as fairness,
bias mitigation, and privacy concerns, are critical
in the deployment of AI technologies, including
LLMs, and warrant dedicated attention and scrutiny
in future research and applications. Addressing
these limitations ensures a nuanced understanding
of the opportunities and challenges in harnessing
LLMs for causal inference while also advocating
for responsible and ethical AI development and
deployment practices.
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Matej Zečević, Moritz Willig, Devendra Singh Dhami,
and Kristian Kersting. 2023. Causal parrots: Large
language models may talk causality but are not causal.
arXiv preprint arXiv:2308.13067.

Cheng Zhang, Dominik Janzing, Mihaela van der
Schaar, Francesco Locatello, and Peter Spirtes. 2023.
Causality in the time of llms: Round table discus-
sion results of clear 2023. Proceedings of Machine
Learning Research vol TBD, 1:7.

Yuzhe Zhang, Yipeng Zhang, Yidong Gan, Lina Yao,
and Chen Wang. 2024. Causal graph discovery with
retrieval-augmented generation based large language
models. arXiv preprint arXiv:2402.15301.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and
Eric P Xing. 2018. Dags with no tears: Continu-
ous optimization for structure learning. Advances in
neural information processing systems, 31.

Yujia Zheng, Biwei Huang, Wei Chen, Joseph Ramsey,
Mingming Gong, Ruichu Cai, Shohei Shimizu, Peter
Spirtes, and Kun Zhang. 2024. Causal-learn: Causal
discovery in python. Journal of Machine Learning
Research, 25(60):1–8.

Bin Zhou, Xinyu Li, Tianyuan Liu, Kaizhou Xu, Wei
Liu, and Jinsong Bao. 2024a. Causalkgpt: indus-
trial structure causal knowledge-enhanced large lan-
guage model for cause analysis of quality problems
in aerospace product manufacturing. Advanced Engi-
neering Informatics, 59:102333.

Yu Zhou, Xingyu Wu, Beicheng Huang, Jibin Wu, Liang
Feng, and Kay Chen Tan. 2024b. Causalbench: A
comprehensive benchmark for causal learning ca-
pability of large language models. arXiv preprint
arXiv:2404.06349.

5913


