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Abstract
The efficient compression of large language
models (LLMs) has become increasingly pop-
ular. However, recovering the performance of
compressed LLMs remains a major challenge.
The current practice in LLM compression en-
tails the implementation of structural prun-
ing, complemented by a recovery phase that
leverages the Low-Rank Adaptation (LoRA)
algorithm. Structural pruning’s uneven mod-
ification of model architecture, coupled with
standard LoRA’s fixed configuration allocation
across layers in an online pipeline, leads to sub-
optimal performance in various downstream
tasks for pruned models. To address this chal-
lenge, we introduce RankAdaptor, a hierarchi-
cal rank allocation method that enables efficient
fine-tuning of pruned LLMs according to lay-
erwise specific recovery requirements. We em-
ploy a performance model that conducts offline
meta-learning and online incremental learning
to explore optimal rank values for each layer.
Comprehensive experiments on popular bench-
marks show that RankAdaptor consistently out-
performs state-of-the-art methods across a vari-
ety of pruning settings and LLM architectures,
with improvements ranging from 0.7% to 5.5%.

1 Introduction

In recent years, large language models (LLMs)
have provided innovative solutions across various
natural language processing (NLP) tasks, such as
machine translation (Zhang et al., 2023a; Sato et al.,
2020; Aycock and Bawden, 2024), sentiment anal-
ysis (Zhang et al., 2023b; Deng et al., 2023), and
speech recognition (Min and Wang, 2023; Fathul-
lah et al., 2024).

However, the exceptional performance of LLMs
comes at the cost of a massive number of parame-
ters and high-end hardware resources. Current com-
pression techniques like pruning (Ma et al., 2023;
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Method BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg Diff

AdaLoRA 61.90 76.31 67.82 62.57 64.02 36.70 40.40 0.56
LoRA 63.30 76.82 68.68 63.38 63.76 37.11 40.60

Table 1: Zero-shot performance comparison between
AdaLoRA (Zhang et al., 2023d) and LoRA (Hu et al.,
2021). ’Bold’ indicates better performance. ’Avg Diff’
represents the average performance difference between
AdaLoRA and LoRA across all benchmarks. The results
are reported in percentage (%).

Xia et al., 2023; Santacroce et al., 2023; Frantar
and Alistarh, 2023), quantization (Shao et al., 2023;
Lee et al., 2023), and distillation (Gu et al., 2023;
Tan et al., 2023) have been explored. Compressed
LLMs typically require fine-tuning to recover their
original performance. Therefore, designing an effi-
cient algorithm for compressed LLMs to achieve
optimal performance on downstream tasks has be-
come a pioneering direction.

Among compression techniques, structural prun-
ing is a popular one that removes redundant weight
connections to reduce model size and computa-
tional requirements. It primarily involves two
stages: (1) pruning based on architectural impor-
tance and (2) recovery using efficient fine-tuning.
While research has primarily focused on the initial
pruning stage, the equally crucial recovery stage
has been understudied. Existing approaches often
rely on standard LoRA (Hu et al., 2021) for recov-
ering pruned models, applying a general rank con-
figuration across all layers. However, this approach
overlooks the inherent structural irregularities in-
troduced by pruning. Therefore, a one-size-fits-
all rank configuration may not optimally meet the
unique needs of each layer, potentially affecting
downstream performance.

Among the various LoRA variants, AdaLoRA
(Zhang et al., 2023d) proposes an importance-based
adaptive rank allocation method. It dynamically ad-
justs the rank configurations for each layer by con-
tinuously estimating the model structure’s impor-
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Figure 1: Illustration of the process of pruning and recovery. The baseline approach is detailed in Section 2, and the
proposed method is described in Section 3.

tance through SVD parameterization during fine-
tuning. Despite AdaLoRA’s proven advantages in
fine-tuning original LLMs, its effectiveness in re-
covering accuracy for irregularly pruned models
falls short of standard LoRA. We conducted experi-
ments using a 20% pruned LLaMA-7B model, com-
paring LoRA with rank=8 and AdaLoRA for perfor-
mance recovery. As shown in Table 1, AdaLoRA’s
performance across seven tasks averages 0.56%
lower than LoRA. The suboptimal performance
of AdaLoRA may be attributed to its difficulty in
identifying the highly complex structures of pruned
models during its online rank adjustment process.
Given this observation, we propose adopting a
static rank allocation strategy for each layer during
the recovery stage of pruned models.

To achieve this goal, we propose RankAdaptor,
an algorithm that leverages a performance model to
statically determine the optimal rank configuration
for each layer in the recovery stage for the pruned
models. Our contributions are as follows:

1. We point out a critical bottleneck in pruned
LLM recovery: existing fine-tuning ap-
proaches fail to address the unique require-
ments of pruned models’ complex structures.

2. We introduce RankAdaptor, a tailored fine-
tuning strategy specifically designed for recov-
ering pruned models. Our approach employs
a performance model that combines offline
meta-learning with online incremental learn-
ing to efficiently explore optimal hierarchical
rank configuration.

3. Extensive experimentation has demonstrated
that RankAdaptor consistently outperforms
the state-of-the-art method across a range
of pruning configurations and LLM architec-

tures, with improvements ranging from 0.7%
to 5.5%.

2 Background and Motivation

There are numerous compression methods for
LLMs and our work focuses on pruning. The en-
tire pruning process for LLMs primarily consists
of two main stages: (1) Pruning based on struc-
tural importance, and (2) Recovery using efficient
fine-tuning, typically with LoRA.

Pruning Stage. This stage involves identifying
and removing less important structures within the
LLM. The process begins by establishing struc-
tural dependencies among neurons. A neuron Nj

is considered dependent on neuron Ni if:

Nj ∈ Out(Ni) ∧Deg−(Nj) = 1

⇒ Nj is dependent on Ni
(1)

where Deg−(Nj) represents the in-degree of Nj .
This dependency means that if Ni is pruned, Nj

must also be pruned. The process identifies and
groups dependent neurons, forming clusters of in-
terconnected structures.

The importance of each group is then assessed
using a Taylor expansion-based formula:

IWk
i
≈

∣∣∣∣
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∂Wk
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i

)2

+O(∥Wk
i ∥3)
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(2)

where Wk
i is the k-th parameter in structure Wi,

and L is the loss for next-token predictions. The
groups are then ranked by importance, and those
with lower significance are pruned based on a pre-
defined ratio.
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Figure 2: Performance of benchmarks for the different
fine-tuning configurations. LoRA denotes using fixed
ranks for different layers, whereas LoRA∗ indicates
using different rank configurations. The results are re-
ported in percentage (%).

Recovery Stage. After pruning, the model’s per-
formance is recovered using efficient fine-tuning,
typically through LoRA. In LoRA, for each layer
of the pruned LLM, the weight update matrix ∆W
is decomposed into the product of two low-rank
matrices A and B:

f(x) = (W +∆W)X+ b

= (WX+ b) + (AB)X
(3)

where A ∈ Rd×r and B ∈ Rr×d, with r being the
rank, typically fixed across all layers. Only ∆W
(i.e., AB) is updated during fine-tuning, while the
original weight matrix W remains frozen. This
approach significantly reduces the number of train-
able parameters and computational cost from d2 to
2dr, as r is usually much smaller than d.

A Motivating Example. The uneven distribution
of importance within LLMs’ internal architecture
(Zhang et al., 2023d), coupled with importance-
based pruning criteria, leads to non-uniform prun-
ing across layers. This results in a highly com-
plex structure for the pruned LLM. While standard
LoRA with fixed rank configurations offers some
recovery, it falls short in addressing the specific re-
covery needs of differently pruned layers, leading
to suboptimal performance.

Studies (Vaswani et al., 2017; Zhao et al., 2024)
indicate that bottom layers in LLMs capture more
semantic information, making them more powerful.
Based on this insight, we explore two approaches
for an LLaMA-7B model with a 20% pruning ratio.
Standard LoRA applies a fixed rank configuration
of 8 across all layers, and LoRA∗ assigns increas-
ing rank configuration from the bottom to the top
layers. Specifically, in LoRA∗, layers 1–8 use rank
4, layers 9–16 use rank 6, layers 17–24 use rank
10, and layers 25–32 use rank 12.

PLM module

x

h 𝑾𝐀
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Figure 3: Hierarchical weight matrices decomposition:
same rank in LoRA (left) versus hierarchical different
ranks in RankAdaptor (right).

The exploration in Figure 2 demonstrates the ef-
ficacy of different rank allocations for recovering
pruned LLMs. LoRA with fixed rank configura-
tions demonstrates general accuracy since its in-
ability to meet the specific recovery requirements
of different layers results in performance inferior
to LoRA∗ across most tasks. LoRA∗ achieves su-
perior recovery performance by gradually adjust-
ing rank configurations for each layer during fine-
tuning.

Through this motivating example, we have
demonstrated the effectiveness of using different
rank configurations across layers for fine-tuning
pruned models. However, determining the opti-
mal rank configuration allocation for each layer
remains a challenge. In the next section, we pro-
pose a method that uses a performance model to
find the best combination of rank configuration for
each layer.

3 Methodology

In this section, we propose RankAdaptor, a hi-
erarchical rank allocation tailored for fine-tuning
pruned LLMs. The visible comparison from LoRA
can be found in Figure 3.

3.1 Problem Definition

As mentioned in Section 2, using a globally fixed
rank r in LoRA during the recovery stage can lead
to suboptimal performance. While AdaLoRA at-
tempts to dynamically adjust rank configurations
for different layers during recovery, it is designed
for unpruned models and proves unsuitable for
pruned models. In addition, testing all combina-
tions in the solution space S is impractical for
LLMs due to the vast number of layers and po-
tential rank configurations. With n rank candidates
and l layers, the number of combinations nl be-
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comes astronomically large, rendering exhaustive
evaluation unfeasible.

Problem Formulation. Given a pruned model
PL and a collection of rank configurations for all
layers RH, our overall objective is to identify the
optimal rank set R∗

H that maximizes the recovery
performance. This can be expressed as:

R∗
H = argmax

RH∈S
P(recover(PL,RH)), (4)

where P(recover(PL,RH)) represents the actual
performance of recovering PL with RH. However,
finding R∗

H directly poses significant challenges.
To address these, we propose an efficient method
utilizing a predictive performance model, detailed
in Section 3.2.

Training Objective. Let Q(RH) denote the re-
covered performance predicted by our performance
model, approximating P(recover(PL,RH)). If
we can develop a model that takes RH as input and
directly produces a performance prediction closely
approximating the actual performance, we can effi-
ciently explore a wide range of RH configurations
at minimal cost and select the optimal one.

Consequently, we can formulate our training ob-
jective to focus on training a reliable performance
prediction model, which means minimizing the dis-
crepancy between the actual performance and the
predicted performance:

min [P(recover(PL,RH))−Q(RH)]
2 . (5)

3.2 Performance Model.
A performance model is constructed to estimate
the performance of the recovered model fine-tuned
by RH on downstream tasks. Input RH to ob-
tain Q(RH), which is a predicted configuration of
P(recover(PL,RH)).

Model Architecture Our performance model is
inspired by the MLP architecture, featuring a sim-
ple and efficient structure that minimizes overhead
during forward inference and backward propaga-
tion. We define the performance model as an MLP
network comprising five fully connected layers.
The input layer accepts RH, representing the fine-
tuning rank configurations of the pruned LLM as
an l-dimensional vector, where l is the number of
layers in the LLM. Each hidden layer has a dimen-
sion Di where i = 1, 2, 3, which can be adjusted
as needed. The final output layer employs a linear

activation function to generate a single scalar value
representing the predicted performance score.

Model Integration. The performance model op-
erates in two distinct phases.

1. Offline meta-learning: Before actual fine-
tuning, we pre-train the performance model on
multiple diverse datasets. This meta-learning
approach endows the model with the ability to
quickly adapt to new tasks and datasets, pro-
viding a foundation of generalized knowledge
about rank configuration performance across
various scenarios.

2. Online incremental learning: Once a spe-
cific downstream task is identified, the perfor-
mance model is integrated into the RankAdap-
tor workflow. This phase enables rapid and
accurate performance estimation for a large
set of candidate rank configurations on the
specific downstream task. By incrementally
updating its knowledge based on task-specific
data, the performance model refines its predic-
tions to better align with the unique character-
istics of the target task.

3.3 RankAdaptor
Overview. Combined performance model, we
propose RankAdaptor, a learning-based algorithm,
as shown in Figure 4, to allocate rank configuration
for each layer. There are three important phases
in our design: Initialization, Iteration, and Con-
vergence. The first phase involves meta-learning
pretraining of the performance model using multi-
ple datasets. The function of his phase is to equip
the model with fundamental learning abilities and
generalization capabilities. The subsequent iter-
ative phase focuses on incrementally enhancing
the model’s predictive power through continuous
learning on specific tasks. In the final convergence
stage, the performance model is utilized to predict
performance for a large number of candidate rank
configurations from the S. This process enables the
selection of the optimal configuration that demon-
strates superior performance on downstream tasks.

Initialization Phase. At the beginning of
RankAdaptor, a lightweight performance model of-
fline using meta-learning techniques is introduced.
This process involves randomly selecting multiple
configurations of RH from the solution space S,
with a different set of RH being chosen for each
step. The actual performance P(recover(PL,RH))
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Figure 4: RankAdaptor Workflow: Through three phases (Initialization-Iteration-Convergence), find the optimal
hierarchical rank configuration for recovering pruned LLM.

of these configurations across various datasets is
used as a training set to update the performance
model, serving as a foundation for subsequent opti-
mization steps.

Iteration Phase. After the initialization phase,
we enter the iteration phase. Here, many RH sam-
ples are randomly drawn from S at each iteration.
The performance model with the learning ability
gained from the last phase predicts their corre-
sponding performance Q(RH). Based on these
predictions, we identify the optimal R′

H for the cur-
rent iteration, which is expected to yield the best
accuracy on the downstream task. We then real
fine-tune the PL using R′

H and evaluate its actual
performance P(recover(PL,R′

H)) on tasks. This
performance data (R′

H,P(recover(PL,R′
H)) is fed

back into the performance model, enabling continu-
ous improvement of its predictive accuracy through
successive iterations.

Convergence Phase. The process contin-
ues until the discrepancy between predicted
performance Q(RH) and actual performance
P(recover(PL,RH)) falls within a predeter-
mined threshold. At this point, the performance
model is considered converged. RankAdaptor can
then efficiently identify the optimal R∗

H from many
RH in S that maximizes the actual performance
metrics of the pruned model.

4 Experiments

4.1 Experimental Setup

LLMs and Benchmarks. To demonstrate the ef-
fectiveness of RankAdaptor, we test it on three
open-source LLMs: LLaMA-7B1 (Touvron et al.,

1https://huggingface.co/baffo32/
decapoda-research-llama-7B-hf

2023), LLaMA-13B2 (Touvron et al., 2023) and
Vicuna-7B3 (Zheng et al., 2024). We conduct
these LLMs on zero-shot classification tests for
commonsense reasoning datasets, including BoolQ
(Clark et al., 2019), PIQA (Bisk et al., 2020), Hel-
laSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), ARC-easy (Clark et al., 2018),
ARC-challenge (Clark et al., 2018), and Open-
bookQA (Mihaylov et al., 2018).

Baseline and Configuration. We employ both
LLM-Pruner (Ma et al., 2023) and Shortened
LLaMA (Taylor+) (Kim et al., 2024) as prun-
ing stage operations, which allow us to validate
our method’s effectiveness across different prun-
ing strategies. We apply AdaLoRA (Zhang et al.,
2023d) and LoRA (Hu et al., 2021) as recovery
methods compared with our RankAdaptor.

Previous research has identified that specific lay-
ers of LLaMA-7B, Vicuna-7B, and LLaMA-13B
are crucial to the models’ architecture and should
remain unpruned (Ma et al., 2023). Thus, we prune
only layers 5-30 of LLaMA-7B and Vicuna-7B,
and layers 5-36 of LLaMA-13B to achieve the pre-
defined global pruning rate. Specifically, we prune
25%, 32%, 38%, and 63.5% of the middle layers
to attain global pruning rates of 20%, 25%, 30%,
and 50%, respectively. For the unpruned layers, we
maintain their rank configurations consistent with
those of standard LoRA.

Implementation Details. Our implementation
utilizes PyTorch 2.1.2, Transformers 4.41.0, and
PEFT 0.6.0 libraries, running on CUDA 12.4. The
hardware setup consists of an NVIDIA A800 GPU
with 80GB memory, operating on Ubuntu. The
MLP dimensions for the inner layers of the perfor-

2https://huggingface.co/yahma/llama-13b-hf
3https://huggingface.co/lmsys/vicuna-7b-v1.5
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Rate = 20%
AdaLoRA 61.90 76.31 67.82 62.57 64.02 36.70 40.40 58.53
LoRA 63.30 76.82 68.68 63.38 63.76 37.11 40.60 59.09
RankAdaptor 67.34 77.31 69.07 64.17 65.36 37.80 41.60 60.38

Rate = 25%
AdaLoRA 60.31 75.82 64.57 61.30 61.88 35.10 39.00 56.85
LoRA 61.93 76.01 66.08 61.96 62.21 35.92 39.40 57.64
RankAdaptor 67.43 76.06 65.97 64.40 62.63 36.77 40.40 59.09

Rate = 30%
AdaLoRA 59.85 73.30 61.53 60.12 59.67 33.21 38.80 55.21
LoRA 62.45 74.37 63.14 61.96 59.22 33.70 39.60 56.35
RankAdaptor 66.21 75.19 63.61 63.14 60.10 34.64 40.20 57.58

Rate = 50%
AdaLoRA 38.25 67.86 42.80 48.32 42.20 26.31 32.80 42.65
LoRA 43.76 69.04 45.01 50.99 45.66 28.75 34.60 45.40
RankAdaptor 51.65 69.48 45.03 51.93 45.20 28.41 35.00 46.67

Sh
or

te
ne

d

Rate = 20%
AdaLoRA 70.14 73.85 68.92 65.73 64.93 37.12 39.34 60.00
LoRA 71.82 75.31 70.50 67.36 64.40 38.60 40.80 61.26
RankAdaptor 74.53 75.22 72.81 69.92 66.72 40.23 42.31 63.11

Rate = 25%
AdaLoRA 67.93 71.54 65.23 63.14 61.83 35.53 36.13 57.33
LoRA 69.67 73.20 66.85 64.50 63.32 37.02 37.40 58.85
RankAdaptor 72.32 75.13 68.91 66.82 65.24 38.54 38.92 60.84

Rate = 30%
AdaLoRA 61.83 69.72 61.24 62.34 58.13 33.23 35.54 54.58
LoRA 63.58 71.21 62.75 63.80 59.42 34.50 36.80 56.01
RankAdaptor 66.23 73.42 64.82 65.93 59.31 35.84 38.13 57.67

Rate = 50%
AdaLoRA 44.93 61.24 41.83 52.84 42.93 28.73 32.24 43.53
LoRA 46.52 62.76 43.12 54.37 44.10 30.07 33.50 44.92
RankAdaptor 48.94 62.43 45.24 56.53 46.14 29.82 34.84 46.28

Table 2: Zero-shot performance of pruned LLaMA-7B with AdaLoRA, LoRA, and RankAdaptor recovery. ’Bold’
indicates the best performance at each pruning rate. ’Avg’ represents the average performance across all benchmarks.
Specific rank configurations explored by RankAdaptor are listed in Appendix B. Reported in percentage (%).

mance model are set to (32-32-32-1), meaning each
inner MLP consists of three hidden layers with 32
neurons and an output layer with a single neuron.
Micro-batch size is configured to 16, which speci-
fies the number of examples processed in each step
of model training.

Rank Configuration Candidates and Solution
Space. In standard LoRA, setting fixed rank con-
figurations within the range of 2 to 16 achieves
favorable model recovery. To ensure that the train-
able parameter count of RankAdaptor remains at
the same level as standard LoRA, the range of
rank configurations in this experiment is set to
{2, 4, 6, 8, 10, 12}. For LLaMA-7B and Vicuna-
7B, which have 26 pruned layers, the size of the
solution space is 626. For LLaMA-13B, with 32
pruned layers, the size of the solution space is 632.
Different models follow the same calculation pat-
tern.

4.2 Main Results

Analysis. We present the performance of the re-
covered LLM finetuned by AdaLoRA, LoRA, and
RankAdaptor on each benchmark in Table 2 below,
and Tables 5 and 6 in the appendix. The perfor-
mances of pruned LLM without recovery are listed
in Appendix A.2. We have illustrated the specific
configuration of the rank configuration explored by
RankAdaptor in LLaMA-7B in Appendix B.

RankAdaptor shows strong performance under
different pruning strategies. Whether applied with
the LLM-Pruner or the Shortened, RankAdap-
tor generally achieves the highest average scores
across all benchmarks. This adaptability to differ-
ent pruning approaches further highlights its robust-
ness as a pruning recovery method.

At lower pruning rates (20-25%), RankAdaptor
shows remarkable effectiveness. For instance, in
the LLaMA-13B model with a 20% pruning rate,
RankAdaptor achieves the highest scores in 6 out
of 7 tasks. This trend continues with Vicuna-7B,
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where RankAdaptor leads in most tasks at 20%
and 25% pruning rates. Even at higher pruning
rates (30-50%), where performance typically de-
grades more significantly, RankAdaptor maintains
its edge. In the challenging scenario of 50% prun-
ing, RankAdaptor still manages to outperform other
methods in most tasks for both LLaMA-13B and
Vicuna-7B.

Furthermore, RankAdaptor’s effectiveness is
also consistent across different types of tasks. In
language-understanding tasks like BoolQ and Hel-
laSwag, as well as in more reasoning-focused
tasks like ARC and OBQA, RankAdaptor consis-
tently achieves the best or near-best performance.
This broad-spectrum effectiveness suggests that
RankAdaptor is adept at preserving various aspects
of language model capabilities, from basic compre-
hension to more complex reasoning.

In summary, the results offer substantial evi-
dence in support of RankAdaptor’s efficacy as
a pruning recovery approach. Its consistent su-
periority across diverse scenarios illustrates that
RankAdaptor is a highly effective technique, ir-
respective of model size, architecture, or pruning
rate.

Generation Performance. Complementing the
evaluation of model performance on classification
tasks in the experiments, we further investigate
the generative capabilities of the recovered models.
Notably, we conduct text generation tasks using
LLaMA-7B and Vicuna-7B models recovered by
LoRA and RankAdaptor at a 20% pruning rate, as
detailed in Appendix C. The results are remark-
ably promising. For article continuation, the mod-
els recovered by RankAdaptor demonstrate supe-
rior coherence in their generated sentences. Simi-
larly, when tasked with step listing, RankAdaptor-
recovered LLMs produce clearer and more logical
step sequences. These compelling comparative re-
sults are illustrated in Figure 5 and 6, showcasing
the potential of RankAdaptor in preserving and
enhancing generative abilities during model com-
pression and recovery.

4.3 Ablation Study
We prune LLaMA-7B with a 20% global pruning
rate and the RankAdaptor to recover. More details
can be found in Table ??.

Sample Size. We conduct ablation experiments
to assess the impact of the estimated sample size
during the pruning phase in LLM-Pruner. The

larger the estimated sample size in the pruning op-
eration, the better it can evaluate the importance of
the model architecture and perform better prun-
ing effects. So we compare performance with
N = 10 and 50, and results demonstrate that in-
creasing the sample size to N = 50 leads to better
outcomes. However, while a larger sample size
(N = 50) tends to improve performance for most
tasks, there are instances where the smaller sample
size (N = 10) yields competitive results, such as
in WinoGrande. This underscores the need for care-
ful selection of sample size based on the specific
requirements of the task.

Micro-batch Sizes. We finally assess the impact
of different micro-batch sizes (4, 8, and 16) in
fine-tuning process. The results indicate that larger
micro-batch sizes can lead to better performance
on certain tasks, though not universally across all
benchmarks.

Element-wise Importance. We further conduct
tests on the LLM-Pruner’s importance estimation
techniques. The results compare the first-order
(Element1) and second-order (Element2) Taylor
approximations for evaluating the importance of
each parameter, as described in Equation 2. Our
findings indicate that Element1 provides better per-
formance than Element2 across most benchmarks.
While higher-order derivatives may theoretically of-
fer more precise adjustments, their complexity may
outweigh the marginal performance gains observed
in practice.

Setting of Performance Model. To investigate
the impact of different inner MLP dimensions in the
performance model, we test three configurations.
The first setting consists of three hidden layers with
32 neurons each, followed by an output layer with
a single neuron, abbreviated as 32-32-32-1. The
other two configurations are 32-64-32-1 and 32-
16-32-1, following the same notation. The results
illustrate that varying dimensions of inner MLP
layers have nuanced impacts on performance across
different benchmarks. For inner MLP dimensions,
Setting1 provides the highest performance on tasks
such as ARC-e and BoolQ, while Setting3 shows
competitive performance on PIQA and HellaSwag.

5 Related Work

5.1 Efficient Pruning of LLMs
LLM-Pruner (Ma et al., 2023) employs structured
pruning to remove non-essential interconnected
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Benchmark
Sample Size Micro-batch Size Element-wise Importance Setting of Performance Model

N=10 N=50 Micro-4 Micro-8 Micro-16 Element1 Element2 Setting1 Setting2 Setting3

ARC-e 63.97 65.32 64.52 63.97 65.24 63.97 62.84 63.97 64.73 64.65
ARC-c 37.29 37.71 38.65 37.29 37.54 37.29 36.77 37.29 36.60 37.54
WinoG 63.61 63.14 62.04 63.61 63.14 63.61 63.22 63.61 63.46 63.06
OBQA 39.80 41.00 40.00 39.80 40.80 39.80 39.80 39.80 40.80 40.80
BoolQ 65.81 64.43 67.28 65.81 66.91 65.81 66.48 66.91 64.43 64.86
PIQA 76.99 77.15 76.50 76.99 76.93 76.99 76.82 76.99 76.99 77.04
HellaS 68.56 68.52 68.08 68.56 68.78 68.56 67.88 68.56 68.75 69.00

Table 3: Ablation study results comparing performance across seven tasks using LLM-Pruner on LLaMA-7B. ’Bold’
indicates better performance. The results are reported in percentage (%).

structures by utilizing gradient information. This
approach allows compressed models to restore
good performance in multitasks with basic fine-
tuning. Xia et al. (2023) introduces "Sheared
LLaMA" to compress pre-trained LLMs. It em-
ploys dynamic batch loading to improve data effi-
ciency during pruning and retraining. Santacroce
et al. (2023) presents Globally Unique Movement
(GUM), a novel pruning technique that focuses on
the sensitivity and uniqueness of LLMs’ network
components. GUM selects models’ neurons that
uniquely contribute to model output and are sen-
sitive to loss changes to prune, thus maintaining
high accuracy. SparseGPT (Frantar and Alistarh,
2023) transforms the pruning process into a series
of large-scale sparse regression problems, which
can be quickly solved through Hessian matrix in-
version. It efficiently prunes large models to high
sparsity in a single step while maintaining high ac-
curacy. Wanda (Sun et al., 2023) prunes LLMs by
selectively removing weights based on their sizes
and input activations. It adaptively adjusts spar-
sity levels to achieve a reduction of more than half
without sacrificing accuracy.

5.2 Parameter Efficient Fine-Tuning

Houlsby et al. (2019) introduce a transfer learn-
ing method that integrates adapter modules into
pre-trained Transformer models. It can efficiently
tackle various NLP tasks with few additional pa-
rameters and achieve performance similar to full
fine-tuning. While the adapter takes a serial ap-
proach to integrating trainable components into
pre-trained Transformer models, low-rank adapta-
tion (LoRA) (Hu et al., 2021) presents a parallel
method of infusing rank decomposition matrices
into each layer of the model’s architecture. Specifi-
cally, LoRA adds trainable matrices to each layer of
the model and the pre-trained weights are kept the

same. LoRA reduces the number of trainable pa-
rameters compared to fine-tuning the entire model,
which makes model adaptation faster and less
resource-intensive. LoRA-FA (Zhang et al., 2023c)
freezes the projection-down weight of the low-rank
adaptation (LoRA) layers and only updates the
projection-up weight to reduce the memory require-
ments for fine-tuning. Zhang et al. (2023d) have
introduced AdaLoRA, which achieves excellent
performance by parameterizing updates in SVD
form and employing a novel importance metric to
dynamically adjust hierarchical rank configurations
during the fine-tuning process.

6 Conclusion

In this work, we present RankAdaptor, an inno-
vative fine-tuning algorithm specifically designed
to recover the performance of pruned LLMs.
RankAdaptor employs a hierarchical fine-tuning
strategy, incorporating a lightweight performance
model to optimize rank configuration across differ-
ent layers. This methodology effectively mitigates
the drawbacks of the standard fixed-rank LoRA,
which often results in suboptimal performance re-
covery due to the uneven architectural adjustments
caused by structural pruning. Through extensive
evaluations of multiple open-source LLMs and
benchmark tasks, we demonstrate that RankAdap-
tor consistently outperforms the standard LoRA
approach across various pruning scenarios. The
introduction of RankAdaptor marks a significant
progression in fine-tuning pruned LLMs. Its adap-
tive rank scheduling and end-to-end optimization
lead to substantial enhancements over traditional
techniques, positioning it as a promising tool for
boosting the performance of pruned language mod-
els in diverse applications.
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Limitations

Our methodology delves into the optimization
of fine-tuning procedures for pruned models, al-
beit the offline algorithm necessitates supplemen-
tary training data, thereby introducing some level
of overhead. Subsequent endeavors will be di-
rected towards refining this phase and integrating a
broader range of quantization algorithms, with a fo-
cus on effectively fine-tuning the quantized model
to achieve final performance and accuracy.
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A More Results and Analysis of
Experiments

A.1 Performance of Different Model Varients.

We list the performance of the Vicuna-7B in Ta-
ble 5 and LLaMA-13B in Table 6. These re-
sults demonstrate the remarkable versatility and
effectiveness of our RankAdaptor method across
various dimensions. Firstly, the method exhibits
consistent superior performance across different
model architectures, as evidenced by its effective-
ness on both Vicuna-7B and LLaMA-13B mod-
els. This cross-model applicability underscores
the scalability and adaptability of our approach.
Secondly, RankAdaptor demonstrates robustness
to varying pruning rates, consistently outperform-
ing AdaLoRA and LoRA across a wide range of
pruning rates from 20% to 50%. This resilience in-
dicates that our method maintains its effectiveness
even under aggressive pruning scenarios. Thirdly,
the superior performance of RankAdaptor is ob-
served across diverse downstream tasks, includ-
ing BoolQ, PIQA, HellaSwag, WinoGrande, ARC-
easy, ARC-challenge, and OBQA, highlighting its
task-agnostic nature. Finally, the method’s efficacy
is proven under different pruning strategies, namely
LLM-Pruner and Shortened, further emphasizing
its flexibility. In almost all scenarios, RankAdaptor
achieves the highest average performance, often
with significant margins, demonstrating its poten-
tial as a universal solution for recovering pruned
language models across various configurations and
applications.

We also use LLM-Pruner to prune LLaMA3-
8B by 20%, and recovered it using LoRA and
RankAdaptor respectively. The results are shown
in Table 4. From the results, we can see that
RankAdaptor once again proved its superiority, and
it almost completely surpassed LoRA (only less
than 2% lower on the ARC-e task).

A.2 Performance of Pruned LLM without
Recovery

To demonstrate the critical importance of a recov-
ery phase in achieving optimal performance for
pruned models, we conducted extensive bench-
mark tests on LLaMA-7B models that had un-
dergone only the pruning stage. The results, pre-
sented in Table 9, offer compelling evidence when
compared with those in Table 2. This compar-
ison reveals a stark contrast in performance be-
tween models with and without recovery. Models

that have not undergone recovery exhibit signif-
icantly diminished performance across all evalu-
ated tasks, highlighting the potential loss of crucial
learned representations during the pruning process.
In contrast, models that have been subjected to a
recovery process, regardless of the specific fine-
tuning method employed (be it AdaLoRA, LoRA,
or our proposed RankAdaptor), demonstrate sub-
stantial performance improvements across nearly
all tasks. Furthermore, while all recovery methods
show improvements, the degree of enhancement
varies, with our proposed RankAdaptor method
consistently achieving superior results. These find-
ings emphasize that the recovery phase should not
be considered an optional step but rather an integral
component of the model compression process.

A.3 Performance on challenging task -
GSM8K & MMLU

Our goal is to explore the rank value of each layer
that can achieve relative optimal performance in
downstream tasks. We have conducted some ex-
periments on GSM8K to confirm the versatility of
RankAdaptor across task types. The results using
LLM-Pruner and SlimGPT as pruning methods are
shown in Table 7. From the results, we can see that
although the pruned models with recovery all show
extremely poor accuracy on GSM8K, RankAdap-
tor still performs better than the standard LoRA.
We can see that although LLM-Pruner is not as
good as SlimGPT in pruning operations, SlimGPT
with LoRA is still not as good as LLM-Pruner with
RankAdaptor. This is another manifestation of the
strength of RankAdaptor.

Finally, to further test the ability of RankAdaptor
on the challenge task, we use LLaMA2-7B to test
it and LoRA on MMLU. At the same time, we also
show the results claimed by the SlimGPT author in
Table 8. From the results we can see that we get
almost the same pattern as in GSM-8K: RankAdap-
tor is better than LoRA in any case. And although
LLM-Pruner is not as good as SlimGPT in prun-
ing operations, SlimGPT with LoRA is still not as
good as LLM-Pruner with RankAdaptor.

B Specific Rank Configuration Allocation

In Table 2, we present the performance achieved
by RankAdaptor on each task. Table 10 displays
the rank configurations corresponding to the per-
formance results of LLaMA-7B pruned by LLM-
Pruner. We make these rank configurations pub-
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Method BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg

LoRA 70.25 78.21 72.37 70.18 75.68 43.49 41.30 64.50
RankAdaptor 73.77 79.98 74.56 72.33 73.82 44.31 42.80 65.93

Table 4: Performance comparison of LoRA and RankAdaptor on LLaMA3-8B.

Pruning Stage Recover BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg

L
L

M
-P

ru
ne

r

Rate = 20%
AdaLoRA 55.43 75.22 65.31 60.89 64.96 35.61 38.10 56.50
LoRA 57.77 77.58 67.16 63.14 67.30 37.71 40.40 58.72
RankAdaptor 61.19 77.15 67.32 63.85 67.68 38.05 41.20 59.49

Rate = 25%
AdaLoRA 48.24 72.89 62.25 59.18 61.58 33.57 38.30 53.72
LoRA 50.34 75.24 64.10 61.33 63.93 35.67 40.60 55.89
RankAdaptor 58.50 76.17 64.23 61.96 63.30 36.01 42.00 57.45

Rate = 30%
AdaLoRA 56.46 71.87 58.85 58.27 56.66 31.69 36.50 52.90
LoRA 58.81 74.37 60.70 60.62 59.01 33.79 38.80 55.16
RankAdaptor 57.58 75.57 61.63 60.22 60.94 34.81 39.00 55.68

Rate = 50%
AdaLoRA 57.21 64.52 41.83 49.66 46.05 24.35 31.70 45.05
LoRA 59.51 66.87 43.18 52.01 48.40 26.45 34.00 47.20
RankAdaptor 59.91 67.46 43.50 52.41 48.70 27.65 35.80 47.92

Sh
or

te
ne

d

Rate = 20%
AdaLoRA 69.52 72.95 66.83 63.91 65.82 37.23 38.64 59.27
LoRA 71.82 74.32 68.45 67.62 67.35 38.50 39.80 61.12
RankAdaptor 74.31 76.92 70.73 65.37 69.51 40.12 41.34 62.61

Rate = 25%
AdaLoRA 67.63 71.84 64.15 62.53 62.41 36.72 37.32 57.51
LoRA 69.85 73.21 65.72 64.08 63.90 39.32 38.50 59.23
RankAdaptor 72.41 75.62 67.93 66.21 65.84 37.95 39.91 60.84

Rate = 30%
AdaLoRA 60.92 70.54 59.21 61.15 56.73 33.42 35.61 53.94
LoRA 62.75 71.93 60.68 62.70 60.32 34.50 36.80 55.67
RankAdaptor 65.13 74.21 62.84 64.92 58.15 35.93 38.12 57.04

Rate = 50%
AdaLoRA 58.63 66.42 45.21 52.34 46.92 27.51 33.42 47.21
LoRA 60.37 69.73 46.50 53.76 48.25 28.72 34.60 48.85
RankAdaptor 62.54 67.88 48.12 55.62 49.84 29.91 35.83 49.96

Table 5: Zero-shot performance of pruned Vicuna-7B with AdaLoRA, LoRA, and RankAdaptor recovery. ’Bold’
indicates the best performance at each pruning rate. ’Avg’ represents the average performance across all benchmarks.
The results are reported in percentage (%).

Pruning Stage Recover BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg

L
L

M
-

Pr
un

er

Rate = 50%
AdaLoRA 59.63 69.03 51.61 51.24 50.76 28.25 35.70 49.46
LoRA 61.93 71.38 53.36 53.59 53.11 29.95 38.00 51.62
RankAdaptor 62.05 71.71 53.33 54.22 53.20 30.89 39.40 52.11

Sh
or

te
ne

d

Rate = 50%
AdaLoRA 71.53 70.92 54.32 52.83 50.94 31.62 39.21 53.05
LoRA 73.75 73.81 55.96 54.41 52.35 32.81 40.60 54.81
RankAdaptor 75.92 72.64 57.83 56.23 54.12 33.96 41.92 56.09

Table 6: Zero-shot performance of pruned LLaMA-13B with AdaLoRA, LoRA, and RankAdaptor recovery. ’Bold’
indicates the best performance at each pruning rate. ’Avg’ represents the average performance across all benchmarks.
The results are reported in percentage (%).

licly available to foster reproducibility and enable
further research by other scholars.
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Pruning Method Pruning Rate Recover Method GSM-8K-Acc

- - - 11.00
LLM-Pruner 20% LoRA 3.75
LLM-Pruner 20% RankAdaptor 6.18

SlimGPT 20% - 4.20
SlimGPT 20% LoRA 6.00

LLM-Pruner 50% LoRA 1.85
LLM-Pruner 50% RankAdaptor 3.10

Table 7: Performance comparison of different pruning and recovery methods on GSM-8K accuracy.

Pruning Method Pruning Rate Recover Method MMLU-Acc

- - - 45.60
LLM-Pruner 20% LoRA 33.83
LLM-Pruner 20% RankAdaptor 38.75

SlimGPT 20% LoRA 37.80
LLM-Pruner 50% LoRA 19.25
LLM-Pruner 50% RankAdaptor 24.31

Table 8: Performance comparison of different pruning and recovery methods on MMLU accuracy.

C Generation Performance Display.

The analysis of Generation Performance has been
presented in Section 4.2 of the main section. There-
fore, here, we focus solely on presenting the gen-
eration comparison results between the pruned
LLaMA-7B recovered by LoRA and RankAdaptor,
as illustrated in Figures 5 and 6.

D Further Details Supplement

D.1 Detailed Explanation of Equation (4)
Equation (4) is an expression of the goal of our
entire work. Thank you for your suggestion that
we can benefit from greater mathematical clarity.
Let me explain it further:

Given:

1. A pruned model PL

2. A neural network with L layers

3. Rank configurations ri ∈ RH for each layer i,
where i ∈ {1, 2, ..., L}

4. Solution space S = {all possible RH |
RH = (r1, r2, ..., rL)}

The problem can be formulated as:

R∗
H = arg max

RH∈S
P (recover(PL,RH))

where:

• recover(PL,RH) represents the operation of
recovering (fine-tuning) the pruned model PL
using rank configuration RH

• P (·) denotes the performance of the recovered
model

• R∗
H = (r∗1, r

∗
2, ..., r

∗
L) represents the optimal

rank configuration

• r∗i represents the optimal rank value for layer
i

Constraints:

1. ∀i ∈ {1, 2, ..., L} : ri ∈
{2, 4, 6, 8, 10, 12, 14, 16}

2. RH ∈ S, where S is the solution space con-
taining all possible rank configuration combi-
nations

D.2 Approximating Performance for Optimal
Rank Search

Due to the huge solution space, we cannot enumer-
ate the rank value of each layer that is the global
optimal in actual performance, so we try to get
a relatively optimal solution by training a perfor-
mance model that can directly predict the accuracy
of downstream tasks using the rank value of each
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Pruning Stage BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg

L
L

M
-P

ru
ne

r

Rate = 20% 56.94 75.73 66.83 60.06 60.94 36.43 39.80 56.68

Rate = 25% 59.94 73.23 62.35 58.80 55.81 34.90 39.40 54.92

Rate = 30% 58.96 71.22 58.10 58.88 52.19 32.34 38.40 52.87

Rate = 50% 57.98 60.94 34.35 52.25 31.82 27.30 35.80 42.92

Sh
or

te
ne

d Rate = 20% 62.65 77.24 68.83 61.26 62.76 37.52 40.99 58.75

Rate = 25% 61.74 74.69 64.22 60.56 57.48 35.94 40.58 56.46

Rate = 30% 60.73 74.64 59.84 59.64 53.75 33.31 39.55 54.49

Rate = 50% 59.72 62.16 35.38 53.81 32.77 28.12 36.87 44.12

Table 9: Zero-shot performance of pruned LLaMA-7B without recovery. ’Avg’ represents the average performance
across all benchmarks. The results are reported in percentage (%).

 LLaMA-7b with LoRA:

The universe is the entirety of space, time, matter, and energy 
that exists.  There is also a scientific theory called the cosmolog-
ical principle which asserts that the universe is homogeneous, 
that is, all the same, with all particles evenly distributed. But, as 
discussed in Chapter Five, there are many versions of cosmolo-
gy, including theories that differ from the cosmological princi-
ple.  These theories, for example, assume that the universe is ex-
panding with a uniform distribution of matter, or that it started 
from a central source and is being pulled outward by the expan-
sion.  In both cases, the cosmological principle would...

 LLaMA-7B with RankAdaptor:

The universe is the entirety of space, time, matter, and energy 
that exists.  It is the only thing that exists, and it is all around us. 
The universe is expanding, and it is expanding at a rate that is 
faster than the speed of light.  This means that the universe is 
growing and changing.  It is also changing all the time, and it is 
constantly creating new things.The universe is made up of many 
different things, including galaxies, stars, planets, and other ob-
jects.  These objects are all made of different things, such as 
atoms, molecules, and elements.

Figure 5: Article continuation task comparison in LLaMA-7B

10 steps to build an ios app: 1. Create a new project in Xcode. 2. 
Open the project and create a new folder named "ios" in the proj-
ect folder. 3. Create a new file named "app.json" in the ios folder. 
4. Add the following code to the file:̀ `̀
{"name": "MyApp","version": "1.0","author": "Me",
    "app_name": "...

10 steps to build an ios app: 1. Create a new project in Xcode. 2. 
Open the project and create a new folder named "Resources" in 
the project folder. 3. Inside the "Resources" folder, create a folder 
named "AppIcon" and add an image file named "Icon.png" to it. 
4. Open the "AppIcon.png" file in Xcode and drag the image to 
the "Resources" folder. 5. Open the "AppIcon.png"...

Vicuna-7B with LoRA: Vicuna-7B with RankAdaptor

Figure 6: Step listing task comparison in Vicuna-7B

layer. The online incremental learning of the per-
formance model is the process of gradually reduc-
ing the potential gap between the predicted perfor-
mance and the actual performance. When the per-
formance model converges in the iteration phase,
we believe that it has the ability to approximate the
actual performance of a rank value set. Using this
converged performance model, we expect to find
a relatively optimal rank value set, rather than the

global optimal.

D.3 Why Different Rank Sizes can Meet the
Recovery Needs of Different Layers?

Based on our research, we found that this effective-
ness mainly stems from the following key factors:

• First, the functional characteristics of different
layers determine their differentiated needs for
rank size. For example, we observed that the
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Pruning Rate Tasks Layers’ Rank Values (1~32/40)

20%

BoolQ 8, 8, 8, 8, 4, 12, 12, 12, 12, 10, 8, 10, 6, 2, 8, 6, 8, 2, 8, 2, 8, 10, 12, 10, 6, 4, 4, 4, 2, 12, 8, 8

PIQA 8, 8, 8, 8, 4, 12, 12, 12, 12, 10, 8, 10, 6, 2, 8, 6, 8, 2, 8, 2, 8, 10, 12, 10, 6, 4, 4, 4, 2, 12, 8, 8

Hella 8, 8, 8, 8, 2, 2, 4, 10, 10, 6, 10, 10, 10, 6, 6, 2, 2, 10, 2, 4, 2, 10, 10, 10, 4, 10, 10, 6, 6, 2, 8, 8

Wino 8, 8, 8, 8, 8, 10, 4, 10, 4, 6, 6, 2, 10, 8, 12, 12, 10, 12, 12, 10, 6, 6, 8, 8, 10, 6, 6, 12, 2, 8, 8, 8

ARC-e 8, 8, 8, 8, 4, 12, 12, 12, 12, 10, 8, 10, 6, 2, 8, 6, 8, 2, 8, 2, 8, 10, 12, 10, 6, 4, 4, 4, 2, 12, 8, 8

ARC-c 8, 8, 8, 8, 4, 12, 12, 12, 12, 10, 8, 10, 6, 2, 8, 6, 8, 2, 8, 2, 8, 10, 12, 10, 6, 4, 4, 4, 2, 12, 8, 8

OBQA 8, 8, 8, 8, 4, 12, 12, 12, 12, 10, 8, 10, 6, 2, 8, 6, 8, 2, 8, 2, 8, 10, 12, 10, 6, 4, 4, 4, 2, 12, 8, 8

25%

BoolQ 8, 8, 8, 8, 12, 2, 8, 2, 8, 12, 4, 2, 10, 12, 10, 4, 2, 2, 12, 8, 10, 2, 12, 12, 8, 4, 4, 2, 2, 12, 8, 8

PIQA 8, 8, 8, 8, 4, 2, 2, 10, 10, 2, 10, 10, 10, 2, 2, 2, 4, 10, 4, 6, 10, 2, 2, 6, 10, 2, 2, 10, 10, 2, 8, 8

Hella 8, 8, 8, 8, 4, 10, 12, 12, 6, 10, 6, 6, 8, 2, 2, 12, 2, 12, 12, 6, 4, 10, 6, 2, 2, 8, 4, 2, 2, 8, 8, 8

Wino 8, 8, 8, 8, 8, 4, 12, 8, 2, 2, 12, 2, 10, 12, 2, 12, 12, 10, 8, 12, 4, 6, 6, 4, 10, 4, 2, 10, 10, 12, 8, 8

ARC-e 8, 8, 8, 8, 2, 12, 2, 6, 12, 6, 12, 10, 6, 4, 8, 8, 12, 2, 2, 6, 8, 4, 12, 12, 2, 4, 2, 6, 6, 2, 8, 8

ARC-c 8, 8, 8, 8, 2, 12, 2, 6, 12, 6, 12, 10, 6, 4, 8, 8, 12, 2, 2, 6, 8, 4, 12, 12, 2, 4, 2, 6, 6, 2, 8, 8

OBQA 8, 8, 8, 8, 4, 12, 12, 12, 12, 1, 8, 10, 6, 2, 8, 6, 8, 2, 8, 2, 8, 10, 12, 12, 10, 4, 4, 6, 2, 12, 8, 8

30%

BoolQ 8, 8, 8, 8, 12, 2, 8, 2, 8, 12, 4, 2, 10, 12, 10, 4, 2, 2, 12, 8, 10, 2, 12, 12, 8, 4, 4, 2, 2, 12, 8, 8

PIQA 8, 8, 8, 8, 12, 6, 10, 4, 2, 4, 2, 4, 12, 8, 2, 2, 2, 12, 12, 12, 12, 2, 12, 4, 4, 2, 10, 2, 2, 8, 8, 8

Hella 8, 8, 8, 8, 12, 6, 8, 4, 2, 12, 10, 4, 4, 2, 6, 4, 6, 10, 4, 2, 8, 6, 12, 10, 4, 6, 6, 6, 8, 2, 8, 8

Wino 8, 8, 8, 8, 12, 6, 8, 4, 2, 12, 10, 4, 4, 2, 6, 4, 6, 10, 4, 2, 8, 6, 12, 10, 4, 6, 6, 6, 8, 2, 8, 8

ARC-e 8, 8, 8, 8, 12, 6, 8, 4, 2, 12, 10, 4, 4, 2, 6, 4, 6, 10, 4, 2, 8, 6, 12, 10, 4, 6, 6, 6, 8, 2, 8, 8

ARC-c 8, 8, 8, 8, 4, 10, 12, 12, 6, 10, 6, 6, 8, 2, 2, 12, 2, 12, 12, 6, 4, 10, 6, 2, 2, 8, 4, 2, 2, 8, 8, 8

OBQA 8, 8, 8, 8, 12, 6, 8, 4, 2, 12, 10, 4, 4, 2, 6, 4, 6, 10, 4, 2, 8, 6, 12, 10, 4, 6, 6, 6, 8, 2, 8, 8

50%

BoolQ 8, 8, 8, 8, 12, 4, 6, 2, 2, 10, 4, 6, 12, 12, 2, 2, 12, 6, 4, 2, 6, 2, 4, 2, 6, 10, 10, 4, 2, 2, 8, 8

PIQA 8, 8, 8, 8, 12, 4, 6, 2, 2, 10, 4, 6, 12, 12, 2, 2, 12, 6, 4, 2, 6, 2, 4, 2, 6, 10, 10, 4, 2, 2, 8, 8

Hella 8, 8, 8, 8, 12, 4, 6, 2, 2, 10, 4, 6, 12, 12, 2, 2, 12, 6, 4, 2, 6, 2, 4, 2, 6, 10, 10, 4, 2, 2, 8, 8

Wino 8, 8, 8, 8, 12, 4, 6, 2, 2, 10, 4, 6, 12, 12, 2, 2, 12, 6, 4, 2, 6, 2, 4, 2, 6, 10, 10, 4, 2, 2, 8, 8

ARC-e 8, 8, 8, 8, 12, 4, 6, 2, 2, 10, 4, 6, 12, 12, 2, 2, 12, 6, 4, 2, 6, 2, 4, 2, 6, 10, 10, 4, 2, 2, 8, 8

ARC-c 8, 8, 8, 8, 12, 4, 6, 2, 2, 10, 4, 6, 12, 12, 2, 2, 12, 6, 4, 2, 6, 2, 4, 2, 6, 10, 10, 4, 2, 2, 8, 8

OBQA 8, 8, 8, 8, 12, 4, 6, 2, 2, 10, 4, 6, 12, 12, 2, 2, 12, 6, 4, 2, 6, 2, 4, 2, 6, 10, 10, 4, 2, 2, 8, 8

Table 10: Specific value of the rank configuration explored by RankAdaptor in LLaMA-7B pruned by LLM-Pruner

bottom layer mainly processes basic language
features (such as grammar, lexical), so it needs
a larger rank to maintain its expressiveness;
while the high-level layer is mainly responsi-
ble for task-related reasoning and is relatively
less sensitive to rank size. This functional
difference is more obvious after pruning.

• Second, structured pruning based on impor-
tance will lead to different degrees of infor-
mation loss in different layers. A larger rank
can introduce more learnable parameters to
compensate for the large loss of some layers
caused by pruning. At the same time, a rela-
tively complete layer can be retained with a
smaller rank to achieve a good recovery ef-
fect. This non-uniformity directly affects the
selection of the optimal rank of each layer.

• Finally, through comparative experiments, we
confirmed the necessity of this differentiated
rank allocation. When we use larger ranks
for key layers, the overall recovery of the
model is significantly improved; on the con-
trary, assigning too large ranks to non-key
layers not only fails to improve performance,
but also increases unnecessary computational
overhead. These findings directly support our
layer-specific rank allocation strategy.
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