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Abstract

Temporal reasoning over tabular data presents
substantial challenges for large language mod-
els (LLMs), as evidenced by recent research. In
this study, we conduct a comprehensive analy-
sis of temporal datasets to pinpoint the specific
limitations of LLMs. Our investigation leads
to enhancements in TempTabQA, a benchmark
specifically designed for tabular temporal ques-
tion answering. We provide critical insights
for enhancing LLM performance in temporal
reasoning tasks with tabular data. Furthermore,
we introduce a novel approach, C.L.E.A.R to
strengthen LLM capabilities in this domain.
Our findings demonstrate that our method im-
proves evidence-based reasoning across various
models. Additionally, our experimental results
reveal that indirect supervision with auxiliary
unstructured data (TRAM) substantially boosts
model performance in these tasks. This work
contributes to a deeper understanding of LLMs’
temporal reasoning abilities over tabular data
and promotes advancements in their application
across diverse fields.

1 Introduction

Large Language Models (LLMs) have exhibited
remarkable proficiency across various natural lan-
guage processing tasks. However, recent investi-
gations reveal a notable deficiency in their ability
to reason effectively over tabular data, particularly
when temporal relationships are involved (Chen,
2023; Sui et al., 2024). This discrepancy between
model performance and human-level understand-
ing underscores the pressing need for innovative
approaches to enhance the capabilities of LLMs in
this domain.

To identify the limitations of large language
models (LLMs) in reasoning over structured and
semi-structured tables, such as the one presented in
Figure 1, we conducted a detailed analysis of the
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Q1 : How many MLB wins did Al McBean have before
turning 20? A: 0 (evidence: Born, MLB statistics)
Q2 : For how many years did Al McBean play for the
Pittsburgh Pirates? A: 9 (evidence: Teams)
Q3 : What was the duration of Al McBean’s Major League
Baseball career? A: 10 (evidence: MLB debut, Last MLB
appearance)

Figure 1: A semi-structured table of Baseball pitcher Al
McBean with follow up question answers.

TempTabQA (Gupta et al., 2023) dataset. This in-
vestigation uncovered key discrepancies in model
comprehension, prompting us to develop an en-
hanced evaluation set. Additionally, we explored
how LLMs process temporal reasoning using stan-
dard prompts, which inspired the creation of a
novel approach: C.L.E.A.R (Comprehend, Locate,
Examine, Analyze, Resolve). This framework is
designed to enhance temporal reasoning in LLMs.

Although prompts help guide models, they don’t
inherently improve task understanding. Our re-
search shows that even with C.L.E.A.R, mod-
els still miss crucial context, like relevant table
rows, and often rely on memorization rather than
evidence-based reasoning. This indicates a need
for more robust solutions that lead to inherent im-
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provements in model parameters.
To tackle these challenges, we propose fine-

tuning models on temporal data to enhance their
reasoning capabilities. We utilized the TRAM
dataset for indirectly supervised fine-tuning, in-
corporating Auxiliary Out of Domain (OOD) un-
structured data. This cross-structured approach
improves the model’s generalization for struc-
tural temporal questions. Our findings indi-
cate that integrating C.L.E.A.R with fine-tuning
on TRAM—a straightforward temporal multiple-
choice QA benchmark—produces optimal results,
effectively addressing the limitations of LLMs in
cross-format temporal reasoning. In summary, this
paper advances the understanding and enhance-
ment of LLMs’ abilities to reason about temporal
relationships in tabular data. Our key contributions
are as follows:

• We conducted a in-depth analysis of the
TempTabQA test set to assess the limitations
of current approaches. This analysis also led
to an improved test set, enhancing the evalua-
tion of models in temporal tabular reasoning.

• We introduce an novel approach, C.L.E.A.R
(Comprehend, Locate, Examine, Analyze, Re-
solve), designed to enhance temporal reason-
ing capabilities in LLMs for tabular data. Our
approach grounds models in evidence, thus
reducing memorization.

• By employing an indirect supervision tech-
nique, also known as auxiliary task training
on unstructured data, we inherently enhance
model performance. Fine-tuning models with
the auxiliary TRAM dataset results in sig-
nificant improvements in addressing tempo-
ral questions related to tabular data, thereby
demonstrating cross-structure transferability.

These contributions enhance LLMs’ temporal
reasoning capabilities, paving the way for future re-
search and applications in temporal reasoning with
tabular data. Our code and enhanced evaluation
set are available at https://clear-prompting.
github.io/.

2 Motivation

Tables organize information chronologically, which
is essential for analyzing timelines and facilitating
temporal reasoning. Entity-centric tables, such as

Wikipedia Infoboxes, blend structured and unstruc-
tured data, setting them apart from traditional SQL
tables and knowledge graphs. This semi-structured
data is heterogeneous and organized in key-value
pairs without a defined hierarchy.

Despite their significance, recent research indi-
cates that Large Language Models (LLMs) struggle
with temporal reasoning in tabular data. Datasets
such as TempTabQA and Table2vec (Zhang et al.,
2019) have been developed to evaluate LLM per-
formance, each presenting unique challenges for
model development and evaluation. However, these
datasets expose gaps in how models navigate the
complexities of temporal reasoning. While sym-
bolic reasoning has shown effectiveness for struc-
tured tables (Cheng et al., 2023; Ye et al., 2023;
Wang et al., 2024), entity-centric heterogeneous
semi-structured tables introduce further complex-
ity. This complexity necessitates an understanding
of both row-level key-value pairs and the implicit
relationships that extend across the entire table, re-
quiring advanced reasoning that combines domain
knowledge and common sense (Gupta et al., 2020).
Additionally, the temporal and tabular dimensions
further complicate the reasoning process.

Moreover, while temporal reasoning has been
examined in studies such as (Tan et al., 2023) and
(Tan et al., 2024), these primarily focus on un-
structured data. These studies do not adequately
assess a model’s ability to generalize from task-
specific patterns to complex structural ones. To
address this limitation, our work broadens logical
reasoning across diverse data structures, demon-
strating that temporal reasoning learned from un-
structured data can effectively transfer to struc-
tured formats, thereby showcasing the adaptabil-
ity of LLMs. Additionally, we utilize the TempT-
abQA dataset for our analysis, a benchmark specif-
ically designed for temporal reasoning over semi-
structured tabular data derived from Wikipedia In-
foboxes. This dataset features over 2,900 temporal
question-answer pairs, divided into "Head" (pop-
ular) and "Tail" (less common) sets, providing a
balanced framework for evaluating model perfor-
mance across both frequent and niche domains.
Figure 1 illustrates examples of entity centric table
based temporal questions in TempTabQA.

3 Where do LLMs Fail?

We evaluated the performance of GPT-3.5 using
Chain of Thought (CoT) prompting on the TempT-
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abQA test set. Of the 1,038 examples tested, 339
responses were incorrect, with errors split into two
main types: data issues (159) and model limita-
tions (180). The model limitations are categorized
as follows:

1. Tabular Data Issues (75 examples): These
errors were related to hallucinations, incomplete
evidence extraction, missing evidence, or incorrect
information extraction.

2. Temporal Calculation Errors (84 examples):
These involved difficulties with calculations related
to time, such as determining age, calculating the
time between dates in different months, or assess-
ing whether a value fell within a specified range.

3. Other Errors (31 examples): This category
included errors stemming from common-sense rea-
soning, arithmetic, and other miscellaneous issues.

To address these issues, we used the error anal-
ysis to develop the C.L.E.A.R prompting method
and refine the evaluation set. Model errors guided
the design of each C.L.E.A.R step, while dataset er-
rors were corrected. For instance, the "Locate" step
resolves incomplete evidence extraction, and the
"Examine" step simplifies temporal calculations
into sub-questions. These details are outlined in
Section 4.1.

Our observations reveal that even with Chain of
Thought reasoning, models consistently generate
incorrect responses and hallucinations, struggling
with temporal calculations and common-sense rea-
soning. This highlights the need to improve model
performance in this area. The 159 data issues fall
into the following categories:

1. Tables Requiring External Knowledge to An-
swer (75 examples): These questions could not
be answered correctly without additional informa-
tion not present in the table, indicating a gap in the
information provided in the context.

2. Wrong Human Annotation or Multiple Cor-
rect Answers (42 examples): These instances in-
volved incorrect annotations by humans or ques-
tions that had multiple valid answers, but the anno-
tations provided only one correct answer.

3. Ambiguous or Incomplete Questions (14
examples): These questions are either vague or
lacked sufficient detail required for correct answer.

4. Other Issues (28 examples): This category in-
cluded various problems such as questions relying

on images within the HTML table or missing rows
in the JSON table etc.

We addressed all data issues and created a re-
fined evaluation set to better assess model perfor-
mance. In refinement process, incorrect answers
were corrected, and vague or ambiguous questions
were reworded to be more specific, such as chang-
ing "when" to "in what year" or "on what date."
This adjustment ensures clarity and fairness by
preventing biases toward certain answer formats,
which could impact prompting methods. Addi-
tionally, unanswerable questions—where the re-
quired information was missing from the provided
table—were replaced with new ones of similar
difficulty that require reasoning rather than favor-
ing models with stronger memorization capabili-
ties. Duplicate questions were removed and substi-
tuted with unique yet comparable ones to maintain
dataset integrity.

To further enhance fairness, excessively verbose
answers were refined by removing unnecessary
information, ensuring responses remain focused
and precise while reducing inconsistencies from
noisy exact match checking. These modifications
make the dataset solvable through reasoning rather
than rote memorization, preventing any model from
gaining an undue advantage. This new dataset re-
moves noise, offering a more accurate benchmark.
Importantly, all refinements were made before im-
plementing the C.L.E.A.R. prompting method or
fine-tuning techniques, ensuring that no system-
atic bias was introduced in favor of the proposed
approach. Examples of this process are shown in
Figures 8, 9, and 10. Throughout this paper, un-
less otherwise stated, we compare models based on
accuracy on the new full test dataset, ensuring con-
sistency and a clear assessment of improvements.

4 Methodology

Improving LLMs’ temporal reasoning is crucial
for time-based tasks, as current models often mis-
interpret temporal data. To address this, we de-
veloped C.L.E.A.R (Comprehend, Locate, Exam-
ine, Analyze, Resolve) to reduce errors and en-
hance accuracy. Additionally, we fine-tuned mod-
els with auxiliary temporal data to improve cross-
generalization and performance on complex tasks.

4.1 C.L.E.A.R Prompting

To address the specific limitations of Large Lan-
guage Models (LLMs) in temporal reasoning over
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semi-structured data, we propose the C.L.E.A.R
(Comprehend, Locate, Examine, Analyze, Resolve)
prompting method. As outlined in Section 3, our er-
ror analysis revealed several key challenges, includ-
ing hallucinations, incomplete evidence extraction,
and difficulties with temporal calculations. The
C.L.E.A.R methodology was designed to directly
target these issues, offering a structured approach
to systematically answer complex temporal ques-
tions.

(a.) Comprehend: The Comprehend step ensures
full understanding of the question by applying rel-
evant domain knowledge, focusing on the correct
interpretation of its temporal aspects and identify-
ing essential information. For example, in "How
many MLB wins did Al McBean have before turn-
ing 20?" (Fig 4), the model must calculate wins
based on his MLB debut date before age 20.
This step reduces hallucinations and misinterpre-
tations by grounding reasoning in a clear under-
standing of the question’s scope and requirements,
minimizing errors from task misinterpretation or
irrelevant information extraction (Section 3).

(b.) Locate: The Locate step focuses on identi-
fying and extracting the relevant rows from the
table needed to answer the question. For the Al
McBean example, this involves finding rows with
his MLB debut date and win-loss record, ensuring
all necessary evidence is gathered accurately.
This step tackles incomplete evidence extraction
(Section 3) by ensuring the model isolates the cor-
rect data. By accurately extracting relevant rows,
the model reduces errors from missing or incorrect
information.

(c.) Examine: The Examine step breaks down
the main question into smaller sub-questions to
simplify complex temporal reasoning. For the Al
McBean example, we might ask: (1) When did he
turn 20? and (2) How many wins did he have by
that date? This approach makes complex calcula-
tions more manageable.
This step addresses temporal calculation errors
(Section 3), such as issues with date ranges and
age calculations. Simplifying temporal reasoning
into sub-questions reduces the likelihood of calcu-
lation mistakes.

(d.) Analyze: In this step, sub-questions are an-
swered using the extracted evidence, applying logi-
cal reasoning to connect evidence to answers. For
example, if Al McBean turned 20 on May 15, 1958,

and debuted on July 2, 1961, he had 0 wins before
turning 20.
This step ensures answers are logically consistent
with the evidence, addressing issues like faulty de-
ductions or temporal errors (Section 3), preventing
misinterpretation of the data.

(e.) Resolve: In this final step, the model com-
bines the sub-question answers to provide the final
response. For example, in the Al McBean case,
the final answer is 0 wins before turning 20. This
step also includes a brief explanation to ensure the
answer is clear and well-supported.
The Resolve step ensures the final answer is logi-
cally sound and free of errors, addressing potential
inconsistencies from earlier stages (Section 3) and
preventing error propagation.

Conclusion: The C.L.E.A.R prompting method
systematically addresses common LLM errors in
temporal reasoning through a structured, step-by-
step approach that targets specific weaknesses (Sec-
tion 3). By emphasizing thorough comprehension,
precise evidence extraction, logical analysis, and
well-supported answers, C.L.E.A.R enhances LLM
performance on temporal tasks involving semi-
structured tables. Unlike approaches prone to mem-
orization, C.L.E.A.R fosters deeper reasoning, im-
proving both robustness and effectiveness in tem-
poral inference. Moreover, in contrast to iterative
methods such as DATER, which require multiple
inferences and prompts to generate a final result,
C.L.E.A.R achieves this in a single inference (one
prompt). This significantly reduces both inference
time and computational costs, making it a more
efficient alternative for temporal reasoning tasks.

4.2 Fine Tuning with Auxiliary Data

Fine-tuning improves models by adjusting their pa-
rameters with task-specific examples. We show
that temporal reasoning benefits not only from fine-
tuning on specific data but also by integrating aux-
iliary sources.

Auxiliary data, like unstructured temporal data,
may not directly relate to the main task but provides
relevant logic that enhances understanding. The
TRAM dataset (Figure 10 in Appendix A) serves
as such a source, improving temporal reasoning
through exposure to diverse temporal questions.

This approach shows that using auxiliary data
can effectively enhance temporal reasoning and
boost model robustness across various tasks.
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5 Experimental Setup

Models: In this paper, we experimented with sev-
eral state-of-the-art large language models (LLMs),
including GPT-3.5-Turbo, GPT-4O, Mistral-2-7B,
LLaMA-2-7B-chat, and Gemini 1.5 Pro Flash.
These models represent the forefront in both open-
source and closed-model applications, showcasing
advancements in natural language understanding
and generation capabilities.

Prompts & Frameworks: Prompting models
with detailed instructions enhances their under-
standing of tasks, leading to improved responses.
These prompts may include demonstrations for
the model’s reference. We explore the following
prompting techniques:

- Chain of Thought (CoT) (Wei et al., 2023): CoT
guides models through step-by-step reasoning, pro-
moting structured responses. We evaluated it in
both zero-shot (Z.S) and few-shot (F.S) settings.

- Faithful Chain of Thought (F-CoT) (Lyu et al.,
2023): F-CoT ensures consistency by maintaining
fidelity to the initial prompt throughout response
generation. It was tested in zero-shot and few-shot
scenarios.

- Program of Thought (PoT) (Chen et al., 2023):
PoT offers a predefined sequence of operations
for structured, task-specific responses, evaluated in
zero-shot and few-shot contexts.

- Plan-and-Solve (Wang et al., 2023): Plan-and-
Solve Prompting first breaks a complex task into
smaller, manageable subtasks before solving them
sequentially, reducing missing-step errors in rea-
soning.

- BINDER (Cheng et al., 2023): BINDER
combines LLMs with symbolic languages like
SQL/Python to convert natural language queries
into executable programs, improving interpretabil-
ity and robustness.

- DATER (Ye et al., 2023): DATER breaks down
complex questions and table evidence into simpler
sub-questions using LLMs, enhancing reasoning
and interpretability without extensive training data.

Auxiliary Data: We use several unstructured tem-
poral reasoning datasets to evaluate language mod-
els’ temporal reasoning abilities:

- DATE Understanding (Srivastava et al., 2023):
This dataset tests a model’s ability to reason about

dates in various formats and contexts, including
tasks like Date Format Conversion, Date Arith-
metic, and Time Reasoning.

- Temporal Sequences (Srivastava et al., 2023):
This dataset evaluates models’ logical deduction
skills, asking them to deduce the timing of events
based on given sequences and durations.

- TRAM dataset (Wang and Zhao, 2024): This
benchmark includes ten datasets focused on tem-
poral aspects like order, arithmetic, frequency, and
duration, providing a comprehensive evaluation of
models’ temporal reasoning. Examples are shown
in Table 10.

6 Results and Analysis

In this section, we present the results of improving
temporal reasoning in LLMs for tabular tasks. We
evaluate two strategies: C.L.E.A.R (Comprehend,
Locate, Examine, Analyze, Resolve), a method
designed for tabular reasoning, and the integration
of out-of-domain temporal data for fine-tuning.

Prompt No FT TRAM TempTabQA

Mean Std Dev 100 1000 100 1000

GPT-3.5 turbo
Our prompt 77.42% 0.78% 77.92% 76.12% 80.89% 82.04%
F.S. CoT 73.67% 0.83% 75.53% 76.19% 77.81% 79.47%
F.S. F-CoT 70.96% 0.97% 71.13% 72.72% 77.85% 76.57%
F.S. PoT 70.63% 1.03% 70.58% 69.75% 79.37% 77.57%
Z.S. CoT 65.53% 0.75% 68.64% 69.61% 73.73% 72.72%
Z.S. F-CoT 64.96% 1.70% 67.32% 65.91% 71.27% 71.69%
Z.S. PoT 65.93% 0.78% 67.39% 68.05% 72.17% 72.76%
Plan-and-Solve 73.64% 0.95% 74.21% 77.95% 79.54% 77.95%
BINDER 72.43% 0.52% 73.49% 73.73% 78.05% 78.64%
DATER 73.36% 0.64% 73.76% 75.53% 79.23% 77.54%

LLAMA 7B
Our prompt 59.21% 1.38% 61.65% 59.85% 63.69% 63.17%
F.S. CoT 62.17% 0.72% 64.87% 63.66% 67.22% 68.64%
F.S. F-CoT 62.30% 1.67% 61.54% 64.24% 66.77% 67.32%
F.S. PoT 62.79% 1.46% 64.04% 66.08% 67.43% 65.94%
Z.S. CoT 60.71% 0.74% 62.48% 61.79% 63.07% 65.21%
Z.S. F-CoT 63.47% 0.63% 66.98% 69.40% 63.38% 64.31%
Z.S. PoT 62.71% 0.85% 63.69% 64.76% 65.07% 65.42%
Plan-and-Solve 61.18% 0.96% 64.80% 63.97% 64.66% 63.97%
BINDER 60.77% 0.61% 61.02% 64.14% 62.96% 64.11%
DATER 61.11% 0.67% 62.48% 63.62% 63.34% 65.59%

MISTRAL-2 7B
Our prompt 70.15% 1.05% 73.52% 72.41% 74.80% 73.87%
F.S. CoT 68.92% 0.39% 70.61% 71.13% 73.31% 75.63%
F.S. F-CoT 67.55% 1.39% 71.06% 70.02% 74.84% 75.25%
F.S. PoT 66.75% 1.43% 70.51% 69.99% 74.35% 73.59%
Z.S. CoT 64.70% 0.39% 66.22% 70.37% 71.62% 71.48%
Z.S. F-CoT 64.78% 0.63% 71.13% 69.51% 67.08% 71.10%
Z.S. PoT 64.99% 0.78% 66.63% 66.98% 71.69% 71.65%
Plan-and-Solve 67.92% 0.56% 70.99% 73.38% 72.27% 73.38%
BINDER 67.78% 0.84% 71.30% 71.17% 74.28% 73.10%
DATER 68.50% 0.63% 70.99% 72.17% 74.18% 73.66%

Table 1: Model’s performance on various prompts, mean
accuracy, and standard deviation (Std Dev) across 5 trials.
Results with fine-tuning on auxiliary data (TRAM) and the
TempTabQA dataset using 100 and 1000 examples are also
shown. The best results are in bold.
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Models Original Prompt Updated Prompt

CoT CoT

Z.S F.S BINDER DATER C.L.E.A.R Z.S F.S BINDER DATER C.L.E.A.R

Missing Relevant Rows (Lower (↓) is better)

GPT 4O 69.71% 70.89% 62.96% 65.73% 62.82% 6.89% 8.34% 22.08% 10.63% 7.30%
GPT 3.5 60.06% 56.59% 50.74% 50.22% 49.46% 11.60% 13.05% 27.66% 13.36% 11.39%
LLAMA 7B 64.42% 37.69% 33.26% 33.44% 24.92% 26.10% 16.13% 36.28% 13.67% 11.18%
MISTRAL-2 69.92% 50.85% 44.93% 44.79% 39.84% 16.44% 13.08% 30.46% 10.31% 10.76%
GEMINI 1.5 76.25% 68.05% 62.51% 62.72% 57.29% 9.07% 8.45% 23.88% 9.66% 7.34%

Information Absence Detection (Higher (↑) is better

GPT 4O 19.45% 22.71% 22.08% 21.77% 25.16% 89.89% 88.85% 89.69% 89.93% 90.65%
GPT 3.5 27.83% 29.73% 27.66% 29.32% 31.71% 79.75% 79.47% 79.51% 80.06% 82.07%
LLAMA 7B 25.37% 34.96% 36.28% 37.14% 40.05% 61.72% 61.96% 62.44% 63.17% 62.34%
MISTRAL-2 21.05% 29.42% 30.46% 31.15% 32.71% 75.42% 74.49% 75.04% 77.81% 77.09%
GEMINI 1.5 15.82% 22.33% 23.88% 21.46% 25.23% 89.48% 87.61% 91.21% 90.17% 91.45%

Table 2: This table compares C.L.E.A.R, zero-shot CoT, few-shot CoT, BINDER, and DATER frameworks for tasks involving
Missing Relevant Rows and Information Absence Detection in evidence-based reasoning, considering both original and changed
prompts. Experimental evaluations are conducted using GPT-4O, GPT-3.5 Turbo, LLAMA-7B-Chat, MISTRAL-7B, and Gemini
1.5 Pro Flash models.

6.1 C.L.E.A.R Prompting

We evaluated C.L.E.A.R prompting against vari-
ous reasoning techniques, including CoT, F-CoT,
PoT, Plan-and-Solve, and symbolic methods like
BINDER and DATER, in both zero-shot and few-
shot settings to determine the most effective ap-
proach. As shown in Table 1, C.L.E.A.R achieves
77.42% accuracy on GPT-3.5 Turbo, outperform-
ing all textual reasoning methods, including Few-
Shot CoT (73.67%). State-of-the-art approaches
like Plan-and-Solve prompting fall short, achiev-
ing a mean accuracy of 73.64%. Similarly, sym-
bolic methods such as FS PoT (70.63%), FS F-
CoT (70.96%), DATER (72.43%), and BINDER
(73.36%) underperform, highlighting the advan-
tages of textual reasoning for semi-structured ta-
bles. Overall, C.L.E.A.R boosts mean accuracy by
3.75% over the next-best technique.

A similar pattern emerges with Mistral-2-7B,
where C.L.E.A.R achieves a mean accuracy of
70.15%, surpassing textual reasoning methods like
FS CoT (68.92%) and Plan-and-Solve (67.92%).
Likewise, symbolic approaches such as FS PoT
(66.75%), FS F-CoT (67.55%), DATER (68.50%),
and BINDER (67.78%) perform below C.L.E.A.R.
However, the performance gap is smaller for
Mistral-2-7B, with a 1.23% improvement over
the next-best method. In contrast, LLaMA-2 fol-
lows a different trend, where Zero-Shot F-CoT
achieves the highest mean accuracy at 63.47%,
while C.L.E.A.R reaches 59.21%. This discrepancy
can likely be attributed to the smaller model size, as
previous studies suggest that smaller models strug-
gle to follow complex instructions effectively and
show pre-training biases favoring simpler prompts.

Additionally, we evaluated our method on GPT-
4o and Gemini-1.5-Flash, alongside the Plan-and-
Solve approach. The results can be found in Sec-
tion A.3.

6.2 Efficacy of C.L.E.A.R
The results in Section 6.1 show that our method
outperforms other prompting techniques. But is
C.L.E.A.R trustworthy? Does it truly enhance
the model’s evidence-based reasoning capabili-
ties? (Gupta et al., 2021). We compare C.L.E.A.R
with Zero-Shot and Few-Shot Chain of Thought
(CoT) methods across tasks that reveal model defi-
ciencies. Task descriptions are as follows:

1. Original Table: The model uses the original
table to answer the question, testing its ability
to use the provided data effectively.

2. Without Table: The model answers the ques-
tion without table access, testing if it relies
on memorization or independent deduction.
Ideal performance should decrease here.

3. Altered Entity Name: The table and ques-
tion are provided with an altered entity name,
testing the model’s reasoning without relying
on memorized data.

4. Missing Relevant Rows: The model is given
the table with key rows removed, testing if it
can use external knowledge to answer.

5. Information Absence Detection: The model
identifies missing information when given a
table with key rows deleted.

For the last two tasks i.e. Missing Relevant Rows
and Information Absence Detection, we perform
evaluations in two settings:
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• Original Prompt: The model is tested with
the original prompt to see if it can detect miss-
ing information or use external knowledge.

• Updated Prompt: The model is explicitly
instructed that the information may or may
not be present, to see if explicit instructions
improve performance.

We aim to assess whether C.L.E.A.R prompting
enhances evidence-based reasoning beyond just
accuracy, evaluating its effectiveness in addressing
specific reasoning challenges and improving model
reliability across varied contexts.

Models Task Prompts

(expected) Z.S CoT F.S CoT BINDER DATER C.L.E.A.R

GPT-4O
O.T (↑) 80.77% 82.42% 82.49% 82.61% 84.59%
W.T (↓) 75.91% 73.31% 71.79% 69.78% 69.44%
A.N.E (↑) 74.94% 76.36% 78.61% 79.06% 82.62%

GPT-3.5
O.T (↑) 65.53% 73.67% 72.43% 73.36% 77.42%
W.T (↓) 62.27% 62.10% 58.74% 58.43% 58.22%
A.N.E (↑) 61.09% 67.95% 67.91% 67.74% 72.10%

Llama
O.T (↑) 60.71% 62.17% 60.77% 61.11% 59.21%
W.T (↓) 54.69% 42.85% 41.36% 35.51% 31.81%
A.N.E (↑) 66.87% 60.78% 60.61% 58.95% 58.15%

MISTRAL-2
O.T (↑) 64.70% 68.92% 67.78% 68.50% 70.15%
W.T (↓) 56.87% 52.58% 53.20% 50.99% 49.36%
A.N.E (↑) 74.87% 63.55% 67.08% 66.53% 64.83%

GEMINI 1.5 O.T (↑) 74.48% 79.93% 81.65% 79.31% 82.37%
W.T (↓) 70.85% 69.19% 67.43% 64.69% 68.64%
A.N.E (↑) 79.02% 71.24% 80.13% 77.05% 79.75%

Table 3: Comparison among Z.S CoT, F.S CoT, BINDER,
DATER, and C.L.E.A.R frameworks across Original Ta-
ble(O.T), Without Table(W.T), and Altered Named En-
tity(A.N.E) tasks in evidence-based reasoning. We evaluate
GPT-4O, GPT-3.5 Turbo, LLAMA-7B-Chat, MISTRAL-7B,
and Gemini 1.5 Pro Flash models in our experiments.

Results and Analysis. As shown in Table 3,
C.L.E.A.R consistently outperforms other meth-
ods on most tasks. GPT 4O achieves the highest
accuracy at 85.08%, a 2.39% improvement over
few-shot CoT. Our method even outperform both
BINDER and DATER in almost all the tasks.

(a) Without Table. When evaluated without ta-
ble access, C.L.E.A.R shows a performance decline
across all models using original labels, indicating a
reduced reliance on memorization in favor of con-
textual reasoning. Specifically, GPT-4o and GPT-
3.5 Turbo exhibit a 4% drop, while LLaMA expe-
riences an 11.04% decrease compared to Z.S COT.
This suggests that C.L.E.A.R encourages models to
base their responses on the provided context rather
than drawing from parametric knowledge. The sig-
nificance of this is further explored in Section A.4.

(b) Altered Table Entity. C.L.E.A.R excels
in this task, except with LLaMA-2 and Mistral-2.

GPT 4O achieves the highest accuracy at 82.62%, a
6.26% improvement over few-shot CoT. LLaMA-2
7B and Mistral-2 7B underperform, likely due to
their smaller size, which limits their ability to fol-
low instructions. GPT 3.5 turbo and Gemini 1.5 pro
flash see gains of 4.15% and 8.51%, respectively.

(c) Missing Relevant Row. As shown in Ta-
ble 2, C.L.E.A.R consistently outperforms other
methods with the original prompt, despite a larger
performance drop compared to zero-shot and few-
shot CoT. With the modified prompt, it remains the
best, except for GPT-4, where zero-shot slightly
surpasses it. Prompting causes a ~1-5% drop
across all models as the focus shifts from mem-
orization to context-driven responses. While sym-
bolic frameworks like BINDER and DATER also
decline, C.L.E.A.R still leads overall.

(d) Information Absence Detection. As shown
in Table 2, our method surpasses zero-shot and few-
shot CoT, BINDER, and DATER with the original
prompt across all models. LLaMA achieves the
highest accuracy (40.05%), followed by GPT-3.5
(31.71%). With the updated prompt, C.L.E.A.R
performs better for GPT models and GEMINI,
while DATER slightly outperforms for LLaMA-
2 and Mistral.

We conducted an ablation study on GPT-3.5
Turbo to evaluate the individual contributions of
each component within the C.L.E.A.R methodol-
ogy. Table 4 illustrates the synergistic effects of
these components, highlighting that the removal
of any step decreases model accuracy. Notably,
the ’Examine & Analyze’ step is identified as the
most crucial; its omission results in the largest ac-
curacy drop of 2.72% compared to the complete
C.L.E.A.R prompt. This finding underscores the
’Examine & Analyze’ step as the most vital compo-
nent of the C.L.E.A.R framework. Further analysis
shows that eliminating steps in pairs exacerbates
the accuracy decline, particularly when ’Examine
& Analyze’ is paired with ’Comprehend’ and ’Lo-
cate’, leading to decreases of 3.69% and 4.16%,
respectively. Removing all three—’Comprehend’,
’Locate’, and ’Examine & Analyze’—results in the
most substantial drop of 4.18% in accuracy.

6.3 Auxiliary Data Fine Tuning

C.L.E.A.R enhances a model’s ability to process
context, handle temporal questions, and improve
evidence-based reasoning. However, intrinsic im-
provement requires fine-tuning. We recommend
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Prompt No FT TRAM TempTabQA

100 1000 100 1000

C.L.E.A.R 77.99% 77.92% 76.12% 80.89% 82.04%

remove Comprehend 76.55% 77.52% 76.45% 80.52% 81.79%

remove Locate 76.25% 75.99% 77.04% 80.07% 81.89%

remove Examine &
Analyze 75.27% 74.85% 76.02% 79.19% 79.70%

remove Comprehend
+ Locate 76.80% 76.03% 76.76% 80.57% 81.49%

remove Comprehend
+ Examine & Analyze 74.30% 74.86% 75.13% 77.66% 78.93%

remove Locate
+ Examine & Analyze 73.83% 74.09% 75.29% 77.94% 79.81%

remove Comprehend
+ Locate
+ Examine & Analyze 73.81% 75.27% 74.29% 77.96% 79.06%

Table 4: Ablation study of different components of
C.L.E.A.R without Fine-Tuning and with Fine-tuning
on TRAM (Auxiliary) and TempTabQA train sets with
model GPT-3.5-Turbo (Single Run).

fine-tuning with auxiliary data to boost reasoning
across formats and overall capabilities.

Why TRAM dataset? We evaluated the impact
of fine-tuning GPT-3.5 Turbo using the auxiliary
datasets discussed in Section 5, along with
the TempTabQA dataset. For this evaluation,
we fine-tuned with 100 examples from each dataset.

Train Dataset Exact Match

No fine-tuning 73.49%
DATE 74.28%
Temporal Sequences 74.42%
TRAM 75.53%
TempTabQA 77.81%

Table 5: This table showcases the performance of GPT-3.5
Turbo following fine-tuning on auxiliary datasets within a
zero-shot chain-of-thought (CoT) setting."

Analysis. Table 5 shows that the TRAM dataset
delivers the highest performance boost among aux-
iliary datasets, with a 2.04% improvement over the
base model without fine-tuning. In contrast, DATE
and Temporal Sequences datasets provide gains of
less than 1.01%. TRAM’s strength lies in its diver-
sity, covering a wide range of temporal tasks like
Ordering, Frequency, Duration, and Temporal NLI,
helping models handle various temporal scenarios
more effectively. See Table 11 in Appendix A for
more details.

The significant gains from the TRAM dataset
emphasize the value of diverse auxiliary data for
fine-tuning. By spanning various temporal reason-
ing tasks, TRAM helps models better understand
nuanced temporal relationships, boosting perfor-
mance across challenges. This suggests that fu-

ture fine-tuning should leverage similarly diverse
datasets for maximum improvement.

Fine-tuning on TRAM. We fine-tuned models
on subsets of the TRAM dataset and TempTabQA
with 100 and 1000 evenly sampled examples, as
shown in Table 1.

Analysis. With 100 examples, GPT-3.5-Turbo
achieves 77.92% accuracy with C.L.E.A.R, out-
performing textual reasoning methods like FS
CoT (75.53%) and Plan-and-Solve (74.21%), as
well as symbolic approaches such as FS PoT
(70.58%), FS F-CoT (71.13%), Binder (73.49%),
and Dater (73.76%). When trained on 1000 exam-
ples, C.L.E.A.R maintains strong performance at
76.12%, falling behind the best-performing method,
FS CoT (76.19%), by just 0.07%.

Fine-tuning with auxiliary data significantly im-
proves performance, bringing it closer to task-
specific fine-tuning levels. This approach not only
strengthens temporal reasoning but also enhances
generalization across different tasks, making it
more versatile than task-specific datasets. More-
over, it scales effectively for larger datasets be-
yond traditional fine-tuning constraints.1 The ob-
served accuracy gains suggest that auxiliary un-
structured datasets like TRAM can help overcome
data scarcity challenges while significantly enhanc-
ing model robustness and adaptability for semi-
structured temporal tasks. Notably, fine-tuning
on TRAM leads to substantial improvements in
temporal reasoning, outperforming models trained
solely on TempTabQA and demonstrating strong
cross-format transferability from unstructured to
semi-structured data.

7 Discussion and Related Work

Tabular Reasoning. Previous research has ex-
plored large language models’ (LLMs) applica-
tions with semi-structured tabular data (Chen et al.,
2020a; Gupta et al., 2020; Zhang and Balog, 2019),
but temporal reasoning in this domain remains un-
derexplored. While studies such as (Zhang et al.,
2020b; Zhang and Balog, 2020; Pasupat and Liang,
2015; Krishnamurthy et al., 2017; Abbas et al.,
2016; Sun et al., 2016; Chen et al., 2020b; Lin et al.,
2020; Zayats et al., 2021; Oguz et al., 2020; Chen
et al., 2021b; Iyyer et al., 2017) focus on table-to-
text generation, various datasets and models like
Table2vec (Zhang et al., 2019), TAPAS (Herzig

1Fine-tuned on 1000 examples due to computational limit.
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et al., 2020), TaBERT (Yin et al., 2020), TabStruc
(Zhang et al., 2020a), TABBIE (Iida et al., 2021),
TabGCN (Pramanick and Bhattacharya, 2021), and
RCI (Glass et al., 2021) aim to improve tabular
data understanding. However, despite these ad-
vancements, temporal aspects of tables remain
overlooked. Unlike studies that target predefined
schema tables, our approach addresses tables with-
out set hierarchies, characterized by complex and
interrelated data, introducing a novel perspective.

Structural Temporal Reasoning. Traditional re-
search has mainly addressed temporal reasoning
in unstructured and knowledge-based systems, in-
cluding temporal links in knowledge graphs (Sax-
ena et al., 2021; Jia et al., 2018a), open-domain
settings (Zhang and Choi, 2021), cloze-form ques-
tion answering (Dhingra et al., 2022), and event-
centric datasets (Ning et al., 2018; Wen et al., 2021;
Chen et al., 2021a). These models often struggle
with grounding outputs in specific contexts due
to a reliance on parametric knowledge. Our ex-
periments using Chain-of-Thought and Program-
of-Thought prompting reveal these memorization
issues, which C.L.E.A.R. overcomes by consis-
tently grounding answers in the context and break-
ing down complex tasks into manageable steps.
This makes C.L.E.A.R. particularly effective for
semi-structured tables, surpassing the limitations
of generic methods.

Symbolic Reasoning. Symbolic approaches that
generate SQL queries (Cheng et al., 2023; Ye
et al., 2023; Wang et al., 2024) have shown
promise for structured data reasoning, but tech-
niques like Chain-of-Table struggle with semi-
structured, entity-centric tables. These tables in-
troduce complexities that require understanding
both row-level key-value pairs and implicit rela-
tionships across the table, necessitating advanced
reasoning that combines domain knowledge and
common sense, especially when dealing with tem-
poral and tabular aspects. Our method surpasses
other symbolic approaches, such as BINDER and
DATER, by effectively managing these complex-
ities. Moreover, while models like CRONKBQA
(Saxena et al., 2021) and TEQUILA (Jia et al.,
2018b) focus on temporal reasoning, we extend
these capabilities to structured data, as demon-
strated by our results on TempTabQA (Gupta et al.,
2023) and TRAM (Wang and Zhao, 2024).

Other Finetuning Approaches. Fine-tuning
techniques to improve performance on semi-
structured data (Yu et al., 2018; Eisenschlos et al.,
2020; Neeraja et al., 2021) often risk overfitting,
where models learn task-specific patterns instead of
generalizable logic. To address this, our approach
leverages the TRAM dataset, fine-tuning on auxil-
iary datasets to emphasize core logical principles
over task-specific structures, demonstrating adapt-
ability across different data formats. In related ar-
eas like financial document QA, the EEDP model
(Srivastava et al., 2024) excels in task decomposi-
tion, but our method goes further in evidence-based
reasoning, enabling more effective temporal rea-
soning with tabular data.

In conclusion, although recent studies have ex-
plored temporal reasoning in unstructured data (Tan
et al., 2023, 2024), our research tackles the addi-
tional complexities of semi-structured data, partic-
ularly the intricate relationships between rows and
columns. We demonstrate that temporal reasoning
can effectively transfer across different formats, en-
hancing our understanding of temporal reasoning
in semi-structured contexts. Unlike synthetic data
methodologies (Tan et al., 2024), our approach ap-
plies logical reasoning across diverse data types,
offering a more comprehensive perspective on tem-
poral reasoning for LLMs and paving the way for
future research in this area.

8 Conclusion and Future Work

Our results show that C.L.E.A.R (Comprehend, Lo-
cate, Examine, Analyze, Resolve) enhance model
performance, particularly in tabular data and tem-
poral reasoning tasks, by grounding LLMs in ev-
idence rather than pre-trained knowledge. Fine-
tuning with auxiliary unstructured simple tempo-
ral data further enhances temporal understanding,
boosting reasoning capabilities.

For the future, we propose: (a.) Synthetic Data
Generation: Creating synthetic temporal data
from tables to boost model performance through
diverse exposure. (b.) Neuro-symbolic Learn-
ing: Combining neural networks with symbolic
reasoning for better temporal understanding. (c.)
Expanding C.L.E.A.R Applications: Applying
C.L.E.A.R across different tasks and domains
to demonstrate its versatility. (d.) Integration
with Existing Models: Seamlessly incorporating
C.L.E.A.R and auxiliary data into current models to
maximize benefits without changing architecture.
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Limitations

The experiments in this paper have been conducted
exclusively on the English language. This study
can be extended to a multilingual setting to evaluate
the approach’s effectiveness across different lan-
guages. Additionally, the temporal datasets used in
our study are limited to simple, entity-centric tables.
Since structured data can exist in more complex
forms, such as hierarchical tables, further research
is necessary to assess the impact of our methods on
these more complex structures.

Moreover, our computational limitations re-
stricted us to fine-tuning models on only 1000
samples of auxiliary data. To fully understand the
potential improvements from fine-tuning on aux-
iliary data, it is essential to explore the effects of
fine-tuning on larger datasets. Future work should
focus on overcoming these limitations to provide a
comprehensive evaluation of our approach.
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A Appendix

A.1 Additional Results on PALM.

We conducted experiments using the PaLM-2
model, where C.L.E.A.R outperformed all other
prompting techniques without fine-tuning (Table
6), showing approximately a 3% improvement over
FS COT.

In both the "Original Table" and "Without Ta-
ble" tasks, C.L.E.A.R demonstrated the best perfor-
mance (Table 7), highlighting its ability to mitigate
memorization issues even in the PaLM-2 model.
However, for the "Altered Named Entity" task, Z.S
COT performed the best.

For the "Missing Relevant Info" and "Informa-
tion Absence Detection" tasks, C.L.E.A.R achieved
the highest accuracy with both the original and up-
dated prompts (Table 8). We were unable to com-
pare C.L.E.A.R’s performance with BINDER and
DATER on PaLM-2, as the model was deprecated
at the time of revision.

Prompt No FT TRAM TempTabQA

100 1000 100 1000

PALM 2
C.L.E.A.R 80.06% 81.97% 83.28% 85.01% 85.01%
F.S. CoT 77.40% 81.14% 82.24% 80.17% 81.59%
F.S. F-CoT 75.63% 75.35% 78.82% 82.45% 82.21%
F.S. PoT 76.01% 75.98% 76.25% 84.56% 80.27%
Z.S. CoT 70.13% 73.97% 74.42% 78.89% 76.74%
Z.S. F-CoT 69.75% 74.04% 74.90% 75.22% 75.94%
Z.S. PoT 71.24% 74.32% 76.29% 79.09% 79.13%

Table 6: PaLM-2 model’s performance on various prompts
without fine-tuning, with fine-tuning on auxiliary data
(TRAM), and with fine-tuning on the TempTabQA dataset
using 100 and 1000 examples. The best result is highlighted
in bold.

A.2 Additonal Details

Table 6 presents sample questions from the TRAM
dataset, showcasing the complexity and diversity
of the queries. Figure 2 illustrates an example of

Models Task (expected) Prompts

Z.S CoT F.S CoT C.L.E.A.R

Palm 2
Original Table (↑) 69.75% 77.29% 79.58%
Without Table (↓) 66.63% 63.24% 60.26%
Altered Name Entity (↑) 82.10% 71.34% 74.97%

Table 7: Performance of the PaLM-2 model across different
tasks using various prompting techniques.

Models Original Prompt Updated Prompt

CoT CoT

Z.S F.S C.L.E.A.R Z.S F.S C.L.E.A.R

Missing Relevant Rows (Lower (↓) is better)

PALM 2 78.40% 61.68% 55.90% 10.90% 8.27% 7.58%

Information Absence Detection (Higher (↑) is better

PALM 2 19.21% 23.68% 29.11% 86.43% 86.78% 88.44%

Table 8: Performance of the PaLM-2 model in tasks involving
Missing Relevant Rows and Information Absence Detection
using original and updated prompts.

a prompt used in our method, emphasizing the in-
put structure. Table 7 provides an overview of
the tasks in the new evaluation set, categorizing
different objectives. Figure 3 outlines the step-by-
step process of the C.L.E.A.R. instruction method.
Figures 4 and 5 present Example 1 from the TempT-
abQA head set, with Figure 4 showing the input
and Figure 5 displaying the response generated
using C.L.E.A.R. prompting with GPT-3.5 turbo.
Similarly, Figures 6 and 7 depict Example 2 from
the TempTabQA tail set, where Figure 6 illustrates
the input and Figure 7 provides the corresponding
response.

A.3 Comparison with Plan-and-Solve

We compared the performance of C.L.E.A.R with
the Plan-and-Solve method on GPT-4o and Gemini-
1.5-Flash models.

Prompt No FT

GPT-4o Gemini-1.5-flash

Plan-and-Solve 82.32% 82.03%
C.L.E.A.R 84.59% 82.37%

Table 9: Performance comparison of Plan-and-Solve
and C.L.E.A.R under No FT (Fine-Tuning) on models
GPT4o and Gemini-1.5-flash.

As shown in Table 9, C.L.E.A.R outperforms
Plan-and-Solve on both models. For GPT-4o,
C.L.E.A.R achieved an accuracy of 84.59%, com-
pared to Plan-and-Solve’s 82.32%. Similarly, for
Gemini-1.5-Flash, C.L.E.A.R demonstrated supe-
rior performance, achieving 82.37% accuracy ver-
sus Plan-and-Solve’s 82.03%.
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A.4 Prioritizing Grounded Reasoning Over
Memorization

The C.L.E.A.R prompting method ensures that
LLMs engage in evidence-based reasoning rather
than relying solely on memorized factual knowl-
edge. While factual recall is valuable, it does not
guarantee accuracy, especially in dynamic domains
where information evolves. Since LLMs cannot au-
tonomously update their internal knowledge. The
parametric knowledge of LLMs can often be out-
dated or inaccurate. C.L.E.A.R emphasizes rea-
soning grounded in provided evidence, reducing
reliance on outdated or unverifiable memorization.

A key challenge with memorization is that it may
lead to incorrect conclusions when faced with coun-
terfactual or updated information. For example,
imagine a counterfactual scenario where the evi-
dence table has been updated to reflect "McBean’s
hypothetical career with the Yankees, showing a dif-
ferent length of service than his time with the Pitts-
burgh Pirates". In this case, the question would be:

“For how many years did Al McBean play for the
Pittsburgh Pirates?” The model must now reason
based on the updated table, grounding its answer
in the new, counterfactual data. This demonstrates
that the model cannot simply recall memorized
facts about McBean’s actual career with the Pi-
rates; instead, it must rely on the provided evidence
to generate the correct answer.

Moreover, when working with entity-centric ta-
bles, different entities can share the same name,
making context vital for disambiguation. For
instance, ambiguous entity references—such as

“How many championships has Adam Jones won?”
require contextual disambiguation, here an LLM
might get confuse "Adam Jones" with multiple in-
dividuals, such as an American football player or
a famous baseball player. C.L.E.A.R enforces by
guiding the model to prioritize information within
the provided context i.e. given evidence, rather
than defaulting to pre-trained knowledge.

Beyond improving factual accuracy, C.L.E.A.R
enhances the model’s ability to recognize when a
question is unanswerable due to missing evidence.
Instead of inferring an unsupported answer, the
model is encouraged to respond with "not answer-
able due to missing evidence," reducing the risk of
hallucinations. This is validated through the Infor-
mation Absence Detection test, which shows that
C.L.E.A.R effectively curbs incorrect completions
when crucial data is missing.

Ultimately, C.L.E.A.R does not diminish factual
recall but reinforces structured reasoning in the
presence of explicit evidence. By ensuring that
responses are contextually aligned, accurate, and
verifiable, this approach enhances LLM robustness
across various reasoning tasks. Grounded reason-
ing is particularly crucial in real-world applica-
tions where factual correctness depends not just on
stored knowledge but on the ability to interpret and
synthesize relevant information dynamically. This
approach aligns with Retrieval-Augmented Gen-
eration (RAG) techniques, which enhance factual
accuracy by incorporating the given context.

Ordering Q: Arrange the following events in chronological order: (1)
Brusilov Offensive by Russia. (2) Kamehameha I of the
Island of Hawaii defeats the Oahuans at the Battle of Nu’uanu.
(3) The Kuomintang, the Chinese nationalist party, is founded.
(4) Emperor Claudius dies and is succeeded by his grand
nephew Nero. (5) St. Norbert and 29 companions make their
solemn vows marking the beginning of the Premonstratensian
Order.

(Facts) A. (1), (2), (4), (5), (3) × B. (4), (5), (2), (3), (1) ✓ C.
(3), (1), (2), (4), (5) ×

Frequency Q: It is also a love story, between Ace and Tobio, a trans
woman. How often do they break up?

(Commonsense)A. Once ✓ B. Always × C. Once per week ×
Duration Q: While Yoga Session gave attendees time to plant an entire

garden, Jazz Concert was enough to water a few plants, and
Board Game Night was merely smelling a flower. Which
event was the longest?

(Analogy
Inference)

A. Jazz Concert × B. Board Game Night × C. Yoga
Session ✓

Typical Time Q: Which event typically happens earlier: morning yoga or
farmer starting their day?

(Comparison) A. Morning yoga × B. Farmer starting their day ✓
C.Around the same time×

Ambiguity
Resolution

Q: The dynasty which fell in 1830 had risen to power roughly
90 years earlier. When was its establishment?

(Long-term
Shift)

A. 1742 × B. 1745 × C 1740 ✓

Arithmetic Q: In which week of year 2007 does the date 10-12-2007
occur?

(Week
Identification)

A.Week41 ✓ B.Week28 × C.Week5 × D.Week10 ×

Temporal
Relation

Q: It added that the Ministry of Economic Affairs and
Finance was assigned to draw up practical procedure for the
ceding, while the Ministry of Welfare and Social Security
would be responsible for identifying the beneficiaries in two
months. What is the relationship between the event ‘added’
and the event ‘ceding’?
A. IS_INCLUDED × B. SIMULTANEOUS × C.
AFTER ✓

Temporal NLI Q: Premise: Two guys playing football on a campus green.
Hypothesis: They are practicing before the big game
tomorrow
A. Entailment × B. Neutral ✓ C. Contradiction×

Temporal
Causality

Q: The seasons changed from summer to autumn. What’s the
more plausible RESULT?

(Effect) A. People evacuated their homes. × B. Leaves fell from the
trees. ✓

Temporal
Storytelling

Q: There is a huge clock in my living room. I turned the clock
back one hour for daylight savings. My wife also turned the
clock back one hour for daylight savings. Our 2 kids each
turned the clock back one hour for daylight savings. Which of
the two endings is the most plausible correct ending to the
story?
A. Then we wondered why it got so dark so early. ✓ B.
The kids were not happy ×

Table 10: Examples Questions in TRAM Dataset.
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Figure 2: Prompt Example

Figure 3: The figure illustrates the step-by-step process of C.L.E.A.R instruction. The reference table is provided in Figure 1
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Task Data Size # Problem Types Metrics Answer Type Text Sources

Foundational Temporal Understanding Tasks

Ordering 29,462 Commonsense, Facts Acc. 3-Way MC MCTACO1,
Wikipedia, Misc.

Frequency 4,658 Commonsense, Reading Comprehension, Application, Computation,
Comparison, Facts

Acc. 3-Way MC MCTACO1,
SQuAD2, Misc.

Duration 7,232 Commonsense, Reading Comprehension, Analogy Inference,
Computation, Direct Comparison, Multi-step Comparison, Facts

Acc. 3-Way MC Same

Typical Time 13,018 Commonsense, Comparison, Facts, Reading Comprehension Acc. 3-Way MC Same

Temporal Interpretation and Computation Tasks

Amb. Res. 3,649 Interpretation, Calendar shift, Long-term shift, Mid-term shift,
Short-term shift

Acc. 3-Way MC Misc.

Arithmetic 15,629 Application, Date Computation, 12-hour Adjustment, 24-hour
Adjustment, Month Shift, Week Identification, Year Shift, Time
Computation, Time Zone Conversion

Acc. 4-Way MC Same

Advanced Temporal and Conceptual Understanding Tasks

Relation 102,462 - Acc./F1 3-Way MC TempEval-33

Temporal NLI 282,144 - Acc./F1 3-Way MC MNLI4, SNLI5

Causality 1,200 Cause, Effect Acc. 2-Way MC COPA6, Misc.
Storytelling 67,214 - Acc. 2-Way MC ROC7, SCT8

Table 11: Overview of tasks in TRAM.

Input :

Given an entity-centric table and corresponding question, follow the steps below exactly to answer the question:
Step 1. Comprehend Information: Apply domain knowledge to understand how to approach and answer the question.
Step 2. Locate Relevant Rows: Identify and extract any rows from the table that could be relevant to the question.
Explain why these rows are selected. Also output the relevant rows verbatim.
Step 3. Examine the Question: Determine whether the original question can be solved by a simple table lookup. If
not, break down the original question into between 2 and 4 smaller, more manageable sub-questions. Assume each
sub-problem can be solved using the provided evidence. Explain how one could approach solving each sub-problem.
Step 4. Analyze Sub-Questions: Answer each sub-question using evidence from the table. Explain the step-by-step
reasoning process that leads to each answer. Include any calculations or logical deduction to arrive at each conclusion,
no matter how simple.
Step 5. Resolve to Form the Final Answer: Using the answers to each sub-question, answer the original question.
Explain the step-by-step reasoning process that leads to this final answer. Include any calculations or logical
deduction to arrive at each conclusion, no matter how simple. Clearly state the final answer using "Final Answer:",
providing the answer as concisely as possible without unnecessary information.

Each table-question pair is presented as a table (identified by "Table:") followed by a question (identified by "Q:").
Tables are presented in a linear format, with columns separated by tabs, rows separated by newlines, and subsections
separated by double newlines. If necessary, assume the current date is December, 2022.
========================
Table:
Title Bette Davis
Died October 6, 1989 | (1989-10-06) | (aged 81) |
Neuilly-sur-Seine, France
Resting place Forest Lawn Memorial Park
Occupation Actress
Years active 1929-1989
Political party Democratic
Spouse(s) Harmon Oscar Nelson | ( | married | 1932; | divorced | 1938) | Arthur Farnsworth | ( | married | 1940; died
1943) | William Grant Sherry | ( | married | 1945; | divorced | 1950) | Gary Merrill | ( | married | 1950; | divorced | 1960)
Children 3, including B. D. Hyman
Bette Davis [’BETTEDavis (cropped).jpg | Publicity photo, 1935’]

Question: How many years after Davis’s career began did she take the photo?

Figure 4: Example 1 from TempTabQA head set with C.L.E.A.R prompting on GPT 3.5 turbo : Input
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Response :

Step 1. Comprehend Information Domain Knowledge:
- The question asks "how many years", so the answer should be a length of time in years
- To determine the time between two years, take the absolute value of the difference between the two years.

Step 2. Locate Relevant Rows
- "Title Bette Davis": This indicates that the information in the table is about Bette Davis. - "Years active 1929-1989":
This provides the start and end year of Bette Davis’s career. - "Bette Davis [’BETTEDavis (cropped).jpg | Publicity
photo, 1935’]": This provides the year the photo was taken.

Step 3. Examine the Question OQ) How many years after Davis’s career began did she take the photo? The table
doesn’t provide this information. To determine the time between these two events, we need to know the following:

• SQ1) When did Davis’s career begin?

• SQ2) When did Davis take the photo? : Davis took the photo in 1935

SQ1) When did Davis’s career begin?
The table gives the range years spanning Davis’s career. We can determine the begin year of her career by looking at
the start year of this range.
SQ2) When did Davis take the photo?
The table provides the year the photo was taken.

Step 4. Answer Sub-Questions SQ1) Davis’s career lasted from 1929 to 1989. Therefore, her career began in 1929.
SQ2) The photo was taken in 1935.

Step 5. Synthesize to Form the Final Answer OQ) How many years after Davis’s career began did she take the photo?
Davis’s career began in 1929
(SQ1), and she took the photo in 1935
(SQ2). To get the number of years between these two events, take the absolute value of the difference between the two
years.
The absolute value of (1929-1935) is 6.
Therefore, the photo was taken 6 years after Davis’s career began.

Final Answer: 6

Figure 5: Example 1 from TempTabQA head set with C.L.E.A.R prompting on GPT 3.5 turbo : Response
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Input :

Given an entity-centric table and corresponding question, follow the steps below exactly to answer the question:
Step 1. Comprehend Information: Apply domain knowledge to understand how to approach and answer the question.
Step 2. Locate Relevant Rows: Identify and extract any rows from the table that could be relevant to the question.
Explain why these rows are selected. Also output the relevant rows verbatim.
Step 3. Examine the Question: Determine whether the original question can be solved by a simple table lookup. If
not, break down the original question into between 2 and 4 smaller, more manageable sub-questions. Assume each
sub-problem can be solved using the provided evidence. Explain how one could approach solving each sub-problem.
Step 4. Analyze Sub-Questions: Answer each sub-question using evidence from the table. Explain the step-by-step
reasoning process that leads to each answer. Include any calculations or logical deduction to arrive at each conclusion,
no matter how simple.
Step 5. Resolve to Form the Final Answer: Using the answers to each sub-question, answer the original question.
Explain the step-by-step reasoning process that leads to this final answer. Include any calculations or logical
deduction to arrive at each conclusion, no matter how simple. Clearly state the final answer using "Final Answer:",
providing the answer as concisely as possible without unnecessary information.

Each table-question pair is presented as a table (identified by "Table:") followed by a question (identified by "Q:").
Tables are presented in a linear format, with columns separated by tabs, rows separated by newlines, and subsections
separated by double newlines. If necessary, assume the current date is December, 2022.
========================
Table:
Title Dwight Bernard
Dwight Bernard [’Dwight Bernard.jpg’]
Pitcher
Born | ( | 1952-05-31 | ) | May 31, 1952 | (age 70) | Mount Vernon, Illinois
Batted | Right | Threw | Right
MLB debut
MLB debut [’June 29, 1978, for the New York Mets’]
Last MLB appearance
Last MLB appearance [’October 2, 1982, for the Milwaukee Brewers’]
MLB statistics
Win-loss record 4-8
Earned run average 4.14
Strikeouts 92
Teams
Teams [’New York Mets (1978-1979) | Milwaukee Brewers (1981-1982)’]

Question: In what year did Dwight Bernard start playing with the last team he was associated with?

Figure 6: Example 2 from TempTabQA tail set with C.L.E.A.R prompting on GPT 3.5 turbo : Input
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Response :

Step 1. Comprehend Information
Domain Knowledge:
- The question asks "In what year", so the answer should be a year.
- To determine the last team someone was associated with, identify the one that occurred most recently.
- Given an event spanning a range of years, the start is the first number in that range.

Step 2. Locate Relevant Rows
- "Title Dwight Bernard": This indicates that the information in the table is about Dwight Bernard.
- "Teams [’New York Mets (1978-1979) | Milwaukee Brewers (1981-1982)’]": This provides a list of all teams
Dwight Bernard played with and the years he played with each.

Step 3. Examine the Question
OQ) In what year did Dwight Bernard start playing with the last team he was associated with? The table doesn’t
provide this information. To determine this, we need to know the following:

• SQ1) What was the last team Dwight Bernard was associated with?

• SQ2) When did Dwight Bernard start playing for this team?

SQ1) What was the last team Dwight Bernard was associated with?
The table doesn’t provide this information. However, the table provides a list of all teams Bernard was associated with
and the years he was associated with each team. We can determine the last team Dwight Bernard was associated with
by comparing the last year he was associated with each of his teams.
SQ2) When did Dwight Bernard start playing for this team?
The table provides the range of years Bernard was associated with each of his teams. We can determine the year he
started playing for that team by looking at the start year in the range.

Step 4. Analyze Sub-Questions
SQ1) The only teams Dwight Bernard has played with are the New York Mets and Milwaukee Brewers. Bernard
played for the Mets from 1978 to 1979 and the Brewers from 1981 to 1982. He was associated with the Brewers in
1982, which is more recent than the Mets in 1979; therefore, the last team he was associated with is the Brewers.
SQ2) He played with the Brewers from 1981 to 1982, so he started playing for the Brewers in 1981. Step 5. Resolve
to Form the Final Answer
OQ) In what year did Dwight Bernard start playing with the last team he was associated with?
The last team Dwight Bernard was associated with was the Brewers (SQ1), which he started playing for in 1981 (SQ2).
Therefore, Dwight Bernard started playing with the last team he was associated with in 1981.

Final Answer: 1981

Figure 7: Example 2 from TempTabQA tail set with C.L.E.A.R prompting on GPT 3.5 turbo : Response

Incorrect Human Annotation (head set)

Table:
Title Chandrayaan-2
Mission type Lunar orbiter, lander, rover
Operator Indian Space Research Organisation (ISRO)
COSPAR ID 2019-042A | Edit this at Wikidata
SATCAT | number 44441
Website www | .isro | .gov | .in | /chandrayaan2-home-0
Mission duration Orbiter: 7.5 years (planned); | 2 years, 10 months (elapsed) | Vikram | lander: â‰¤ 14 days
(planned); | 0 days (landing failure) | Pragyan | rover: â‰¤ 14 days (planned); | 0 days (landing failure)

Question: Rounding up, what was the difference in planned and elapsed time of the Orbiter Mission duration?

Original Annotated Answer: 4 years

Correct Answer: The planned time is 7 years and 6 months, and the elapsed time is 2 years and 10 months. The
difference is 4 years and 8 months, which rounds up to 5 years.

Figure 8: Example 1: Error Analysis (Incorrect Human Annotation)
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Requires External Knowledge (tail set)

Table:
Title Black Friday
Type Commercial
Significance Popular shopping day
Observances Shopping
Date Day after U.S. Thanksgiving
2021 date November 26 | ( | 2021-11-26 | )
2022 date November 25 | ( | 2022-11-25 | )
2023 date November 24 | ( | 2023-11-24 | )
2024 date November 29 | ( | 2024-11-29 | )
Frequency Annual
Related to Thanksgiving, Small Business Saturday, Cyber Monday, Giving Tuesday, Christmas, Buy Nothing Day

Question: What would the day of November 27th 2021 be referred to as?

Original Annotated Answer: Small Business Saturday.

Rewritten Question: What day of the week was November 27, 2021?

Reasoning for Rephrased Question: Unlike the original question (which requires nontrivial external knowledge that
“Small Business Saturday” is the day after Black Friday), the revised question can be answered with common sense
(i.e. Saturday is the day after Friday)

Correct Answer: Saturday

Figure 9: Example 2: Error Analysis (Requires External Knowledge)

Ambiguous Question (head set)

Table:
Title B-24 Skua
Role Carrier-based dive
bomber/fighter | Type of aircraft
Manufacturer Blackburn Aircraft
First flight 9 February 1937
Introduction November 1938
Retired 1941 (withdrawn from front line) | March 1945 (withdrawn from other duties)
Primary user Fleet Air Arm
Number built 192
Variants Blackburn Roc
B-24 Skua [’15 Blackburn Skua, Bristol Perseus (15650612347).jpg’, ’Blackburn Skua in flight’]

Question: How many years did B-24 Skua was in active service as bomber/fighter?

Original Annotated Answer: 3 years

Rewritten Question: How many years were B-24 Skuas on the front line?

Reasoning for Rephrased Question: “In active service” is ambiguous, so the end date could be either of the
retirement dates (1941 or 1945). The rewritten question clarifies this ambiguity.

Correct Answer: 3 years

Figure 10: Example 3: Error Analysis (Ambiguous Question)
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