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Abstract

This study investigates retrieval-augmented
summarization by specifically examining the
impact of exemplar summary lengths under
length constraints, not covered by previous
work. We propose a Diverse Length-aware
Maximal Marginal Relevance (DL-MMR) algo-
rithm to better control summary lengths. This
algorithm combines the query relevance with
diverse target lengths in retrieval-augmented
summarization. Unlike previous methods that
necessitate exhaustive exemplar-exemplar rel-
evance comparisons using MMR, DL-MMR
considers the exemplar target length as well
and avoids comparing exemplars to each other,
thereby reducing computational cost and con-
serving memory during the construction of an
exemplar pool. Experimental results showed
the effectiveness of DL-MMR, which consid-
ers length diversity, compared to the origi-
nal MMR algorithm. DL-MMR additionally
showed the effectiveness in memory saving of
781,513 times and computational cost reduc-
tion of 500,092 times, while maintaining the
same level of informativeness.

1 Introduction

Retrieval-augmented generation (RAG) is a promis-
ing approach in natural language processing (NLP)
because it allows large language models (LLMs) to
improve generation quality by leveraging a broader
set of information from external resources via in-
context learning (ICL) (Brown et al., 2020; Han
et al., 2022; Guo et al., 2023; Izacard and Grave,
2021; Qiu et al., 2022; Su et al., 2022; Wang et al.,
2023; Shao et al., 2023). Early efforts to retrieve
exemplars have focused on a nearest neighbor (NN)
method, that compares only query and exemplar
relevance (Shin et al., 2021; Rubin et al., 2022). To
further improve performance, exemplar-exemplar
relevance comparisons or employing a two-stage
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approach for the retrieval have been studied (Ye
et al., 2023; Guo et al., 2023; Ye and Durrett, 2023;
Margatina et al., 2023).

However, despite the success of previous stud-
ies, the impact of summary lengths in the ICL for
retrieval-augmented summarization has not been
yet explored for better controlling summary lengths.
Because better controlling summary lengths can
improve summarization performance (Kwon et al.,
2023; Miculicich et al., 2023), we propose to in-
corporate length diversity to construct a pool for
the retrieval. We first conducted preliminary ex-
periments to investigate how the exemplars’ target
summary lengths affect the summarization. Us-
ing advanced models such as ChatGPT (GPT-4-
turbo-preview),1 the generated summaries closely
matched the retrieved target exemplar lengths, that
implies that exemplar length information is crucial
in retrieval-augmented summarization.

Our preliminary experiments led us to focus
on diverse target length information in the re-
trieval from a pool of exemplars (§3.2). In this
paper, we propose a Diverse Length-aware Maxi-
mal Marginal Relevance (DL-MMR) algorithm for
retrieving exemplars by considering not only query
relevance but also target length diversity. Unlike
the previous MMR method (Carbonell and Gold-
stein, 1998), which computes scores for all pairs of
exemplars to obtain relevance-based diverse exem-
plars, DL-MMR simplifies the process by storing
only the target lengths. By skipping the scoring of
all exemplar-exemplar pairs, DL-MMR addition-
ally lowers computational cost and saves memory
for building the pool of exemplars.

We conducted experiments on three sentence
summarization benchmarks: the Google, BNC,
and Broadcast datasets. Then, we performed an
in-depth analysis to assess the effectiveness of our
DL-MMR algorithm, demonstrating its robustness
across the datasets with large target length gaps.

1https://chat.openai.com/
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Our DL-MMR significantly outperformed the NN
method, that shows the effectiveness of considering
length diversity. Furthermore, DL-MMR was com-
parable to the MMR retrieval method, while saving
the memory of 781,513 times and the computa-
tional cost of 500,092 times without losing infor-
mativeness. Human evaluation results also showed
that considering length diversity is effective for
producing informative and concise summaries in
retrieval-augmented summarization.2

2 Maximal Marginal Relevance

MMR. The NN-based exemplar retrieval approach
considers only the relevance between the exem-
plars and query (Liu et al., 2022). Although this ap-
proach can retrieve the nearest neighbors of mostly
similar exemplars, it may limit diversity. To ad-
dress this issue, MMR selects exemplars that are
relevant to the query while being diverse enough
using the following equation (Ye et al., 2023):

argmaxqj∈D/T (1− λ)Dist(q, qj)− λmaxqi∈T Dist(qj , qi), (1)

where λ is to control the balance between rele-
vance and diversity, and Dist denotes similarity.
Assuming a given query q and that we have already
selected a set of T = {qi} exemplars, we select the
next one using the Equation (1).
Diverse Length-aware MMR. Although better
controlling summary lengths can improve sum-
marization performance (Kwon et al., 2023; Mi-
culicich et al., 2023), it has not been fully ex-
plored yet in retrieval-augmented summarization.
Our preliminary experiments (in Sec. 3.2) demon-
strated that generated summaries generally adhere
to the retrieved target exemplar lengths, highlight-
ing the importance of exemplar length information
in retrieval-augmented summarization, because pre-
vious summarization methods have not assumed
that the desired length is provided.

For this purpose, we propose the DL-MMR al-
gorithm, that chooses exemplars from the exemplar
pool, based on their similarity to a given query,
while ensuring sufficient target length diversity
among exemplars. Considering length diversity
would prevent an LLM from adhering to a specific
length. Algorithm 1 describes the process of choos-
ing exemplars from the pool in the inference step
by utilizing Equation (2) instead:

argminqj∈D/T (1− λ)Dist(q, qj)− λminqi∈T Diff(qj , qi), (2)
2Our code is available at https://github.com/

JuseonDo/DL-MMR.

Algorithm 1 Diverse Length-aware MMR
Input: exemplar pool D = {q1 . . . qn}, given test query q,

the number of exemplar k, length difference Diff and
semantic distance Dist

Output: selected exemplars T = {q1 . . . qk}
1: S := [[Diff(qi, qj)]]qi,qj∈D {pairwise length differ-

ence between exemplars in D}
2: Q := [Dist(q, qi)]qi∈D {distance between query and

exemplars in T}
3: S, Q := Scale(S), Scale(Q) {min-max scaling to trans-

form values to be between 0 and 1}
4: T := {}
5: while |T | < k do
6: q̂ := Equation(2) {get the next exemplar based on Eq

(2)}
7: T.add(q̂)
8: end while
9: return T

where λ indicates a weight between relevance and
length diversity. Diff represents the length differ-
ence. We use min-max scaling to convert values
from Diff and Dist.

While MMR necessitates scoring all pairs of
exemplars within the pool, resulting in a scoring
count of n(n−1)/2, where n indicates the number
of exemplars in the pool (Ye et al., 2023), DL-
MMR calculates only the scoring count for the
target length, which is n. Since the semantic sim-
ilarity is a relative measure, we need to calculate
all exemplar pair similarities for MMR. However,
since the length information is a fixed value, we can
immediately obtain it for DL-MMR. This addition-
ally ensures significant memory and computational
cost saving. However, please note both DL-MMR
and MMR require recursive comparisons for exem-
plars in the inference step.

3 Experiments

3.1 Experimental Settings

Datasets. We used three sentence summariza-
tion benchmarks: Google (Google), Broadcast
(Broad), and BNC (BNC) (Filippova and Altun,
2013; Clarke and Lapata, 2008). The Google
dataset contains automatically created summaries
based on the syntactic dependency trees from news
headlines and the article’s first sentence. The gold
compression ratio for the test dataset is 0.45. The
Broadcast and BNC datasets consist of human cre-
ated summaries. The gold compression ratios for
the test datasets are 0.76 and 0.72, respectively.
Table 1 shows the dataset statistics.
Evaluation Metrics. The summary quality was
evaluated using F1 scores of ROUGE-1 (R-1), -2
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Dataset Training Valid Test Avg Src Len Avg Tgt Len

Google 200,000 1,000 1,000 24.4 (±9.2) 9.8 (±3.1)
Broad - - 1,370 19.8 (±12.8) 15.59 (±9.3)
BNC - - 1,629 27.9 (±15.3) 19.3 (±10.7)

Table 1: Statistics of datasets. The values in parentheses
indicate the standard deviation of both the source and
target lengths, respectively.

(R-2), and -L (R-L) (Lin, 2004), as well as the
BERT score (BS) (Zhang* et al., 2020). To assess
the summary length satisfiability, we calculated
∆CR, which is the difference between the model-
generated and gold compression ratios (Kamigaito
et al., 2018; Kamigaito and Okumura, 2020).
Implementation Details. We used Llama2-13b
-chat-hf (Touvron et al., 2023), Phi-3-Mini
-128K-Instruct (Abdin et al., 2024), and GPT-4
-turbo-preview (OpenAI et al., 2024) as our back-
bone. We used FAISS (Douze et al., 2024) to con-
struct a pool and bart-large (Lewis et al., 2020)
for measuring semantic distance. We used 8 exem-
plars and λ performed best in validation.
Compared Methods. The baseline retrieval meth-
ods were as follows: Zero-shot does not select ex-
emplars from the pool; Random selects exemplars
randomly from the pool; NN selects exemplars
based on the nearest neighbor of the query using
semantic similarity (Liu et al., 2022); MMR ad-
ditionally incorporates relevance-based exemplar-
exemplar diversity (Ye et al., 2023); and DL-
MMR incorporates length diversity. We consid-
ered the length by either the compression ratio
(DL-MMRcr), the length in target word count (DL-
MMRtgt). Since the length in the source can offer
diverse target lengths (Kwon et al., 2023), we also
considered the source word count (DL-MMRsrc).
For both DL-MMRtgt and DL-MMRcr, we used
λ = 0.1. For DL-MMRsrc, we used λ = 0.5. For
MMR, we used λ = 0.5 on Google.3

3.2 Impact of Exemplar Lengths

We first examined how exemplar lengths affect
retrieval-augmented summarization. We used
Google as the dataset and tried to generate sum-
maries by giving exemplars with a specific target
compression ratio or word count. The exemplars
with the desired target compression ratio or word
count were randomly extracted from the pool. Ta-
ble 2 shows the results. LLMs relied on the desired

3Implementation details and validation performances on
other datasets for λ are in Appendix A.

len Llama-2-13b-chat-hf GPT-4-turbo-preview

R-1 R-2 R-L gen R-1 R-2 R-L gen

5 68.1 53.8 67.5 6.4 70.1 54.0 69.5 6.8
10 76.1 64.3 75.2 9.6 75.5 63.5 74.7 10.6
15 73.4 62.6 72.7 12.5 71.4 60.6 70.8 14.0
20 70.4 60.3 69.7 14.8 67.7 57.4 67.1 16.3

30% 74.6 62.2 73.9 37% 75.1 61.7 74.3 40%
50% 75.8 64.0 74.9 44% 75.2 63.2 74.4 48%
70% 73.1 62.0 72.3 54% 71.5 60.4 70.9 60%
90% 67.7 57.3 67.0 66% 66.3 56.1 65.7 74%

Table 2: Affect of exemplar lengths. len and gen indicate
the desired length or ratio, and the generated length or
ratio, respectively.

Data Method R-1 R-2 R-L BS ∆ CR Cost

Mem Timec Timei

Google

Zero-Shot 66.8 54.8 65.7 0.68 23.1 - - -
Random 75.2 63.5 74.5 0.76 -3.8 - - 0m02s

NN 78.7 67.9 77.9 0.79 -3.1 - - 17m58s

MMR 78.9 68.7 78.2 0.79 -2.8 372G 11h06m 2h14m

DL-MMRcr 78.0 67.3 77.3 0.78 -1.5 3M 0m25s 17m58s
DL-MMRtgt 79.1 69.0† 78.5 0.79 -0.7† 476K 0m00s 17m58s
DL-MMRsrc 78.0 68.1 77.5 0.78 -1.0 588K 0m00s 17m58s

Broad

NN 80.1 66.2 78.8 0.77 -4.5 - - 0m04s

MMR 80.1 65.4 78.2 0.76 4.6 25M 0m28s 0m17s

DL-MMRcr 78.7 64.5 77.3 0.76 -6.5 28K 0m00s 0m04s
DL-MMRtgt 81.9† 68.1† 80.7† 0.78 0.4† 8K 0m00s 0m04s
DL-MMRsrc 81.5 67.6 80.4 0.78 -1.8 8K 0m00s 0m04s

BNC

NN 74.5 58.8 72.1 0.69 -6.2 - - 0m03s

MMR 75.8 59.7 73.0 0.70 -1.5 18M 0m22s 0m14s

DL-MMRcr 73.5 57.9 71.0 0.68 -8.9 20K 0m00s 0m03s
DL-MMRtgt 76.6† 61.5† 74.3† 0.71 0.1† 4K 0m00s 0m03s
DL-MMRsrc 76.0 60.8 73.6 0.70 -2.6 4K 0m00s 0m03s

Table 3: Experimental results using zero-shot, ran-
dom, NN, MMR, and DL-MMR on Llama2-13b-chat-
hf. Mem denotes the memory required to create the
exemplar pool. Timec and Timei denote the time
spent in constructing and loading exemplars in the in-
ference step, respectively. † denotes the significant
improvement (p<0.05) compared with NN. We used
paired-bootstrap-resampling with 100,000 random sam-
ples (Koehn, 2004).

target compression ratio or word count in exem-
plars. These preliminary experiments led us to
consider length diversity for retrieval-augmented
summarization because typical summarization does
not have specific target length information. Further-
more, both Llama-2-13b and GPT-4 faced difficul-
ties when the exemplar lengths or ratios are large.

3.3 Retrieval-augmented Summarization

Table 3 shows the performance of Llama-2-13b-
chat-hf on Google, Broad, and BNC. For Google,
we used the Google training dataset as a pool. For
Broad and BNC without their own training dataset,
we used BNC and Broad datasets as a pool, respec-
tively. DL-MMR significantly outperformed NN
in R-2 and ∆CR. Considering length diversity for
the retrieval improves ROUGE scores, though it
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Method R-1 R-2 R-L BS ∆ CR

NN 76.0 65.2 75.5 0.75 -4.7

MMR 75.5 64.9 75.0 0.75 -4.8

DL-MMRcr 75.3 64.6 74.8 0.74 -2.6
DL-MMRtgt 76.8 66.3† 76.3 0.76 -2.7†

DL-MMRsrc 74.2 63.1 73.5 0.73 -4.8

Table 4: Experimental results with Phi-3-mini-128k-
instruct on Google. The notations are the same as those
in Table 3.

NN MMR DL-MMRtgt Gold

Conc. 3.52 3.59 3.60† 3.54
Infor. 3.54 3.51 3.57 3.60

Table 5: Human evaluation results. The notations are
the same as those in Table 3.

does not always match the gold length. Utilizing
the length in target word count outperformed the
compression ratio and the length in source word
count, which indicates the target length informa-
tion is crucial in retrieval-augmented summariza-
tion. Furthermore, DL-MMRtgt was comparable to
MMR while using 781,513 times less memory and
being 500,092 times and 7 times faster than MMR
in the construction and inference steps on Google,
respectively. Table 4 shows the performance of
the Phi-3-mini-128k-instruct model. DL-MMRtgt

significantly outperformed both NN and MMR.

4 Analysis

Human Evaluation and Case Study. We sampled
100 sentences from Google for human evaluation.
We assigned 40 evaluators, all of whom have ob-
tained both a US high school and a US bachelor’s
degree, to rate the results from 1 to 5 (5 is the
best) for conciseness (Conc) and informativeness
(Infor). Table 5 shows the results. Considering
diverse lengths is essential for producing concise
and informative summaries.Table 6 shows the re-
trieved exemplars using DL-MMRtgt and MMR. It
can retrieve exemplars with diverse target lengths.
Impact of Target Length Gaps. Since Google
has a rather different compression ratio from Broad
and BNC with similar compression ratios, we per-
formed more experiments on Broad and BNC with
the Google training dataset as a pool, to investigate
the effect of large target length gaps. Table 7 shows
the results. While retrieval with the use of DL-
MMRcr and DL-MMRtgt is effective for summa-
rization on both Broad and BNC, NN, DL-MMRsrc,

Source: Child mortality rates are dropping but are still high in some parts of the world.

Retrieved Exemplars.
1. SRC w/ DL-MMRtgt: Some of the most vulnerable children are still waiting too long

for adoption placements.
TGT w/ DL-MMRtgt: Some of the vulnerable children are still waiting too long for
placements.
SRC w/ MMR: Some of the most vulnerable children are still waiting too long for
adoption placements.
TGT w/ MMR: Some of the vulnerable children are still waiting too long for placements.

2. SRC w/ DL-MMRtgt: Spanish fresh produce exports fell by four per cent year on year
during the first quarter of 2009.
TGT w/ DL-MMRtgt: Spanish exports fell.
SRC w/ MMR: Cholera is surging again in parts of the world, a World Health
Organization expert said Thursday, pointing to epidemics in Nigeria and Cameroon.
TGT w/ MMR: Cholera is surging in parts of the world.

3. SRC w/ DL-MMRtgt: Children have gone missing from hospitals in Haiti raising
fears of trafficking for adoption abroad.
TGT w/ DL-MMRtgt: Children have gone missing from hospitals in Haiti.
SRC w/ MMR: New estimates show the US has the seventh highest cancer rate in the world.
TGT w/ MMR: The US has the seventh highest cancer rate in the world.

4. SRC w/ DL-MMRtgt: The World Bank has warned that world poverty is much greater
than previously thought.
TGT w/ DL-MMRtgt: Poverty is greater than previously thought.
SRC w/ MMR: Birth rates have dropped for a third year in a row in the United States.
TGT w/ MMR: Birth rates have dropped for a third year in a row.

5. SRC w/ DL-MMRtgt: The American Academy of Environmental Medicine has
released its latest position paper on electromagnetic field and radiofrequency health
effects calling for immediate caution regarding smart meter installations.
TGT w/ DL-MMRtgt: The American Academy of Environmental Medicine has
released its paper on field and effects calling for immediate caution regarding smart
meter installations.
SRC w/ MMR: One in three children are now living in poverty and the figures are
set to rise as budget cuts kick in, ministers were warned.
TGT w/ MMR: One in three children are now living in poverty.

6. SRC w/ DL-MMRtgt: British women are more likely to die in childbirth than those
in the former communist state of Slovenia, new research has shown.
TGT w/ DL-MMRtgt: British women are more likely to die in childbirth than those
in the former communist state.
SRC w/ MMR: The rapid rise in child obesity may be levelling off, according to figures.
TGT w/ MMR: The rise in child obesity may be levelling off.

7. SRC w/ DL-MMRtgt: World Vision says as of today six million people are affected
by new flooding in Pakistan.
TGT w/ DL-MMRtgt: Six million people are affected by new flooding in Pakistan.
SRC w/ MMR: Streetism has become one of the major social problems facing humanity
all over the world.
TGT w/ MMR: Streetism has become one of the major social problems facing humanity.

8. SRC w/ DL-MMRtgt: Birth rates have dropped for a third year in a row in the United States.
TGT w/ DL-MMRtgt: Birth rates have dropped for a third year in a row.
SRC w/ MMR: A Congolese warlord has been jailed for 14 years by the International
Criminal Court for using child soldiers.
TGT w/ MMR: A warlord has been jailed for using child soldiers.

DL-MMRtgt: Child mortality rates are dropping.
MMR: Child mortality rates are still high in some parts of the world.
Gold: Child mortality rates are dropping.

Table 6: Retrieved exemplars and output of Llama-2-
13b-chat-hf from Google.

and MMR encounter difficulties with length gener-
alization. This indicates the importance of consid-
ering length diversity for retrieval-augmented sum-
marization. However, ∆CR was not sufficiently
met even when using DL-MMRtgt. Table 8 shows
the results when we separated the test dataset into
two, shorter or longer than the average target length
(11 (Ghalandari et al., 2022)) in Google. Due to the
relatively short summaries in Google used for the
pool, even DL-MMRtgt encounters difficulties for
relatively longer summaries. The results indicate
that further improvements would be desirable for
constructing a pool by considering target lengths
in retrieval-augmented summarization.

Impact of Number of Exemplar. We conducted
further experiments to better understand the im-
pact of the number of exemplars on performance.
Table 9 shows the results. We observed that
at least four exemplars are required to improve
performance while ensuring diversity in retrieval-
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Data Method R-1 R-2 R-L BS ∆ CR

Broad

NN 67.0 52.9 65.6 0.67 -22.8

MMR 67.5 53.4 66.1 0.67 -23.8

DL-MMRcr 71.9 57.6 70.2 0.71 -16.51
DL-MMRtgt 73.4† 60.1† 72.2† 0.71 -11.8†

DL-MMRsrc 69.2 55.7 67.9 0.69 -19.0

BNC

NN 61.3 47.3 59.8 0.60 -27.1

MMR 60.5 46.3 58.9 0.59 -27.2

DL-MMRcr 65.5 51.3 63.7 0.63 -19.7
DL-MMRtgt 67.5† 53.6† 65.9† 0.64 -17.0†

DL-MMRsrc 61.7 48.0 60.2 0.60 -23.5

Table 7: Experimental results with Llama-2-13b-chat
on Broad and BNC using the Google as a pool.

Data tgt len R-1 R-2 R-L BS ∆ CR cnt

Broad 0∼11 79.4 64.2 78.4 0.77 -0.6 718
12∼ 66.8 55.5 65.4 0.66 -24.1 652

BNC 0∼11 76.6 59.6 75.3 0.75 -0.5 487
12∼ 63.6 51.1 61.9 0.61 -23.9 1,142

Table 8: Experimental results with Llama-2-13b-chat
using DL-MMRtgt. The cnt indicates the number of
instances within each range.

augmented summarization.4

5 Related Work

Length Constraint. Text summarization has
gained attention for controlling the output sequence
length to produce concise summaries while preserv-
ing informativeness, because users often consider
desired output lengths (Kikuchi et al., 2016; Takase
and Okazaki, 2019; Kwon et al., 2023; Miculicich
et al., 2023). Recently, LLMs have demonstrated
remarkable zero-shot task-solving abilities, espe-
cially in instruction-based settings (Brown et al.,
2020; Radford et al., 2019). Consequently, numer-
ous studies have leveraged instruction-based ap-
proaches to control output sequence length, either
by directly specifying the desired length (Juseon-
Do et al., 2024), or by incorporating multiple con-
trol types such as constraints like greater or smaller
than a given value (Jie et al., 2024).
Retrieval-Augmented Generation (RAG). RAG
has been recognized as a promising method and has
been investigated in various NLP tasks (Lee et al.,
2019; Izacard and Grave, 2021; Rubin et al., 2022;
Guo et al., 2023; Buettner and Kovashka, 2024).
The core idea is to improve the quality of text gen-
eration by conditioning LLMs on carefully selected
external exemplars. Preivous studies focused on

4Additional experimental results are in Appendix B.

Num Method R-1 R-2 R-L ∆ CR

2

NN 75.5 63.3 74.6 -3.4
MMR 75.3 62.9 74.5 -2.8

DL-MMRcr 71.6 59.6 70.8 4.0
DL-MMRtgt 73.2 62.2 72.4 7.4
DL-MMRsrc 75.7 64.2 75.0 3.0

4

NN 76.7 65.2 76.0 -3.6
MMR 77.3 65.8 76.6 -3.5

DL-MMRcr 76.8 65.7 76.0 -0.2
DL-MMRtgt 76.2 65.5 75.4 2.8
DL-MMRsrc 77.2 66.6 76.4 0.6

6

NN 77.8 66.9 77.1 -3.2
MMR 77.7 66.6 77.0 -3.0

DL-MMRcr 78.0 67.7 77.4 -1.2
DL-MMRtgt 78.3 68.0 77.7 -0.4
DL-MMRsrc 77.8 68.0 77.3 -0.01

8

NN 78.7 67.9 77.9 -3.1
MMR 78.9 68.7 78.2 -2.8

DL-MMRcr 78.0 67.3 77.3 -1.5
DL-MMRtgt 79.1 69.0 78.5 -0.7
DL-MMRsrc 78.0 68.1 77.5 -1.0

10

NN 79.0 68.9 78.5 -2.9
MMR 79.3 69.2 78.7 -2.9

DL-MMRcr 78.7 68.6 78.1 -2.0
DL-MMRtgt 79.3 69.5 78.9 -0.8
DL-MMRsrc 78.9 69.5 78.5 -1.4

Table 9: Experimental results of Llama-2-13b-chat-hf
on Google in changing the number of exemplars.

retrieving the most relevant exemplars, which can
cause bias, based solely on query–exemplar similar-
ities (Rubin et al., 2022; Liu et al., 2022; Shin et al.,
2021). Alternatively, a recent work considered
exemplar-exemplar similarities with MMR (Gold-
stein and Carbonell, 1998) for a better chance to
illustrate the required reasoning process (Ye et al.,
2023).5

6 Conclusion

We revealed that considering length diversity is
crucial for retrieval-augmented summarization. To
incorporate target length information, we proposed
the DL-MMR algorithm, which allows us to obtain
a wider range of exemplars with diverse lengths.
Our analysis showed that DL-MMR outperforms
MMR, resulting in memory and computational cost
saving without losing informativeness.

5Appendix C introduces other related work.
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Limitations

While our DL-MMR was designed to better con-
trol summary lengths with reducing computational
and memory costs, the performance gains might
diminish as the number of exemplars decreases for
obtaining length diversity. We conducted experi-
ments, and the details are in Appendix D.

In addition, implementing DL-MMR may entail
greater complexity than the NN method. To re-
solve this issue, we will release our code for future
studies. Furthermore, while our DL-MMR works
effectively in English, it might not be directly appli-
cable to languages not covered by the exemplars in
our database, especially those with different syntac-
tic and morphological structures. We will extend
our DL-MMR to multiple languages in the future
to evaluate its robustness.
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A Implementation Details and
Hyperparameter Selection

Table 10 shows instructions for summarization.
For implementation details, we used NVIDIA

RTX A6000. For the decoding step, we did set
dosamples=False, length-penalty=1.0. The CPU
used for calculations is an Intel 4th Gen Xeon Scal-
able Processor (16-core).

Table 11 shows the performance of the Llama-2-
13b-chat-hf model on the Google validation dataset.
Tables 12 and 13 show the performance of the
Llama-2-13b-chat-hf model on Broad with using
the BNC training dataset as the pool and BNC with
using the Broad training dataset as the pool, re-
spectively. We selected λ based on the best average
ROUGE scores for each dataset.

Followings are the computational costs between
MMR and our DL-MMR in Table 3.
Memory Usage.

• MMR Memory: 372 GB (or 372,000,000 KB)

• DL-MMR Memory: 476 KB

• Ratio: 781512.6

Time Spent to Score Similarities.

• MMR: 40007.4 seconds

• DL-MMR: 0.08 seconds

• Ratio: 500,092.5

Time Spent to Retrieve Exemplars in the Infer-
ence Step.

• MMR: 8090.6 seconds

• DL-MMR: 1077.7 seconds

• Ratio: 7.5

B Comparison to GPT-4

Table 14 shows the results on Google with using
the Google training dataset as the pool. Our DL-
MMRtgt using Llama2-13b-chat-hf, which is rel-
atively small, achieved comparable performance
compared to NNgpt4, which uses ChatGPT (GPT-4-
turbo-preview). This indicates that considering di-
verse target length information is crucial for produc-
ing concise and informative summaries in retrieval-
augmented summarization.

C Other Related Work

Sentence Compression. Sentence compression
is the task of generating concise and informative
summaries by removing unimportant words while
preserving fluency. Following the success of tree
trimming (Jing, 2000; Knight and Marcu, 2000;
Hori and Furui, 2004; Clarke and Lapata, 2006;
Berg-Kirkpatrick et al., 2011; Filippova and Al-
tun, 2013), Filippova et al. (2015); Klerke et al.
(2016); Wang et al. (2017) demonstrate the effec-
tiveness of end-to-end neural network-based ap-
proaches. Kamigaito et al. (2018) introduce re-
cursive attention modules that consider syntactic
heads (Kamigaito et al., 2017), which can be ex-
tended to document-level summarization (Ishigaki
et al., 2019), similar to graph neural networks in
Kwon et al. (2021) leverage parsed discourse trees
(Kobayashi et al., 2020, 2021). Kamigaito and
Okumura (2020) demonstrate the effectiveness of
syntactic recursive attention modules combined
with the pre-trained language model BERT (De-
vlin et al., 2019). Reflecting the success of large
language models (LLMs), Juseon-Do et al. (2024)
highlight the usefulness of LLMs and their ability
to control output length in sentence compression.
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Task Instruction

Sentence Summarization Sentence:\n{src}\nSummary of the sentence without the
less important words would be:\n

Table 10: Instruction format. The “src” indicates the placeholder for a source sentence.

Method R-1 R-2 R-L BS ∆ CR

Zero-shot 68.7 57.2 67.9 0.69 22.4
Random 76.5 64.8 75.7 0.76 -4.4

NN 78.8 68.0 78.1 0.78 -3.8

MMR 79.4 68.8 78.7 0.78 -3.9

DL-MMRcr 79.2 68.6 78.7 0.78 -2.0
DL-MMRtgt 79.9† 69.5† 79.2† 0.79 -1.6†

DL-MMRsrc 79.7 70.0 79.1 0.79 -1.5

Table 11: Experimental results of Llama-2-13b-chat-hf
on the Google validation dataset with using the Google
training dataset as the exemplar pool. The notations are
the same as those in Table 3.

Method λ R-1 R-2 R-L ∆ CR

NN 0.0 80.1 66.2 78.8 -4.5

MMR

0.1 79.8 65.2 78.2 -5.6
0.2 79.8 65.6 78.3 -5.2
0.3 79.9 65.9 78.4 -5.1
0.4 79.4 65.4 77.9 -6.0
0.5 79.4 64.9 77.7 -4.5
0.6 79.3 64.9 77.5 -4.1
0.7 79.4 64.9 77.6 -1.5
0.8 79.4 64.9 77.5 1.3
0.9 80.1 65.4 78.2 4.6
1.0 80.1 65.4 78.2 5.5

DL-MMRtgt

0.1 79.9 65.8 78.7 -4.5
0.2 80.4 66.3 78.9 -3.9
0.3 80.7 66.6 79.5 -2.8
0.4 80.7 66.7 79.4 -3.1
0.5 80.7 66.7 79.4 -1.3
0.6 80.6 66.5 79.3 -1.8
0.7 80.6 66.4 79.1 -0.8
0.8 81.3 67.3 80.0 -1.8
0.9 81.9† 68.1† 80.7† 0.4†

1.0 81.5 67.6 80.2 -0.7

Table 12: Experimental results of Llama2-13b-chat-hf
on Broad with using the BNC training dataset as the
exemplar pool. The notations are the same as those in
Table 3.

Method λ R-1 R-2 R-L ∆ CR

NN 0.0 74.5 58.8 72.1 -6.2

MMR

0.1 74.6 58.7 72.1 -6.1
0.2 75.0 59.1 72.6 -5.7
0.3 74.6 58.9 72.1 -5.8
0.4 75.1 59.4 72.6 -4.8
0.5 75.4 59.7 72.9 -4.3
0.6 75.1 59.5 72.6 -4.2
0.7 75.4 59.3 72.7 -4.2
0.8 74.8 58.6 72.0 -4.6
0.9 75.4 59.4 72.6 -3.3
1.0 75.8 59.7 73.0 -1.5

DL-MMRtgt

0.1 74.7 58.9 72.3 -5.1
0.2 75.5 60.0 73.2 -4.3
0.3 75.5 60.1 73.2 -3.6
0.4 75.7 60.6 73.5 -2.6
0.5 76.0 60.9 73.7 -0.9
0.6 76.6† 61.5† 74.3† 0.1†

0.7 76.3 61.4 73.8 -0.2
0.8 76.2 60.8 73.4 -0.2
0.9 76.3 60.8 73.6 -0.4
1.0 76.3 60.0 73.4 0.3

Table 13: Experimental results of Llama2-13b-chat-hf
on BNC with using the Broad training dataset as the
exemplar pool. The notations are the same as those in
Table 3.
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Method R-1 R-2 R-L BERTScore ∆ CR

valid test valid test valid test valid test valid test

Zero-Shot 68.7 66.8 57.2 54.8 67.9 65.7 0.69 0.68 22.4 23.1
Random 76.5 75.2 64.8 63.5 75.7 74.5 0.76 0.76 -4.4 -3.8

NN 78.8 78.7 68.0 67.9 78.1 77.9 0.78 0.79 -3.8 -3.1
NNgpt4 79.8 79.1 68.2 68.1 79.0 78.5 0.79 0.79 -0.7 -0.3

MMR 79.4 78.9 68.8 68.7 78.7 78.2 0.78 0.79 -3.9 -2.8

DL-MMRcr 79.2 78.0 68.6 67.3 78.7 77.3 0.78 0.78 -2.0 -1.5
DL-MMRtgt 79.9 79.1 69.5† 69.0 79.2 78.5 0.79 0.79 -1.6 -0.7
DL-MMRsrc 79.7 78.0 70.0 68.1 79.1 77.5 0.79 0.78 -1.5 -1.0

Table 14: Experimental results based on zero-shot, random, NN, MMR, and DL-MMR based on Llama-2-13b-chat-
hf and GPT-4-turbo-preview. † indicates the improvement is significant (p<0.05) compared with NNgpt.
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