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Abstract

In active retrieval (AR), large language models
(LLMs) need first assess whether they possess
knowledge to answer a given query, to decide
whether to invoke a retrieval module. Exist-
ing methods primarily rely on training clas-
sification models or using the confidence of
the model’s answer to determine knowledge
boundaries. However, training-based methods
may have limited generalization, and our anal-
ysis reveals that LL.Ms struggle to reliably as-
sess whether they possess the required infor-
mation based on their answers, often biased
by prior cognitive tendencies (e.g., tokens’ se-
mantic preferences). To address this, we pro-
pose Debiased Historical In-Context Learning
(DH-ICL) to identify knowledge boundaries
in AR. DH-ICL aims to reframe this self-
awareness metacognitive task as a structured
pattern-learning problem by retrieving similar
historical queries as high-confidence in-context
examples to guide LLMs to identify knowl-
edge boundaries. Furthermore, we introduce
a historical bias calibration strategy that lever-
ages deviations in the model’s past response
logits to mitigate cognitive biases in its current
knowledge boundary assessment. Experiments
on four QA benchmarks show that DH-ICL
achieves performance comparable to full re-
trieval on LLaMA with only half the number
of retrievals, without any additional training.

1 Introduction

In open-domain question answering (Zhang et al.,
2023) and knowledge-intensive tasks (Yin et al.,
2022; Zhao et al., 2024b), active retrieval
(AR) (Asai et al., 2023) enhances the accuracy and
efficiency of retrieval by having large language
models (LLMs) (Yang et al., 2024; GLM et al.,
2024; Lv et al., 2024b) first assess whether they pos-
sess sufficient knowledge to answer a query before
deciding whether to invoke an external retrieval
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1 S Input Large language Model ~ [=3 Output

Question 1: Which ... of England ?
n e, — (o] —
otherwise output ' false’ .

Proportion of answer 'true": 97%

If you can answer, output ' )
fy 7 Proportion of an:

Prediction accuracy
2 S Input Large language Model =2 Output
Question 1: Which ... of England ? Proportion of answer ' ore': 67%
Ifyou can answer, output o', — (! — Proportion o - rile' 33%
otherwise output ' ile
Prediction accuracy: 54%

Ns
5 Input Large language Model

Question 1: Which ... of England ?
Wihether you can answer, just > (> ,
state your judgment.

Figure 1: The diagram of LLM’s self-knowledge assess-
ment on KB-SAT, where known and unknown questions
are evenly split. For different tokens, the model has ob-
vious prior preferences. For case (3), we use ChatGPT
to identify whether the model’s output expresses “can”
or “can’t” based on its response.
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module. Unlike traditional retrieval-augmented
generation (RAG) methods (Gao et al., 2023; Lin
et al., 2023; Yoran et al., 2024), which always call
an external knowledge base, AR allows the LLM to
autonomously decide whether to retrieve, avoiding
unnecessary retrieval overhead while reducing the
risk of hallucinations caused by overreliance on
model knowledge.

A crucial challenge in AR is enabling the LLMs
to accurately identify their knowledge boundaries.
Current methods are primarily divided into two cat-
egories: (1) training independent classifiers (Cheng
et al., 2024a; Asai et al., 2023; Wang et al., 2023;
Liu et al., 2024), which use a small classification
model to predict whether retrieval is needed based
on the input query, and (2) according to the model
response (Jiang et al., 2023; Wang et al., 2024;
Yao et al., 2024), which directly assess whether the
LLM has sufficient knowledge by evaluating the
confidence of its generated answer.

Despite of the progress of these methods, two
core issues remain. First, the generalization ability
of training based methods is limited. Classifiers
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are typically trained on specific datasets or LLMs’
hidden state features, leading to weak generaliza-
tion across different domains or LLLMs, which im-
pacts retrieval decisions and deployment efficiency.
Second, LL.Ms inherently struggle with this self-
awareness metacognitive task. Our experimental
analysis in Section 2 reveals that LLMs face dif-
ficulties in assessing their own knowledge bound-
aries based on answer confidence, and are heavily
influenced by prior cognitive biases. For exam-
ple, we found that label token semantics have a
noticeable impact on model predictions, as shown
in Figure 1. When using tokens such as “true/false”
or “ore/ile” to indicate whether the model pos-
sesses knowledge, LLMs’ judgment of its knowl-
edge boundary changes considerably.

To address these issues, we propose Debiased
Historical In-Context Learning (DH-ICL) for self-
knowledge boundary assessment in AR. Rather
than requiring LLMs to directly assess their knowl-
edge boundaries, a metacognitive task they inher-
ently struggle with, DH-ICL transforms this into
a structured pattern-learning task. Specifically, it
retrieves historical queries that were previously an-
swered as high-confidence in-context examples to
prompt the LLM in identifying knowledge bound-
aries. This approach leverages the strengths of
LLMs in pattern recognition rather than relying
on their metacognitive abilities. Furthermore, to
mitigate LLMs’ prior cognitive biases in knowl-
edge boundary prediction, we introduce a historical
bias calibration strategy. This strategy corrects the
model’s bias in knowledge boundary assessment
for the current query by collecting the logits biases
induced by the prior knowledge encoded in LLMs’
parameters when responding to historical queries.

We conducted tests using LLMs of sizes 7B
and 13B on four different types of question-
answering (QA) benchmarks. The experimental re-
sults demonstrate that our proposed DH-ICL effec-
tively reduces the number of model retrievals while
maintaining overall performance. Notably, on the
TriviaQA dataset, the LLaMA-2-7B-Chat (Touvron
et al., 2023) model achieved performance equiv-
alent to full retrieval using only half the number
of retrievals. Furthermore, DH-ICL achieves per-
formance on par with training-based SOTA AR
methods without requiring any additional training.

Our contributions are summarized as follows:

(1) We provide a comprehensive analysis of
LLMs’ ability to self-assess knowledge boundaries
and the impact of prior cognitive biases on this

evaluation.

(2) We propose debiased historical in-context
learning (DH-ICL) for self-knowledge assessment
in AR, avoiding relying on LLMs’ metacognitive
abilities by reducing this task to a specific pattern-
learning task.

(3) We introduce a historical bias calibration
strategy, which collects logits deviations from his-
torical QA in-context to correct LLMs’ prior biases
in current knowledge boundary recognition.

(4) Experiments show that, without requiring
additional training, DH-ICL achieves performance
comparable to training-based SOTA methods'.
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Figure 2: Self-knowledge boundary assessment of dif-
ferent LLMs on KB-SAT.

2 Analysis of Whether LL.Ms Know

2.1 Can LLMs Predict Their Own Knowledge
Boundaries?

To examine whether LLMs can reliably assess their
own knowledge boundaries, first, we follow prior
works (Kadavath et al., 2022a) to directly prompt
them to reflect on LLM confidence (i.e., logits) in
answering a given question. We use the following
prompt:

“You are a student being tested. For each ques-
tion provided, first go through a thinking phase
(no need to output specific content). Then, assess
whether you can answer it correctly based on your
knowledge. If you believe you can answer it cor-
rectly, output ‘true’. If you feel your answer might
be incorrect, output 'false’.”

By comparing the logits of “true” and “false”, we
determine whether the model internally categorizes
a question as known or unknown.

To simulate this scenario, we constructed a
test set consisting of 6,000 samples based on the

'The code is released at
lvbotenbest/DH-ICL

https://github.com/
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Figure 3: Impact of label token preferences on LLMs’ self-knowledge boundary assessment.
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Figure 4: Self-knowledge boundary assessment of dif-
ferent LLMs, in which LLMs are not guided to reply to
the preferred token, but are free to answer, and whether
the LLM’s reply is a positive or negative category is
evaluated through GPT-4.

model’s performance in answering TrivialQA with-
out retrieval, with half of the model’s responses be-
ing correct and the other half incorrect. This dataset
is used to evaluate the model’s self-assessment of
its knowledge boundaries, which we refer to as the
Knowledge Boundary Self-Assessment Test Set
(KB-SAT).

As shown in Figure 2, on KB-SAT, LLaMA-2-
7B-Chat achieves an overall accuracy of 50%, yet
exhibits a strong bias toward predicting “true” (over
95%) regardless of actual correctness. LLaMA-2-
13B-Chat achieves a slightly higher accuracy of
56%, but it demonstrates an opposite bias, prefer-
ring to predict “false” (over 75%). These results
indicate that different models exhibit distinct prior

biases in self-knowledge assessment, and their pre-
dictions are unreliable.

2.2 Influence of LLMs’ Prior Biases

To examine whether the observed biases stem from
an intrinsic preference for specific tokens rather
than genuine self-knowledge assessment, we con-
duct experiments using different tokens as labels:
(a) Synonymous tokens (e.g., replacing “true/false”
with “yes/no”); (b) Neutral numerical tokens (e.g.,
using “1/2” instead of “true/false”); (c) Reversed
tokens (e.g., assigning “true” to denote “false”).
The experimental results, shown in Figure 3, re-
veal that modifying the label tokens significantly
impacts the model’s prediction tendency. However,
despite these label changes, the overall accuracy
remains limited to 47%-58%.

2.3 Can LLMs Improve Self-Assessment
Without Including Specific Tokens?

Given that explicit tokens introduce biases, we
investigate whether LL.Ms can better assess their
knowledge boundaries without being constrained
by predefined tokens. To this end, we modify the
self-assessment prompt,

“You are a student being tested. For each given
question, assess based on your knowledge whether
you can answer it correctly. Just state your judg-
ment.”
to prevent the model from explicitly generating
“true” or “false” and instead allow it to freely ex-

19518



Prompt: For each given question, assess based on your knowledge whether you can
answer. If you believe you can answer it correctly, output 'true’, otherwise output 'false’.
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Figure 5: Overview of DH-ICL. Avoiding direct self-knowledge boundary assessment, DH-ICL reformulates this
metacognitive task into a specific pattern-learning task. It acquires prior similar questions from historical QA logs
as in-contexts, and corrects the model’s bias in self-assessment for the current question by leveraging the biases

collected in historical in-context instances.

press its confidence. We then use GPT-4 as an
external evaluator to classify the responses into
affirmative (true) or negative (false) categories.

As shown in Figure 4, even without introducing
specific tokens, the overall prediction accuracy re-
mains unsatisfactory (56%), reinforcing the notion
that LLMs struggle with accurately assessing their
own knowledge boundaries.

2.4 Observations and Insights

From the experimental analysis, we derive the
following key insights: (a) LLMs’ responses are
heavily influenced by prior cognitive biases. For
instance, LLaMA2-13B-Chat exhibits a strong
preference for predicting true over false, whereas
LLaMA2-7B-Chat favors the opposite. These bi-
ases likely stem from variations in the training data
used during pretraining and fine-tuning. (b) LLMs
inherently struggle with metacognitive reasoning
(i.e., assessing whether they know something). Re-
gardless of how we format the query that using
“true/false”, “yes/mo”, “0x11/0x12”, etc., or even
prohibiting explicit label generation, the proportion
of true and false responses varies significantly, yet
accuracy consistently hovers between 47%-57%.
These findings highlight a fundamental limita-
tion: LLMs’ self-knowledge assessment is unre-
liable and suffer from ingrained prior cognitive
biases. This motivates the need for our proposed
DH-ICL to reframe self-knowledge assessment as
a structured pattern-learning task rather than direct
self-reflection and mitigate these biases.

3 Debiased Historical In-Context
Learning Method

3.1 Collecting Historical Response Logs

Let a widely used LLM, denoted as M, accumu-
late a history of responses to numerous queries
over time. We simulate this scenario using pub-
licly available QA datasets. For a given question
Qnew, if M generates a response that matches the
ground truth answer, this indicates that the ques-
tion falls within the model’s self-knowledge scope.
In this case, we annotate it as a positive instance
(e.g., labeled as “true”). Conversely, if M’s re-
sponse deviates from the ground truth, it signifies
that the model cannot reliably answer the question
within its self-knowledge scope, and we annotate
it as a negative instance (e.g., labeled as “false”).
Using this annotation scheme, we construct a his-
torical response experience set for M, denoted as
H = {Ql : Rl,QQ : RQ, ,Qn : Rn}, where Qz
represents a historical question, and R; represents
whether it can be answered (e.g. true or false).

Additionally, certain knowledge evolves over
time. For example, the question “Who is the cur-
rent President of the United States?”” changes over
time, whereas the model’s knowledge remains fixed
at the point of its last training data update. There-
fore, our historical response experience set includes
time-sensitive questions, specifically selecting in-
stances where the model provided incorrect an-
swers. The prompt used is as follows:

You are a student being tested. For each given
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question, assess based on your knowledge whether
you can answer it correctly. If you believe you
can answer it correctly, output ‘true’. If you are
unsure whether you can answer it correctly, output
‘false’. Additionally, if the question is asking about
a recent event, for example, if words like recently,
latest, or currently appear, also output 'false’.

The advantage of our method lies in the con-
tinuous updating of historical experience logs as
the user interacts with the LLM, which leads to
increasingly accurate judgments.

3.2 Historical In-Context Learning

As shown in Figure 5, we utilize historical re-
sponse logs H to guide in-context learning, en-
abling the LLM to assess whether a given question
falls within its knowledge boundary. This approach
leverages the model’s pattern-learning capabilities,
transforming a metacognitive task into a specific
pattern task. Specifically, given a current question
(new, retrieve historical logs from H and select the
top k£ most similar previously answered questions
to construct the in-context examples. By incorpo-
rating historical questions with high similarity to
(new, We provide relevant contextual cues to the
model. These retrieved queries may contain similar
entities or exhibit comparable question structures,
thereby enhancing the model’s ability to assess
whether it can correctly answer. A detailed exam-
ple is provided in Appendix C.

Notably, pairing historical in-context learning
with historical bias calibration in Section 3.3 is
particularly effective, as models may exhibit biases
in their self-assessments for similar queries. If a
model has errors in evaluating historical queries,
it is more likely to exhibit similar biases when

judging Qpew -
3.3 Historical Bias Calibration

In the historical in-context learning approach de-
scribed in Section 3.2, despite providing QA ex-
emplars, the model’s prior cognitive bias may still
misalign with the intended responses. For example,
as illustrated in Figure 5, we provide an in-context
example where question () is labeled as “false”,
indicating that the model lacks the necessary knowl-
edge to answer it. However, at the prediction posi-
tion (i.e. the token before “true/false”), the logits
value for “true” exceeds that for “false”, implying
that the LLM mistakenly believes it can answer the
question.

To address this issue, we introduce a historical

bias calibration strategy, which corrects the LLM’s
current prediction bias by leveraging its historical
in-context prediction logits deviations. Specifically,
for the ¢-th QA pair in the in-context examples, we
compute the bias correction values as follows:

if True and (2™ — /%) < 0

false true
- 2z — z
51_1 ue { 0 i ( l)

0, otherwise
siase _ 24— 2%, if False and (2 — 2) > 0
oo, otherwise
2
where 2™ and 2f41¢ denote the logits produced by

the LLM for tokens corresponding to “true” and
“false” in the 7-th example, respectively. Similarly,
Sirue and false represent their logits” biases.

Then the average prediction bias §Ue, §false
across all k historical in-context examples are com-
puted as follows:

Z 6:;]'\.!6

strue i
6 = Ntrue (3)

Z 61_'alse
cfalse i

g = Nfalse (4)
where N and N denote the number of
ground truth “true” and “false” cases in the in-

context examples, respectively.
Finally, for the current question (Jpew, the log-
its of tokens 2™, 2f% for true and false in LLM

could be calibrated by adjusting them based on the
historical mean bias:

true true Strue

Znew = Znew — 0 (5)
false false Tfalse

Znew — “new 9 (6)

By collecting similar biases in historical in-
context learning, LLM’s prior cognitive preference
for the current query could be mitigated, thereby
improving its ability to accurately predict its own
knowledge boundaries.

4 Experiments

4.1 Datasets

We select four different types of QA datasets to
evaluate the effectiveness of our proposed DH-ICL
in real-world downstream tasks and its adaptabil-
ity to various active retrieval scenarios: TriviaQA
(Joshi et al., 2017), WebQuestions (WQ) (Berant
et al., 2013), TAQA (Zhao et al., 2024a), and
FreshQA (Vu et al., 2023). Notably, TAQA and
FreshQA contain time-sensitive questions.

To simulate historical response logs, we con-
struct a query set from a subset of the training sets
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Type Method TriviaQA wWQ TAQA FreshQA AVG
Llama-2-7B Models
Never-Ret 62.15 (0%) 59.79 (0%) 16.43 (0%) 35.64 (0%) 43.50
) Always-Ret 68.73 (100%) 53.99 (100%) 34.49 (100%) 65.35 (100%) 55.64
Active Retrieval
Self-RAG (Asai et al., 2023) 61.68 (53.5%) 43.01 (61.9%) 11.09 (42.1%) 44.88 (51.2%) 40.17
Training SKR (Wang et al., 2023) 65.39 (48.9%) 58.96 (26.8%) 30.63 (79.9%) 48.84 (39.3%) 50.96
UAR (Cheng et al., 2024a) 69.02 (50.1%) 60.53 (25.0%) 34.46 (99.7%) 59.74 (78.5%) 55.94
Non-Training FLARE (Jiang et al., 2023) 65.98 (58.8%) 55.46 (67.9%) 28.08 (63.5%) 57.76 (57.4%) 51.82
DH-ICL (Ours) 68.52 (49.8%) 59.74 (29.1%) 32.89 (91.6%) 59.10 (77.2%) 55.06
Llama-2-13B Models
Never-Ret 63.18 (0%) 57.63 (0%) 11.14 (0%) 34.98 (0%) 41.73
) Always-Ret 71.02 (100%) 54.08 (100%) 34.20 (100%) 62.05 (100%) 55.34
Self-RAG (Asai et al., 2023) 62.53 (30.0%) 42.37 (51.9%) 15.42 (37.0%) 39.60 (39.3%) 39.98
Training SKR (Wang et al., 2023) 67.21 (49.2%) 56.20 (31.5%) 31.66 (89.2%) 50.17 (45.9%) 51.31
UAR (Cheng et al., 2024a) 71.71 (48.5%) 59.20 (31.2%) 34.14 (99.6%) 55.45 (73.3%) 55.13
Non-Training FLARE (Jiang et al., 2023) 68.00 (54.9%) 53.64 (69.6%) 25.40 (60.9%) 50.17 (55.8%) 49.30
DH-ICL (Ours) 70.42 (46.8%) 58.71 (35.2%) 33.60 (97.5%) 58.40 (83.8%) 55.28

Table 1: Comparisons of downstream tasks performance. Never-Ret means that retrieval augmentation is never
used during generation, while Always-Ret means that retrieval augmentation is used in every generation.

of TriviaQA and TAQA, consisting of 50K samples
from TriviaQA and the entire 10K samples from
TAQA. The tested LLMs are then prompted to an-
swer these queries, generating ten responses per
question. If all responses are correct, the question
is labeled as true; otherwise, it is labeled as false.

4.2 Metrics

Following prior work (Cheng et al., 2024a; Asai
et al., 2023; Schick et al., 2023), we evaluate ac-
curacy by matching whether the golden answer is
in the generated text on TriviaQA and WQ. For
TAQA and FreshQA, since gold answers are too
long for direct lexical matching, we use ChatGPT
for correctness evaluation, where the evaluation
template are adopted from prior work and provided
in Appendix A. In addition, we report the rate of
samples where retrieval was triggered.

4.3 Baselines

We compare our proposed method against several
recent baselines: (a) Training-based methods:
Self-RAG (Asai et al., 2023), which trains LLMs to
generate special tokens during inference to reflect
on whether retrieval is necessary for knowledge-
intensive tasks; SKR (Wang et al., 2023), which
trains a BERT (Devlin, 2018) classifier to iden-
tify knowledge boundaries based on the collected
self-knowledge data (known and unknown) and
triggers external retrieval for unknown questions;
UAR (Cheng et al., 2024a), which employs four
orthogonal classifiers to make comprehensive re-
trieval decisions. (b) Non-training-based meth-

ods: FLARE (Jiang et al., 2023), which deter-
mines the need for external retrieval based on the
model’s confidence in the next sentence genera-
tion. In addition, we also include Never-Ret (never
using retrieving) and Always-Ret (always using
retrieving) for LLMs as baselines.

4.4 Implementation Details

Backbones. We use LLaMA2-7B-Chat’ and
LLaMA2-13B-Chat?, following the same setup as
UAR (Cheng et al., 2024a).

Historical In-Context Acquisition. We encode
each question in historical logs using the bge-
large-en-v1.5 (Xiao et al., 2023) model and store
their embeddings using NumPy*. During infer-
ence, historical in-context examples are retrieved
by encoding the new query with bge-large-en-v1.5
and performing top-k nearest neighbor search via
FAISS (Johnson et al., 2019). Through testing on
the TriviaQA development set with k=10, 20, 30,
40, 50, we found that retrieving 20 historical ex-
amples yielded the best overall performance, while
maintaining a relatively low retrieval rate. There-
fore, we set k=20. The average retrieval time per
query is 0.0083s. Please refer to Appendix B for
RAG and inference details.

4.5 Overall Performance

The overall performance comparison of different
methods is shown in Table 1. In non-training-

Zhttps://huggingface.co/meta-llama/Llama-2-7b-chat-hf
*https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
*https://github.com/numpy/numpy
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Method Time per Sample (s)
UAR (Llama-2-7b) 0.0256
UAR (Llama-2-13b) 0.0481

" DH-ICL (Llama-2-7b) — 0.0440
DH-ICL (Llama-2-13b) 0.0827

Table 2: Time cost to determine if retrieval is required
by the model.

based methods, DH-ICL substantially outperforms
FLARE by an average of 3.24 points on the 7B
model and 6.23 points on the 13B model. More-
over, in training-based methods, DH-ICL achieves
performance comparable to the SOTA method
UAR and clearly outperforms Self-RAG and SKR
across all benchmarks. DH-ICL reduces retrieval
overhead while outperforming Always-Ret in terms
of average accuracy, particularly on the TriviaQA
dataset, where it achieves comparable performance
with only half the retrieval rate. Table 2 lists the
inference time comparison between DH-ICL and
UAR. It can be seen that both our proposed method
and UAR, for both the 7B and 13B models, require
less than 0.1s to decide whether retrieval is needed.

4.6 Performance of Self-Knowledge Boundary
Assessment

This section evaluates the accuracy of knowl-
edge boundary identification before AR on KB-
SAT. Specifically, we incorporate DH-ICL into the
model-confidence-based self-assessment described
in Section 2 and compare it with UAR. As shown
in the experimental results in Table 3, DH-ICL
significantly improves the accuracy of direct self-
assessment and effectively mitigates the prior ten-
dency of models to bias self-knowledge assessment
toward either overly positive or negative categories.
Moreover, DH-ICL achieves performance close
to that of UAR. More importantly, different from
UAR, which requires training a classifier on LLM-
generated logits, the proposed method operates
without additional training, offering better general-
ization across different domains and models.

4.7 Ablation Analysis

The following ablation studies were conducted to
analyze the contribution of each component in DH-
ICL: a. Removing the historical bias calibration; b.
Excluding time-sensitive data from the historical
logs; c. Removing the entire historical in-context
learning and directly performing self-assessment.
The ablation results are shown in Table 4. As seen

Method Acc Pred True Num Pred False Num
Ground Truth - 3000 3000
UAR 70.18 3287 2713
Label (true/false)  50.03 5996 4
+DH-ICL 66.87 3522 2478
“Label (12) 5013 598 14
+DH-ICL 67.77 2352 3648
" Label (bar/foo) 5298 5113 887
+DH-ICL 68.02 2417 3583

Table 3: Evaluate the accuracy of self-knowledge as-
sessment on LLaMA-2-7B-Chat. Pred True/False Num
represents the number of instances where the model
predicts whether it knows the answer.

Method TriviaQA WQ TAQA AVG
DH-ICL 68.52 59.74 32.89 53.72

" wlo Bias Calibration 67.96  59.06 3232 5311
w/o Time sensitive 68.50 59.35  31.65 53.17
w/o Historical in-context 62.17 59.79 16.43  46.13

Table 4: Ablation results on LLaMA-2-7B-Chat.

from the results, all components contribute posi-
tively to improving active retrieval accuracy. No-
tably, when historical context retrieval is entirely
removed and the model relies solely on its self-
awareness to decide whether to trigger external re-
trieval, there is a clear drop in performance. These
results demonstrate the effectiveness of DH-ICL in
helping the LLM recognize its knowledge bound-
aries.

4.8 Cold-Start Robustness Analysis

Can the proposed DH-ICL method still be effective
when similar historical cases are unavailable, espe-
cially in cold-start scenarios? To investigate this,
we conducted a controlled experiment: 20 histori-
cal logs were randomly selected from the TriviaQA
training set and fixed as the in-context examples
for all benchmarks across the TriviaQA, WQ, and
TAQA test sets, without performing any similarity-
based historical case retrieval. As shown in Table
5, even with only 20 fixed random logs as con-
text, DH-ICL achieves performance close to that of
full similarity-based retrieval and the Always-Ret
baseline, and clearly outperforms the Never-Ret
baseline. This suggests that the core advantage
of DH-ICL lies in reformulating the metacogni-
tive task into an exemplar-driven pattern learning
problem, rather than depending on high-quality,
domain-specific historical data. Consequently, DH-
ICL is naturally well-suited for cold-start settings,
with generalization and deployment potential.
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Method TriviaQA wQ TAQA AVG
Never-Ret 62.15 (0%) 59.79 (0%) 1643 (0%)  46.12
Always-Ret  68.73 (100%)  53.99 (100%)  34.49 (100%) 52.40
DH-ICL 68.52 (49.8%) 59.74 (29.1%) 32.89 (91.6%) 53.71
"DH-ICL*  66.83 (25.1%) 59.06 (37.7%) 31.50 (84.0%) 52.46

Table 5: Cold-start robustness analysis on LLaMA-2-
7B-Chat. DH-ICL* uses 20 fixed randomly selected
logs from TriviaQA training set as in-context examples
without any similarity-based historical case retrieval.

—+— DC-ICL (Llama-2-Th-chat)
--#- DC-ICL (Llama-2-13b-chat)

10 % 30 r 0 £ £
K Value
Retrieval Ratio Variation with k Value
DC-ICL (Llama-2-Tb-chat)
- DC-ICL (Liama-2-13b-chat)

z

Retrieval Ratio (%)

Figure 6: Variation in accuracy and retrieval ratio of
DH-ICL on TriviaQA with changing in-context count.

4.9 Effect of Historical In-Context Count

How does the length of historical in-context affect
the model’s self-knowledge boundary assessment?
To answer this question, we adjusted the number of
in-context examples to conduct experiments, rang-
ing from k=5 to 70. As can be observed from
the experimental results in Figure 6 that, LLaMA-
7B and 13B models achieve the best performance
when using 20 and 25 in-context examples, respec-
tively. Additionally, as the value of k increases,
the retrieval rate decreases. After k=40, both accu-
racy and retrieval rate tend to stabilize, indicating
that an excessive amount of context does not help
improve the accuracy of the model’s predictions.

4.10 Effect of Using Various True/False
Tokens

As analyzed in Section 2, considering the model’s
inherent prior biases, how does the use of differ-
ent tokens as labels impact the performance of
DH-ICL? To answer this, we conducted experi-
ments on DH-ICL using different tokens to rep-
resent whether the model knows the answer. As
can be observed from experimental results in Table
6, DH-ICL achieves commendable performance
across various tokens, suggesting that the proposed

True/False 7b Models 13b Models
Acc Ret. (%) Acc Ret. (%)

true/false 68.52 49.80 70.42 46.80
false/true 66.78 46.95 70.62 80.63
yes/no 67.86 43.16 69.80 39.49
bar/foo 68.38 57.69 69.84 39.70
foo/bar 68.77 62.95 70.10 47.09
12 68.81 57.71 70.89 59.65
2/1 68.41 54.92 70.37 46.91
ile/ore 68.59 62.47 69.59 42.43
orelile 68.77 68.38 70.22 46.96

Table 6: Accuracy and retrieval rate of DH-ICL using
different tokens as labels on TriviaQA.

method helps resist model bias to some extent.
However, it is inevitable that the LLM is still in-
fluenced by its prior semantic knowledge, as using
a “false” token to represent “true” semantics leads
to a performance decrease. Notably, using tokens
“1/2” tends to yield better performance, which we
attribute to these tokens avoiding the introduction
of prior preferences in the model’s responses.

5 Related Work

Different from passive retrieval, which applies re-
trieval for every query in RAG methods (Lewis
et al., 2020; Meng et al., 2022; Sachan et al., 2022;
Pradeep et al., 2023), active retrieval (AR) (Gos-
selin and Cord, 2008; Su et al., 2024) aims to se-
lectively retrieve external knowledge only when
necessary. AR reduces unnecessary retrieval over-
head and prevents potential interference from irrel-
evant or low-quality retrieved information. Some
recent studies train lightweight classifiers to pre-
dict whether retrieval is needed based on input
queries (Cheng et al., 2024a; Asai et al., 2023;
Wang et al., 2023; Liu et al., 2024; Lv et al., 2024a).
For instance, Asai et al. (2023) uses ChatGPT to
generate training examples where retrieval should
be avoided for non-knowledge-intensive queries.
Cheng et al. (2024a) introduces four orthogonal
classification criteria, including intent, time, knowl-
edge, and self-aware, to evaluate whether an LLM
requires RAG. Another line of research explores
model-internal confidence estimation, where LLMs
determine their knowledge sufficiency based on re-
sponse confidence scores (Jiang et al., 2023; Lv
et al., 2023; Wang et al., 2024; Yao et al., 2024).
For instance, Jiang et al. (2023) triggers retrieval
only when the model exhibits high uncertainty in
its predictions. (Yao et al., 2024) evaluates self-
aware uncertainty by computing the determinant of
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the regularized Gram matrix of hidden representa-
tions from multiple sampled generations. (Wang
et al., 2024) assesses whether the model already
knows the answer by explicitly prompting the LLM
to output confidence scores.

A key challenge in active retrieval is enabling
LLMs to recognize their knowledge boundaries
(Chen et al., 2024; Kadavath et al., 2022b; Zhang
et al., 2024; Cheng et al., 2024b), ensuring effi-
cient retrieval by minimizing redundancy while
enhancing knowledge augmentation when neces-
sary. Despite progress made by approaches based
on training classification models and leveraging
model confidence scores, these methods often suf-
fer from limited generalization ability and deploy-
ment efficiency across different datasets and LLM:s.
Our experiments further reveal that LLMs gener-
ally struggle with self-assessing their knowledge
boundaries and exhibit prior cognitive biases. To
this end, we propose DH-ICL to improve knowl-
edge boundary recognition.

6 Conclusion

In this work, we introduced Debiased Historical
In-Context Learning (DH-ICL) to enhance the re-
liability of knowledge boundary identification in
active retrieval. Rather than relying on direct
self-assessment, which LLMs inherently struggle
with, DH-ICL reframes the problem as a structured
pattern-learning task, leveraging historical high-
confidence examples to guide retrieval decisions.
Additionally, we proposed a historical bias cali-
bration strategy, which adjusts logits deviations
from historical responses to mitigate biases in cur-
rent knowledge boundary identification. Exten-
sive experiments across multiple QA benchmarks
demonstrated that DH-ICL effectively reduces un-
necessary retrievals while maintaining strong per-
formance. Notably, our method is both efficient
and generalizable, requiring no additional training.
As users continue to interact with the LLM sys-
tem, the historical experience log is continuously
updated, leading to increasingly accurate knowl-
edge boundary judgments over time. Furthermore,
cold-start analysis shows that DH-ICL retains its
effectiveness even in the absence of historical logs.

Limitations

Our approach benefits from continuously updat-
ing historical logs generated through sustained
LLM usage, leading to increasingly precise knowl-

edge boundary judgments. However, determin-
ing whether a historical query truly falls within
the LLM’s knowledge boundary still requires hu-
man verification. Automating this process through
feedback-driven mechanisms remains an challenge.
Future work could explore methods for automat-
ically constructing and validating historical ICL
data, reducing reliance on human intervention
while maintaining accuracy in knowledge boundary
recognition.
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A ChatGPT Evaluator

As shown in Figure 7, We follow (Cheng et al.,
2024a) to use the following prompt to evaluate
whether the model-generated answers are correct
on the TAQA (Zhao et al., 2024a) and FreshQA
(Vu et al., 2023) datasets.

Prompt for ChatGPT Evaluation

\

In the following task, you are given a Question, a model
Prediction for the Question, and a Ground-truth Answer
to the Question. You should decide whether the model
Prediction implies the Ground-truth Answer.

Question:
{question}

Prediction:

{predicted answer}
Ground-truth Answer:
{ ground-truth answer}

Does the Prediction imply the Ground-truth Answer?
Output Yes or No:

J

Figure 7: Prompt to evaluate accuracy on the TAQA
and FreshQA datasets.
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B Implementation details

RAG Settings: When retrieval is triggered, we fol-
low prior works (Cheng et al., 2024a; Vu et al.,
2023; Asai et al., 2023) to perform RAG. For
TAQA and FreshQA, we use Google Search to
retrieve the top-5 relevant documents. For Trivi-
aQA and WQ, the Contriever-MS MARCO (Izac-
ard et al., 2021) model are employed to retrieve the
top-10 Wikipedia passages.

Inference Settings: Inference hyperparameters are
listed in Table 7. All the experimental results in
this paper are obtained by testing three times and
averaging the values.

Hyperparameters Value
LLM float type bf16
Top-k 50
Top-p 0.9
Temperature 0.6
Max input length 1,024
Max new tokens 512

Retrieval Question Max length 256
Retrieval Max Passage Length 256
GPU 2xA6000

Table 7: Inference hyperparameters.

Randomly replace one entity in the question

1000 False
1000 True

800 761

600 549
451

Counts

400

239
200

0

Ground truth LLama-2-7b-Chat LLama-2-13b-Chat
prediction prediction

Figure 8: Randomly select an entity from the question
and replace it with an entity extracted from other ques-
tions.

C Case Study

Figure 10 presents a case from DH-ICL on LLaMA-
2-7B-Chat. The number of retrieved similar in-
context examples from historical response logs is
10. After concatenating the prompt with the re-
trieved historical instances, they are input into the

Add additional low-frequency words before the question

100 False
100 True

80
69

60

Counts

40
31

20

0
Ground truth

LLama-2-7b-Chat prediction

Figure 9: Add an irrelevant low-frequency word before
each question, such as ’Atramentous’ or ’Brobdingna-
gian’; these words do not alter the meaning of the ques-
tion. The selected questions are those that the model
can answer correctly without the low-frequency word.

model, which outputs its judgment with the histor-
ical bias calibration mechanism. We can see that,
with the inspiration from the historical experience
data, the model correctly acknowledges that it can-
not answer the question, overcoming the issue of
prediction inaccuracies caused by model bias.

D Analysis of Whether LLMs Know

Although we have analyzed the impact of prior
biases on model predictions in the main text, we
conducted some additional interesting tests, which
are presented in this section. These include: (1)
randomly replacing known entities in each known
question to turn it into a fictitious unknown ques-
tion, as shown in Figure 8; and (2) adding a low-
frequency word before each known question as an
interference factor, as shown in Figure 9.

Figure 8. We selected 1000 questions that the
model can answer from KB-SAT, and used Chat-
GPT to extract the entities from these known ques-
tions to create an entity set X. We then randomly
replaced an entity in each question with an entity
from the set X. Using the set of fictitious ques-
tions generated by entity replacement, we evalu-
ated the model’s self-knowledge boundary as de-
scribed in Section 2. Intuitively, the fictitious ques-
tions, created by random entity replacement, were
almost impossible for the model to answer. How-
ever, 45% of these fictitious questions were still
considered answerable by LLaMA-2-7B-Chat, and
24% were considered answerable by LLaMA-2-
13B-Chat. We attribute this to the model’s ten-
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Case Study of the DH-ICL

Answer:false

Answer:false

the towns, in all the world, she walks into mine."
Answer:false

Answer:true

Answer:false

Answer:true

Answer:false

Answer:true

Answer:true

Answer:false

Question: In which New York borough is Greenwich Village?

Answer:false

Question: Which actress was voted Miss Greenwich Village in 1942?

You are a student being tested. For each given question, assess based on your knowledge whether you can
answer it correctly. If you believe you can answer it correctly, output "true’. If you are unsure whether you
can answer it correctly, output 'false'. Additionally, if the q
example, if words like recently, latest, or currently appear, also output 'false’.

is asking about a recent event, for

Question: Who was President of the Screen Actor's Guild in the 40s and 50s?

Question: Which New York business woman manufactured 'Aramis' for men (1943)?

Question: Name the 1942 movie and character/actor that featured the quote "Of all the gin joints, in all

Question: The film which won the Oscar for Best Picture in 1942 also featured an Academy Award
winning performance from Greer Garson. What was its title?

Question: Who were the two principal actors starring in the 1942 film 'Holiday Inn'?

Question: Who made the longest Oscar acceptance speech, at five minutes and 30 seconds, when
collecting her Oscar for Best Actress in 1942 for her role as Mrs. Miniver?

uestion: o plays Mrs Ka iniver in the ilm 'Mrs Miniver'?
Q i Who plays Mrs Kay Mini in the 1942 film '"Mrs Miniver'?

Question: Who starred opposite Walter Pidgeon in the 1942 film 'Mrs. Miniver'?

Question: Who was the actress wife of Clark Gable, killed in an air crash in 1942?

———> new query

Figure 10: A case study of our DH-ICL method.

dency to give positive responses to familiar entities
or question structures, even when the questions are
fabricated.

Figure 9. We selected 100 questions from KB-SAT
that the model can answer, and used ChatGPT to
randomly generate a low-frequency word, which
was added before each question and separated by
a separator. We then evaluated the model’s self-
knowledge boundary using these modified ques-
tions. In this experiment, 69% of the questions
that were originally known to the model became
unanswerable after adding a low-frequency word.
We hypothesize that the addition of low-confidence
patterns caused the model to lean towards negative
responses, even when the questions were known.
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