Outlier-weighed Layerwise Sampling for LLLM Fine-tuning

Pengxiang Li* Lu Yin?3*

!Dalian University of Technology

2University of Surrey
4University College London

Xiaowei Gao®* Shiwei Liu®>1
3Eindhoven University of Technology
University of Oxford

shiwei.liu@maths.ox.ac.uk”

Abstract

The rapid advancements in Large Language
Models (LLMs) have revolutionized various
natural language processing tasks. However,
the substantial size of LLMs presents sig-
nificant challenges in training or fine-tuning.
While parameter-efficient approaches such as
low-rank adaptation (LoRA) have gained pop-
ularity, they often compromise performance
compared to full-rank fine-tuning. In this pa-
per, we propose Outlier-weighed Layerwise
Sampling (OWS), a new memory-efficient fine-
tuning approach, inspired by the layerwise out-
lier distribution of LLMs. Unlike LoRA, which
adds extra adapters to all layers, OWS strate-
gically assigns higher sampling probabilities
to layers with more outliers, selectively sam-
pling only a few layers and fine-tuning their
pre-trained weights. To further increase the
number of fine-tuned layers without a propor-
tional rise in memory costs, we incorporate
gradient low-rank projection, further boosting
the approach’s performance. Our extensive
experiments across various architectures, in-
cluding LLaMa2, and Mistral, demonstrate
that OWS consistently outperforms baseline
approaches, including full fine-tuning. Specif-
ically, it achieves up to a 1.1% average ac-
curacy gain on the Commonsense Reasoning
benchmark, a 3.0% improvement on MMLU,
and a notable 10% boost on MT-Bench, while
being more memory efficient. OWS allows
us to fine-tune 7B LLMs with only 21GB of
memory. Our code is available at https:
//github.com/pixeli99/0WS.

1 Introduction

The rapid advancements in Al driven by Large Lan-
guage Models (LLMs) have fundamentally trans-
formed how people work and communicate. The
impressive language capabilities of LLMs enable
a single model to handle various tasks simultane-
ously, including but not limited to natural language

*Equal contribution. Corresponding author.

understanding (Brown et al., 2020; Touvron et al.,
2023), text generation (Kocon et al., 2023; Anil
et al., 2023), machine translation (Jiao et al., 2023),
and programming (Surameery and Shakor, 2023;
Tian et al., 2023). However, the massive size of
LLMs presents significant challenges for practical
applications and deployment.

To address these challenges, various parameter-
efficient fine-tuning (PEFT) approaches have been
proposed, including prompt tuning (Lester et al.,
2021; Liu et al., 2021a), adaptors (Houlsby et al.,
2019; He et al., 2021), and low-rank adaptation
(LoRA) (Hu et al., 2021; Dettmers et al., 2024).
These approaches enable the fine-tuning of pre-
trained LLMs with substantially fewer trainable
parameters, making LLM fine-tuning more feasi-
ble in practice. Among these, LoRA (Hu et al.,
2021) stands out for its re-parameterization tech-
nique of the pre-trained weight matrix W € R™*",
expressed as Wy + AB, where A € R™*", B €
R™ " and r < min(m,n). By fine-tuning only
the low-rank adaptor AB while keeping the pre-
trained weight Wy frozen, LoRA significantly re-
duces the memory usage and computational costs
associated with fine-tuning LL.Ms, rapidly becom-
ing the preferred method for such tasks. Despite its
efficiency, recent research has highlighted the in-
ferior performance of low-rank reparameterization
compared to full-rank updates in both fine-tuning
scenarios (Xia et al., 2024; Biderman et al., 2024)
and pre-training contexts (Lialin et al., 2023b; Zhao
et al., 2024). These findings underscore the need
for further exploration into balancing training effi-
ciency with model performance, particularly in the
context of large-scale language models.

Recently, Layerwise Importance Sampled
AdamW (LISA) (Pan et al., 2024) has emerged as
a promising alternative for LLM fine-tuning, inte-
grating the concept of importance sampling (Kloek
and Van Dijk, 1978; Zhao and Zhang, 2015) into
the fine-tuning process. Unlike methods that add

19460

Findings of the Association for Computational Linguistics: ACL 2025, pages 19460-19473
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/pixeli99/OWS
https://github.com/pixeli99/OWS

h

x

h

T

1 1
1 1
I 1
i) | | i)
I 1
La Pretrained Martix : : Fired Layer Pretrained Martix
yer n W e R | A | P32 W e R
ﬁ | | ﬁ Low-rank Gradient
I 1
I 1
............ Project Back
I 1
La 2 Pretrained Martix | Pretrained Martix w | Fired Layer Pretrained Martix
yer W e Rmxn | W e Rmxn m | P=4/32 W e Rm*n
1 1
Low Rank Profect
i ' ' i
I 1
Layer 1 Pretrained Martix | | Frozen Layer Pretrained Martix
W e Rmn | L@ Z? 1 p=1/32 W € R™"
I 1
| 1
1l : ! i
1 1
1 1
I 1
I 1

(a) Full Fine-tuning (b) LoRA

(c) OWS (Ours)

Figure 1: The comparison among Full Fine-tuning, training with LoRA, and OWS. Blue modules are frozen, while
orange modules are activated. OWS non-uniformly samples layers to fine-tune models with low-rank gradients.

adapters to all layers, LISA selectively samples a
small subset of layers and directly fine-tunes their
pre-trained weights, demonstrating notable perfor-
mance improvements over LoRA. However, our
investigation reveals two limitations of LISA:

* LISA employs random sampling of layers for
fine-tuning, which results in suboptimal perfor-
mance due to the varying importance of layers
in LLMs. To illustrate this, we demonstrate that
random sampling underperforms compared to
a simple baseline—monotonic decreasing sam-
pling probabilities from top to bottom layers—as
shown in Table 1.

* The fine-tuning of sampled layers is conducted in
a full-rank manner, leading to substantial mem-
ory overhead as the number of sampled layers
increases. While fine-tuning accuracy improves
with the inclusion of more sampled layers, this
improvement comes at the cost of escalating
memory usage, as detailed in Table 8.

Overview. To address these limitations, we
introduce Outlier-weighted Layerwise Sampling
(OWS), a novel layerwise sampling approach to
fine-tune LLMs. OWS leverages the unique char-
acteristic of LLMs where certain features and
weights—referred to as outliers—have significantly
larger magnitudes than the rest (Kovaleva et al.,
2021; Puccetti et al., 2022; Dettmers et al., 2022;
Yin et al., 2024; Lu et al., 2024). Our rationale
is that layers with more outliers play a more ac-
tive role in learning the data distribution of the
text corpus, as they have received larger gradients
during pre-training. Therefore, we assign higher
sampling probabilities to layers with a greater con-
centration of outliers, in a way that the features in
these layers will be leveraged more frequently to

adapt to downstream datasets. To further reduce
the memory costs of fine-tuning, we update the op-
timization status of sampled layers in a low-rank
subspace, which allows us to increase the number
of fine-tuned layers without a proportional rise in
memory costs.

Built upon these techniques, OWS achieves a
large performance boost to LISA. Our extensive ex-
periments across commonly used architectures in-
cluding LLaMaz2 (Touvron et al., 2023) and Mistral
(Jiang et al., 2023) demonstrate that OWS consis-
tently outperforms its baseline approaches includ-
ing full-parameter fine-tuning. OWS achieves up
to a 1.1% average accuracy gain on the Common-
sense Reasoning benchmark, a 3.0% improvement
on MMLU, and a notable 10% boost on MT-Bench.

2 Background and Motivation

In this section, we first introduce LISA’s algorithm
and then present our findings of two key limitations
of LISA: the shortcomings of its sampling approach
and the significant memory overhead associated
with the sampled layers.

2.1 Background: LISA

Pan et al. (2024) conducted an in-depth analysis
of LoRA’s training dynamics across layers and re-
vealed an unusual skew in the distribution of lay-
erwise weight norms, particularly towards the top
layer and/or the bottom layer !, where the norms
are significantly larger compared to other layers.
Building upon this insight, the authors proposed
LISA, a novel fine-tuning approach for LLMs,
which incorporates the concept of importance sam-
pling (Kloek and Van Dijk, 1978; Zhao and Zhang,

'Please note that in LISA, the terms ’top’ and *bottom’
layers refer to the embedding layer and the LLM head layer,
respectively, rather than the first and last Transformer blocks.

19461

2015) into the fine-tuning process. In LISA, layers
of the base model are sampled to be unfrozen dur-
ing training based on a prescribed probability, with
the exception of the top and bottom layers, which
remain activated throughout the process. Given a
network with Ny, layers, the sampling probability
of layer ¢ is given as follows:

iff=1orf= Ny,
else.

1.0,
pe = { TN (1)
where ~y controls the expected number of unfrozen
layers during optimization. Since LISA does not
require additional adaptors and only fine-tunes an
expected v layers, it notably reduces the memory
usage of LLM fine-tuning.

2.2 Limitations of LISA

While demonstrating promising results, we observe
that the LISA algorithm inherently has two short-
comings that constrain its memory-performance
trade-off:

i. The middle layers of LISA are sampled
uniformly, which can result in suboptimal per-
formance. To verify this point, we conduct a small
experiment where we replace the uniform sampling
with a very simple baseline, i.e. monotonic de-
creasing sampling, where the sample probability is
monotonically decreasing from shallow layers to
deep layers (noted as LISA-D). Table 1 shows that
this simple sampling method often outperforms
uniform sampling, verifying our concern.

ii. The sampled layers of LISA are fine-tuned
in a full-rank manner, causing a significant mem-
ory increase as the number of sampled layers
increases. To illustrate this, we fine-tune LLaMA2-
7B on the GSMB8K training set and report the
GSMSK score and memory usage of LISA with
various numbers of sampled layers v, as shown in
Table 8. The memory requirement of LISA rises
significantly from 23GB to 36GB as + increases
from 1 to 12. Similarly, the performance improves
consistently with the increase in sampled layers.
Since sampling more layers results in stronger fine-
tuning performance, it is crucial to reduce the asso-
ciated memory overhead as the number of sampled
layers grows.

3 Outlier-weighed Layerwise Sampling
(OWS)

In this section, we introduce our approach, Outlier-
weighed Layerwise Low-Rank Projection (OWS).

We will discuss the underlying rationales, present
preliminary results, and detail the algorithm design.

The above findings shed light on a principle
for designing non-uniform layerwise sampling for
LLM fine-tuning: layers with higher outlier ratios
should be prioritized during the fine-tuning process.
This forms the foundation of our proposed method,
Outlier-weighed Layerwise Low-Rank Projection
(OWS), which we will present in detail.

Outlier-Weighed Sampling (OWS). Although
LISA-D achieves good performance, it is more
desirable to seek a more principled approach to
determine the layerwise sampling probability. In
the context of LLMs, we get inspiration from the
unique characteristic of LLMs, outliers, defined as
features and weights exhibiting significantly larger
magnitudes compared to the majority of others (Ko-
valeva et al., 2021; Puccetti et al., 2022; Dettmers
et al., 2022). It has been widely demonstrated that
removing outliers significantly degrades the capac-
ity of LLMs (Dettmers et al., 2022).

Our motivation stems from the crucial role out-
liers play in preserving LLM performance (Yin
et al., 2024). We hypothesize that layers with more
outliers likely contain more essential information,
as they have received larger gradients during train-
ing. Therefore, we assign higher sampling probabil-
ities to layers with more outliers during fine-tuning,
leading to a substantial improvement in perfor-
mance. To formulate, let us consider the input of a
layer as X with dimensions (N x L, C' ,,), where N
and L represent the batch and sequence dimensions,
respectively; and the weight matrix W has dimen-
sions (Cout, Cin). Outlier score of weight W 5 is
computed as A ;5 = || X |2+ [W5|. Here, || X;]|2
is the /5 norm of input feature connected to W 5.

We first calculate the layerwise outlier distribu-
tion of a Ny -layer as [Dy, Do, ..., Dy, |, where Dy
characterizes the outlier ratio of layer ¢:

ou Cin A
X LAY > A

D :
¢ CinCout

@)

where A’ is the mean of A’ and I(-) is the indicator
function, returning 1 if Aﬁj is larger than 7 - A’
else 0. The layerwise outlier distribution essen-
tially counts up weights whose outlier score is 72
times greater than that layer’s average outlier score.
Larger D means more outliers are presented in the
corresponding layer. The sampling probability py

*We empirically find 7 = 13 consistently works well and
choose it for all experiments in this paper.

19462

Table 1: Fine-tuning performance of LLaMA2-7B with various dataset. The results are averaged under three random

seeds.
Model Method BoolQ PIQA SIQA HellaSwag WinoGrande OBQA Average
Llama2-7B LISA 82.0 79.9 335 59.7 79.6 38.8 62.25
Llama2-7B LISA-D 85.1 79.9 33.8 59.8 79.7 384 62.78

of layer / is then calculated as py = vDy/ Zij\;ﬁ D;,
where 7 is the hyperparameter inherited from LISA
to control the expected number of unfreeze lay-
ers during optimization. At each iteration, only
the sampled layers will be fine-tuned, while the
remaining layers are kept frozen. The visualiza-
tion of layerwise outlier distribution of OWS is
illustrated in Figure 2.

Can the weights in the sampled layer be fur-
ther updated in a low-rank subspace? Outlier-
weighed sampling addresses our first research ques-
tion: how to optimally sample layers for sampling-
based LLM fine-tuning. To tackle the second issue
of the substantial memory cost associated with an
increasing number of unfrozen layers, we propose
to integrate outlier-weighed sampling with gradient
low-rank training. In this approach, the sampled
layers are updated in a low-rank manner (Zhao
et al., 2024). Specifically, for each sampled layer,
the gradient matrix is projected into a low-rank sub-
space using Singular Value Decomposition (SVD).
The optimizer states are subsequently updated in
the corresponding low-rank subspace with a rank
level of 7, significantly reducing the memory cost
of optimization. We update the gradient subspace
every 200 iterations to better capture the dynamic
trajectory of fine-tuning. The above two innova-
tions significantly boost the memory efficiency of
OWS, unlocking the performance-memory trade-
off of sampling-based fine-tuning. At the macro
level, we dynamically sample a limited number of
layers to fine-tune at each iteration. At the micro
level, each sampled layers are updated with low-
rank gradients.

Since the sampled layers are updated in the low-
rank subspace, we can efficiently increase the num-
ber of sampled layers v with only a marginal in-
crease in memory cost compared to LISA. Addi-
tionally, as we sample only a few layers at each fine-
tuning iteration, we can increase the rank levels r
without significantly raising the memory require-
ments compared to LoRA. Memory usage analysis
is given in Section 4.3. We perform a small search
and find that v = 5 and r = 128 consistently give
us robust performance across models and down-
stream tasks. Therefore, we choose v = 5 and

r = 128 as our default settings. We present our
algorithm in Algorithm 1.

4 Experiments

In this section, we conduct extensive experiments
3 to evaluate the effectiveness of OWS on multiple
fine-tuning tasks. Details are provided below.

4.1 Experimental Setup

We choose multiple open-source LLMs that are
widely used in research and practice, such as
LLaMa2-7B (Touvron et al., 2023) and Mistral-7B
(Jiang et al., 2023).

Fine-tuning Tasks. We choose an extensive
range of fine-tuning tasks aiming to provide a thor-
ough evaluation of OWS . Our fine-tuning tasks
cover three categories: (i) Commonsense Reason-
ing (Hu et al., 2023), which includes 8 reason-
ing tasks including. (ii)) MT-Bench (Zheng et al.,
2024), a challenging multi-turn question set to as-
sess the conversational and instruction-following
abilities of models. We apply GPT-3.5-turbo and
GPT-40 as the judge for MT-Bench; (iii) MMLU
(Hendrycks et al., 2020), a massive multitask test
consisting of multiple-choice questions from vari-
ous branches of knowledge. We adopt the 5-shot
setting for MMLU. For Commonsense Reason-
ing, all models are first fine-tuned on common-
sensel70k and then evaluated separately on dif-
ferent tasks, following Hu et al. (2023); For MT-
Bench, we first fine-tune models on the Alpaca
GPT-4 dataset (Peng et al., 2023) and then eval-
uate on MT-Bench following LISA. The results
of MMLU are fine-tuned on the auxiliary training
dataset and then evaluated on MMLU with 5 shots.

PEFT Baselines. We mainly consider four state-
of-the-art baselines that are closely related to our
approach: (i) Full fine-tuning (Full FT): all param-
eters of pre-trained models are fine-tuned. Weights,
gradients, and optimization states are maintained
with full rank; (ii) LORA (Hu et al., 2021): LoRA
introduces additional low-rank adaptors and only
fine-tunes adaptors, while maintaining pre-trained

30ur repository is built on top of LMFlow:
https://github.com/OptimalScale/LMFlow

19463

LLaMa2-7B

I
o

=
n

=
o

OWS Layerwise outlier distribution
o

=
)

0 5 10 20 25 30

15
Layer Index

LLaMa2-13B

o o0 o o B B B
N D o w o N B

OWS Layerwise outlier distribution

o
o

0 5 10 15 25 30 35 40

20
Layer Index

Figure 2: OWS Layerwise outlier distribution of LLaMa2 of Equation 2. The Y-axis is presented in percentage.

Higher values mean higher outlier ratios.

Table 2: Fine-tuning performance of LLaMa2-7B and Mistral-7B with various approaches on commonsense
reasoning datasets. The results are averaged under three random seeds.

Method Mem. BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
LLaMa2-7B
FullFT 61G 87.3 79.5 327 56.7 80.2 78.5 49.0 40.8 63.1
LoRA 26G 79.7 79.7 34.4 59.9 79.8 79.5 49.7 36.6 624
GaLore 36G 81.8 79.4 329 60.7 79.6 79.8 494 37.6 627
LISA 24G 82.0 79.9 335 59.7 79.6 80.4 51.1 388 63.1
OWS 23G 85.4 80.7 342 60.3 82.2 80.6 51.0 39.1 64.2
Mistral-7B
FullFT 61G 86.5 84.3 335 65.1 87.1 83.8 57.5 412 674
LoRA 26G 87.2 81.0 33.7 62.9 83.3 82.2 54.2 37.0 652
GaLore 36G 84.8 82.5 344 63.5 85.6 82.5 53.9 378 65.6
LISA 24G 84.7 82.9 334 64.2 85.8 83.4 54.4 405 66.2
OWS 23G 87.8 83.9 34.0 66.4 85.6 84.1 57.9 404 675

weights frozen during training; (iii) GaLore (Zhao
et al., 2024): pre-trained LLMs are fine-tuned with
low-rank gradient projection. We follow (Zhao
et al., 2024) and set the rank level to 8 for both Ga-
Lore and LoRA in all fine-tuning tasks; (iv) LISA
(Pan et al., 2024): LISA is a sampling-based LLM
fine-tuning method, which by default samples 2
layers to fine-tune with full rank at each iteration.
Galore and LISA directly fine-tune pre-trained
weights without additional adaptors.

Hyperparameter Tuning. Regarding the hy-
perparameters of the baselines, we have conducted
extensive hyperparameter tuning for all baselines
with LLaMa2-7B and reported the results with the
best ones. For Mistral-7B, we directly use the best
hyperparameters of LLaMa2-7B. Specifically, for
the learning rate, we performed a hyperparameter
sweep over [le-4, 3e-4, 7e-5, 5e-5, 1e-5, 5e-6] for
each method. For Gal.ore, we tested several up-
date frequencies for the subspace [50, 100, 200,
500] and found that 200 works best, consistent
with GaLore’s reports. To ensure a fair compari-
son, we followed GaLore’s approach and set the
rank level to 8 for GaLore and LoRA, resulting
in approximately 24GB of memory usage for all
methods. Additionally, we thoroughly analyzed the
effect of two hyperparameters, such as rank level
and sampled layers, as shown in Figure 3, where

our approach consistently demonstrates superior
memory benefits. More configurations details are
reported in Appendix D.

4.2 Experimental Results

In this section, we present the empirical results of
OWS in comparison to other baseline methods.

Commonsense Reasoning Benchmark. We
first evaluate with 8 commonsense reasoning tasks.
The results are reported in Table 2. Overall, OWS
consistently outperforms Full FT and other PEFT
baselines by a large margin across various LLMs,
demonstrating the superiority of OWS in LLM fine-
tuning. We summarize our key observations below:

(D OWS approaches significantly outperform
other efficient fine-tuning approaches by a large
margin. OWS consistently outperforms its layer-
wise sampling baseline, LISA, on nearly all tasks
with LLaMA2-7B, delivering an average of 1.1%
performance gain.

2 OWS outperforms full fine-tuning across
tasks on LLaMa. We can observe that OWS can
achieve better performance than full fine-tuning
with all models. LISA can match the performance
of full fine-tuning for LLaMa models, whereas Ga-
Lore and LoRA perform no better than full fine-
tuning. However, only OWS is able to match the
performance of full fine-tuning with Mistral-7B
and all other baselines fail to do so. This result

19464

Table 3: Fine-tuning performance of LLaMa2-7B with various approaches on MT-Bench using GPT-3.5-turbo as a
judge. The results are averaged under three random seeds.

Method Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Avg.
Full-FT 7.11 8.11 4.90 2.85 3.75 6.50 7.80 8.10 6.14
LoRA 7.21 7.05 4.95 3.25 3.90 5.70 7.90 7.65 5.95
GaLore 7.05 7.79 3.55 2.89 3.15 6.25 8.30 7.63 5.83
LISA 6.75 7.35 4.35 3.00 3.85 6.85 7.74 7.47 592
OWS 8.00 7.65 4.95 3.25 4.15 7.45 8.25 8.45 6.52
Memory Cost vs. Sampled Layers for Different Methods 80 Memory Cost vs. Rank for Different Methods
ot Method
30 et Renk=128 01 —— Lora
_ //" 60| == OWS
aQ ’,4/) Galore
% /// %50 -~-- LsA
% _ 2 IRdnk=a .40
£ i —— E I—
2 //v/ anli—123 _______________ 2 R
L i I
Rank=4 24GB e
20 20 +—.—.—+--—-—r—'—.‘+

4
Sampled Layers (y)

8 64 128 512
Rank (r)

1024 2048 4096 (full-rank)

Figure 3: Fine-tuning memory usage of using various with LLaMa2-7B. Left: varying sampled layers. In this
scenario, we also vary the rank of LoRA and OWS from 4 to 128 to provide a comprehensive analysis. OWS
consistently demonstrates superior memory efficiency across all configurations. Notably, LISA’s memory advantage
over LoRA diminishes as the number of sampled layers increases. Right: varying ranks. The sampled layer of

LISA and OWS is set as v = 2.

suggests that LLMs gain greater benefits by lever-
aging features within important layers rather than
uniformly distributing resources across all layers
for fine-tuning.

MT-Bench. We next evaluate OWS on a more
comprehensive benchmark, MT-Bench, featuring
80 high-quality, multi-turn questions designed to
assess LLMs on 8 common categories. Results
are presented in Table 3. We can observe that the
benefits of OWS over other PEFT approaches are
more pronounced. Using GPT-3.5-turbo as a judge,
all other baselines fail to match the performance
of full fine-tuning on MT-Bench with scores below
6.0, whereas OWS outperforms the full fine-tuning
by a large margin. To be specific, OWS signifi-
cantly boosts the average score of LISA from 5.92
to 6.52.

Table 4: Mean score of LLaMA-2-7B on MT-Bench
over three seeds. The results are averaged under three
random seeds.

Judge Full-FT LoRA GaLore LISA OWS
GPT-3.5-turbo 6.14 5.95 5.83 5.92 6.52
GPT-40 491 4.58 4.73 481 5.10

The performance trend when using GPT-4 is
very similar to that of GPT-3.5-turbo, although
the scores evaluated by GPT-4 are generally lower.
Notably, only OWS outperforms full fine-tuning,
achieving a higher score over full fine-tuning.

MMLU Benchmark. To draw a more solid con-

clusion, we also test another widely used bench-
mark, i.e., MMLU. The results are shown in Table
5. Our findings highlight that OWS consistently
outperforms Full FT, while other PEFT methods
fall short of dense fine-tuning. Specifically, OWS
achieves an average score of 52.6, demonstrating
significant improvements across various domains
such as Humanities, STEM, Social Sciences, and
Others. These results underscore OWS’s efficacy
beyond full fine-tuning while maintaining superior
memory efficiency.

Table 5: Fine-tuning performance of LLaMa2-7B with
various approaches on MMLU benchmark. The results
are averaged under three random seeds.

Method Humanities STEM Social. Other Avg.
Full-FT 49.9 41.7 57.5 57.0 515
LoRA 46.1 40.8 56.6 562 499
GaLore 454 41.7 55.8 56.0 49.7
LISA 44.9 41.2 54.7 57.6 49.6
OWS 49.8 42.1 58.6 59.7 52.6

GSMS8K. We extend our evaluation to com-
pare OWS with two recent memory-efficient fine-
tuning methods, HiFT (Liu et al., 2024b) and
MeZO (Malladi et al., 2023), on the GSM8K
benchmark. Table 6 indicates that OWS achieves
the best accuracy, surpassing HiFT by +1.6 per-
centage points (pp) and MeZO by +2.5 pp under
the same model size.

19465

Table 6: GSMS8K accuracy (%) of LLaMA2-7B with
different memory-efficient fine-tuning strategies.

Method Model GSMSK
HiFT (best: RAN) LLaMA2-7B 20.3
MeZO LLaMA2-7B 194
OWS (r=128,v=2) LLaMA2-7B 21.9

Generalisability to Newer Architectures. To
examine scalability, we further fine-tune the recent
Qwen2.5-7B model on GSM8K and compare OWS
with DoRA (Liu et al., 2024a) and LISA. As shown
in Table 7, OWS attains the highest score of 83.7
%, outperforming DoRA by +2.5 pp and LISA by
+4.0 pp, indicating strong generalisation to state-
of-the-art LLMs.

Table 7: GSMS8K accuracy (%) on Qwen2.5-7B.

Method Model GSMSK
LISA Qwen2.5-7B 79.7
DoRA Qwen2.5-7B 81.2
OWS Qwen2.5-7B 83.7

4.3 Memory Efficiency of OWS

Thanks to its layerwise sampling and low-rank char-
acteristics, OWS significantly improves the mem-
ory efficiency of LLM fine-tuning. To verify, we
report the memory cost of various approaches when
used to fine-tune LLaMa2-7B, with a token batch
size of 1 in Figure 3.

On the one hand, the low-rank nature of OWS
allows us to unfreeze more layers without a substan-
tial increase in memory cost compared to LISA. As
illustrated in Figure 3-Left, when increasing « from
1 to 8, LISA exhibits a notable memory growth
from 23GB to 32GB, whereas OWS’s memory cost
slightly increases from 21GB to 25GB. Compared
to LoRA with » = 4, OWS facilitates training with
a much higher rank (r = 128) while still maintain-
ing a lower memory cost. On the other hand, Figure
3-Right demonstrates that OWS enables high-rank
training without significantly compromising mem-
ory efficiency, in stark contrast to LoRA. It is im-
portant to note that we do not utilize the layer-wise
weight update technique used in Galore for the
memory measurement, hence the memory cost of
GalLore is higher than reported in GaL.ore.

We further break down the memory usage during
LLM fine-tuning, presenting the results in Figure

4-Left. For this analysis, the number of fine-tuned
layers -y is set to 2 for both LISA and OWS, and
rank level 7 is set to 8 for both LoRA and OWS.
LoRA incurs a substantial activation memory cost,
although its optimizer and gradient memory re-
quirements are relatively small. In contrast, LISA’s
optimizer memory cost is large because each layer
is trained in full rank, yet it benefits from a small
activation memory cost. OWS effectively com-
bines the advantages of both methods, inheriting
the small activation memory of LISA while signifi-
cantly reducing the optimizer memory requirement.

4.4 Superiority of OWS under Varying
Hyperparameters Over LISA

The primary hyperparameters of LISA, Gal.ore,
and OWS are the number of fine-tuned layers +,
and the rank level within each layer r. To eval-
uate their effect on the performance of different
approaches, we vary these two hyperparameters
and report the results in Table 8. We set v = 32
for GaLlore and r = ‘full rank’ for LISA as their
default. We see that Gal.ore’s performance does im-
prove as rank levels, having the lowest score across
most cases. Notably, OWS significantly reduces the
memory cost compared to LISA alone—reducing
from 36G to 27G with » = full,y = 12—while
achieving a significant improvement of 6.1.

4.5 OWS Serves as A Better Layerwise
Important Metric than Others

OWS serves as a better layer-wise importance met-
ric than previous ones. We compare OWS with
other layerwise importance scores for sampling-
based fine-tuning, including Uniform (Pan et al.,
2024), Relative Magnitude (RM) (Samragh et al.,
2023) and Block Influence (BI) (Men et al., 2024)
in Table 9. OWS consistently performs better than
other layer importance scores. Note that reversing
OWS gives us the worse performance as shown in
Appendix A.

4.6 Memory Usage Breakdown and Training
Loss Curve

The training loss curve is an effective way to un-
derstand the training dynamics of various methods.
Following LISA, we present fine-tuning loss curves
of LLaMa2-7B on the Alpaca-GPT4 dataset using
Full FT, LoRA, LISA, and OWS in Figure 4-Right.
At first glance, methods that directly fine-tune pre-
trained weights (i.e., LISA and OWS) can better

19466

Table 8: GSMS8K scores/memory usage for fine-tuning LLaMA2-7B with various sampled layers . The results are

averaged under three random seeds.

Method Setting and Scores/Memory
GaLore r=8,v=32 r=16,~=32 1=32,v=32 r=064,~v=32 1=128, y=32
19.1/35.6G 18.8/35.6G 18.4/35.8G 18.7/36.0G 18.2/36.5G
LISA r=full, y=1 r=full, =2 r=full, v=4 r=full, v=8 r=full, v=12
16.8/23G 18.8/25G 19.8/27G 19.9/32G 21.7/36G
OowS r=128,v=1 r=128,~v=2 r=128,v=4 1=128,v=8 r=128,~v=12
20.0/21G 21.9/22G 23.5/23G 25.7125G 27.8127G

Memory Cost for Different Optimization Methods

Comparison of Loss Curves on Alpaca-GPT4 Dataset for LLaMa2-7B

mmm Weight Memory 135
B Activation Memory

Gradient Memory
B Optimizer Memory

—— Full FT
— LoRA
— LISA
— OwWSs

Memory Cost (GB)

Baseline LoRA LISA
Method

0 50 100 150 200 250 300 350
Step

Figure 4: Left: Memeory breakdown of various methods using LLaMa2-7B. Right: Fine-tuning loss of LLaMA2-

7B on Alpaca GPT-4 dataset using various methods.

Table 9: Comparison with other layer-wise importance
metrics, using LLaMA2-7B on Commonsense Reason-

demonstrated in studies (Lester et al., 2021; Li and
Liang, 2021; Hambardzumyan et al., 2021; Zhong

ne. Moadl ——— " et al., 2021). Layer-freezing techniques (Liu et al.,
e Sampling Metho vorase 2021b; Brock et al., 2017; Li et al., 2024) enhance
E}Zﬁ:ﬁgﬁ U“];flozﬁéir: ;’lt alz'bi?)%) gifi training and fine-tuning efficiency by freezing parts
LlaMa2-7B RM (Samragh et’al., 2023) 61.97 of the layers. Adapter methods (Houlsby et al.,
LlaMa2-7B OWS (ours) 63.23 2019; He et al., 2021; Mahabadi et al., 2021; Diao

mimic the training landscape of full fine-tuning,
compared to LoRA.

It is worth noting that while OWS initially falls
short of LISA in the early phase of training, it grad-
ually catches up after 60 iterations and eventually
outperforms LISA with a lower loss. We conjecture
that the underlying reason here is that the low-rank
update of OWS is less accurate than the full-rank
update of LISA at the beginning. However, as train-
ing progresses, OWS keeps updating the subspace,
leading to an optimal one.

5 Related Work

Parameter-Effieient Fine-Tuning (PEFT). PEFT
is proposed to reduce the prohibitive cost of LLM
fine-tuning. Various techniques have been pro-
posed in this dynamic field. For instance, prompt
tuning only optimizes input tokens or embeddings
while keeping the rest of the model frozen, as

et al., 2022), incorporate a small auxiliary module
within the model’s architecture, which becomes
the exclusive focus of updates during training, thus
minimizing the number of trainable parameters and
optimizer states. Among these techniques, Low-
Rank Adaptation (LoRA) (Hu et al., 2021) gains
massive attention by applying low-rank matrices
to approximate weight changes during fine-tuning,
which can be merged into the pre-trained weights,
leading to no inference overhead. LoRA has been
enhanced through various modifications (Zhang
et al., 2023; Renduchintala et al., 2023; Sheng
et al., 2023; Liu et al., 2024a; Kopiczko et al., 2023;
Dettmers et al., 2024; Zhao et al., 2024) aimed at
improving performance and efficiency. Recently,
low-rank has also been explored to pre-train LLM
from scratch (Lialin et al., 2023a; Zhao et al., 2024).
Galore (Zhao et al., 2024) projects the gradient
into a low-rank subspace for the update to enable
full-parameter learning while significantly reduc-

19467

ing memory usage during optimization. BAdam
(Luo et al., 2024) partitions the entire model into
distinct blocks and utilizes a block coordinate de-
scent framework to update each block individually,
either in a deterministic or random sequence.

Layerwise Sampling for LLM Fine-tuning.
Importance sampling is a powerful statistical
technique used in machine learning to estimate
properties of a particular distribution by sampling
from a different, more convenient distribution.
Recently, Pan et al. (2024) explored the idea of im-
portance sampling to LLM fine-tuning, with the key
idea of sampling only -y layers at each step to fine-
tuning while keeping the rest of layers frozen. The
proposed method, Layerwise Importance Sampled
AdamW (LISA), outperforms LoRA by a large mar-
gin on various benchmarks and even outperforms
full parameters training under certain settings.
Inspired by LISA, our paper advances the perfor-
mance of layerwise sampling for LLM fine-tuning,
by addressing a couple of shortfalls of LISA.

6 Conclusion

In this paper, we study the sampling-based LLM
fine-tuning, where at each iteration, only a few
layers are sampled and fine-tuned, instead of
the whole model. Specifically, we delve into
recently-proposed LISA (Pan et al., 2024) and un-
veil two shortcomings that constrain its memory-
performance trade-off: (1) The middle layers of
LISA are sampled uniformly, which can result in
suboptimal performance. (2) The sampled layers
of LISA are fine-tuned in a full-rank manner, caus-
ing a significant memory increase as the number
of sampled layers increases. To address these chal-
lenges, we introduced OWS, which assigns higher
sampling probabilities to outlier-rich layers and
incorporates low-rank gradient projection for im-
proved memory efficiency. Our experiments on
LLaMa2 and Mistral demonstrate that OWS signif-
icantly boosts performance while reducing memory
usage compared to full-rank fine-tuning.

7 Limitations

While our proposed OWS approach demonstrates
notable improvements in fine-tuning performance
and memory efficiency, there are some factors
to consider. Our evaluation primarily focuses
on LLaMa?2 and Mistral models, and further re-
search could investigate the generalizability of
OWS across a broader range of models and ar-

chitectures.

Acknowledgements

S. Liu is funded by the Royal Society with the
Newton International Fellowship.

References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes,
Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan
Frankle, et al. 2024. Lora learns less and forgets less.
arXiv preprint arXiv:2405.09673.

Andrew Brock, Theodore Lim, James M Ritchie, and
Nick Weston. 2017. Freezeout: Accelerate train-
ing by progressively freezing layers. arXiv preprint
arXiv:1706.04983.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems (NeurIPs).

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Shizhe Diao, Zhichao Huang, Ruijia Xu, Xuechun Li,
Yong Lin, Xiao Zhou, and Tong Zhang. 2022. Black-
box prompt learning for pre-trained language models.
arXiv preprint arXiv:2201.08531.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. Warp: Word-level adversarial
reprogramming. arXiv preprint arXiv:2101.00121.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

19468

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790-2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters:
An adapter family for parameter-efficient fine-

tuning of large language models. arXiv preprint
arXiv:2304.01933.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing
Wang, Shuming Shi, and Zhaopeng Tu. 2023. Is chat-
gpt a good translator? yes with gpt-4 as the engine.
arXiv preprint arXiv:2301.08745.

Teun Kloek and Herman K Van Dijk. 1978. Bayesian
estimates of equation system parameters: an appli-
cation of integration by monte carlo. Econometrica:
Journal of the Econometric Society, pages 1-19.

Jan Kocon, Igor Cichecki, Oliwier Kaszyca, Mateusz
Kochanek, Dominika Szydto, Joanna Baran, Julita
Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil
Kanclerz, et al. 2023. Chatgpt: Jack of all trades,
master of none. Information Fusion, 99:101861.

Dawid Jan Kopiczko, Tijmen Blankevoort, and
Yuki Markus Asano. 2023. Vera: Vector-
based random matrix adaptation. arXiv preprint
arXiv:2310.11454.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers,
and Anna Rumshisky. 2021. Bert busters: Outlier
dimensions that disrupt transformers. arXiv preprint
arXiv:2105.06990.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Sheng Li, Geng Yuan, Yue Dai, Youtao Zhang, Yanzhi
Wang, and Xulong Tang. 2024. Smartfrz: An effi-
cient training framework using attention-based layer
freezing. arXiv preprint arXiv:2401.16720.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-
gunde, and Anna Rumshisky. 2023a. Relora: High-
rank training through low-rank updates. In Workshop
on Advancing Neural Network Training: Computa-
tional Efficiency, Scalability, and Resource Optimiza-
tion (WANT@ NeurIPS 2023).

Vladislav Lialin, Namrata Shivagunde, Sherin Muck-
atira, and Anna Rumshisky. 2023b. Stack more lay-
ers differently: High-rank training through low-rank
updates. arXiv preprint arXiv:2307.05695.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024a. Dora: Weight-
decomposed low-rank adaptation. In Forty-first In-
ternational Conference on Machine Learning.

X Liu, Y Zheng, Z Du, M Ding, Y Qian, Z Yang, and
J Tang. 2021a. Gpt understands, too. arxiv. arXiv
preprint arXiv:2103.10385.

Yongkang Liu, Yiqun Zhang, Qian Li, Tong Liu,
Shi Feng, Daling Wang, Yifei Zhang, and Hin-
rich Schiitze. 2024b. Hift: A hierarchical full
parameter fine-tuning strategy. arXiv preprint
arXiv:2401.15207.

Yuhan Liu, Saurabh Agarwal, and Shivaram Venkatara-
man. 2021b. Autofreeze: Automatically freez-
ing model blocks to accelerate fine-tuning. arXiv
preprint arXiv:2102.01386.

Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang,
Michael W Mahoney, and Yaoqing Yang. 2024. Al-
phapruning: Using heavy-tailed self regularization
theory for improved layer-wise pruning of large lan-
guage models. Advances in Neural Information Pro-
cessing Systems, 37:9117-9152.

Qijun Luo, Hengxu Yu, and Xiao Li. 2024. Badam:
A memory efficient full parameter training method
for large language models. arXiv preprint
arXiv:2404.02827.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transform-

ers via shared hypernetworks. arXiv preprint
arXiv:2106.04489.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D Lee, Danqgi Chen, and Sanjeev
Arora. 2023. Fine-tuning language models with just
forward passes. Advances in Neural Information
Processing Systems, 36:53038-53075.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language
models are more redundant than you expect. arXiv
preprint arXiv:2403.03853.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng
Zhang, Chi Han, and Tong Zhang. 2024. Lisa: Lay-
erwise importance sampling for memory-efficient

19469

large language model fine-tuning. arXiv preprint
arXiv:2403.17919.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Giovanni Puccetti, Anna Rogers, Aleksandr Drozd, and
Felice Dell’Orletta. 2022. Outliers dimensions that
disrupt transformers are driven by frequency. arXiv
preprint arXiv:2205.11380.

Adithya Renduchintala, Tugrul Konuk, and Oleksii
Kuchaiev. 2023. Tied-lora: Enhacing parameter ef-
ficiency of lora with weight tying. arXiv preprint
arXiv:2311.09578.

Mohammad Samragh, Mehrdad Farajtabar, Sachin
Mehta, Raviteja Vemulapalli, Fartash Faghri, De-
vang Naik, Oncel Tuzel, and Mohammad Rastegari.
2023. Weight subcloning: direct initialization of
transformers using larger pretrained ones. arXiv
preprint arXiv:2312.09299.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman
Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, et al.
2023. S-lora: Serving thousands of concurrent lora
adapters. arXiv preprint arXiv:2311.03285.

Nigar M Shafiq Surameery and Mohammed Y Shakor.
2023. Use chat gpt to solve programming bugs. In-
ternational Journal of Information technology and
Computer Engineering, (31):17-22.

Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-
Chi Cheung, Jacques Klein, and Tegawendé F Bis-
syandé. 2023. Is chatgpt the ultimate program-
ming assistant-how far is it? arXiv preprint
arXiv:2304.11938.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Wenhan Xia, Chengwei Qin, and Elad Hazan. 2024.
Chain of lora: Efficient fine-tuning of language
models via residual learning. arXiv preprint
arXiv:2401.04151.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh,
Yaqging Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. 2024.
Outlier weighed layerwise sparsity (owl): A miss-
ing secret sauce for pruning llms to high sparsity.
In International Conference on Machine Learning.
PMLR.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh In-
ternational Conference on Learning Representations.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang
Wang, Anima Anandkumar, and Yuandong Tian.
2024. Galore: Memory-efficient llm training
by gradient low-rank projection. arXiv preprint
arXiv:2403.03507.

Peilin Zhao and Tong Zhang. 2015. Stochastic opti-
mization with importance sampling for regularized
loss minimization. In international conference on
machine learning, pages 1-9. PMLR.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging 1lm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Zexuan Zhong, Dan Friedman, and Dangi Chen. 2021.
Factual probing is [mask]: Learning vs. learning to
recall. arXiv preprint arXiv:2104.05240.

19470

A OWS-Reverse

To further validate our approach, we introduce a new baseline: OWS-Reverse. This variant assigns
lower sampling probabilities to layers with a higher proportion of outliers. As expected, OWS-Reverse
performs the worst among the tested fine-tuning strategies, reinforcing our intuition about the importance
of outlier-weighted prioritization in achieving better results.

Table 10: Comparison with varies baselines.

Method MMLU BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
OWS-Reverse 49.4 81.9 77.8 334 59.1 80.1 79.3 50.2 382 61.0
Galore 49.6 81.8 794 329 60.7 79.6 79.8 494 376 612
LISA 49.6 82.0 799 335 59.7 79.6 80.4 51.1 388 616
OWS 52.6 85.4 80.7 342 60.3 82.2 80.6 51.0 39.1 62.9

B Hyperparameter Analysis

Comparison of Loss Curves on GSM-8K Dataset for LLaMa2-7B

1.4

= 00 AN -

<< =<<=<-<=
LI | N B
N

1.0

0 20 40 60 80 100 120 140
Step

Figure 5: Fine-tuning loss of LLaMA2-7B using method OWS on the GSM-8K dataset with various sampled layers.

7 is the key hyperparameter to obtain the outlier ratio and sampling layers -y is also crucial to OWS To
obtain intuitive and empirical guidance on these hyperparameter choices, we conduct ablation studies
using LLaMA2-7B models with the GSM-8K dataset and report the results below.

Table 11: GSM scores for different 7 values

Setting T=3 T=25 T=17 T=9 T=11 T=13 T=15 T=17 T=19
GSM Scores 19.18 19.41 20.04 20.62 21.15 20.24 20.17 20.47 19.79

We found that mid-range values of 7, such as 9, 11 and 13, generally lead to better performance. This
may stem from the fact that the outliers screened by these values are more indicative of heavy-tailed
properties. By default, we choose 7 = 13 for all experiments of OWS.

As for the sampling layer +, it is not surprising that performance improves consistently with the
sampling of more layers. OWS outperforms LISA with less memory usage across all sampling layer
counts. This is attributed to OWS’s allocation of higher sampling probabilities to layers abundant in
outliers, combined with its efficient low-rank gradient updating technique.

The training curve across different values of -y is depicted in Figure 5. Notably, fine-tuning with a
higher ~y leads to faster convergence and lower loss.

C Statistical Significance Test

We conducted experiments using 5 different seeds and reported the corresponding standard deviations.
We do experiments with LISA and OWS to demonstrate the effectiveness of our proposed approach. For

19471

MT-Bench, we provided the results evaluated using GPT-4o.

Table 12: Results of experiments for different models and methods evaluated on MT-Bench with 5 seeds and

reported standard deviations.

Model Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA

LLaMa2-7B LISA 81.9+0.22 79.6+026 33.6+0.11 59.6+0.09 795+0.16 803+0.13 51.1+0.11 39.2+0.12
LLaMa2-7B. OWS 853+0.19 80.8+0.29 342+0.14 602+0.11 824+0.18 80.8+0.14 51.1+0.12 39.6+0.15
Mistral-7B LISA 849+021 827+021 334+0.11 644+0.14 857+0.16 83.6+0.11 543+0.10 405+0.14
Mistral-7B OWS 88.0+0.24 84.0+0.23 339x0.11 664+0.16 856+0.09 84.1+0.15 57.8+0.14 40.5+0.13

Additionally, we performed an independent samples t-test to assess the statistical significance of the
performance difference between OWS and LISA. For example, in the LLaMa2-7B model, the t-test yields
a t-statistic of -11.36 and a p-value of 3.41e-06, indicating that the performance improvements of OWS

over LISA are statistically significant.

Table 13: Independent samples t-test results for the performance differences between OWS and LISA.

Model t-statistic p-value
LLaMa2-7B -11.36 3.41e-06
Mistral-7B -13.46 9.32e-07

19472

D Training Configurations of OWS

We utilize Hugging Face and PyTorch for the implementation of our work.

Table 14: Hyperparamters used of OWS for fine-tuning LL.aMa2-7B and Mistral-7B on the Commonsense Reasoning
Benchmark.

Hyperparameter LLaMa2-7B | Mistral-7B

Batch Size 16 16
Max. Sequence Length 512 512
Learning Rate 3e-4 3e-5
Schedular linear linear
Training Epoch 1 1
Warmup Steps 0 0
dtype bfloat16 bfloat16

Table 15: Hyperparamters used of OWS for fine-tuning LLaMa2-7B on various benchmarks.

Benchmarks | Commonsense Reasoning MT-Bench MMLU GSMSK
Train Samples 170K 52K 99.8K 74K
Test Samples 22.4K Alpaca-GPT4 (3.3K) 14K 1.3K
Batch Size 16 16 16 16
Max_length 512 512 512 512
Training Epoch 1 1 1 1
Learning Rate 3e-4 3e-4 3e-4 3e-4

E Pseudocode of GaLore

Following we present the pseudocode of OWS.

Algorithm 1: Outlier-Weighed Layerwise Sampling (OWS)

Require: number of layers N, number of training iterations 7', sampling period K, sampled layers +, rank level r, and
U(0, 1) refers to a uniform sampling.

% Before Training

for { < 1to N do

Calculate outlier ratio D; using the Equation 2

Pe — % > Mapping layerwise outlier distribution to sampling probability.
L j=1"3
% Training

fori+ 0toT/K — 1do

for { < 1to N do

if ¢4(0,1) > p, then
| Freeze layer /

else
Update the weights in layer ¢ > OWS updates the in the low-rank subspace
grad = weight.grad
lowrank_grad = project(grad) >original space -> low-rank space
lowrank_update = Adam_update (lowrank_grad) >update by Adam, Adafactor, etc.
update = project_back(lowrank_update) >low-rank space -> original space

weight.data += update

19473

