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Abstract

Targeting long-form question-answering, chain-
of-query (CoQ) has been studied, integrat-
ing chain-of-thought (CoT) with retrieval-
augmented generation. CoQ breaks down com-
plex questions into simpler subquestions (SQs),
allowing relevant information to be retrieved
step by step. By doing so, CoQ aims to improve
the answer comprehensiveness and verifiability,
at the expense of latency. Our first contribu-
tion is showing that the chaining often incurs
harmful effects on both objectives, and SQs
left unverified often fail to answer the given
question. Second, we propose a better alterna-
tive to CoQ, union-of-query which adopts a fac-
tored approach to break the harmful chain. Fi-
nally, we propose to verify SQs before answers,
by fine-tuning the SQ generator using verified
SQs and introducing a selector verifying SQs
in test time. Employing vicuna-13b, our ap-
proach, denoted by FaVe (short for Factored
and Verified search), even outperforms Chat-
GPT baselines while maintaining efficiency.

1 Introduction

In long-form question-answering (LFQA) (Fan
et al., 2019), a model is tasked to generate a long-
form response to answer a complex question. In
this work, we target two task objectives for LFQA:
answer comprehensiveness and answer verifiabil-
ity (Gao et al., 2023b), where we aim to gener-
ate factual claims that are not only comprehensive,
meaning they cover all relevant information related
to the given question, but also verifiable, ensuring
that the claims can be confirmed through external
sources (Rashkin et al., 2023).

An existing solution is retrieval-augmented gen-
eration (RAG) (Lewis et al., 2020; Izacard et al.,
2022), utilizing retrieved documents from exter-
nal corpus as rationales for the generated answer.
This enables the user to verify the truthfulness of
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Figure 1: Illustration of (a) CoQ and its failure case, and
(b) our proposed solution, FaVe.
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Figure 2: The answer comprehensiveness (y-axis) and
latency (x-axis) at different search iterations.

the answer via citations to the documents (Nakano
et al., 2021; Menick et al., 2022). Extending it be-
yond single-turn querying, chain-of-query prompt-
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ing (CoQ) (Yao et al., 2023; Jiang et al., 2023;
Shao et al., 2023; Press et al., 2023) has been stud-
ied for improved comprehensiveness. As depicted
in Figure 1(a), CoQ begins with breaking down a
complex question into a simpler subquestion (SQ)
and an answer for it, and then, if any relevant claim
remains unaddressed, continues to explore it in sub-
sequent iterations, conditioned by previous ones,
i.e., forming a chain of queries. At the expense
of the latency cost, such multi-turn querying is
intended to achieve progressively more comprehen-
sive answers through successive search iterations.

However, Figure 2 shows otherwise': Presented
by curve, comprehensiveness quickly sat-
urates, showing little improvements over vanilla
RAG (blue X mark), while latency surpasses it in
just two iterations. As attributions for the degenera-
tion, we identify two limitations of CoQ, illustrated
in Figure 1(a) with a failure case (red-colored texts):
1) The chain may propagate errors from previous
answers to subsequent generations, thereby becom-
ing rather a harmful chain, and 2) unverified SQs
often fail to answer the given question. Figure 1(b)
presents our solution to tackle the two limitations.

First, we propose union-of-query (UoQ) adopt-
ing a factored approach, to break two harmful
Chains (as shown in Figure 1(b) with scissors) —
(C1) the chain between answers and queries and
(C2) the chain between different answers — while
preserving the chain between SQs. By breaking C1,
UoQ), before answers, sequentially decodes varying
numbers of SQs, i.e., a search session. Then, by
breaking C2, UoQ answers different SQs in par-
allel, reducing latency. Figure 2 shows that UoQ
(green curve) via the chain break consistently im-
proves the comprehensiveness and maintains com-
parable latency to that of vanilla RAG.

Second, we propose session verification, lever-
aging feedback presented in Figure 1(b) with green
arrows, to Verify if an SQ is (V,) relevant to the
given question, (V4) answerable by the retrieved
document, and finally (V,) addressing relevant
claims in the final answer. Specifically, the verifica-
tion process comprises generating multiple search
session candidates and, to identify the best session,
verifying SQs in each session candidate based on
the received feedbacks. Building upon this process,
we introduce answer-aware candidate generator,
which is trained using verified sessions via feed-

"The comprehensiveness is measured by gold claim re-

call, used in ALCE benchmark (Gao et al., 2023b) on ELI5
dataset (Fan et al., 2019).

back for V,, and unified session selector, which
verifies SQs with the unified feedback encompass-
ing V4 and V4 to select the best session among the
candidates. Figure 2 shows that the session veri-
fication further improves performance with little
sacrifice on latency (red square).

With these two components (i.e., UoQ and
session verification), we propose Factored and
Verified search session, or FaVe. We evaluate mod-
els using two datasets: ELIS (Fan et al., 2019)
and StrategyQA (Geva et al., 2021). Compared to
CoQ, results on ELIS show that FaVe improves an-
swer comprehensiveness and verifiability by 35.4%
and 21.8%, respectively, while reducing latency
by a factor of two via parallel answer generation.
When evaluated on multi-hop reasoning using Strat-
egyQA, FaVe also demonstrates improved cover-
age in relevant facts by 35.6%, achieving 2.9%pt
increases in the final accuracy on Yes/No questions.

Our contributions are threefold:

1. We identify that the presence of two harmful
chains of CoQ results in adverse effects, ac-
companied by considerable latency costs. To
tackle this, we propose UoQ, which shows bet-
ter performance with lower latency by break-
ing these chains.

2. We identify three failure cases of SQs when
left unverified. To address each of these cases,
we propose tailored feedback, which is uti-
lized by the answer-aware session generator
and the unified session selector. In addition,
our unified selector can be easily integrated
with CoQ, to enable error-free chaining if high
latency costs are acceptable.

3. We thoroughly assess the effectiveness of
FaVe, using both ELIS and StrategyQA which
mainly target multifaceted or interdependent
facts, respectively, through extensive evalu-
ations conducted by both humans and auto-
mated methods.

2 Related Work and Motivation

Though large language models (LLMs) often pro-
duce factually incorrect answers, grounding knowl-
edge or latent rationales of answers are unknown
to users, constraining reliability of LLM-generated
responses. To enhance reliability, rationales can be
obtained 1) internally or 2) externally.

A notable exemplar of the former is chain-of-
thought prompting (Wei et al., 2022), where LLM
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Figure 3: A failure case of CoQ illustrating two harmful
chains (C1 and C2) and three negative influences of
unverified SQs (Vg, V4, and V).

produces a reasoning chain that serves as the un-
derlying logic behind its answer. CoT has shown
promising results in reasoning tasks (Kojima et al.,
2022; Wang et al., 2023). On the other hand, for
knowledge-intensive tasks (e.g., LFQA), rationale
based on external knowledge becomes more ap-
pealing, which offers complementary knowledge
to LLMs’ internal knowledge (Lewis et al., 2020;
Izacard et al., 2022). The user can verify the truth-
fulness of the answer via citations to the docu-
ments retrieved from external corpora (Rashkin
et al., 2023).

Recently, “chain-of-query” prompting has
gained attention, as it combines both internal and
external grounding. Given a complex question,
CoQ generates an SQ through internal reasoning,
answers the SQ by retrieving external rationale, and
iteratively repeats these two processes (Yao et al.,
2023; Jiang et al., 2023; Shao et al., 2023; Press
etal., 2023) (Prompts are shown in Appendix A.1.).
Despite the potential, CoQ showed limited im-
provements in LFQA tasks (Gao et al., 2023b).

Motivation Our distinction is to uncover the two
key issues in CoQ: harmful chaining and unveri-

fied subquestions. Figure 3 showcases two harmful
chains (C1/2) and three negative influences of SQs
left unverified (V{q/4/q)): Given the question @,
CoQ begins with generating SQ1. Despite the rel-
evance to ), (V) SQI1 is not answerable by the
retrieved document, producing hallucinations in
Al. Nevertheless, in the second iteration, (C1) the
error in Al propagates to the subsequent SQ, pro-
ducing (V) SQ2 non-relevant to (), such that A2,
as well, becomes non-relevant. For the last itera-
tion, SQ3, though relevant to () and answerable by
the document, (V,,) is not faithfully addressed in
A3, due to (C2) the interference from A2.

Inspired by the failure case, we propose 1) UoQ
breaking the two harmful chains (C1/2) while re-
taining the chain between SQs to progressively ex-
plore comprehensive knowledge, and 2) introduce
session verification to avoid the three negative in-
fluences of unverified SQs (V{g,4,q])-

Similar to UoQ, prior work has employed fac-
tored generation for revising initial answers (Gao
et al., 2023a; Dhuliawala et al., 2023). In con-
trast, we focus on generating answers from scratch.
While the initial answer offers a comprehensive set
of relevant claims, our distinction is progressively
achieving it via multiple SQs. To this end, though
CoQ has been assumed effective, our contribution
lies in challenging and refuting the assumption and
proposing UoQ as a superior alternative. Further-
more, SQs, as generated from scratch, often lose
relevance to the given question, exacerbated by
search failures. Our work is further distinguished
by proposing novel verification methods to tackle
this.

Regarding the verification, while standard ap-
proaches often assume the availability of straight-
forward ground-truth checks, such as exact matches
with gold numeric answers in math tasks (Snell
et al., 2024), or solely rely on the LLM’s internal
feedback, referred to as “self-verification” (Weng
et al., 2023; Dhuliawala et al., 2023), our distinc-
tion is incorporating external feedback as well,
such as search engine feedback to ensure the qual-
ity of search results (§3.2). Meanwhile, as another
dimension of verification, RR (He et al., 2022) ver-
ifies answers by evaluating whether each answer
is faithful to retrieved documents. Our distinction
is verifying SQs, which is orthogonal and comple-
mentary to the answer verification. SQs act as cues
for what to answer, such that the quality of SQs
largely influences the upper-bound quality of the
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Algorithm 1 FaVe for generating answers to the question

Input: The given question g from a user

1: Search session generation: Sample multiple search ses-
sions, with each search session s comprising a sequence of
N sub-questions of ¢, that is, s < {q1,...,qi,...,qN}

2: Search: For each search session s, search for relevant
documents using each subquestion, in parallel, producing
top-M documents, {d; 1, ... ,di,am } for each
Gi-

3: Test-time search session verification: Evaluate each s
regarding its relevance to g (denoted by r4) and its an-
swerability from {di m }wic(1,n],me[1, 0] (7a), producing
r< (rg+ra)/2.

4: Factored answer generation: For the subquestions in
the best s with the highest r, generate answers to each
subquestion, in parallel, based on the top-M documents,
producing a < {a1,...,a,...,an}. Optionally, post-
processing on a can be followed to conclude the final
prediction.

s imy e

resulting answers (Deng et al., 2023).

3 Approach

In the following sections, we first describe UoQ,
the factored generation process targeting a single
search session (§3.1), and then present the ses-
sion verification process, sampling and verifying
multiple search session candidates (§3.2). The
algorithm for our proposed method is presented
in Algorithm 1. For all inferences, such as ses-
sion generation and answer generation, we em-
ploy vicuna-13b with prompting, unless speci-
fied otherwise. Detailed prompts are shown in
Appendix A.2.

3.1 Union-of-Query

UoQ involves three stages: 1) search session gener-
ation factoring out answers from SQ generation, 2)
document retrieval, and 3) factored answer genera-
tion. We elaborate on the three stages below.

Search session generation We prompt LLM to
generate a sequence of varying numbers of SQs
(which will be verified later (§3.2)), denoted by
s={q, " ,qi, - ,qn} where N denotes the to-
tal number of SQs. Factoring out answers from gen-
erating SQs, UoQ improves comprehensiveness, by
encouraging SQs to explore diverse knowledge, be-
fore delving into detailed and possibly incorrect
answers, as shown via C1 in Figure 3.

Document retrieval Employing SQs as search
queries, we search relevant documents from a Web
corpus, more precisely Sphere (Piktus et al., 2021)
or Wikipedia, for ELI5 and StrategyQA, respec-
tively, following each benchmark setting. For ef-

ficiency, we first filter candidate documents by
retrieving the top-100 documents using BM25
search (Robertson and Walker, 1994) and the given
question from the user as the query. Given the
candidate documents, we rerank the documents us-
ing cross-encoder (Nogueira et al., 2020)? and §;
as the query>. We take the top-M documents, de-
noted by {dim }vie[1,N],me[1,m] Where m denotes
the rank of each document. We set M by 2 in our
experiments. The documents serve as rationales for
answers, ensuring their verifiability.

Factored answer generation Finally, UoQ gen-
erates the answer a; for each ¢;, conditioned only
by the target rationale {d; 1, - - - , d; a}, not by pre-
viously generated answers {@;}j<;*. The factored
answer generation improves the answer verifiabil-
ity, by encouraging the answer to be more faithful
to the designated rationale, and avoiding distraction
between answers as shown via C2 in Figure 3.

To answer each SQ, we employ the same prompt
used for CoQ, yet without involving previous an-
swers and SQs. This enables parallel prompting
for different SQs, significantly reducing latency.
The final answer a is obtained by concatenating
the individual answers {a1,--- ,a;, -+ ,an }. For
questions requiring concise final answers, such as
numbers or entities, we additionally prompt LLM
to generate the final prediction using a as input.

Meanwhile, SQs, when left unverified, often fail
to provide satisfactory answers to the given ques-
tion as showcased in Figure 3 via SQ1-3. To answer
from verified SQs, we propose session verification,
as detailed below.

3.2 Session verification

Our objective in session verification is threefold:
to ascertain that SQs in the search session are 1)
relevant to the given question, 2) answerable via
retrieved documents, and 3) faithfully addressed in
the answer with relevant factual claims, for which
we introduce tailored feedback as follows.
Standard self-verification approaches (Weng
et al., 2023) often only address the first objective

2https: //huggingface.co/castorini/
monot5-base-msmarco

*In Appendix E, we compare results from different search
methods.

“Note that, in contrast to factored answer generation, we
sequentially generate SQs, each ¢; conditioned on previously
generated SQs {g;},<i. Since SQs act as cues for what to
answer, such design enables a; to discuss diverse sub-topics
without duplicates for multifacet questions and to make them
consistent for interdependent questions.
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via the LLM’s internal feedback: The same LLM,
used for generating SQs, inversely checks whether
the SQs are relevant to the given question from
which it has been generated. However, despite their
relevance to the given question, SQs may not be
answered by retrieved documents or not addressed
in answers, violating the latter two objectives. Our
work is distinguished by additionally introducing
two external feedbacks, on documents and answers,
respectively.

* First, search engine feedback examines the
answerability of SQs by the retrieved docu-
ments. The primary aim is to ensure answer
verifiability, as SQs that cannot be answered
by the documents would make the answer un-
faithful to the documents. Moreover, when
combined with the internal feedback, it en-
hances comprehensiveness by ensuring the
inclusion of relevant claims in the document.

¢ Second, answer feedback examines the com-
prehensiveness of the final answer produced
from a search session. To do so, an external
natural language inference (NLI) model is em-
ployed, examining how many gold claims in
the reference answer are entailed by the gen-
erated answer. Given that the gold answer
is unavailable during testing, we utilize the
answer feedback for training.

To accomplish our objectives through feedback,
we propose two components: 1) answer-aware
session generator and 2) unified session selector.
These components are designed to incorporate two
types of feedback — search engine feedback and
answer feedback — into the system. Specifically,
the answer-aware session generator is trained to
generate session candidates that are verified to an-
swer comprehensively via answer feedback. In
contrast, the unified session selector unifies search
engine feedback with internal feedback to select the
best session. In the subsequent sections, we elab-
orate on the two proposed components and their
roles in leveraging feedback to enhance system
performance.

3.2.1 Answer-aware session generator

To produce high-quality session candidates, we
fine-tune the session generator, by sampling and
verifying multiple sessions for training questions
and utilizing those as training examples.

For verifying training data, we utilize the answer
feedback based on gold claims in human-annotated
answers. Through the answer feedback, we eval-
uate the comprehensiveness of generated answers
rather than their verifiability, as the latter is heav-
ily influenced by an external factor, namely the
search engine (which will be addressed later by
introducing the selector). To measure the compre-
hensiveness of each generated answer, we follow
the method proposed by Gao et al. (2023b) (§4.2).
Specifically, we employ an external NLI model, to
count the number of gold claims entailed by the
generated answer, as the session comprehensive-
ness measure.

Once verifying session samples, we employ con-
trastive objective (Lee et al., 2021) for fine-tuning,
aiming to prioritize sampling of more comprehen-
sive sessions over less comprehensive ones. Specif-
ically, we compare pairs of sessions and label the
one with at least A additional factual claims (than
the other) as positive and the other as negative, de-
noted by s* and s—, respectively. A was set by
two in our experiments, which produces a suffi-
cient number of training pairs with a clear contrast
between sT and s~ . For collecting such pairs, we
used the ELI5 training dataset 3.

With the identified training session pairs in
hand, we proceed to optimize the generator using
a method called Direct Preference Optimization
(DPO) (Rafailov et al., 2023). The generator is
optimized to maximize

3 <1og LGN “(s’ﬂ) .

(™) Tret(87)
where 7y and ms denote the likelihood from the
learning generator and reference generator, respec-
tively, and 8 serves as a regularization term to-
ward the reference model. For m.f, we employ
vicuna-13b with the prompt in Figure 9 and fine-
tune it to produce 7y, with § = 0.3, using RM-
SProp optimizer (Tieleman and Hinton, 2012) with
learning rate Se-7. The optimal checkpoint was set
based on the accuracy, 1(mp(s™) > mp(s™)), on
1k validation examples.

During testing, we employ the generator to sam-
ple multiple session candidates®, from which we
select the best session as explained below.

>More precisely, we used 100k questions in the ELIS5 train-
ing dataset, sampled 8 sessions per question and finally ob-
tained 40k session pairs for contrastive learning.

®During testing, we sample 8 search sessions in our ex-
periments for each given question, using top-k sampling with
temperature 1.
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3.2.2 Unified session selector

In addition to leveraging the most comprehensive
session, our goal for the selector is to improve an-
swer verifiability to complement the generator. To
achieve this, we unify internal feedback and search
engine feedback, to ensure that not only the se-
lected session produces relevant claims to the given
question but also their verifiability via the retrieved
documents. For each session candidate, the selector
first collects internal and search engine feedback on
individual SQs, combines the feedback, and com-
putes the final session quality, based on which the
best session will be selected.

For the internal feedback, we prompt LLM to
conversely examine the relevance of each SQ, ¢;, to
the given question, producing {77 }v;c[1, ) Where
rl is set by 1 if g; is classified as relevant and 0
otherwise. For the search engine feedback to assess
the answerability of SQs, we leverage the relevance
scores given by the search engine for the top-1
ranked document, denoted by {rf}WG[L ~]- High
values for both 7 and r¢ indicate that g; is relevant
to the given question and can be answered using
the documents, and thus will offer relevant claims
that are grounded in the rationale documents.

Given {r{}vic1,n] and {ré}yiep, n for differ-
ent SQs in the session, we aggregate scores to mea-
sure the final session quality 7:

r=(r+7r%/2€(0,1) 2)
N
r? = min (Z rg,(s) /6 € 10,1] 3)
=1
N
rt =Y "rf/N € (0,1). 4)
=1

We introduce J, which is the predefined maxi-
mum number of relevant SQs, to avoid the over-
generation of duplicate gold claims. We set § by
5, as the answer often contains five distinct factual
claims. Given r on each of the session candidates,
we leverage the session with the highest r as the
rationales for the final answer.

4 Experiment

4.1 Dataset

Two datasets, ELI5 and StrategyQA, were used
for evaluation. Both require a model to compre-
hensively discuss relevant facts to answer a given
question, while the two differ in that ELI5 and

StrategyQA mainly target multifaceted facts and
interdependent facts, respectively.

Specifically, for ELI5, we used 1000 question-
answer pairs open-sourced by ALCE (Gao et al.,
2023b), which are sub-sampled from ELIS eval-
uation dataset. Most of the questions are “why”,
“how”, and “what” questions. These questions de-
mand long-form answers with a length spanning
121.5 words on average. An example of multi-
faceted relevant subtopics is presented in Figure 9.

On the other hand, StrategyQA, consisting of
299 Yes/No questions, evaluates models on the
multi-hop reasoning task. Given a question (e.g.,
“Would someone in Mumbai refer to Solanum me-
longena as an eggplant?”), a model is tasked to
produce a long-form answer by reasoning interde-
pendent subquestions and their answers (e.g., “In
what country Mumbai located? India”, then, “In
what region is India located? South Asia”, and fi-
nally “What is Solanum melongena referred to as in
South Asia? brinjal”), to finally produce the binary
output (e.g., “No” for the exemplar question).

4.2 Evaluation metrics

To evaluate the comprehensiveness and verifiability
of long-form answers, we adopt automatic mea-
sures proposed by Gao et al. (2023b)’.

* Comprehensiveness is measured by claim
recall, which evaluates the ratio of gold claims
entailed by the generated answer to the total
number of gold claims. We used annotated
gold claims in each benchmark dataset.

* Verifiability is measured by citation recall,
which evaluates the ratio of claims in the
generated answer that can be entailed by the
citation documents to the total number of
claims present in the answer®. For assess-
ing the entailment, state-of-the-art NLI model

TRUE (Honovich et al., 2022) was employed.

We compared FaVe against vanilla RAG (which
uses single-turn querying) and CoQ. For CoQ and
our model, we used top 2 documents for each SQ.
Vanilla RAG used top 3 documents retrieved from
the given question, which performed better in our
preliminary study than top 2 or top 4.

"In addition to the automatic evaluation, we present human
evaluation results in Appendix B, where human annotators
prefer FaVe more often than baselines.

8Each sentence, split using NLTK tokenizer, is considered
to have a single claim.
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Model Claim Citation Latency

Claim Citation

(vicuna-13b) Recall  Recall (s) Model LLM Recall Recall
Vanilla RAG 10.4 454 8.9 (s) Vanilla RAG 12.0 51.1
CoQ 113 458  21.9(s) CoQ ChatGPT 134 456
(Ours) FaVe 153 55.8 91(¢6)y "7 o vicuna-13b | 14.0 546
W/0 Voenerawor | 140 346 9.1(s) (Ours) FaVe™ o iGPT 163 555
w/o VSelector @ m 9.1 (S)
w/o both 12.8 52.1 8.1(s) Table 2: Evaluation using either vicuna-13b or

Table 1: The best results are denoted in bold, and
underlining indicates superior performance compared
to CoQ.

4.3 Results on ELIS

Based on the evaluation metrics, in the following
sections, we first compare the overall performance
on ELIS, to validate the effectiveness of FaVe. Sub-
sequently, we discuss how the two proposed meth-
ods, union-of-query and session verification, con-
tribute to improving the task objectives.

UoQ and FaVe outperform CoQ, in terms
of generating relevant and verifiable claims,
and efficiency as well. Table 1 reports over-
all performance, along with latency. CoQ shows
marginal improvements compared to vanilla RAG,
yet hugely sacrifices latency. In contrast, FaVe out-
performs all baselines on both metrics and shows
much lower latency than CoQ via parallel answer
generation. In Appendix C, we present a detailed
latency analysis comparing the latency at different
stages.

As ablation studies, we excluded fine-tuning the
answer-aware session generator (i.e., using LLM
without fine-tuning) or the unified session selector
for verification, denoted by VGenerator and Vselectors
respectively. Both ablation models decrease the
performance, validating the contribution of the two
components. Nevertheless, we stress that FaVe
without both verifications, i.e., UoQ, still outper-
forms CoQ, indicating the contribution of chain
break.

Table 2 further compares performance using
ChatGPT (gpt-3.5-turbo-0301). FaVe with
vicuna-13b even outperforms ChatGPT baselines
on both metrics, suggesting that FaVe is more ef-
fective than increasing the model size, especially
when efficiency matters. Employing ChatGPT for
FaVe further improves performance.

°For FaVe in Table 2, we excluded the answer-aware ses-
sion generator, as fine-tuning ChatGPT is infeasible. We also

gpt-3.5-turbo-0301 as backbone LLMs. The bold-
faced and the underlined denote the best and the second
best performance, respectively.

goi2{n | ¥=N |
g ¢ Ny | % Vanilla RAG
20101 '?""‘ """ ® (Ours) union-of-query
S N (ablation) adding C1;
-@ 0.08 i ¢ answer-SQ
g. | . (ablation) adding C2;
S 0.06 1 | answer - answer
© : =1 |

0.4 0.6

Verifiability

Figure 4: The answer comprehensiveness (y-axis; claim
recall) and the verifiability (x-axis; citation recall), from
G; with i € [1,2, NJ.

In the following paragraphs, as in-depth analy-
ses, we validate the effectiveness of each of our two
proposed modules, UoQ and session verification.

UoQ outperforms vanilla RAG on both task ob-
jectives, while the two harmful chains degrade
either of the two. We illustrate how each of the
two harmful chains of CoQ (C1 and C2 in Figure 3)
adversely affects the two task objectives through
ablation studies. UoQ avoids the adverse effects by
breaking both chains. Figure 4 presents ablation
studies, comparing UoQ with two ablation models
that restore each of the two harmful chains indi-
cated by scissors in Figure 1(b), respectively. We
report performance on two task objectives, when
chaining different numbers of queries.

First, when adding C1 (red curve), the compre-
hensiveness (y-axis) shows little difference from
vanilla RAG. Second, when adding C2 (blue curve),
the verifiability (x-axis) significantly decreases, as
iteration progresses, at last, falling below that of
vanilla RAG!. Finally, breaking the two chains,

exclude 9, such that r = r¢. When using ChatGPT, more
capable of generation, we found that most of the generated
SQs are relevant to the given question, such that the internal
feedback ¢ becomes not needed.

'In Appendix G, we analyze attributions of performance
degradation from the perspective of retrieval.
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Figure 5: Impact of internal and search engine feed-
back. The number in each cell denotes the performance
from search sessions having 77 and ¢ values. Blue/red-
colored cell denotes that the performance is better or
worse than that of a randomly sampled session (i.e.,
unverified session). “L”, “M”, and “H” denote low,
medium, and high, respectively.

UoQ (green curve) is the only model that outper-
forms vanilla RAG on both objectives.

Search engine feedback improves answer veri-
fiability, and also the comprehensiveness when
jointly used with internal feedback. In Figure 5,
we compare internal feedback and external search
engine feedback, through the performance of ses-
sion samples having different ¢ and %

The feedback from the search engine ¢ is pre-
dictive of the citation recall, while the internal feed-
back 77 is not: When the session has higher 7%, it
shows high citation recall regardless of 9. On the
other hand, the claim recall performance is jointly
influenced by both feedbacks: The highest claim
recall is achieved when both are high, while the per-
formance degrades if either of the two decreases,
showing the complementary benefits between the
two feedbacks'!.

4.4 Results on StrategyQA

For multi-hop reasoning, CoQ is expected to be-
come a suitable choice, as it extends CoT and ex-
plicitly reasons interdependent relevant facts step-
by-step. On the other hand, UoQ can be consid-
ered implicitly performing the multi-hop reasoning
during the search session generation, by internally
envisioning an answer to a subquestion before gen-
erating the subsequent subquestion.

In the following paragraphs, on StrategyQA, we
first present overall performance results that re-
fute the expectation on CoQ and suggest UoQ and
FaVe as promising alternatives, followed by analyz-
ing the limitation and the potential of CoQ. In Ap-

"In Appendix H and Appendix F, we validate the effective-
ness of our verification leveraging answer feedback.

Model Claim  Citation Final

(vicuna-13b) Recall Recall  Accuracy

Vanilla RAG S.Iio'g 34.6i1'5 51.8i2,3

COQ 13~5i147 44-1i1.9 57~5i3.7

(Ours) UOQ 16-9111 47.9122 58.3i1‘3

(Ours) FaVe!? 183112 54.5.06 604405

" CoQ extension (x3 latency compared to FaVe)

(Ours) W/ Vselector | 20.8+109 50.6112 61.7106
w/ self-verification 19.7:&0‘7 46.7i1_4 60.9:&1,6

Table 3: Average performance gy on StrategyQA from
5 different random seeds.

pendix D, we present evaluation results on another
multi-hop reasoning dataset, HotpotQA (Yang
et al., 2018), demonstrating the generalization abil-
ity of our method.

UoQ with implicit reasoning outperforms CoQ,
and FaVe further enhances UoQ. Given the rel-
atively small number of test questions, we run each
model with 5 different random seeds and report
the average performance in Table 3. In addition to
comprehensiveness and verifiability, we evaluate
models on the final accuracy of Yes/No questions.

As expected, when performing the multi-hop rea-
soning task, CoQ hugely outperforms vanilla RAG,
by explicitly reasoning multiple subquestions. Nev-
ertheless, UoQ with implicit reasoning outperforms
CoQ and is more efficient. Finally, FaVe, by veri-
fying reasoning steps, further enhances UoQ and
outperforms all baselines for all metrics.

In the subsequent paragraph, we further analyze
such results from the perspective of error propaga-
tion which is an inherent limitation of CoQ. Then,
motivated by the analysis, we will also discuss how
our unified verification feedback can be applied to
CoQ, to overcome its limitation, denoted by “CoQ
extension W/ Vselector in Table 3.

Our unified verification feedback realizes the po-
tential of CoQ, by avoiding errors. Figure 6(a)
illustrates our motivation for the CoQ extension, by
presenting the limitation and the potential of CoQ:
When the model fails to produce gold fact at the
first iteration (denoted by “Failure” in the x-axis),
due to the harmful chaining, CoQ propagates the
error to subsequent iterations and thus shows lower
accuracy than UoQ, indicating the vulnerability of
CoQ against early errors. In contrast, CoQ has the

2For FaVe in Table 3, due to the insufficient number of
training questions, we opted not to fine-tune the answer-aware
session generator and instead used the open-source model.
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Figure 6: (a) Final accuracy depending on either failure
or success in producing gold fact at the first iteration,
and (b) improved success rate of CoQ via our unified
selector, denoted by “+ Vselector -

potential to become more accurate if such errors
could be avoided, showing hugely improved accu-
racy given the successful first iteration. However,
Figure 6(b) shows that the success rate of CoQ is
less than 18%. This suppresses the potential of
CoQ, explaining the superior performance of UoQ
over CoQ (Table 3).

To realize the potential and enable error-free
multi-hop reasoning, by spending additional costs,
our unified selector can be easily integrated with
CoQ. Specifically, at each iteration of CoQ, we
sample multiple SQs, verify them using our uni-
fied selector, answer only the verified SQ, and then
proceed to the next iteration'>. For the unified veri-
fication feedback r (Eq 2), to avoid the dominance
of 7 and the exclusion of 7% due to the binary score
of r9 (i.e., either O or 1), we set r? by the probabil-
ity of “Yes”, which is a real number between 0 and
1 asin r%. Figure 6(b) shows that our unified selec-
tor, denoted by “Vgelector s Significantly improves
the success rate at the first iteration. Note that, even
if the failure occurs, Vselector €nables repairment at
subsequent iterations, by verifying every reasoning
step.

As a result, as shown in Table 3, Vgelector Sig-
nificantly improves CoQ performance, realizing
its potential. Vgelector also shows greater improve-
ments than self-verification (denoted by “w/ self-
verification” in Table 3) which ablates the search
engine feedback from Vgejector, indicating the ef-
fectiveness of our unified feedback. Nevertheless,
it incurs huge latency costs, showing higher over-
all latency than FaVe by a factor of 3. We sug-
gest adopting our CoQ extension when the best-
performing model is needed, while FaVe becomes
more suitable when efficiency matters.

BWhile adapting CoQ, we exclude the dependency between

—— Vanilla RAG —— (Ours) UoQ
CoQ —— (Ours) FaVe
P
(&) T [0)
g:) ::: QC: ./. C]
E () 9 40 . /
© ©
G 10 -.\./ S /.
— T 20— T
7B13B 33B 7B13B 33B
Scale Scale

Figure 7: Scaling analysis presenting evaluation results
of long-form answers from LLMs with different scales:
vicuna-7B/13B/33B.

Across LLMs with different model sizes and
reasoning capabilities, FaVe consistently out-
performs both vanilla RAG and CoQ. We fur-
ther evaluate long-form answers from vicuna with
varying scales such as 7B, 13B, and 33B. Results
are shown in Figure 7.

For the smallest model (7B), CoQ underper-
forms vanilla RAG. This is because a small model
with limited capacity is prone to incur errors and is
vulnerable to error propagation, making the limita-
tion of CoQ more pronounced. UoQ and FaVe,
breaking the harmful chain, hugely outperform
both baselines, indicating that ours are go-to meth-
ods, especially for cost-sensitive scenarios.

For the largest model (33B), though hugely im-
proving the claim recall, CoQ shows relatively
small improvements in the citation recall compared
to vanilla RAG. This is because errors are often
attributed to the search failure regardless of LLM’s
capability, while the search quality significantly
influences the citation quality as discussed in Fig-
ure 12 and 5. In contrast, by leveraging the search
engine feedback, FaVe shows much better citation
recall compared to other approaches.

5 Conclusion

In this work, targeting the long-form question-
answering task, we aim to improve both the effec-
tiveness (in terms of comprehensiveness and ver-
ifiability) and the efficiency (in terms of latency).
We propose FaVe, consisting of union-of-query, as
a better alternative to chain-of-query, and session
verification. Evaluated on ELI5 and StrategyQA,
FaVe outperforms baselines with lower latency.

answers, as it degrades the citation quality (Figure 4).
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Limitations

Our work produces more accurate citations, en-
abling the user to verify the generated claims via ci-
tation documents. Nevertheless, as an inherent lim-
itation of fact verification, the documents may con-
tain misinformation. For example, when relying
on unreliable corpora, e.g., social media posts, the
citation documents may include fake news (Webb
et al., 2016). As a remedy, for citation sources, we
employed trustworthy corpora, i.e., Wikipedia. To
further improve reliability and truthfulness, a fu-
ture work can be incorporating multiple sources for
verifiable claims, where citations are cross-checked
against multiple sources within the trusted corpus.
This helps ensure that the information being cited
is not only accurate but also consistent across dif-
ferent references.
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A Prompt

Al CoQ

Figure 8 presents the prompt used for CoQ: It alter-
nates between Prompt A and B, iteratively gener-

19412


https://arxiv.org/abs/2203.11147
https://arxiv.org/abs/2203.11147
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://doi.org/10.18653/v1/2022.emnlp-main.669
https://doi.org/10.18653/v1/2020.findings-emnlp.63
https://doi.org/10.18653/v1/2020.findings-emnlp.63
https://arxiv.org/abs/2112.09924
https://arxiv.org/abs/2112.09924
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://direct.mit.edu/coli/article/49/4/777/116438/Measuring-Attribution-in-Natural-Language
https://direct.mit.edu/coli/article/49/4/777/116438/Measuring-Attribution-in-Natural-Language
https://dl.acm.org/doi/pdf/10.5555/188490.188561
https://dl.acm.org/doi/pdf/10.5555/188490.188561
https://dl.acm.org/doi/pdf/10.5555/188490.188561
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://doi.org/10.18653/v1/2023.findings-emnlp.620
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://aclanthology.org/2023.findings-emnlp.167
https://aclanthology.org/2023.findings-emnlp.167
https://arxiv.org/abs/2305.18323
https://arxiv.org/abs/2305.18323
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

Instruction: Write an answer for the given question using
only the provided search results and cite them properly by
using [1][2][3]. You can use "Search: key words" to retrieve
relevant documents and use "Output:" to output an answer.
Use "[END]" to end the generation.

(1-shot demonstration)

Question: What's difference between Shia vs. Sunni Islam?
Answer: Search: When did the difference first emerge?
Output: This difference is first formed after ...

Search: ... Output: ... Search: ... Output: ... ... [END]

Question: {{The original question given by a user }}
Answer: ...

Output: {{ The previously generated answer }}
Search: {{ completion: a subquestion (SQ) }}

Prompt A. for subquestion generation

... (using the same instruction & demo to Prompt A) ...
Output: {{ The previously generated answer }}

Search: {{ The generated SQ from Prompt A}}

Document [1]: ... [2]: ... {{ top-2 documents from the SQ }}
Output: {{ completion: answer sentences to the SQ }}

Prompt B. for answer generation

Figure 8: CoQ alternates between Prompt A/B.

Instruction: Generate a search session consisting of
detailed queries relevant to the question.

(1-shot demonstration)

Question: difference between Shia vs. Sunni Islam
Search Session:

[1] When did the difference first emerge?

[2] What is the difference in the ideological practice?
[3] How do the practices and rituals differ?

Question: {{ given question from the user}}
Search Session:

{{ completion: a sequence of subquestions}}
[17 (Ist subquestion) ...

[N] (N-th subquestion) ... [END of subquestions]

Figure 9: Prompt for search session generation.

(8-shot demonstrations)

Question: What's the difference between Shia vs. Sunni Islam?
Sub-topic: What is the difference in the ideological practice?
Will the sub-topic answer the question? Yes

Question: Why can't the US just copy healthcare systems such as
the UK and Canada?

Sub-topic: How does Canada's healthcare system differ from the
UK system?

Will the sub-topic answer the question? No

Question: {{ given question from the user}}
Sub-topic: {{ generated sub-question }}
Will the sub-topic answer the question? {{ completion:Yes/No }}

Figure 10: Prompt used for the internal feedback of
relevance for SQ to the given question

ating SQs and providing answers, conditioned by
preceding responses (highlighted in red).

(Ours) FaVe FaVe FaVe
vs baseline Wins Loses
vs Vanilla RAG | 58.7% 153% 26.0%
vs CoQ 45.0% 154% 39.6%

Table 4: Human evaluation results on reference-free
pairwise comparisons.

A2 UoQ

Figure 9 shows the prompt for the search session
generation, producing a sequence of N numbers of
SQs.

Figure 10 presents the prompt to collect the inter-
nal feedback for verifying the generated SQs. If ¢;
is classified as relevant (i.e., “Yes” in the prompt),
71 is set by 1 and, otherwise 0.

For the answer generation, we used the same
prompt to CoQ (Prompt B in Figure 8), while ex-
cluding previous answers and SQs from generating
answers.

B Human evaluation

FaVe is preferred more often than baselines by
human annotators. In addition to results from
automatic measures, we present human evaluation
results on ELIS dataset.

Though enabling sufficient scale evaluation, the
automatic metrics suffer from missing annotations
on relevant facts. For ELIS, for example, given
that only a single reference gold answer is avail-
able for each question, we found that 60-80% of
gold claims in model-generated answers are not
captured by the reference answer. As a reference-
free alternative, three human annotators were asked
to directly compare each pair of models regarding
the answer comprehensiveness, on randomly sub-
sampled 50 questions. We used Amazon Mechani-
cal Turk, and each annotator was paid 0.1$ for each
assignment.

Table 4 reports human evaluation results of
reference-free pairwise comparisons on ELIS
dataset, showing that FaVe is preferred more of-
ten than the others.

C Latency at different stages

Figure 11 compares latency for different RAG ap-
proaches.

Reducing latency through factored generation
Through factored generation, UoQ improves not
only the answer quality but also efficiency, as
demonstrated in Figure 11.
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Figure 11: Latency comparison between different RAG
approaches at different stages.

Model Claim Citation
(vicuna-13b) | Recall Recall EM  Fl
Vanilla RAG 11.8 33.1 22.5 32.1
CoQ 10.6 48.5 26.7 35.6
(Ours) UoQ 11.0 57.6 27.6 36.8
(Ours) FaVe 19.6 65.2 284 38.7

Table 5: Results on HotpotQA dataset. EM denotes
exact-match scores between the final prediction and the
ground-truth answer.

CoQ shows the worst overall latency, as it se-
quentially calls LLM multiple times with increas-
ingly lengthy prompts (Xu et al., 2023). In con-
trast, UoQ maintains comparable overall latency to
vanilla RAG, by avoiding sequential answer gener-
ation. The subquestion generation is the only part
where the sequential process is involved, yet incurs
relatively lower latency, as it takes shorter inputs
and outputs (i.e., the given questions and SQs, re-
spectively) compared to answer generation which
takes long documents.

Session verification with little latency costs
The session verification incurs little latency over-
head, as illustrated in Figure 11 with “+ session
verification”. The only additional latency costs
arise from employing the internal feedback to com-
pute 77, which remain negligible as it takes short
SQs. The two external feedbacks incur no addi-
tional costs, since we employ the answer feedback
only for training and, for the search engine feed-
back, reuse the document relevance scores.

D Results on HotpotQA

Table 5 compares performance on HotpotQA
dataset (Yang et al., 2018). For the evaluation met-

Model Claim Citation
(vicuna-13b) | Recall Recall EM Fl
UoQ 11.0 57.6 27.6 36.8
+ VGenerator 16.7 58.7 285 373

Table 6: Showcasing the transferability of our answer-
aware session generator, denoted by Vgenerator, fine-
tuned using ELI5 and then evaluated on HotpotQA.

rics, we report the claim recall (using annotated
supporting facts provided in the dataset, as gold
claims) and citation recall, along with the official
metrics of the dataset for the final answer accuracy,
i.e., Exact-Match and F1 on the final answer string.

Consistent with results on ELI5 (Table 1) and
StrategyQA (Table 3), results on HotpotQA demon-
strate that UoQ outperforms CoQ, while FaVe fur-
ther achieves significant improvements, surpass-
ing all baselines across all metrics. These results
validate the generalizability of our method across
diverse datasets.

We further leverage HotpotQA dataset, to ex-
amine the transferability of our answer-aware ses-
sion generator. Specifically, we first fine-tune the
search session generator using ELI5 dataset, and
then transfer it to HotpotQA. Results are reported in
Table 6, where “+ VGenerator . denotes replacing the
open-source vicuna-13b model for search session
generator in UoQ by our answer-aware generator
fine-tuned using ELIS. The answer-aware session
generator improves performance on all metrics,
showcasing the transferability of the fine-tuned
model using sufficiently diverse questions in ELIS
dataset.

E Results from different search methods

UoQ, improving queries, is complementary to
employing a better retriever, to facilitate re-
trieval and RAG. Orthogonal to UoQ improving
search queries via better SQs, one can employ a
more effective retriever, to enhance RAG via im-
proved search results. In particular, we compare
three retrievers: BM25 (Robertson and Walker,
1994), which relies on lexical-exact-match and is
the least accurate retriever; dense retriever (Ni et al.,
2022)'4, demonstrating moderate accuracy; and
cross-encoder (Nogueira et al., 2020)'3, considered

“https://huggingface.co/sentence-transformers/
gtr-t5-large

Bhttps://huggingface.co/castorini/
monot5-base-msmarco

19414


https://huggingface.co/sentence-transformers/gtr-t5-large
https://huggingface.co/sentence-transformers/gtr-t5-large
https://huggingface.co/castorini/monot5-base-msmarco
https://huggingface.co/castorini/monot5-base-msmarco

T| === BM25
17.5 1(mml Dense Retriever
15.0 { | Cross-Encoder

* Vanilla
RAG

(Ours) + session

CoQ UoQ verification

60.0
57.5 1 | ™ BM25

BN Dense Retriever
BN Cross-Encoder

55.0 A

[¢0] -
® 525
@
< 50.0
C
.© 475
=
[}
+ 45,0
O

42.5

400 Vanilla

RAG

(Ours) + session
UoQ verification

CoQ
Figure 12: Performance from different retrievers.

the most accurate among them. We report perfor-
mance on two task objectives in Figure 12.

Compared to BM25, employing better retriev-
ers (i.e., the dense retriever or the cross-encoder)
significantly enhances citation recall, as illustrated
by vanilla RAG in the lower figure. Nevertheless,
there are little differences in claim recall, as shown
in the upper figure. In contrast, ours, improving
search queries, surpasses all baselines in both claim
recall and citation recall, regardless of the retriever
choice. This underscores the unique contribution
of leveraging better SQs via the chain break and
session verification.

Furthermore, regarding the citation recall, UoQ
exhibits a synergistic advantage when paired with
the most accurate retriever, cross-encoder: Com-
pared to the dense retriever, when the cross-encoder
is employed, the citation recall of UoQ increases
by 1.7%pt. In contrast, such benefits are not ob-
served in vanilla RAG and CoQ. This is because
improved search results can be achieved only when
a high-quality query is used in conjunction with a
high-performing retriever.

F Results of using test-time answer
feedback

Leveraging the answer feedback for assess-
ing both comprehensiveness and verifiability
achieves the best performance on both objec-
tives. To complement our answer-aware session

Claim Citation

Model LLM Recall Recall
Vanilla RAG 12.0 51.1
rtestime AR HOPT ) g 603
(Ours) FaVe vicuna-13b 15.3 55.8
ttesttime AR 0] 150 0 741
w/o train-time AF 12.9 71.0

Table 7: “AF” denotes the answer feedback given at
either train time or test time. The bold-faced and the
underlined denote the best and the second best perfor-
mance, respectively.

generator, which assesses session comprehensive-
ness using answer feedback at train time, the an-
swer feedback can be further leveraged at fest time
to assess the verifiability of answer samples, al-
beit with additional latency costs. Table 7 presents
the contribution of leveraging the answer feedback
(AF) at train or test time, denoted by “train-time
AF” and “test-time AF”, respectively.

Specifically, for test-time answer feedback, we
sample multiple answers'®, evaluate each on the ci-
tation recall, and select the best answer as the final
response. Note that, in contrast to the claim re-
call, the citation recall can be measured without the
need for gold reference answers. We compare FaVe
(employing vicuna-13b) with or without test-time
answer feedback, along with vanilla RAG that uses
ChatGPT as a baseline.

Leveraging test-time answer feedback improves
citation recall. Nevertheless, as expected, it does
not improve claim recall, highlighting the unique
contribution of FaVe to answer comprehensive-
ness. As a result, FaVe leveraging both train- and
test-time answer feedback outperforms ChatGPT
baselines on both metrics. Meanwhile, removing
train-time answer feedback decreases performance,
indicating the complementarity between the two
answer feedbacks.

G Results on Knowledge Utilization

UoQ improves and better utilizes search results.
As an attribution of improved task performance,
we demonstrate that UoQ contributes to enhancing
RAG by better acquiring and utilizing knowledge
through retrieved documents.

To this end, we introduce a metric, termed “‘effec-
tive knowledge coverage”, to evaluate how much
gold knowledge is covered in retrieved documents
and effectively utilized in the final answer. As

15We sampled 8 answers per question.
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Figure 13: Effective knowledge coverage at different
search iterations.
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Figure 14: Comparison between FaVe and FaVe without
the verification via the answer-aware session generator
(denoted by “FaVe w/0 Vgenerator ), On sample efficiency
of session candidates.

gold knowledge, we used gold factual claims open-
sourced by Gao et al. (2023b). We denote the set of
gold factual claims by C, and those included in the
retrieved documents and the model-generated an-
swer at different iterations by C; C C and C, C C,
respectively, where ¢ denotes the index of the
search query ¢;. To obtain Cé and C!, we examine
whether each gold claim ¢ € C is entailed from the
documents and answers, respectively, by employ-
ing the same NLI model used for the claim recall
and the citation recall. Finally, the effective knowl-
edge coverage is computed by ||, C5 N CL|/[C],
where | - | denotes the cardinality of a set. Note that
effective knowledge coverage differs from claim
recall, as it assesses the knowledge in the docu-
ments in conjunction with the answer. Results are
reported in Figure 13.

CoQ ( curve) shows marginal improve-
ment across iterations, indicating that the harmful
chaining prevents the model from acquiring and uti-
lizing comprehensive gold knowledge. In contrast,
UoQ (green curve), breaking the chain, consistently
improves the coverage.

H Results on sample efficiency

Answer feedback enables the session candidate
generator to produce high-quality candidates,
improving the sample efficiency. In Figure 14,
we showcase the effectiveness of the answer-aware
session generator trained using the external feed-
back on answers, in terms of the sample efficiency
of search session candidates. Specifically, we com-
pare FaVe and FaVe without verification via the
answer-aware session generator (denoted by “FaVe
W/0 VGenerator )» With varying numbers of session
candidates (among which the best session is se-
lected). In addition, as strong baselines, we com-
pare the performance of vanilla RAG and CoQ that
use ChatGPT as backbone LLM.

FaVe consistently shows better performance than
FaVe w/0 Vgenerator On both metrics, improving the
overall sample efficiency. Meanwhile, for both
FaVe and FaVe w/0 Vgeperator, the performance con-
sistently improves as we increase the number of
session candidates, showing the effectiveness of
the unified session selector and complementarity
between the two.

I Use Or Create Scientific Artifacts

We used evaluation metrics proposed by Gao et al.
(2023b), under MIT license, for research purpose
on. It covers open-domain questions and answers,
in English.

J Potential Risk

Since we mainly target improving answer com-
prehensiveness and verifiability, our model may
produce harmful or offensive responses.

K Usage of AI Assistant
We used ChatGPT for language edits.
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