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Abstract

This study investigates the linguistic under-
standing of Large Language Models (LLMs)
regarding signifier (form) and signified (mean-
ing) by distinguishing two LLM assessment
paradigms: psycholinguistic and neurolinguis-
tic. Traditional psycholinguistic evaluations
often reflect statistical rules that may not accu-
rately represent LLMSs’ true linguistic compe-
tence. We introduce a neurolinguistic approach,
utilizing a novel method that combines minimal
pairs and diagnostic probing to analyze activa-
tion patterns across model layers. This method
allows for a detailed examination of how LLMs
represent form and meaning, and whether these
representations are consistent across languages.
We found: (1) Psycholinguistic and neurolin-
guistic methods reveal that language perfor-
mance and competence are distinct; (2) Direct
probability measurement may not accurately
assess linguistic competence; (3) Instruction
tuning won’t change much competence but im-
prove performance; (4) LLMs exhibit higher
competence and performance in form com-
pared to meaning. Additionally, we introduce
new conceptual minimal pair datasets for Chi-
nese (COMPS-ZH) and German (COMPS-DE),
complementing existing English datasets.'

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable reasoning, linguistic, arithmetic,
and other cognitive abilities. The advent of LLMs
has reignited cross-disciplinary discussions about
what sorts of behavior are “intelligence”, even if
the intelligence exhibited by LLMs may differ from
human intelligence (Sejnowski, 2023). LLMs have
drawn the attention of researchers from various
fields, including linguistics, cognitive science, com-
puter science, and neuroscience, who investigate
how LLMs develop and exhibit these capabilities.

There is currently a heated debate about whether
LLMs understand human language or whether their
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Figure 1: Illustration of LLMs processing the same
signified (meaning) across different signifiers (forms).

performance is simply the product of complex
statistical relationships (Mitchell and Krakauer,
2023). A central aspect of this debate concerns
the nature of LLMs’ linguistic representations. Us-
ing the semiotic framework of language proposed
by De Saussure (1989), which distinguishes be-
tween the signifier (form) and the signified (mean-
ing), we can inquire into the extent to which LLMs
comprehend the form and meaning, and how form
and meaning intertwist with each other. Is LLMs*
understanding of language meaning merely a sta-
tistical outcome based on their grasp of language
form? When different languages express a shared
concept with distinct forms, do LLMs create simi-
lar representations for these variations? How can
we better understand the representations of form
and meaning in these systems that support the ob-
served patterns of performance?

The underlying processes remain unclear due to
the opaque nature of neural networks. Therefore,
we need appropriate methods to assess their true
linguistic understanding.

Drawing inspirations from the cognitive study
on human language processing, we propose that
the assessment of LL.Ms can be divided into two
primary paradigms: psycholinguistic and neurolin-
guistic. As illustrated in Figure 2, the psycholin-
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Both direct probability measurement and metalinguistic

prompting can be considered as psycholinguistic methods, while minimal pair probing (He et al., 2024) and other

diagnostic probing are neurolinguistic.

guistic paradigm measures the model’s output prob-
abilities, directly reflecting the model’s behavior
and performance. The neurolinguistic paradigm
delves into the internal representations of LLMs.

When treating LLMs as psycholinguistic sub-
jects, their responses may leverage their grasp of
form, relying on statistical correlations, to create
an illusion of understanding meaning. This enables
LLM:s to produce structurally coherent but not nec-
essarily semantically accurate responses, as their
“understanding” is shaped by patterns rather than
true conceptual processing (Harnad, 1990; Bender
and Koller, 2020; Nie et al., 2024). Consequently,
psycholinguistic evaluations tend to reflect perfor-
mance rather than competence, as they assess exter-
nal outputs that may not fully capture the underly-
ing linguistic knowledge encoded within the model.
This mismatch suggests that psycholinguistic eval-
uation results might not accurately represent the
true linguistic competence of LLMs.

In contrast, examining LLMs as neurolinguistic
subjects focuses on internal representations, pro-
viding a more direct assessment of competence
by moving beyond surface-level biases (Firestone,
2020). To achieve this, we adapted the decoding
probing method by He et al. (2024), referred to
as “minimal pair probing”, to analyze how LLMs
encode form and meaning across layers. This ap-
proach allows for a finer distinction between per-
formance and competence, revealing insights that
psycholinguistic methods might overlook.

In order to address questions about whether
LLMs maintain consistent underlying representa-

tions of the same concept when the form changes
across multiple languages, we also create a multilin-
gual minimal pair dataset (COMPS-ZH for Chinese
and COMPS-DE for German).

By evaluating LLMs in both psycholinguistic
and neurolinguistic paradigms, we found: 1) Psy-
cholinguistic and neurolinguistic results reveal very
different patterns, suggesting both paradigms are
necessary for a comprehensive understanding of
LLMs. 2) Though more intrinsic than metalinguis-
tic prompting, direct probability measurement may
still not accurately assess linguistic competence,
as it remains influenced by statistical patterns. 3)
LLMs acquire competence in linguistic form more
easily, earlier, and with greater accuracy than in
meaning. 4) As linguistic form varies across lan-
guages, LLLMs’ understanding of the same concept
shifts accordingly, with meaning competence lin-
early correlated to form. This suggests that signi-
fier and signified in LLMs may not be independent,
and maintaining conceptual representations likely
depends on statistical correlations with form.

2 Psycholinguistic vs. Neurolinguistic
Paradigm

2.1 Cognitive Science Background

Psycholinguistics and neurolinguistics offer dis-
tinct yet complementary perspectives on human
language processing. Psycholinguistics focuses
on the psychological and cognitive processes that
enable humans to understand and use language
(Field, 2004; Traxler and Gernsbacher, 2011). In
contrast, neurolinguistics explores the underlying
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neural mechanisms and brain structures involved
in language processing (Friederici, 2011; Brennan,
2022; Kemmerer, 2022). Both paradigms offer a
valuable model for probing the linguistic capacities
and potential intelligence of LLMs.

2.2 In LLM Assessment Research

Psycholinguistic paradigm: direct probability
measurement and metalinguistic prompting
Recent studies often use prompting to evaluate the
linguistic capabilities of LLMs. These implicit
tests were referred to as metalinguistic judgments
by Hu and Levy (2023). However, it is important
to note that the performance of LL.Ms in specific
linguistic prompting tasks only indirectly reflects
their internal linguistic representations due to the
inherent limitations of such prompting tasks: an
LLM chat system might give a “reasonable” re-
sponse just because of the statistical relationships
between prompt and reply (Hofstadter, 1995). Hu
and Levy (2023) argue that it is uncertain whether
the LLMs’ responses to metalinguistic prompting
align with the underlying internal representations.

Computing a model’s probability of generating
two minimally different sentences is one way to
address these concerns (Hu and Levy, 2023). The
minimal difference between the two sentences (e.g.,
replacement of a single word) makes one sentence
acceptable while the other is not (Linzen et al.,
2016). Here are two examples for testing grammat-
ical and conceptual understanding, respectively:
(1) Simple agreement (Warstadt et al., 2020):

a. The cats annoy Tim. (acceptable)
b. *The cats annoys Tim. (unacceptable)
(2) Concept understanding (Misra et al., 2023):

a. A whisk adds air to a mixture. (acceptable)
b. *A cup adds air to a mixture. (unacceptable)

A language model is considered to perform
correctly on this task if it assigns a higher
probability to the acceptable sentence compared
to the unacceptable one (Marvin and Linzen,
2018). Researchers have created syntactic, seman-
tic/conceptual, and discourse inference tasks for
the minimal pair method. They provide more pre-
cise insights into the abilities of LLMs compared to
metalinguistic prompting (Futrell et al., 2019; Gau-
thier et al., 2020; Hu et al., 2020; Warstadt et al.,
2020; Beyer et al., 2021; Misra et al., 2023; Kauf
et al., 2023).

Through either metalinguistic judgement or di-
rect probability measurement methods, these tasks

essentially treat LLMs as psycholinguistic subjects
(Futrell et al., 2019). This research paradigm re-
sembles cognitive psychology by having LLMs
perform tasks, such as cloze and question answer-
ing, and then evaluating their performance without
examining the internal representations, in a manner
similar to how subjects participate in psychological
experiments. Information about the inner work-
ings of a model is inferred either from its output or
from the probabilities it assigns to different possi-
ble outputs. The internal states of the LLM (i.e. its
intermediate layers) are not examined.

Neurolinguistic paradigm: diagnostic probing
Another line of research focuses on studying the
internal representations, emphasizing a neurolin-
guistic approach to understanding LLMs. Essen-
tially, diagnostic probing methods in evaluating lan-
guage models can be considered as neurolinguistic
paradigms as they examine the internal states of
LMs (Belinkov and Glass, 2019; Belinkov, 2022),
while the term ‘neurolinguistic’ hasn’t been applied
to the field before. Diagnostic probing involves
training a classifier to predict linguistic properties
from the hidden states of LMs. Following this
paradigm, researchers decode syntactic, semantic,
morphological, and other linguistic properties from
the hidden states of LMs (Kohn, 2015; Gupta et al.,
2015; Shi et al., 2016; Tenney et al., 2019; Hewitt
and Manning, 2019; Manning et al., 2020).

3 Minimal Pair Probing = Minimal Pair +
Diagnostic Probing

While prior neurolinguistic approaches have ex-
plored internal representations, they often em-
ployed coarse-grained datasets and primarily fo-
cused on decoding linguistic labels from embed-
dings, providing a general perspective on the lin-
guistic features encoded in LMs. In contrast, the
minimal pair probing method presented by He et al.
(2024) integrates minimal pair design with diagnos-
tic probing. This combination leverages the gran-
ularity of minimal pair design and the layer-wise
insights of diagnostic probing, thereby enabling a
more detailed analysis of internal patterns for form
and meaning. We adopt minimal pair decoding as
the neurolinguistic paradigm in our work.
Specifically, given an LLM f : 2 1. ; — ®iq1
trained on dataset Do, we can extract the hid-
den state representations f;(.S) of the [-th layer
of stimuli S. Given a minimal pair dataset D,,
={(5%,S%), (%, 2" )} with each sentence S has
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Minimal Pair Duality Language # of Pair Description

BLiMP Form English 67, 000
CLiMP Form Chinese 16, 000
DistilLingEval ~Form German 8, 000

COMPS Meaning English 49, 340

COMPS-ZH Meaning Chinese 49, 340
COMPS-DE Meaning German 49, 340

67 tasks across 12 grammatical phenomena
16 tasks across 9 grammatical phenomena
8 German grammatical phenomena

4 types of conceptual relationship

4 types of conceptual relationship

4 types of conceptual relationship

Table 1: Overview of datasets in our study.

Duality = Method Example

Direct {Mice are hurting a waiter, Mice was hurting a waiter}

Form Here are two English sentences: 1) Mice
Meta

are hurting a waiter. 2) Mice was hurting a waiter. Which

sentence is a better English sentence? Respond with either 1 or 2 as your answer. Answer: {1, 2}

Direct {Helmet can absorb shocks, Cap can abs

orb shocks}

Meaning Meta What word is most likely to come next in the following sentence (helmet, or cap)? What can absorb

shocks? {helmet, cap}

Table 2: Prompt examples for baseline methods. The region where we measure probability is marked in color.

Correct sentences and answers are in blue; incorrect in red.

a label z, we have internal representation f;(S%)
and f;(S”) for each sentence. A minimal probing
classifier g : f;(S) — Z is trained and evaluated
on D,,, with grammatical/conceptual performance
measure Perf(f, Do, g, D).

Note that our focus is on evaluating the linguistic
competence of the LLM f itself, i.e., Perf(f, Do),
rather than the capacity of the probing classifier g.
As suggested by Hewitt and Liang (2019), even un-
trained or random representations can yield surpris-
ingly high probing accuracy, raising concerns that
the classifier may exploit dataset artifacts rather
than meaningful representations. To control for
the potential bias introduced by g, we construct a
random embedding baseline.

Specifically, for each sentence in the dataset, we
assign a fixed random vector r, sampled from a
Gaussian distribution with the same mean and stan-
dard deviation as the real model embeddings f;(S).
Importantly, each sentence is consistently assigned
the same random vector across occurrences, pre-
serving instance-level identity that the probing clas-
sifier might exploit. This allows us to assess the
extent to which task performance can be driven by
superficial sentence-level cues rather than meaning-
ful representations. We then compute Perf (g, D,,)
by training g on these random embeddings, which
reflects the inherent predictability or “shortcut” po-
tential of the probing task. Therefore, our perfor-
mance score incorporates a correction factor based
on this random baseline, defined as:

0.5 — Perf(g, D)
0.5
M

This formula applies a correction term, pe-
nalizing cases where the probing classifier per-
forms well even on random embeddings. When
Perf(g, D)) = 0.5, the correction factor is 1; if
the performance is higher, the factor shrinks to-
ward 0, discouraging overfitting or trivial tasks; if
it drops below 0.5, the factor exceeds 1, slightly
amplifying the model’s score. This ensures that
only meaningful representations in f contribute to
the final evaluation.

Perf(f, Do) £ Perf(f, Do, g, Dm)-(1+

4 Experiment Setup

4.1 Datasets and Models

We use minimal pair probing for English, Chinese,
and German to assess grammaticality (form) and
conceptuality (meaning). Table 1 presents the over-
all dataset information used in our experiments. We
use Llama2-7B, Llama3-8B, and Qwen-7B models
in both base and chat versions. Further dataset and
model descriptions are in Appendix B and C.

4.2 Setup for Psycholinguistic Analysis

Direct Direct probability measurement calculates
the probability of a sentence based on model logits.
Accuracy is determined by whether the model as-
signs a higher probability to the grammatically or
conceptually correct sentence within the minimal
pair.
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Figure 3: Psycholinguistic (meta and direct) and neurolinguistic performance across models and linguistic tasks.
The x-axis represents different models and conditions (base and chat), while the y-axis categorizes linguistic tasks
based on structural (syntax, morphology, syntax-semantics interface) and conceptual (meaning) levels.

Meta Metalinguistic prompting involves explic-
itly asking a question or specifying a task that re-
quires a judgement about a linguistic expression.
Following Hu and Levy (2023), we use one prompt
for a minimal pair to present both sentences at once.
For form tasks, we assign an identifier (1 or 2) to
each sentence in the pair, present a multiple-choice
question comparing both sentences, and compare
the probabilities assigned by the model to each an-
swer option, “1” or “2”. For meaning tasks, we
reformulate the property into a question and com-
pare the probabilities of acceptable and unaccept-
able concepts as sentence continuations. Table 2
presents the prompts used in the experiments.

4.3 Setup for Neurolinguistic Analysis

Sentence Embedding We extract the last token
in each sentence from each layer to serve as the rep-
resentation for the whole sentence. Last token pool-
ing ensures the representation contains the infor-

mation of all preceding tokens (Meng et al., 2024).

Probing Performance We use logistic regression
as the probing classifier and F1 score as the evalua-
tion metric. The score for Perf(f, Do, g, D;,) and
Perf(g, Dyy,) is calculated as the average F1 score
across 5 cross-validation folds. Final performance
Perf(f, Do) is given by Formula 1.

Saturation and Maximum Layer We define the
feature learning Saturation Layer as the layer where
performance first reaches 95% of the peak on the
curve. This layer indicates the number of layers
required for the model to adequately learn specific
linguistic features, after which its ability to capture
these features stabilizes. The Maximum Layer is
the layer at which performance reaches its peak.

Unsupervised Analysis We use t-SNE to visu-
alize the sentence embedding of Llama2-7B for
English form tasks. We employ PCA to reduce the
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dimensionality of the sentence embedding to 50
before applying t-SNE.

5 Results

5.1 Psycholinguistic vs Neurolinguistic

Figure 3 shows the performance of LLMs across
all linguistic tasks. Figure 4 demonstrates the av-
eraged performance of LLMs across models and 4
levels (syntax, morphology, syntax-semantics inter-
faces, concept). Figure 5 presents the average per-
formance of LLMs across form and meaning tasks
for Direct, Meta, and Neuro? methods. We use the
last layer’s performance in the Neuro method when
comparing psycho- and neurolinguistic paradigms,
as both direct probability measurement and metalin-
guistic prompting rely on the last layer of LLMs.

Language performance and competence are dis-
tinct (Competence > Performance). Figure 4
and 5 shows distinct results between language per-
formance and competence. Moving from Meta —
Direct — Neuro, the evaluation focus gradually
shifts from language performance (task execution
ability) to language competence (the underlying
linguistic ability). Within the same task category,
Neuro methods consistently yield higher perfor-
mance than Direct methods, which in turn outper-
form Meta methods. This indicates that when eval-
uating pure linguistic competence, LLMs perform
well, but their performance drops when assessed in
a task-based setting.

p<1075
<

Syntax

Concept  Syn.-Seman. Inter. Mophology

Meta |Base Meta|Chat Direct|Base Direct|Chat Neuro|Base Neuro|Chat

Language Per Language Ci

Figure 4: Averaged psycholinguistic (meta and direct)
and neurolinguistic results across models and tasks. t-
tests were conducted on the original (pre-averaging)
results between base and chat models, with p-values
annotated.

We refer to minimal pair probing as Neuro for simplicity.

Tasks that emphasize language performance be-
come more difficult, even if their language com-
petence is high. For example, in the Neuro set-
ting, performance on Syntax tasks reaches 97%,
while in the Meta setting, it drops to 56.1%, show-
ing a significant gap. This suggests that even when
an LLM has strong competence in a given task,
its performance can significantly decline when as-
sessed under a performance-oriented evaluation.

Llama-2 Llama-2 Chat
£ -100 __
2 X
w ~
2 A=
§ a
2 50
Llama-3 Llama-3 Chat

£ =100 __
I X
w ~
2 LS
£ 5
8 50

=

Qwen Qwen Chat

E - 100 =
@ s
2 [N
< g
g 50

Direct Neuro

Meta Direct Neuro Meta

Figure 5: Psycholinguistic and neurolinguistic perfor-
mance for form (morphology, syntax-semantics inter-
face, and syntax) and meaning (concept).

Direct probability measurement might not be
a true competence assessment. As the Neuro
method measures the internal representations of
LLMs directly, it could serve as a reliable ground
truth for estimating linguistic competence. Direct
probability measurement falls short of achieving
this ground truth in form assessment (especially for
syntax and syntax-semantics-interface as shown in
Figure 5).

45 Competence (Neuro) - Performance (Meta) Gap

= Form Meaning

W ow A
S & oS

Perf. Difference (%)

N
S

N
]

Base | Chat
Qwen

o

Base | Chat Base | Chat
Llama-2 Llama-3

Figure 6: Competence and performance gap drops after
instruction tuning.

LLMs exhibit stronger mastery of form than
meaning, regardless of performance or com-
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Figure 7: t-SNE visualization of embedding differences between acceptable and unacceptable sentences, with red

for syntax, purple for morphology, and yellow for the syntax-semantics interface.

petence. As shown in Figure 5, LLMs consis-
tently perform better on form-related tasks than
on meaning-related tasks. This trend holds regard-
less of whether the model is a base or chat version.
Crucially, this pattern is evident across all evalu-
ation methods. This indicates that LLMs have a
stronger grasp of linguistic form than conceptual
meaning, whether assessed through task execution
or underlying capability.

Instruction tuning won’t change much compe-
tence but improve performance. Neuro results
between the base and chat versions of LLMs reveal
that instruction fine-tuning does not significantly
alter the language competence of the models (t-
test between Neuro-Base vs. Neuro-Chat as shown
in Figure 4). With instruction fine-tuning (chat
versions of LLMs), Meta performance on form
improves significantly while meaning understand-
ing remains stable. Figure 6 illustrates that after
instruction tuning, the competence-performance
gap (Neuro-Meta) significantly decreases for form-
related tasks, while the change for meaning-related
tasks remains relatively small. This indicates that
fine-tuning with well-designed instructions helps
LLMs improve their performance on form-related
tasks, bringing them closer to their underlying com-
petence. However, for meaning-related tasks, in-
struction tuning does not lead to a fundamental
improvement in understanding. This indicates that
more optimized information access strategies can
enhance the external performance of language mod-
els, particularly for form-related tasks.

5.2 Neurolinguistic Analysis®

Layer-wise unsupervised dynamics reveal grad-
ual emergence of form features Figure 7 illus-
trates the layer-wise differences between embed-
dings for grammatically correct and incorrect sen-
tences. In early layers, the embedding difference
appears scattered and unstructured, but as depth
increases, they form clearer clusters, indicating a
progressively refined sensitivity to syntactic cor-
rectness. By Layer 16 and beyond, distinct clus-
ters emerge corresponding to syntax, morphology,
and syntax-semantics interface. The results demon-
strate that LLMs encode grammaticality judgments
dynamically across layers, progressively structur-
ing linguistic representations. Moreover, the for-
mation of distinct clusters for different linguistic
phenomena in the unsupervised analysis provides
supporting evidence for subsequent supervised clas-
sification.

Gradual decline in encoding performance from
structure to meaning. The results in Figure 8-(c)
show that the performance scores for conceptual
understanding are significantly lower than those for
grammatical understanding. This pattern is consis-
tent across all six models, suggesting a universal
characteristic of LLMs. Moreover, as illustrated
in Figure 8-(a),(b), the encoding performance pro-
gressively declines from more structural tasks to
more semantic tasks, spanning syntax, morphology,
the syntax-semantic interface, and finally concep-

SRaw results for English, Chinese, and German can be
found in Figure 15, 16 and 17 in the Appendix.
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linguistic categories in Llama-2. (¢) Mean performance comparison between form-related tasks (syntax, morphology,
syntax-semantics interface) and meaning-related tasks (concept), aggregated across all six models.
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Figure 10: Difference in probing performance between
base and instruction-tuned models across all layers.

tual understanding. This highlights that LLMs en-
code features less effectively as the tasks shift from
structure-focused to meaning-focused.

LLMs encode form earlier than meaning. We
compute the feature learning saturation and max-
imum layers for all 12 grammatical tasks and 4
conceptual tasks, averaging them to represent form
and meaning, respectively. As shown in Figure 9,
the saturation and maximum layers for meaning are
generally higher than those for form across all six
models. This suggests that LLMs stabilize their en-
coding of grammatical features before conceptual
features.

Instruction tuning has minimal impact on the in-
ternal linguistic representations. As Figure 10
shows, performance differences for form and mean-
ing remain near zero across all layers, indicating
that instruction tuning minimally impacts internal
linguistic representations, consistent with our psy-
cholinguistic vs. neurolinguistic analysis.

5.3 Multilingual analysis
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Figure 11: Neuro probing results for English, Chinese,
and German.

How does LLMs’ understanding of meaning
change when the form (language) varies? Since our
COMPS-ZH and COMPS-DE datasets align with
the concepts in the English COMPS dataset, we
can explore whether LLMs’ grasp of different lin-
guistic forms for the same concept correlates with
their understanding of meaning across languages.
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Our previous results suggest that instruction tuning
has little influence on the internal representations.
Therefore, we focus on the base LLMs here.
From Figure 11, for all models and languages,
form consistently achieves higher performance
than meaning, indicating it’s easier for LLMs to
make a stronger grasp of structural elements com-
pared to conceptual comprehension. Extended mul-
tilingual analysis can be found in Appendix E.

6 Discussion

Language performance vs. competence: prob-
ing reveals deeper linguistic understanding than
direct probability. Our results demonstrate that
neurolinguistic probing uncovers linguistic compe-
tencies in LLMs that are not captured by psycholin-
guistic methods. While Meta performs the worst
and Direct performs better, Neuro consistently out-
performs both, revealing a systematic underestima-
tion of competence when relying on output-based
evaluations.

Hu and Levy (2023) argued that Direct proba-
bility measurement, being more intrinsic than met-
alinguistic prompting, better reflects competence.
However, our findings show that even Direct falls
short of revealing the full extent of LLMs’ linguis-
tic capabilities. Direct relies on the final output
layer, which is highly optimized for next-word pre-
diction and thus entangled with task-specific ob-
jectives. Prior studies (Hewitt and Manning, 2019;
Liu et al., 2019) have shown that syntactic and
general linguistic information is often better repre-
sented in intermediate layers than in the final layer.
Waldis et al. (2024) also emphasized that output
correctness is an insufficient indicator of linguis-
tic understanding, advocating for probing internal
representations.

Our t-SNE visualizations corroborate this: clear
linguistic clusters emerge in intermediate layers but
dissolve in the final layer, reinforcing the view that
the last layer is not optimal for assessing compe-
tence. These findings suggest that Direct, while
more grounded than prompting, is still a limited
proxy for internal knowledge.

In contrast, neurolinguistic probing inspects in-
ternal activation patterns across layers and tasks,
uncovering the underlying representational struc-
ture of form and meaning, and further validates the
discrepancy between performance and competence.

On the other hand, while Meta results underper-
form, this does not necessarily indicate that the

LLMs lack the underlying linguistic competence.
Instead, it may reflect limitations in information
access, as suboptimal prompts can prevent mod-
els from exhibiting their full capabilities. Specifi-
cally, prompting failures do not always equate to a
lack of encoded knowledge. This aligns with prior
work (Firestone, 2020; Lampinen, 2024) emphasiz-
ing the need to distinguish performance conditions
from underlying ability.

Thus, we argue that probing, particularly when
applied layer-wise, provides a more accurate and
comprehensive assessment of linguistic compe-
tence than Direct probability alone.

Form and meaning: observations from Saus-
sure’s semiotics Our results reveal that LLMs
congistently learn linguistic form before they grasp
meaning. This may suggest a developmental trajec-
tory where statistical patterns in syntax and gram-
mar are more readily captured by the model than
conceptual understanding. Second, the models’
formal competence is generally superior to their se-
mantic competence. This is evident in their ability
to decode grammaticality structures accurately but
with less reliable conceptual accuracy.

We further observe a linear correlation between
form and meaning competence, particularly when
linguistic forms vary across languages while mean-
ing remains constant. This suggests that LLMs’
understanding of meaning might rely heavily on
form, with conceptual representation anchored to
formal structures rather than independent mean-
ing comprehension. These results offer a semiotic
and neurolinguistic explanation for LLMs’ long-
standing issue of generating “confidently incorrect”
responses, i.e., hallucinations (Ji et al., 2023).

7 Conclusion

This study adopts both psycho- and neuro-linguistic
approaches to evaluating LLLMs, revealing a dis-
tinction between linguistic performance and com-
petence. Our results highlight the limitations of
LLMs’ semantic understanding and the need for
future research to move beyond statistical corre-
lations toward more grounded language represen-
tations. By introducing a cognitive neuroscience
perspective, along with semiotics, we hope will in-
spire further research to deepen our understanding
of the language capabilities of LLMs.
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Limitations

This study has several limitations that may impact
the generalizability and comprehensiveness of our
findings. First, we did not include experiments cov-
ering a wider range of languages, which restricts
the cross-linguistic applicability of our results. Es-
pecially for the analysis and discussion in Section
5.3 on multilingual content, which highlights the
necessity of constructing multilingual conceptual
datasets.

Second, the evaluation results for German are
notably poor, potentially due to the presence of
very long sentences in the DistilLingEval dataset,
which might have introduced challenges for the
models. This underscores the need for constructing
syntactic minimal pair datasets for German.

Additionally, our experiments were conducted
using small-scale LLMs due to computational re-
source constraints. This may have introduced a
bias in our findings, as larger-scale models could
exhibit different behaviors. Future studies should
explore larger models to validate and extend the
generalizability of these results.

Lastly, the COMPS dataset used for assessing
conceptual understanding is not sufficiently fine-
grained, as it is limited to only four types of con-
ceptual relationships. A more granular dataset
could provide deeper insights into the nuances of
how LLMs encode and process meaning. Future
work should address this limitation by incorporat-
ing more diverse and detailed datasets.

Ethics Statement

Our project has the potential to raise greater aware-
ness within the computational linguistics commu-
nity about the challenges faced by low-resource lan-
guages. By highlighting the unique linguistic fea-
tures and limited computational tools available for
these languages, we aim to inspire further research
and the development of more inclusive language
technologies that can better serve underrepresented
linguistic communities.
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A Neuro Probing’s Cognitive Science
Background

Psycholinguistics often involves examining real-
time language processing, linguistic knowledge
storage, and language acquisition, using behavioral
experimental methods such as reading times and
eye-tracking. Neurolinguistics, on the other hand,
focuses on the neural basis of language, employing
techniques such as functional magnetic resonance
imaging (fMRI), electroencephalography (EEG),
and magnetoencephalography (MEG) to map lin-
guistic functions to specific brain regions and to
investigate how neural activity correlates with lin-
guistic tasks.
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While psycholinguistics aims to reveal mental
processes underlying language use, neurolinguis-
tics seeks to uncover the neural pathways that im-
plement these processes.

Our minimal pair probing is inspired by cogni-
tive neuroscience. In the field of neurolinguistics,
decoding analysis has become a fundamental tech-
nique in cognitive neuroscience. It tries to extract
information encoded in neural patterns (Kriegesko-
rte et al., 2006). It trains a classifier to predict the
properties of the stimulus (e.g. a particular image
or word input), from the neural responses. If the
accuracy of the trained classifier is significantly bet-
ter than chance, we conclude that the neural data
encodes information about the predicted stimulus
properties (Norman et al., 2006; Haynes and Rees,
2006).

Mesgarani and Chang (2012) is a representative
work employing decoding analysis in the realm of
language and speech. They use electrocorticogra-
phy (ECoG) to record neural responses from sub-
jects who are listening to speech. Leveraging de-
coding analysis, they were able to differentiate be-
tween neural patterns induced by attended speech
and those elicited by background speech (to be
ignored by the test persons), thereby highlighting
the perceptual differences between the two speech
stimulus conditions.

While psycholinguistic approaches provide valu-
able insights into LLMs’ functional capabilities,
they often fall short in revealing the underlying
mechanisms of language processing. The opaque
nature of neural network structures means that per-
formance on external tasks does not necessarily
reflect the internal cognitive processes at play. This
gap necessitates a neurolinguistic approach to gain
a deeper understanding of how LL.Ms encode and
process language.

B Dataset Details

For each language, we use one dataset for grammat-
ical minimal pairs and one dataset for conceptual
minimal pairs.

B.1 Form: BLiMP, CLiMP, and
DistilLingEval

BLiMP BLiMP (Warstadt et al., 2020) is a com-
prehensive English dataset of grammatical minimal
pairs. It consists of minimal pairs for 13 higher-
level linguistic phenomena in the English language,
further divided into 67 distinct realizations, called

paradigms. Each paradigm comprises 1,000 indi-
vidual minimal pairs, resulting in a total corpus
size of 67,000 data points.

CLiMP CLiMP (Xiang et al., 2021) is a corpus
of Chinese grammatical minimal pairs consisting of
16 datasets, each containing 1,000 sentence pairs.
CLiMP covers 9 major Chinese language phenom-
ena in total, fewer than the BLiMP dataset due to
the less inflectional nature of Mandarin Chinese.
The vocabulary of the CLiMP dataset is based on
the translation of the BLiMP dataset, with words
and features specific to Chinese added.

DistilLingEval DistilLingEval (Vamvas and Sen-
nrich, 2021) is a dataset of German grammatical
minimal pairs. It consists of minimal pairs for eight
German linguistic phenomena. This dataset con-
tains 82,711 data samples in total.

B.2 Meaning: COMPS, COMPS-ZH, and
COMPS-DE

COMPS COMPS (Misra et al., 2023) is an En-
glish dataset of conceptual minimal pairs for testing
an LLM’s knowledge of everyday concepts (e.g.,
a beaver/*gorilla has a flat tail). This dataset con-
tains 49,340 sentence pairs, constructed using 521
concepts and 3,592 properties. Concepts in the
pairs constitute 4 types of knowledge relationships:
taxonomy, property norms, co-occurrence, and ran-
dom.

COMPS-ZH and COMPS-DE COMPS-DE
and COMPS-ZH are newly developed datasets
featuring conceptual minimal pairs in Chinese
and German, derived from the English COMPS
dataset (Misra et al., 2023). In the realm of multi-
lingual NLP research, it is a common practice to
extend English datasets to other languages using
human translation, machine translation, or trans-
lation assisted by LLMs (Nie et al., 2023; Wang
et al., 2023; Beniwal et al., 2024).

In this study, to create COMPS-DE and COMPS-
ZH from the original English COMPS, we em-
ployed a hybrid approach that integrated process
machine translation with meticulous human verifi-
cation.

Specifically, we translated the concepts and prop-
erties of the English COMPS individually, subse-
quently merging them to form complete sentences
and compose conceptual minimal pairs. The trans-
lation process began with the use of the Google
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Translate API*, which provided initial translations
of concepts and properties into German and Chi-
nese.

Following this, native speakers of Chinese and
German manually checked and refined these trans-
lations to ensure accuracy and quality. The manual
review emphasized two main areas: accuracy of
concepts and grammatical consistency of proper-
ties. For concepts, the focus was on correcting
ambiguities that might arise from machine transla-
tion. For properties, attention was given to main-
taining grammatical consistency with the original
English text, such as ensuring subject-verb agree-
ment, which is particularly challenging in German
translations.

In summary, out of 521 concepts, manual cor-
rections were made to 57 entries in the Chinese
dataset and 49 in the German dataset. Similarly,
out of 3,592 properties, 713 required manual cor-
rections in the Chinese dataset, and 512 in the Ger-
man dataset. This rigorous process was essential
for preserving the integrity and reliability of the
translated datasets.

C Model Details

In our experiments, we used three open-source
LLMs, two English-centric LLMs (Llama2 and
Llama3), and one multilingual LLM (Qwen) with a
focus on English and Chinese. These models were
trained on different amounts of English, Chinese,
and German data (see Table 3).

Resource Level Llama2 Llama3 Qwen

English High High High
Chinese Mid Mid High
German Low Low Low

Table 3: Resource level for different languages across
three LLMs. Note the resource levels are qualitative
assessments based on available information, as specific
quantitative data is not provided by the developers.

Llama2 and Llama3 Llama2 (Touvron et al.,
2023b) and Llama3 (Al, 2024) are two English-
centric LLMs which represent an advanced itera-
tion of the Llama foundation models developed by
Meta Al (Touvron et al., 2023a). The Llama madels
were trained on publicly available corpora predomi-
nantly in English. Despite this focus, Llama models
are also exposed to a limited amount of multilin-
gual data. Llama 1, for example, is pretrained on an

“https://cloud.google.com/translate

extensive scale of corpora comprising over 1.4 tril-
lion tokens, of which less than 4.5% constitute mul-
tilingual data from 20 different languages. Llama
2 expands this linguistic diversity, featuring 27 lan-
guages, each representing more than 0.005% of the
pertaining data. Therefore, English-centric models
harness multilingual abilities (Lai et al., 2023). In
this work, we use Llama2-7B and Llama3-8B for
our experiments.

QWen QWen is a series of LLMs developed by
Alibaba Inc. (Bai et al., 2023). Qwen was trained
on 2-3 trillion tokens of multilingual pre-training
data. It is essentially a multilingual LLM with a
focus on English and Chinese. We use the Qwen-
7B model in our experiments.

D Supplemented Results for English

Some noteworthy points from Figure 8-(a) include:

1) For the ellipsis task, especially, local features
in layer O (the embedding layer before the Trans-
former structure) already provide sufficient linguis-
tic information to accomplish the task without any
contextual information.

2) Among the conceptual tasks, the random rela-
tionship shows significantly higher accuracy com-
pared to the other three conceptual relationships,
suggesting that LL.Ms find it challenging to distin-
guish between similar concepts.

Compared to Llama2, Llama3 won’t improve
internal grammatical capabilities much, but
will learn concepts better and faster.

Figure 12 shows the layer-wise performance dif-
ferences between Llama3 and Llama2, as well as
between their chat versions. The red curves (mean-
ing) exhibit a notable positive difference in the
early layers, indicating that Llama3 has better con-
ceptual learning capabilities compared to Llama?2.
The blue curves (form) remain close to zero across
all layers, suggesting that there is no significant im-
provement in grammatical capabilities in Llama3
compared to Llama2. The t-test statistics in Fig-
ure 12 further support these results.

Figure 13 compares the feature learning satu-
ration layers between Llama2 and Llama3. The
results for form learning (blue bars) do not dif-
fer significantly between Llama2 and Llama3, and
weakly significantly between Llama2_chat and
Llama3_chat. However, the results for meaning
learning (blue bars) are both highly significant, indi-
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Figure 12: Top: Performance difference between
Llama3 and Llama2. Bottom: Layer-wise t-test results.
T-tests were first performed separately on each linguistic
task, and then Stouffer’s Z-score method (Stouffer et al.,
1949) was employed to aggregate the final p-value at
the condition level.
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Figure 13: T-test results between Llama2 and Llama3
feature learning saturation layer. The symbols ***’,
and ‘*’ denote t-test p-values less than 0.001 and 0.05,
respectively.

cating that Llama3 requires fewer layers to encode
conceptual features than Llama2. This suggests
that Llama3 comprehends sentences faster.

E Supplemented Results for Multilingual
Analysis

Meaning competence is correlated to form com-
petence. Figure 14 illustrates the relationship
between Form competence (x-axis) and Mean-
ing competence (y-axis) across English, German,
and Chinese in the neuro assessment for LLMs.
The positive correlation (R? = 0.48) suggests that
higher meaning competence generally corresponds
to higher form competence.

Neuro Assessment

0.8
© English R
o PR
$ 0.7 German -’
-— . -
Gé_ Chinese //,
5 0.6 //
-
2
€ 05 -7
@ -7
2 7 P
= g4 L R“=0.48

0.4 0.6 0.8 1.0
Form competence

Figure 14: Correlation between meaning competence
and form competence.

Llama’s performance on Chinese. Despite Chi-
nese not being the primary training language of the
Llama2 models, they still perform well in encod-
ing Chinese form/grammar. However, both Qwen,
which is primarily trained on Chinese, and the
Llama models show relatively poor performance in
understanding Chinese meaning/concepts.

Improvement in Llama3 for Chinese Semantics.
Llama3 shows some improvement over Llama2 in
understanding Chinese semantics, as indicated by
the slightly higher red curve in the middle row. The
improvement in syntactic understanding is mini-
mal.

Qwen’s Faster Syntax Learning but Slower Se-
mantic Encoding for Chinese. Compared to
the Llama models, Qwen learns Chinese gram-
mar faster, as indicated by the sharper rise of the
blue curve. However, it encodes Chinese semantics
more slowly, evidenced by the larger gap between
the form and meaning curves in the early layers.

Poor Performance for German. For German, a
low-resource language, all three models perform
poorly. Despite Chinese not being a primary train-
ing language for the Llama models, their perfor-
mance is relatively decent, suggesting that the ac-
tual proportion of German training data might be
much smaller. This highlights differences in the
resource allocation for the three languages.

Form needs less data to capture compared to
meaning. From Table 3, Chinese is classified as
a mid-resourced language for Llama, yet it achieves
high form competence (but low meaning compe-
tence), suggesting that capturing form requires less
data than meaning.
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F Supplemented Discussion

Developmental difference between human and
machine intelligence. From a perspective of de-
velopmental psychology, human kids typically ac-
quire conceptual understanding before mastering
grammar (Bloom, 2002; Tomasello, 2005). Pinker
(2009)’s semantic bootstrapping hypothesis posits
that children initially learn vocabulary through se-
mantic information and then use this semantic
knowledge to infer syntactic structures. In con-
trast, our results indicate that LLMs learn grammar
before meaning. Human intelligence is a combina-
tion of statistical inference and causal reasoning,
whereas LLMs’ intelligence is more likely a result
of statistical inference (Tenenbaum et al., 2011;
Gopnik and Wellman, 2012; Lake et al., 2017).
Given this nature, the fact that LLMs learn form
first might be because grammatical patterns are
easier to statistically capture compared to meaning.

Symbol grounding problem and the quest for
human-like intelligence In human language, the
relationship between the signifier and the signified
is often flexible and context-dependent, allowing
for a more independent connection between syntax
and semantics(Harnad, 1990). Human cognitive
development typically involves acquiring concep-
tual understanding first, followed by the learning
of rules and syntax. In contrast, our study shows
that LLMs grasp syntax before meaning, relying
on statistical correlations within formal structures
to infer semantic content. This difference high-
lights a fundamental divergence between human
and machine intelligence, as LLMs do not possess
an inherent understanding of meaning detached
from the formal structures they analyze.

These observations suggest that, for LLMs to
develop human-like intelligence, they must tran-
scend mere statistical pattern recognition. This will
likely require the integration of world knowledge
and grounded experiences that go beyond linguis-
tic inputs. To achieve a more robust form of ar-
tificial intelligence that mirrors human cognition,
models must be able to ground symbols in real-
world contexts, establishing a basis for genuine
understanding (Tenenbaum et al., 2011; Lake et al.,
2017) As it stands, the symbol grounding problem
remains a significant barrier, and addressing it may
be essential for constructing systems capable of
true human-like reasoning and understanding.
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Figure 15: Detailed English decoding results on 6 models.
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Figure 17: Detailed German decoding results on 6 models. All non-red curves are grammatical tasks, and red curves
are conceptual tasks.
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