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Abstract

This study intends to systematically disentan-
gle pure logic reasoning and text understanding
by investigating the contrast across abstract and
contextualized logical problems from a com-
prehensive set of domains. We explore whether
LLMs demonstrate genuine reasoning capabil-
ities across various domains when the under-
lying logical structure remains constant. We
focus on two main questions (1) Can abstract
logical problems alone accurately benchmark
LLMs’ reasoning ability in real-world scenar-
ios, disentangled from contextual support in
practical settings? (2) Does fine-tuning LLMs
on abstract logic problems generalize to con-
textualized logic problems and vice versa? To
investigate these questions, we focus on stan-
dard propositional logic, specifically proposi-
tional deductive and abductive logic reason-
ing. We construct datasets for both reason-
ing types with four difficulty levels across 12
distinct domains based on the Wikipedia cate-
gorization in additional to those with purely
abstract variables. Our experiments aim to
provide insights into disentangling context in
logical reasoning, the genuine reasoning capa-
bilities of LL.Ms, and their generalization po-
tential. Coda and data are available at https:
//github.com/agiresearch/ContextHub.

1 Introduction

Large language models (LLMs) (Team et al.,
2024, Arrieta et al., 2025; Guo et al., 2025) have
demonstrated significant potential in reasoning
capabilities across a variety of reasoning bench-
marks (Cobbe et al., 2021; Hendrycks et al., 2021;
Wei et al., 2022a; Liang et al., 2023; bench authors,
2023; Zhu et al., 2024; Fan et al., 2023a; Fu et al.,
2024), broadening their potential applications in
fields such as psychology, education, and social
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sciences (Gandhi et al., 2024; Li et al., 2024a; Fan
et al., 2023b). The widespread use of LLMs ne-
cessitates rigorous evaluation of their reasoning
abilities, particularly in context-rich scenarios that
reflect real-world complexities.

While assessments on abstract logical prob-
lems (Sawada et al., 2023; Zhu et al., 2024; Fan
et al., 2023a, 2024; Fu et al., 2024) showcase
LLMs’ theoretical reasoning capacities, they do
not entirely capture their practical utility in real-
life applications where context drastically affects
outcomes. Conversely, focusing exclusively on
context-specific tasks (Guha et al., 2024; Liévin
et al., 2024; Han et al., 2022; Clark et al., 2020;
Hendrycks et al., 2020) may conceal the fundamen-
tal mechanisms that empower LLMs to process
and reason with information. Thus, exploring the
disparity between contextualized and abstract rea-
soning (Tang et al., 2023; Saparov and He, 2022)
is vital for advancing LLMs and ensuring their ef-
fectiveness across different domains.

To this end, we introduce ContextHub, a bench-
mark designed to systematically and meticulously
disentangle and evaluate the core reasoning capa-
bilities of LLMs from the influences of contex-
tual information. By leveraging a dual-assessment
framework, ContextHub compares LLMs’ perfor-
mance on identical logical constructs within both
abstract and richly contextualized settings (a con-
textualized example can be seen in step 3 of Figure
2). This approach not only identifies the significant
impacts of context on reasoning but also provides a
scalable and flexible methodology adaptable across
various domains.

ContextHub aims to address two main questions:
(1) Evaluation disentanglement: how accurate
and reliable are abstract logic problems versus con-
textualized problems in evaluating LLMs’ reason-
ing abilities? We examine this by comparing LLM
performance across both problem types to under-
stand context’s role in reasoning. (2) Fine-tuning
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Figure 1: Benchmark Construction Procedure

disentanglement: how do abstract versus contextu-
alized logic problems affect model generalization
during fine-tuning? We analyze LLM performance
on unseen problems of both types to determine
which training data best improves reasoning while
maintaining cross-domain consistency.

We employ a dynamic graph-based construction
method (Zhu et al., 2024) to generate formal logic
templates at four levels of difficulty. These tem-
plates are then instantiated in 13 distinct domains,
comprising 12 contexts with specific settings and
1 using purely abstract variables for comparison.
Every instantiated question undergoes a rigorous
two-step quality control process to ensure reliabil-
ity. We evaluate these datasets using a variety of
LLMs, including GPT-40, GPT-3.5-Turbo, Qwen
series, Yi-series, LLaMA-2, and LLaMA-3.1 series.
In the fine-tuning phase, we compare three settings:
models fine-tuned on abstract data only, on mixed
contextualized data from all domains, and on single
domain data. These settings enable us to investigate
how abstract and contextualized logical problems
affect LLMs’ generalization abilities. Our key find-
ings are: (1) The relative performance of LLMs
on abstract logic problems and corresponding con-
textualized logic problems is dependent on model
size or general model performance. Stronger
models tend to perform better on abstract logic,
while smaller models typically rely on contextual
cues. (2) The domain of contextualization has a
statistically significant impact on model perfor-
mance, suggesting the choice of contextualization

domain can affect the accuracy and reliability of
LLMs for logical reasoning tasks. (3) The gener-
alization power of abstract logic data is limited
compared with that of contextualized logic data.
This indicates that LLMs fine-tuned on contextual-
ized logic data may be better equipped to handle a
wider range of real-world logical reasoning tasks.

2 Related Work

Evaluating the reasoning abilities of LLMs has
garnered significant attention across various disci-
plines, from biomedical informatics (Liévin et al.,
2024; Chen et al., 2024; Jin et al., 2024b) and hu-
manities (Hua et al., 2023; Lin et al., 2024; Jin
et al., 2024a) to social sciences (Ziems et al., 2024;
Gandhi et al., 2024; Li et al., 2024a; Fan et al.,
2023b). Research has predominantly concentrated
on diverse logical reasoning tasks, including deduc-
tion, induction, and abduction, addressed through
neural models (Pan et al., 2023; Li et al., 2024b;
Dasgupta et al., 2022; Han et al., 2022; Del and
Fishel, 2022). LogicBench (Parmar et al., 2024)
focuses on natural language logical reasoning ques-
tions. FOLIO (Han et al., 2022), RuleTaker (Clark
et al., 2020), and FLD (Morishita et al., 2023) build
logic questions based on deduction rules focusing
only on validity without semantics. Nevertheless,
no existing benchmark offers a systematic, fine-
grained investigation into how additional contex-
tual detail or scenario-specific variations can affect
the stability and reliability of LLMs’ logical reason-
ing—particularly in terms of how prior knowledge
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Step 1: Generatc_e Tree with Step 2: Form a formal logic Step 3: Generate the instantiation
constraint template
Tree-based DAG <aaa>: Jane's flight to the destination was on time
<aab>: Jane booked a hotel room for her vacation
<aac>: Jane arrived at her travel destination as planned
e aab aad aaa is False <aad>: Jane's luggage was lost by the airline
< = <aae>: Jane had to buy new clothes and toiletries at her destination
N aab is False <aaf>: Jane had an unpleasant start to her vacation
K
@ @ Jane’s flight to her vacation destination was delayed, and
she had not booked a hotel room in advance.
If Jane’s flight was on time or she had booked a hotel, then she would
- NOT aad -> aae have arrived at her destination as planned.
( aaf ) Unfortunately, the airline also lost Jane's checked luggage.
: . (aac and aae) -> aaf If Jane's luggage was not lost, then she would not have needed to buy
Deduce the result of aaf new clothes and toiletries.
If Jane did not arrive as planned and had to buy new items due to her lost
False O True ¢ Deduction luggage, then she had an unpleasant start to her vacation.
) Based on this information, did Jane likely have an unpleasant start to her
Not —> And -2 Or vacation?

Figure 2: An illustration of abstract and contextualized logical problems.

might bolster performance or, conversely, how the
absence of such knowledge may lead to greater
degradation than performance in a purely abstract
context. While LLMs have demonstrated notable
successes in certain reasoning tasks (Cobbe et al.,
2021), their generalizable logical reasoning capa-
bilities remain uncertain (Tang et al., 2023; Saparov
and He, 2022).

There are also many logic reasoning benchmarks
such as LogicBench (Parmar et al., 2024) and FO-
LIO (Han et al., 2022) using contextualized lan-
guage over logic templates. Benchmarks such as
RuleTaker (Clark et al., 2020) and FLD (Morishita
et al., 2023) build synthetic logic questions based
on logic templates without coherence semantics.
However, none of these benchmarks systematically
examine the influence of contextual factors on rea-
soning performance or explore the stability of log-
ical reasoning skills across diverse scenarios, in-
cluding those that are purely abstract.

Valmeekam et al. (Valmeekam et al., 2022)
argued that LLMs often struggle with common
planning and reasoning tasks, which are typically
straightforward for humans. Similarly, Wei et
al. (Wei et al., 2022b) noted that while chain-of-
thought (CoT) techniques stimulate human-like
thought processes, they do not necessarily indicate
genuine neural reasoning. Further illustrating these
limitations, Tang et al. (Tang et al., 2023) reported
that LLaMA-2 predominantly relied on template
matching for reasoning tasks and lacked the ability
to generalize beyond learned logic rules, a chal-
lenge exemplified in their studies using Symbolic
Trees and ProofWriter. They questioned whether
LLMs truly possess human-like inductive, deduc-
tive, and abductive reasoning capabilities. Adding

to this discourse, Saparov and He (Saparov and He,
2022) introduced a synthetic question-answering
dataset, PrOntoQA, to assess the logical reason-
ing abilities of LLMs. Their findings indicated
that while LLMs can correctly perform individual
deduction steps, they struggle with complex sce-
narios requiring the exploration of multiple valid
deduction pathways.

3 Benchmark Construction

This section demonstrates the construction process
of ContextHub on deductive logic and abductive
logic. Deductive reasoning infers a logically cer-
tain conclusion from general statements, whereas
abductive reasoning hypothesizes the most likely
explanation based on observed data. As illustrated
in Figure 1, constructing instantiated logical rea-
soning benchmarks involves three steps:

(1) Creating Formal Logical Reasoning Ques-
tion Templates. We begin by developing formal
logic templates for deductive and abductive reason-
ing across four levels of difficulty, utilizing the Dy-
Val (Zhu et al., 2024) framework, which employs a
tree structure to dynamically generate formal logic
templates. These templates serve as the foundation
for subsequent contextualization.

(2) Instantiation. Each logical template T is in-
stantiated across 12 different domains drawn from
Wikipedia categories, plus one domain with purely
abstract variables. For each contextual domain, we
randomly select a sub-category to ensure diversity,
then instruct LLMs to contextualize the template
T accordingly. An example instantiation can be
found in Figure 2.

(3) Quality Control. To ensure the correctness
of the instantiated logic problems, we implement
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a two-step quality control process. Initially, the
samples are assessed by Claude-3-Opus which val-
idates the samples against specified constraints.
Subsequently, human verification with 5 annota-
tors is applied iteratively to refine the quality of
generated questions.

3.1 Creating Formal Logical Reasoning
Question Templates

We generate formal logic templates X’ based on the
dynamic evaluation framework: DyVal (Zhu et al.,
2024). For deductive and abductive logic, DyVal
utilize tree structure to generate template samples
on the fly with controllable difficulty. The tree
structure naturally aligns with the inference process
of a logic reasoning question. Take deductive logic
as an example, the premises are given by the leaf
nodes, where the intermediate nodes represent the
intermediate inference steps, and the final result is
shown by the root node. The tree-based DAG is
presented on the leftmost block in Figure 1.

Tree-based DyVal consists of three components:
(1) Constraint C. It aims to modulate the evalu-
ation samples’ complexity and validity. The con-
straints include (a) depth constraints, and (b) valid-
ity constraints. For depth constraints, we define the
complexity level of formal logic template by the
depth of the generated tree. Thereby the constraints
will control the complexity of generated templates.
For validity constraints, they ensure the correct-
ness of the generated formal logic template. For
example, the ‘NOT’ operation has exactly one chil-
dren node and the ‘AND’ operation has exactly two
children nodes. (2) Tree generation algorithm
G. After defining the constraints, the generation
algorithm G generates fixed complexity evaluation
samples following the constraint C. During the gen-
eration process, the final answer is also derived au-
tomatically based on logical rules. (3) Description
function F. This function transforms the template
into a natural language paragraph: each leaf node
in the graph is translated into a natural language
sentence and finally they are weaved into a formal
logic template based on the logical structure im-
posed by the template. For example, in deductive
logic, a leaf node ‘A’ with truth value ‘True’ will
be translated as “A is True.”, a non-leaf node ‘C’
with ‘OR’ operation and its children ‘A’ and ‘B’
will be translated as “(A OR B) — C”, where —
means deductive operation.

3.2 Instantiation

The instantiation phase grounds each generated for-
mal logic template into a contextualized scenarios
in 13 different domains. The 13 instantiated do-
mains include 12 domains based on Wikipedia’s
categorization in addition to a purely abstract in-
stantiation:

Domains of contextualization We instantiate the
above formal logic templates in the below con-
textual domains following the categorization of
Wikipedia (Wik):

Culture and the arts, Geography and
places, Health and fitness, Human
activities, Mathematics and logic,
Natural and physical science, People

and self, Philosophy and thinking,
Religion and belief systems, Society

and social sciences, Technology and
applied sciences.

Listing 1: Categories of Wikipedia

These Wikipedia domains spanning from Cul-
ture and the arts to Geography, Health, and Human
activities. Each category is further subdivided into
specific sub-categories S to ensure diverse con-
textual challenges. We exclude the “History and
events” domain because its fact-based questions of-
ten bypass the need for logical reasoning. Further
details about the domains and sub-categories can
be found in Appendix D.

The instantiation process comprises two main
transformations: (1) Variable-based Transforma-
tion 7,: Each leaf node V in a template X is in-
stantiated into a sentence specific to a chosen sub-
category S. For example, within the “Mathematics
Education” sub-category, } might be instantiated
as “All of Galois theory was developed by Galois
alone.” (2) Template-based Transformation 7;:
This step transforms the collection of instantiated
sentences {sy} into a coherent natural language
paragraph, preserving logical structure of original
templates.

3.3 Quality Control

To ensure the quality of the benchmark, given that
the datapoints are primarily generated by LLMs,
we conduct a rigorous series of quality control mea-
sures. The quality verification of our instantiated
benchmarks is managed using a hybrid model in-
volving Claude-3-Opus, and a diverse panel of 5
human annotators. These verification steps are im-
plemented to maintain a high standard of quality
and relevance in our benchmarks, ensuring that
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they not only test logical reasoning but also engage
with the domain knowledge in a meaningful way.

LLMs verification We implement three valida-
tion mechanisms to ensure benchmark quality: (1)
Common Sense Checking verifies that each prob-
lem requires logical inference rather than recog-
nition of well-known facts, ensuring that instanti-
ated paragraphs cannot be answered through prior
knowledge alone and necessitate logical deduction;
(2) Sensibility Checking ensures that scenarios and
questions are coherent and unambiguous, free from
internal contradictions; and (3) Tautology Checking
identifies tautological statements within instanti-
ated paragraphs to maintain intellectual rigor and
prevent trivial problem formulations.

Human verification Five human annotators con-
duct additional quality assessments to ensure
benchmark validity and relevance through two pri-
mary evaluations: (1) Template Adherence verifies
that instantiated problems preserve the structural
integrity and logical intent of the original templates,
maintaining the fundamental reasoning framework;
and (2) Fact Verification ensures that problems re-
quire logical deduction rather than mere factual
recall, thereby preserving the benchmark’s analyti-
cal rigor and pedagogical value.

The panel of annotators include four males and
one female, each holding a Ph.D. degree in a di-
verse range of fields, including computer science,
informatics, civil engineering, and medicine. The
participants’ ages ranged from 24 to 30, with an av-
erage age of 27. They are required to answer these
questions: (1) whether the contextualized question
matches with the logic template (2) whether the
contextualized question is against actual facts. Four
rounds of annotation and review are conducted: in
each round, every annotator manually reviewed a
random sample of 260 questions (20 for each cate-
gory) and identified questions that were not appro-
priately generated by the LLMs. Then all annota-
tors participated in group review sessions to discuss
potential issues with the generated questions and
ways to improve the prompt design. After four
rounds of verification and discussion, no further
issues were identified in the questions generated
by the LL.Ms across all categories. The following
table 1 presents the accuracy of another randomly
samples 220 questions for template adherence and
fact reckoning:

data level | template adherence | fact reckoning
1 100% 95.45%
2 100% 94.54%
3 100% 96.36%
4 96.36% 93.18%

Table 1: Accuracy of Synthetically-generated Data

4 Experiment

Our experimental setup defines 4 levels of diffi-
culty for logical reasoning tasks, with tree depths
of (2,3, 4,5) and a uniform width of 2 across nodes.
The dataset comprises 10 deductive and 6 abductive
formal logic templates at difficulty level 1, the max-
imum number of distinct templates of reasoning
that can be generated at this level. We then include
40 deductive and 40 abductive reasoning formal
logic templates at levels 2, 3, and 4, respectively.
To ensure balanced data distribution, we assign
equal counts of ‘“True’, ‘False’, and ‘N/A’ truth
values across all questions. The dataset spans 12
domains for contextualization, generating 5 unique
instances per domain, resulting in 18, 240 total dat-
apoints across various levels and types of logic.

The experiments are structured into two phases:
benchmarking and fine-tuning. In the benchmark-
ing phase, we assess model performance across var-
ious domains and compare between contextualized
and abstract logic, to explore whether LLMs consis-
tently grasp the underlying logical structures. The
fine-tuning phase uses the generated data points
to investigate how different instantiation types (ab-
stract vs. contextualized) and data domains influ-
ence model generalization. This setup allows us to
scrutinize the effects of model scaling and domain
specificity on performance.

Benchmarking We benchmark the logical rea-
soning performance of several advanced models,
including GPT series, Qwen-1.5 series (Bai et al.,
2023), LLaMA-2 series (Touvron et al., 2023),
LLaMA-3.1 series (Touvron et al., 2023), and Yi-
1.5 series (Young et al., 2024). This evaluates
whether models understand the underlying logic
structures consistently, irrespective of contextual
variations. We use an average weighted F; score
for model evaluation, detailed in Appendix ??.

Fine-tuning In the fine-tuning phase, we exam-
ine how different data types affect model general-
ization in logic reasoning. Models are fine-tuned
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using three settings: (1) solely with abstract logic
data to test base logical reasoning capabilities. (2)
with a sample of contextualized data across all
domains to evaluate generalization across varied
contexts. (3) with contextualized data from sin-
gle domains to investigate the impacts of domain
specificity and diversity. We utilize models ranging
from Qwen1.5-0.5b to GPT-3.5-turbo. We lever-
age QLora (Dettmers et al., 2024) for finetuning
on open-source models. Other relevant hyperpa-
rameters are: epochs = 1, warmup proportion =
0.01, learning rage = 3e-4, weight decay = 0.01,
lora rank = 64, lora dropout = 0.05, lora alpha = 16,
batch size = 4, accumulate gradient steps = 8.

Evaluation Metrics To assess the reasoning ca-
pabilities of LLMs, we employ the average F1
score. The calculation of the average F1 score in-
volves determining the average of the F1 scores for
data points (d) that possess the same truth values.
For datapoints with identical ground truth (gt) truth
value 7T, the F1 score is computed by first ascer-
taining the true positive (TpT ), false positive(FpT ),
and false negative(FnT ):

77 = |{d € D|f(d) = gt(d), gt(d) = T} (1)
F] = |{d € D|f(d) # gt(d), f(d) =T} (2
FI = |{d € D|f(d) # gt(d),gt(d) = T} (3)

F[ for for datapoints with the truth value 7 is
then computed by:

oTT
F = L 4)
2] + K] + F]

The average F1 score for the entire dataset is
calculated by determining the average of the F17
scores for all possible truth values 7.

4.1 Results Analysis

In this subsection, we present a comprehensive
analysis of the results obtained from our experi-
ments. The benchmark results provide a general
analysis of the performance trends, as well as a
statistical analysis of the impact of the domain on
model performance. Meanwhile, the fine-tuning
results offer insights into the factors that influence
model generalization for logic reasoning. By ex-
amining these two areas in detail, we aim to pro-
vide a thorough understanding of the behavior of

large language models in the context of logic rea-
soning. Full benchmark results can be found in
Appendix G.

4.2 Benchmarking

Overview of Model Performance Table 2
presents a selected benchmark result for the
Qwenl.5 series, LLaMA-3.1 series, and GPT-40
models on deductive logic data across all 4 diffi-
culty levels. The highest and lowest performance
scores for each row are highlighted in bold and un-
derlined, respectively. The full results are presented
in Figure 8 in Appendix G, which demonstrate the
varying performance by heatmap distributions.

At a granular level, GPT-40 models frequently
appear to excel, particularly in higher difficulty
levels. In contrast, smaller models like Qwen-0.5,
Qwen-7, LLaMA-3.1-8 often lag, struggling no-
tably with abstract reasoning tasks. This disparity
underscores the influence of model size. When ag-
gregating results across all models and logic levels,
certain domains consistently present more chal-
lenges. Specifically, the domains of Math and Phi-
losophy appear to be the most demanding, likely
due to their intrinsic requirement for deep logical
structuring and abstract reasoning. Conversely, the
domain labeled People generally shows the best
performance, which is indeed less abstract, more
intuitive, and features more contextual cues. The
observed difference in performance across the dif-
ferent domains has been tested with statistical sig-
nificance, the details of which are provided in the
following section. This indicates the significant
impact that contexts can have on LLMs’ logical
reasoning performance.

Influence of Model Size A pivotal observation
from our data is the interaction between model size
and sample type, presented in Figure 3. Larger
models demonstrate a marked proficiency in ab-
stract logical reasoning samples compared to their
performance with their corresponding instantiated
samples. This trend holds regardless of the diffi-
culty level, suggesting that as models scale, their
ability to decipher and apply abstract logic pat-
terns improves significantly. While smaller mod-
els, like Qwen-0.5, LLaMA-2-7, LLaMA-3.1-8,
demonstrate either better performance on instanti-
ated samples than abstract samples or less differ-
ence between these two types. This discovery dif-
fers from previous observations (Tang et al., 2023;
Saparov and He, 2022) which in general state that
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Diff. LLM Domain

Level Abs. Culture Geo. Math Sci. People Phi. Religion Tech. Health
Qwenl.5-0.5 34.15 38.27 38.81 3226 43.77 32.83 36.64 3492 36.54 30.30
Qwenl.5-7 72.55 5442 5292 5833 5887 69.56 5636 6939 67.89 67.70

Level 1 LLaMA-3.1-8 78.31 87.65 8593 85.11 8276 89.96 7627 84.17 8348 88.51
LLaMA-3.1-70  100.00 74.03 77.59 7393 77773 70.54 74.84 76.71 77.73 7171
Qwenl.5-72 76.88 85.58 82.29 68.69 80.39 76.02 8231 7456 74778  74.00
Qwenl.5-110 90.94 78.85 8492 7375 8550 83.80 74.00 81.68 74.84 78.00
LLaMA-3.1-405 100.00 8491 80.56 71.87 80.34 8557 7469 8647 72.14 8126

GPT-40 100.00 88.04 81.45 67.37 81.15 8459 79.53 8390 89.50 86.48
Qwenl.5-0.5 29.57 31.23 3445 3438 31.70 33.70 33.00 3289 31.03 33.09
Qwenl.5-7 59.53 6145 5250 4522 4873 4444 53.09 48.84 47.07 61.07

Level 2 LLaMA-3.1-8 51.84 6798 67.11 69.52 77.12 7191 68.14 66.66 6641 71.69
LLaMA-3.1-70 92.04 69.22 68.80 068.58 76.72 76.75 71.76  68.76  62.87 75.89
Qwenl.5-72 81.16 7222 6853 63.03 7470 7440 69.92 64.12 64.04 7195
Qwenl.5-110 65.53 6596  68.57 6343 69.04 7253 66.09 6521 6093 67.80
LLaMA-3.1-405 97.95 7641 7280 66.36 79.05 81.89 73.05 7239 6823 79.14

GPT-40 98.50 69.23  68.12 62.65 7276 7451 68.60 6696 6330 68.14
Qwenl.5-0.5 25.39 34.04 3396 3357 3190 33.11 3251 3479 3396 3298
Qwenl.5-7 43.86 4976 4991 4246 49.88 4480 4737 48.69 4242 50.38

Level 3 LLaMA-3.1-8 51.48 55.04 5426 5043 6070 5471 59.13  61.07 49.01 56.99
LLaMA-3.1-70  74.71 5642 5920 49.34 5931 64.67 59.94 6446 50.62 54.11
Qwenl.5-72 7117 63.10 58.52 5390 5555 6047 58.00 5498 5428 56.48
Qwenl.5-110 60.37 5528 53,51 4780 46.26 5880 53.60 59.58 4747 50.46
LLaMA-3.1-405 91.01 64.13  58.63 51.14 6551 63.03 5947 6332 5131 63.15

GPT-40 91.65 5230 5090 4696 5656 6196 51.75 59.58 45.83 56.26
Qwenl.5-0.5 30.38 33.10 3546 33.10 34.44 34.09 33.67 3439 3286 33.50
Qwenl.5-7 51.49 56.02 5548 51.48 57.00 6034 54.64 5048 51.68 49.19

Level 4 LLaMA-3.1-8 45.07 51.88 55.18 49.57 4884 50.51 4397 49.16 4553 46.45
LLaMA-3.1-70 55.06 5092  48.05 4227 4572 5201 4541 37.05 4193 45.61
Qwenl.5-72 57.41 51.39  50.73 4224 5092 5270 4439 4554  49.16 49.86
Qwenl.5-110 49.57 5142 4735 48.13 46.65 49.72 4585 47.08  48.58 49.45
LLaMA-3.1-405 76.94 5428 4642 49.66 52.12 54.18 4746 4459  46.04 50.04

GPT-40 83.51 46.93 47.19 4556 48.03 52.87 4394 3980 4474 41.62

LLMs are better at instantiated data.

Table 2: Selected Experiment Results on Benchmarking

Inter-domain Disparities Further analysis of
specific model performance within different do-
mains reveals notable patterns. For abstract reason-
ing tasks, performance is highly variable: smaller
models like Qwen-0.5 and Qwen-1.8 perform sig-
nificantly worse, while larger configurations often
excel. In the domain of Math, both Yi and Qwen se-
ries models exhibit consistently lower performance,
reinforcing the notion of this domain’s complexity
and implying the extent to which logic reasoning
performance can be influenced by the context. In-
terestingly, we also observe a general trend from
observation where models that generally perform
well show more pronounced disparities across do-
mains, suggesting that higher capabilities amplify
domain-specific challenges or advantages.

Statistical Analysis on Domain-specific Perfor-
mance Difference The statistical results are pre-

sented in Figures 9 and 10 in Appendix G.1. Each
row in either figure consists of four distinct sub-
figures. The two sub-figures on the left side illus-
trate the performance of the respective model for
abductive reasoning, while the two on the right
side demonstrate the deductive performance. In
each pair of two sub-figures, the barplot shows the
weighted F1-score for each category across diffi-
culty levels calculated using equation (4), while
the heatmap displays the results of the chi-square
test (Bolboaca et al., 2011) with each cell corre-
sponding to the p-value of the test regarding any
pairwise categories. The application of the chi-
square test in this regard aims to determine whether
there is a significant association between two dis-
tributions. As shown in each heatmap, the darker
blue (p — value = 0.05 at different thresholds)
implies a significant difference between the distri-
butions of the two categories, while the lightest
blue (p — value > 0.05) suggests no significance.
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Figure 3: Abstract performance vs. Contextualized performance

Based on the bar plots and heatmaps, there are
several observations to highlight in terms of mod-
els’ performance. First, most of these models per-
form better in deductive reasoning tasks than ab-
ductive reasoning tasks. This observed pattern is
consistent across most of the models and categories
under investigation in this study. Second, the mod-
els’ performance varies significantly across differ-
ent categories. For instance, based on the results
of Qwen-32, the weighted F1-score for the abstract
category is much higher than that of other cate-
gories. However, it is also noted that the math cat-
egory consistently displays a comparatively lower
weighted F1-score across these categories. Third,
the abstract category is more likely to display signif-
icant differences when compared to other models.

4.3 Generalization after Finetuning

This segment of our research is dedicated to ex-
amining the generalization capabilities of models
fine-tuned on different types of logic data. We ad-
dress several key research questions: (1) How do
models trained on abstract data compare in general-
ization to those trained on contextualized data? (2)
What is the effect of model scaling on generaliza-
tion performance across different data types? (3)
How well can models trained on data from a single
domain generalize across multiple domains, and
what role does the diversity of training domains
play in this context?

Abstract vs. Contextualized Data We con-
ducted experiments to compare the generalization
abilities of models trained on purely abstract data

against those trained on contextualized data. We
utilized four models for this purpose: Qwen-4,
Qwen-7, Qwen-14, and GPT-3.5-turbo, each fine-
tuned on both types of data. The abstract dataset
comprised 1280 data points generated from 256
formal logic templates. For a balanced comparison,
we selected a random sample of 1280 data points
from a much larger pool of contextualized data,
ensuring each template was equally represented.

Our results in Figure 4 show that models fine-
tuned on abstract data, while performing well on
similar abstract test cases, exhibit a marked decline
in performance when applied to contextualized
data, particularly as the difficulty level increases.
On the other hand, models fine-tuned on contextu-
alized data (sampled-ctx) demonstrate robust gen-
eralization capabilities, significantly outperforming
those trained on abstract data across both similar
and dissimilar tasks. This is especially evident
in GPT-3.5, achieving near-perfect scores on the
lower difficulty levels of contextualized data.

Model Scale Effect on Generalization Our
study also explores how the size of models influ-
ences their ability to generalize from training data.
In Figure 4, we observe that while larger models
exhibit only slight improvements when fine-tuned
on abstract data, suggesting a saturation point in
the complexity that abstract reasoning can model,
the same models show significantly better perfor-
mance improvements when fine-tuned on sampled-
ctx data. This suggests that the richness of con-
textualized data may better support the models in
learning to generalize across various logic tasks.
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Figure 5: Model Performance by Finetuning on Differ-
ent Domains.

Single-domain vs. Multi-domain Generalization
One potential explanation for the superior general-
ization capacity of sampled-ctx data is the diversity
of domains from which it is sampled, as opposed
to the relative homogeneity of abstract data. Thus,
further investigations focused on whether training
on data from a single domain could match or ex-
ceed the generalization capabilities achieved by
training across multiple domains. We fine-tuned
GPT-3.5 on individual domain datasets as well as
on a mixed-domain dataset (sampled-ctx). Results
in Figure 5 indicate that models trained on single-
domain datasets often perform on par with or better
than those trained on multi-domain data, challeng-
ing the assumption that greater domain diversity
improves generalization.

5 Conclusion

This paper provides a comprehensive investigation
into the logic reasoning abilities of LLMs through
the ContextHub benchmark. Our approach effec-
tively separates logical reasoning from textual com-
prehension, enabling a focused analysis of models’
reasoning capabilities. The study reveals that a
model’s performance on reasoning tasks is substan-
tially influenced by the context and domain-specific

variables involved. Also, finetuning on instanti-
ated data enhances the models’ ability to generalize
across various logic reasoning tasks, irrespective of
the domain complexity or the diversity of domains.

6 Limitations

Our study has several limitations. First, the syn-
thetic nature of the datasets, particularly abstract
logic data, may not fully capture the complexity
and variability of real-world reasoning tasks. This
limitation could affect the external validity of our
findings, as models trained on such data might not
perform equivalently on natural, less structured
tasks. Second, the study’s focus on propositional
logic might not translate directly to other forms of
reasoning used in practical applications, such as
probabilistic or causal reasoning. Future research
should aim to address these limitations by incor-
porating more diverse and complex reasoning for-
mats, extending beyond propositional logic to in-
clude other reasoning types that are prevalent in
real-world scenarios.

6.1 Template-Based Data Generation and
Limited Complexity of Logical Rules

A final area of concern relates to the templatized
nature of our dataset and the relative simplicity of
the inference rules involved, which some argue do
not fully capture real-life reasoning:

Modeling Real-World Reasoning. While our
dataset leverages structured templates, we note that
it primarily seeks to evaluate whether the inher-
ent reasoning abilities of LLMs generalize beyond
strictly abstract logic. We design contexts that,
although templated, reflect more naturalistic sce-
narios than purely formal problems. This design
allows us to isolate the effects of contextual infor-
mation on reasoning performance—an aspect often
overlooked by benchmarks that focus either on en-
tirely decontextualized logic or on unconstrained
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real-world data without rigorous comparisons. We
acknowledge that fully simulating the variety and
complexity of real-world language remains chal-
lenging; however, our approach provides an inter-
mediate step that systematically tests reasoning in
contexts richer than purely symbolic logic.

Potential for “Hacking” Templatized Data. Be-
cause the data is templated, one might worry that
targeted fine-tuning could exploit superficial pat-
terns. Yet, our experiments indicate that such fine-
tuning does not close the performance gap between
reasoning in abstract contexts and reasoning under
richer, diverse circumstances, suggesting that the
dataset’s complexity is non-trivial. Furthermore,
our generation pipeline can flexibly produce new
templates or extended contexts, preserving diver-
sity and countering the risk of overfitting. Thus,
while we acknowledge that carefully crafted tem-
plates can, in principle, be exploited, our design
aims to mitigate this vulnerability through contin-
ual expansion and variation of the dataset.

Scope of Logical Rules. Our benchmark focuses
on relatively fundamental inference rules (e.g.,
Modus Ponens) rather than the more intricate con-
structions found in advanced logic benchmarks
(e.g., LogicBench (Parmar et al., 2024)). We se-
lect simpler rules to illuminate a primary objec-
tive: examining how contextual information affects
model performance when abstract reasoning ap-
pears achievable in controlled settings. High per-
formance on purely abstract tasks highlights an un-
expected deficit once the same rules are embedded
in richer contexts. We acknowledge that extend-
ing the benchmark to incorporate more complex
rules remains a worthwhile direction, but our cur-
rent approach demonstrates that even foundational
inference (like Modus Ponens) can deteriorate sig-
nificantly with the introduction of contextual com-
plexity, underscoring the ongoing challenges for
LLMs in real-world-like reasoning tasks.
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1 Classics,

A Appendix
B Licenses for Existing Assets

All the methods we used for comparison are pub-
licly available for academic usage.

C Environments and Resources

To reproduce the computational environment used
in this study, an environment file, environment.yml,
is provided in our code repository. This YAML file
lists all the dependencies and their specific versions
used in the study. Users can create an identical
Conda environment using the command conda env
create -f environment.yml. The computational ex-
periments were conducted on machines equipped
with NVIDIA Tesla A100 GPUs (80GB of GPU
memory each).

D Formal Logic Template Instantiation

D.1 Contextual Instantiation

Each instantiation of a domain is created based on
a randomly selected sub-categories in the domain
from above based on sub-categories established
in Wikipedia to encourage diversity and specifica-
tion. For example, “Culture and the arts” has the
following sub-categories:

Cultural
Folklore,

Critical theory,
anthropology, Clothing,
Food and drink culture, Language,
Literature, Museology, Mythology,
Philosophy, Popular culture, Science
and culture, Traditions, Arts and
crafts, Celebrity, Censorship in the
arts, Festivals, Humor, Literature,
Museums, Parties, Poetry, Circuses,
Dance, Film, Music, Opera,
Storytelling, Theatre, Architecture,
Comics, Crafts, Design, Drawing,
Film Animation, New media art,
Painting, Photography, Sculpture,
Board games, Card games, Dolls,
Puppetry, Puzzles, Role-playing
games, Video games, Air sports,
American football, Association
football, Auto racing, Baseball,
Basketball, Boating, Boxing,
Canoeing, Cricket, Cycling,
, Fishing, Golf, Gymnastics, Hobbies
, Horse racing, Ice hockey, Lacrosse
, Olympic Games, Rugby league, Rugby
union, Sailing, Skiing, Swimming,
Tennis, Track and field, Walking
trails, Water sports, Whitewater
sports

Exercise

Listing 2: Sub-categories of Culture and the arts in
Wikipedia
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Contextualization process After obtaining the
formal logic templates, for each domain, we first
randomly selected one sub-category c, then we ask
LLMs (in our experiment, Claude-3-Opus) to in-
stantiate each variable in the original logic tem-
plates with the relevant context in the selected sub-
category. This contextualizatin process is divided
into 2 steps:

1. Variable-based Transformation: 7,. For each
variable V' contained in the logic template
X, a instantiated sentence sy is generated by
To(c,V € X). For example, a leaf node vari-
able V can be instantiated as “Alice studied hard
for the following math test” in the sub-category
of “Mathematics Education” in the category of
“Mathematics and Logic”.

2. Template-based Transformation: 7;. After gen-
erating {sy} for all {V} in the template X, a
coherent natural language description will be
generated by T;({sy}, X') by forming a instan-
tiated version of the original formal logic tem-
plate.

D.2 Abstract Instantiation

Other than the 11 contextual domains from
Wikipedia, we also create an “abstract” domain
where we simply substitute by heuristic rules the
propositional variables in the formal logic tem-
plate with arbitrary character sequences of vary-
ing lengths, ranging from 3 to 5. The purpose of
creating this domain is to augment the number of
datapoints expressed in an abstract form, thereby
enabling a fair comparison with other contextual-
ized domains in terms of sample size. Furthermore,
by employing multiple instantiations, we can miti-
gate the impact of any potential outliers and obtain
a more reliable and generalizable estimate of the
performance of abstract data as we have only 256
formal logic templates in total.

Below is an example of instantiation in Table
3 of a formal logic template of difficulty level 1,
where propositional variables are represented by
strings such as "aaa", "aab", and "aac": (aaa or aab)
- aac. Given aac is False, what is the value of aab?

We provide an abstract instance and a contex-
tualized instance on the domain of “Geography
and Places”, where we provide the instantiations
of each proposition in the template and the final
combined logic reasoning task based on proposi-
tional instantiations. More examples can be found
in Appendix H.

E Length Correlation

It is possible that some may question whether the
observed differences in model performance are due
to the varying input lengths, rather than the effect
of different instantiations. To address this potential
concern, we have conducted a series of experiments
to investigate the correlation between input length
and model performance: we employ four models
of varying sizes (Qwen-0.5, Qwen-7, Qwen-32,
Qwen-110) and conduct length-based performance
ablation. We then analyze the performance of each
model based on the length of the input text. Specif-
ically, for each graph presented below, the x-axis
represents the text length, while the y-axis repre-
sents the corresponding model performance. The
y-axis value for each x-axis value x is the model
performance on the part of the data whose corre-
sponding input text length is smaller than .

Based on the two images Figure 6 and Figure 7,
we cannot see any consistent correlation between
model performance and input length after tokeniza-
tion using model corresponding tokenizer.

F Error Analysis

We carefully selected 970 error samples of 5544 on
GPT-40’s result on abductive and deductive level 1
and 2 datasets. We identified 4 different reasoning
errors and have updated the manuscripts to elabo-
rate them.

* Fail to reason on counter-factual questions
(24.94%): In the example: If the Earth’s oceans
are warming due to climate change, or humans
are emitting large amounts of greenhouse gases,
then global temperatures will rise. Given that
the statement “global temperatures are not ris-
ing” is false, the correct logical answer should
be False—meaning that humans emitting large
amounts of greenhouse gases is not true. How-
ever, the model might assume this outcome due
to its pre-existing knowledge, leading to an incor-
rect conclusion of True.

» Laziness and shallow thinking (37.11%): The
model occasionally exhibits a lazy approach, par-
ticularly when dealing with complex premises
or pre-conditions. Instead of thoroughly analyz-
ing the situation, it tends to give a “N/A” or a
simplified response without fully utilizing all the
available information.

* Inconsistent adherence to logical expressions
(12.47%): At times, the model fails to follow

19231



Level 1 - Abstract Level 1 - Geography and Places

aaa: vxkgr aaa: The terrain has experienced significant uplift.
aab: caunc aab: Powerful erosional forces have shaped the land.
aac: ybyz aac: The area features tall, steep mountains.

reasoning task: (vxkgr or reasoning task: If an area of land has experienced significant uplift or

caunc) — ybyz. Given been shaped by powerful erosional forces, then the terrain will feature

ybyz is False, what is the tall, steep mountains. Given that the area does not have tall, steep

value of caunc? mountains, can it be determined if powerful erosional forces have shaped
the land?

Table 3: Example of abstract and instantiated logic reasoning task based on the original formal logic template.

Qwen-0.5 on abductive logic at level 1 Qwen-0.5 on abductive logic at level 2 Qwen-0.5 on abductive logic at level 3 Qwen-0.5 on abductive logic at level 4
0.16 025 05 10
0.14 ’ 0.9
012 020 04 g
0.10 08
015 03
0.08 07
0.06 /\/\ 0.10 02 ;\f, 0.6
-
0.04
0.05 01 03
0.02 04
0.00 0.00 0.0 —
20 40 60 80 100 120 140 160 50 100 150 200 50 100 150 200 250 300 350 400 100 200 300 400 500 600 700
07 Qwen-7 on abductive logic at level 1 Qwen-7 on abductive logic at level 2 Qwen-7 on abductive logic at level 3 Qwen-7 on abductive logic at level 4
06 s 10
06
09
05 05
05 " W 08
- 04
04 W A 04 N
03 03 03 06
02 02 02 05
01 01 01 04
0.0 0.0 0.0 03
20 40 60 80 100 120 140 160 50 100 150 200 S0 100 150 200 250 300 350 400 0 1060 200 300 400 500 600 700
Qwen-32 on abductive logic at level 1 Qwen-32 on abductive logic at level 2 Qwen-32 on abductive logic at level 3 Qwen-32 on abductive logic at level 4
06 10
08 08
A A 05 09
0.6 0.6 04 08
03 07
04 04 g
06
0.2
02 02 05
01
04
00 0.0 00 03
20 40 60 80 100 120 140 160 50 100 150 200 50 100 150 200 250 300 350 400 0 160 200 300 400 500 600 700
0.7, Qwen-110 on abductive logic at level 1 Qwen-110 on abductive logic at level 2 Qwen-110 on abductive logic at level 3 Qwen-110 on abductive logic at level 4
08 08 10
0.6 0.7 074 | 0.9
0.5 0.6 0.6 0.8
0.4 0.5 0.5 07
04
03 04
03 03 06
02 02 02 05 M_
01 01 01 04
00 0.0 0.0 03
20 40 60 80 100 120 140 160 50 100 150 200 50 100 150 200 250 300 350 400 0 1060 200 300 400 500 600 700

Figure 6: Length-based performance collection on abductive logic. The four rows correspond to four models, and
four columns correspond to four difficulty levels.

basic logical rules in simple expressions. For G Main Benchmark Result
example, in an “aaa OR aab” scenario, where ei-
ther being true should lead to “aac” being true as
well, the model sometimes incorrectly concludes
otherwise. This suggests a lapse in the model’s
ability to consistently apply fundamental logical
reasoning.

G.1 Statistical Analysis Result

* Weak understanding of contrapositive logic
(25.48%): The model consistently struggles with
understanding and applying contrapositive logic
(e.g., understanding that “If P, then Q” logically
implies “If not Q, then not P”).
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H Data Examples

The following table presents several examples
showing abductive and deductive reasoning with
their respective difficulty levels and domains. The
left column shows examples of abstract instantia-
tions, while the right column shows contextually
instantiated examples in specific domains.
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Table 4: Examples of abductive and deductive reasoning.

Abstract Example

Specific Domain Contextualized Example

Abductive Reasoning

Level 1 - Abstract

Level 1 - Geography and Places

aaa: vxkgr

aab: caunc

aac: ybyz

reasoning task: (vxkgr or
caunc) - ybyz. Given ybyz
is False, what is the value
of caunc?

aaa: The terrain has experienced significant uplift.

aab: Powerful erosional forces have shaped the land.

aac: The area features tall, steep mountains.

reasoning task: If an area of land has experienced significant uplift or
been shaped by powerful erosional forces, then the terrain will feature
tall, steep mountains. Given that the area does not have tall, steep
mountains, can it be determined if powerful erosional forces have shaped
the land?

Level 2 - Abstract

Level 2 - Mathematics and Logic

aaa:
aab:

tjmx
kottz

aac:
aad:
aae:
aaf: pofk

wqeq
mnze
zkx

reasoning task: (wqeq or
mnze) - zkx. (NOT ttjmx) -
kottz. (kottz or zkx) - pofk.
Given pofk is False, what
is the value of ttjmx?

aaa: The prior probability is a uniform distribution

aab: The prior probability expresses existing beliefs about the parame-
ters.

aac: A prior probability distribution is specified.

aad: New data is collected.

aae: The posterior probability is calculated using Bayes’ theorem.

aaf: The posterior probability provides an improved estimate of the
parameters.

reasoning task: In Bayesian statistics, if a prior probability distribution
is specified or new data is collected, then the posterior probability can
be calculated using Bayes’ theorem to update the probability based on
the new evidence. If the prior probability is not a uniform distribution,
then it expresses existing beliefs or knowledge about the values of the
parameters. If the prior probability expresses existing beliefs or the
posterior probability is calculated, then there is sufficient information
to update the probability distribution. Given that the statement "The
posterior probability provides an improved estimate of the parameters"
is false, can it be determined whether the prior probability is a uniform
distribution or not?

Level 3 - Abstract

Level 3 - Technology and Applied Sciences

aaa: dmacf
aab: my
aac: qnvj
aad: 1xnf
aae: jf

aaf: ors
aag: kuyl
aah: jal
aai: rqo
aaj: vrmxo
aak: mcwe
aan: pdzyf
aao: guwls
aap: xjgwm

aaa: Regular vulnerability scans are performed.
aab: Penetration testing is conducted quarterly.

aac: Security weaknesses are proactively identified.
aad: Operating systems are up to date with patches.
aae: Antivirus software is installed on all computers.
aaf: Endpoint devices are protected.

aag: The overall attack surface is minimized.

aah: The firewall is properly configured.

aai: Intrusion detection systems are active.

aaj: The network perimeter is secure.

aak: Employees have completed security training.
aan: Security policies are strictly enforced.

aao: Employees follow secure computing practices.
aap: Internal systems and data are well-defended.

Continued
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Table 4 — continued from previous page

Abstract Example

Specific Domain Contextualized Example

aaq: vv
reasoning task: (wqeq or
mnze) - zkx. (NOT ttjmx) -
kottz. (kottz or zkx) - pofk.
Given pofk is False, what
is the value of ttjmx?

aaq: The organization has strong cybersecurity posture.

reasoning task: If the firewall is properly configured or intrusion detec-
tion systems are active, then the network perimeter is secure. When
employees have completed security training and security policies are
strictly enforced, it implies that employees follow secure computing
practices. If the network perimeter is secure or employees follow secure
practices, then internal systems and data are well-defended. Having up-
to-date operating systems with the latest patches or antivirus software
installed on all computers means the endpoint devices are protected.
Performing regular vulnerability scans or conducting quarterly penetra-
tion testing allows security weaknesses to be proactively identified. If
security weaknesses are proactively identified or endpoint devices are
protected, then the overall attack surface is minimized. When the attack
surface is minimized and internal systems and data are well-defended, it
indicates the organization has a strong cybersecurity posture. Given that
the organization does not have a strong cybersecurity posture, can it be
determined if operating systems are up to date with patches?

Level 4 - Abstract

Level 4 - Culture and Arts

aaa: cg
aab: ysjeo
aac: uby
aad: vwwf
aae: lj

aaf: qd
aag: miz
aah: tfxbc
aai: aaw
aaj: oftr
aak: fzsq
aan: yxt
aao: In
aap: qa
aaq: py
aar: qe
aas: ng
aat: bhjb
aau: djay
aav: pvize
aaw: tk
aax: vod
aay: dngja

aaz: oZzyue

aaa: Sophie cannot practice her beam routine.

aab: Sophie needs to prepare new skills.

aac: Sophie requires dedicated practice time.

aad: The springboard is broken.

aae: The vault is not stable.

aaf: Performing vault runs is risky.

aag: Sophie is not able to practice effectively.

aah: Sophie’s coach is at practice.

aai: Sophie does not have supervision.

aaj: Sophie is allowed to train.

aak: Sophie is not making progress in her gymnastics.

aan: The balance beam is set up properly.

aao: Sophie cannot practice her beam routine.

aap: The uneven bars are not at the correct height.

aaq: Sophie cannot work on her bar skills.

aar: Sophie faces a major hindrance to her practice.

aas: The floor mat has tears and needs to be replaced.

aat: The floor area is not large enough for a full floor routine.

aau: It is unsafe for Sophie to practice floor exercises.

aav: With an upcoming competition, Sophie needs to prepare new skills.
aaw: Sophie does not have enough energy to train effectively.

aax: Sophie’s gymnastics career is at risk.

aay: Sophie’s gymnastics performance will likely be impacted nega-
tively.

aaz: Sophie may need to consider withdrawing from competitions.

Continued
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Abstract Example

Specific Domain Contextualized Example

reasoning task: (NOT yxt)
->In. (NOT qa) -> py. (In
or py) -> ge. (ng or bhjb)
-> djay. (vwwf or 1j) ->
qd. (NOT tfxbc) -> aww.
(NOT aww) -> oftr. (NOT
pvize) -> tk. (cg or ysjeo)
-> uby. (uby or qd) -> miz.
(miz or oftr) -> fzsq. (djay
or tk) -> vod. (ge or vod)
-> dngja. (fzsq or dngja)
-> ozyue. Given ozyue is
False, what is the value of
yxt?

reasoning task: The balance beam not being set up properly means
Sophie cannot practice her beam routine. Similarly, if the uneven bars
are not at the correct height, Sophie cannot work on her bar skills. If
Sophie is unable to train on at least one apparatus, she faces a major
hindrance to her practice. Torn floor mats needing replacement or
insufficient floor space makes it unsafe for Sophie to practice floor
exercises. A broken springboard or unstable vault makes performing
vault runs risky. If it is unsafe to practice floor or vault exercises, Sophie
cannot train safely or productively. Sophie’s coach not being at practice
means she does not have supervision. Having supervision allows Sophie
to train. If Sophie did not fuel properly before practice, she will not
have enough energy to train effectively. With an upcoming competition,
Sophie needs to prepare new skills, requiring dedicated practice time. If
Sophie’s training is compromised by risky apparatus or lack of practice
time, she will not be able to practice effectively. If Sophie’s training
session is unproductive or she faces major hindrances, then she is not
making progress in her gymnastics. Lack of progress or likely negative
performance impacts put Sophie’s gymnastics career at risk. Given that
Sophie is not considering withdrawing from competitions, what can be
determined about the balance beam being set up properly?

Deductive Reasoning

Level 1 - Abstract

Level 1 - Natural and Physical Sciences

aaa: pusvu

aab: hs

aac: ivl

reasoning task: pusvu is
True. hs is False. (pusvu
or hs) - ivl. Deduce the
result of ivl.

aaa: A cold front is approaching the region

aab: A warm air mass is stagnant over the area

aac: Atmospheric instability is likely to develop

reasoning task: A cold front is approaching the region, but there is no
warm air mass stagnant over the area. If a cold front approaches or
a warm air mass is stagnant, then atmospheric instability is likely to
develop. Can we say that atmospheric instability will likely develop in
this scenario?

Level 2 - Abstract

Level 2 - Society and Social Sciences

aaa: jd

aab: bfk
aac: wng
aad: vko
aae: cva
aaf: qymwa
aag: cr

aaa: John Lee was born in the United States

aab: John Lee’s parents immigrated from South Korea
aac: John Lee has Korean ancestry

aad: The Lee family speaks Korean fluently

aae: The Lee family identifies as Korean-American
aaf: The Lee family has a connection to Korean culture
aag: John Lee is considered Korean-American

Continued
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Abstract Example

Specific Domain Contextualized Example

reasoning task: cvais True.
vko is False. (vko or cva)
- gymwa. jd is True. bfk
is True. (jd or bfk) - wng.
(wng and qymwa) - cr. De-
duce the result of cr.

reasoning task: The Lee family identifies as Korean-American, but they
do not speak Korean fluently. If the Lee family speaks Korean fluently
or identifies as Korean-American, then they have a connection to Korean
culture. John Lee was born in the United States, and his parents immi-
grated from South Korea. If John Lee was born in the U.S. or his parents
immigrated from South Korea, then he has Korean ancestry. If John Lee
has Korean ancestry and his family has a connection to Korean culture,
then he is considered Korean-American. Can we conclude that John Lee
is considered Korean-American based on the given information?

Level 3 - Abstract

Level 3 - Culture and Arts

aaa: rfx

aab: gurl

aac: imnsi

aad: wjgx

aae: tg

aaf: kopg

aag: khh

aah: ozro

aai: pg

aaj: bill

aak: mek

aan: jp

reasoning task: gurl is
True. pg is False. ozro is
True. (ozro or pg) - bill.
rfx is False. (1fx or gurl) -
imnsi. tg is False. wjgx
is False. (wjgx or tg) -
kopg. (imnsi or kopg) -
khh. (NOT bill) - mek.
(khh or mek) - jp. Deduce
the result of jp.

aaa: The opera house was empty

aab: The soprano sang the aria beautifully

aac: Some people attended the opera

aad: The sets malfunctioned

aae: The costumes were delivered late

aaf: There were technical difficulties

aag: The show faced some challenges

aah: The orchestra played flawlessly

aai: The tenor forgot his lines

aaj: The performance went smoothly

aak: There was a major disruption

aan: The opening night was eventful

reasoning task: The soprano sang her aria beautifully and the orchestra
played flawlessly, but the tenor forgot his lines. If the orchestra played
well or the tenor forgot his lines, then the performance did not go entirely
smoothly. The opera house was not empty since the soprano’s beautiful
aria meant some people attended. The costumes were not delivered late
and the sets did not malfunction, so there were no technical difficulties.
If some people attended or there were technical difficulties, the show
would have faced some challenges. Since the performance did not go
smoothly, it implies there was a major disruption. If the show faced
challenges or had a major disruption, the opening night of this opera was
quite eventful. Given this, was the opening night of the opera eventful?

Level 4 - Abstract

Level 4 - Health and Fitness

aaa: msta
aab: fo
aac: jfnrh
aad: ssb
aae: ac
aaf: dzda
aag: hujcf
aah: pil
aai: dyue
aaj: sgniu
aak: stbf
aan: pswg
aao: fkyxi

aaa: Sue did push-ups yesterday

aab: Sue did not do pull-ups yesterday

aac: Sue did some upper body exercises yesterday
aad: Sue did squats yesterday

aae: Sue did not do squats yesterday

aaf: Sue only trained upper body yesterday

aag: Sue did burpees yesterday

aah: Sue did not do burpees yesterday

aai: Sue trained her core muscles yesterday

aaj: Sue did planks yesterday

aak: Sue had an effective core workout yesterday
aan: Sue did an intense workout yesterday

aao: Sue had a focused or intense workout yesterday

Continued
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Abstract Example Specific Domain Contextualized Example
aap: outm aap: Sue did lunges yesterday
aaq: ybjj aaq: Sue did step-ups yesterday
aar: eek aar: Sue trained her leg muscles yesterday
aas: wmejd aas: Sue did wall sits yesterday
aat: rdbk aat: Sue did not do calf raises yesterday
aau: rqmc aau: Sue did some quad and hamstring exercises yesterday
aav: bw aav: Sue had an effective lower body workout yesterda
aaw: xvd aaw: Sue did not do a full body workout yesterday
aax: pg aax: Sue did a partial body workout yesterday
aay: gbli aay: Sue did a full body workout yesterday
aaz: qvb aaz: Sue had a comprehensive workout yesterday

reasoning task: fo is False.
msta is True. (msta or fo)
-> jforh. dyue is True. xvd
is False. (NOT xvd) -> pg.
ssb is True. (NOT ssb) -
> ac. (jforh and ac) ->
dzda. sgniu is True. (dyue
or sgniu) -> stbf. outm
is True. rdbk is False.
ybjj is True. (outm or
ybjj) -> eek. wmejd is
True. (wmejd or rdbk) -
> rgmc. (eek and rgmc)
-> bw. (NOT pg) -> gbli.
(bw or gbli) -> qvb. hu-
jefis True. (NOT hujcf) ->
pil. (pil and stbf) -> pswg.
(dzda or pswg) -> fkyxi.
(fkyxi or qvb) -> abc. De-
duce the result of abc.

reasoning task: Sue did push-ups but not pull-ups yesterday. If she
did push-ups or pull-ups, then she did some upper body exercises. Sue
trained her core by doing planks. Since she did not do a full body
workout, it means she did a partial body workout. Sue did squats
yesterday, so it is not true that she did not do squats. If Sue did some
upper body exercises and did not do squats, then she only trained upper
body. If Sue did planks or trained her core muscles, then she had an
effective core workout. Sue did lunges and step-ups, but not calf raises.
If she did lunges or step-ups, then she trained her leg muscles. If Sue did
wall sits or calf raises, then she did some quad and hamstring exercises.
If Sue trained her leg muscles and did some quad/hamstring exercises,
then she had an effective lower body workout. If Sue did not do a
partial body workout, then she did a full body workout.If Sue had an
effective lower body workout or did a full body workout, then she had a
comprehensive workout. Sue did burpees yesterday, so it is not true that
she did not do burpees. If Sue did not do burpees and had an effective
core workout, then she did an intense workout. If Sue only trained
upper body or did an intense workout, then she had a focused or intense
workout. If Sue had a focused/intense workout or a comprehensive
workout, then she had a productive bodyweight training session. Did
Sue have a productive bodyweight training session yesterday?
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