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Abstract

Query expansion methods powered by large
language models (LLMs) have demonstrated
effectiveness in zero-shot retrieval tasks. These
methods assume that LLMs can generate hy-
pothetical documents that, when incorporated
into a query vector, enhance the retrieval of
real evidence. However, we challenge this as-
sumption by investigating whether knowledge
leakage in benchmarks contributes to the ob-
served performance gains. Using fact verifica-
tion as a testbed, we analyze whether the gen-
erated documents contain information entailed
by ground-truth evidence and assess their im-
pact on performance. Our findings indicate that,
on average, performance improvements con-
sistently occurred for claims whose generated
documents included sentences entailed by gold
evidence. This suggests that knowledge leakage
may be present in fact-verification benchmarks,
potentially inflating the perceived performance
of LLM-based query expansion methods.

1 Introduction

Zero-shot retrieval aims to identify relevant doc-
uments without requiring any relevance supervi-
sion for training a retriever (Zhao et al., 2024).
Because obtaining query-document pairs, such as
MS-MARCO (Bajaj et al., 2016), for supervised
training is challenging, developing zero-shot re-
trieval methods is both difficult and highly desir-
able for effectively addressing knowledge-intensive
applications (Lewis et al., 2020), including ques-
tion answering (Zhu et al., 2021) and fact verifica-
tion (Guo et al., 2022).

Recent studies have leveraged the natural lan-
guage generation capabilities of large language
models (LLMs) to enhance the performance of
zero-shot retrieval (Thakur et al., 2021). LLM-
based query expansion (QE) uses LLMs to gen-
erate documents that extend a query (Jagerman
et al., 2023; Lei et al., 2024; Mackie et al., 2023a).

Figure 1: Illustration of potential knowledge leakage in
LLM-based query expansion.

Approaches such as HyDE (Gao et al., 2023) and
Query2doc (Wang et al., 2023), which have been
widely adopted in recent research (Wang et al.,
2024a; Chen et al., 2024b; Yoon et al., 2024), have
achieved notable performance gains across various
benchmarks without retriever parameter updates.
These approaches prompt LLMs to generate doc-
uments that answer a question or verify a claim.
Although these generated documents, referred to as
hypothetical documents, may contain factual errors
or hallucinations, it is assumed that incorporating
them into a query can enhance retrieval of relevant
real documents (Gao et al., 2023).

In this paper, we challenge the underlying as-
sumption, as illustrated by a counterexample in
Figure 1: Do LLMs truly generate hypothetical doc-
uments, or are they merely reproducing what they
already know? LLMs are extensively pretrained on
vast corpora, primarily collected from the web. As
common retrieval targets, such as Wikipedia and
web documents, are often included in these pre-
training corpora (Groeneveld et al., 2024; Touvron
et al., 2023; Du et al., 2022; Brown et al., 2020),
many available LLMs may already contain knowl-
edge relevant to a given query and retrieval targets
in benchmark datasets, a phenomenon we refer to
as knowledge leakage. If knowledge leakage oc-
curs and an LLM reproduces what it already knows
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about a given query, its generation cannot be seen
as hypothetical documents. Furthermore, assessing
QE performance on a benchmark where leakage
occurs could lead to overestimation, as retrieving
verbatim or semantically equivalent sentences is
a much more trivial task than predicting the rel-
evance between a query and document when the
relevance signal is not explicit.

To investigate whether knowledge leakage exists
in popular benchmarks and how it affects down-
stream performance, this study uses fact verifi-
cation as a testbed. We analyze whether LLM-
generated documents contain sentences entailed
by gold evidence and assess their impact on perfor-
mance. Across experiments spanning three bench-
marks and seven LLMs, we observed a consistent
trend: QE methods were effective, on average, only
when the generated documents included sentences
entailed by gold evidence. These findings suggest
that knowledge leakage may be present in these
benchmarks, potentially inflating the perceived ef-
fectiveness of LLM-based QE methods.

2 Related Works

LLM-based Query Expansion QE has been ex-
plored as a means to enhance retrieval performance
by enriching the initial query representation (Azad
and Deepak, 2019). One widely studied approach
is relevance feedback (Rocchio, 1971; Lavrenko
and Croft, 2001; Amati and Van Rijsbergen, 2002),
which leverages feedback signals to expand the
query. Recent work has explored LLM’s genera-
tive capabilities for QE (Zhu et al., 2023; Jager-
man et al., 2023; Lei et al., 2024). Mackie et al.
(2023b), for instance, introduced a method that
utilizes LLM-generated documents as relevance
feedback. Meanwhile, other researchers proposed
HyDE (Gao et al., 2023) and Query2doc (Wang
et al., 2023), which employs LLMs to generate hy-
pothetical documents based on an initial query. De-
spite their simplicity, these methods have demon-
strated substantial effectiveness across benchmarks
for zero-shot retrieval and knowledge-intensive
tasks (Wang et al., 2024a), including fact verifi-
cation (Yoon et al., 2024).

Data Leakage and LLM Memorization Previ-
ous research has investigated various forms of data
leakage in LLMs (Kandpal et al., 2023; Samuel
et al., 2025; Deng et al., 2024; Xu et al., 2024a).
One study used perplexity to detect potential data
leakage, uncovering substantial instances of train-

ing or even test set misuse (Xu et al., 2024b).
Deng et al. (2023) further examined data contam-
ination by predicting masked tokens in test sets
and found that GPT 3.5 could reconstruct missing
portions of MMLU (Hendrycks et al., 2020) test
instances with 57% accuracy. Other research has
explored the boundaries of LLM knowledge (Yin
et al., 2023; Dong et al., 2024; Burns et al., 2022;
Kadavath et al., 2022; Mallen et al., 2023), includ-
ing a refusal-aware instruction tuning method that
trains LLMs to reject uncertain questions (Zhang
et al., 2024)—where an LLM is deemed uncer-
tain if its generated response does not match the
ground truth. Another study leveraged response
consistency to estimate an LLM’s confidence in its
knowledge (Cheng et al., 2024). In this work, we
apply NLI (MacCartney, 2009) to LLM-generated
documents, referencing gold evidence, to examine
what an LLM knows.

3 Methodology

3.1 Task and Dataset

Fact verification aims to predict the veracity label
of a textual claim c. Depending on the dataset, the
veracity label can fall into one of three or four cat-
egories1: supported, refuted, not enough evidence,
or conflicting evidence.

The fact-verification task consists of two sub-
tasks: evidence retrieval and verdict prediction. In
evidence retrieval, a retrieval method R(·) iden-
tifies an evidence set Ẽ = {ẽ1, · · · , ẽk} from a
knowledge store K (e.g., Wikipedia), used to verify
c. The performance of R is evaluated by compar-
ing Ẽ with E = {e1, · · · , el}, the gold evidence
set. Verdict prediction then determines the veracity
label of c based on Ẽ.

We choose fact verification as the target task
to test our hypothesis for two main reasons. First,
in real-world fact-checking scenarios (Miranda
et al., 2019; Nakov et al., 2021), retrieving evi-
dence about niche or novel knowledge is crucial. If
QE is effective only when the relevant knowledge
has been seen during language model pretraining,
its practical usefulness may be limited. Second,
verdict prediction is a classification task, which en-
ables clearer evaluation of how QE influences end
performance compared to generation-based tasks,
such as factual QA (Joshi et al., 2017; Kwiatkowski

1AVeriTeC provides four categories, whereas FEVER and
SciFact use three, excluding conflicting evidence. In SciFact,
CONTRADICT is treated equivalently to refuted.
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et al., 2019).
We employ three datasets that provide annotated

evidence and corresponding veracity labels, along
with an external knowledge store: FEVER (Thorne
et al., 2018), SciFact (Wadden et al., 2020),
and AVeriTeC (Schlichtkrull et al., 2023). While
FEVER and SciFact contain verbatim extractions
from K as gold evidence (i.e., E), AVeriTeC uses
human-written evidence referencing K to verify
claims. These three datasets cover diverse knowl-
edge domains, as summarized in Table 1.

3.2 LLM-based Query Expansion

We consider two LLM-based QE methods.

Query2doc (Wang et al., 2023) generates a
pseudo-document d based on a query q. It then
forms an expanded query q+ by concatenating d
with multiple copies of q (Equation 1).

q+ = concat(q × n, d) (1)

The expanded query q+ is then used to retrieve
documents via BM25 (Lin et al., 2021). Following
Jagerman et al. (2023), we set n as 5.

HyDE (Gao et al., 2023) employs an LLM to
generate hypothetical documents [d1, ..., dN ] in re-
sponse to a query q. A dense retriever g(·) encodes
q and each dk separately, and their encoded embed-
dings are averaged to form the query vector vq+
(Equation 2).

vq+ =
1

N + 1

N∑

k=1

[g(dk) + g(q)] (2)

Here, we set N to 1 in this study. We use Con-
triever (Izacard et al., 2021) as g(·) with prompts
provided in Appendix E.

3.3 Matching Algorithm

We present an algorithm to determine whether an
LLM-generated document d for a claim c contains
a sentence that is verbatim or semantically equiv-
alent to the gold evidence E = {e1, · · · , em}. If
such a sentence exists, it may indicate that the back-
bone LLM was exposed to knowledge related to
the corresponding evidence during training. To au-
tomatically identify such claims, we rely on natural
language inference (NLI) assigning each claim c to
one of two conditions: matched (M ) or unmatched
(¬M ). The algorithm consists of three steps.

Dataset # claim # gold evidence
per claim

# documents
(knowledge source)

FEVER 6,666 1.66 5,416,536
(Wikipedia)

SciFact 693 1.8 5,183
(Paper abstracts)

AVeriTeC 3,563 2.77 2,623,538
(Web documents)

Table 1: Dataset statistics

(1) Sentence Segmentation: Segment d into sen-
tences and remove reproductions of c to con-
struct S = {s1, · · · , sn}.

(2) NLI Labeling: Annotate a label l(i,j) for
each pair (ei, sj) ∈ E × S, where l(i,j) ∈
{entailment, contradiction, neutral}.

(3) Label Aggregation: Aggregate all labels
{l(1,1), · · · , l(i,j), · · · , l(m,n)} into a single la-
bel l. If there exists l(i,j) labeled as entailment,
assign matched, otherwise assign unmatched.

We use the sentence segmentation module pro-
vided by spaCy2, and employ GPT-4o-mini for
NLI (Figure A3). To filter out sentences of repro-
duced claims in LLM responses, we apply ROUGE-
2 (Lin, 2004) with a threshold of 0.95, based on
manual inspection.

4 Experimental Results

We conducted evaluation experiments on three fact-
verification benchmarks. Based on eight repetitions
of LLM generation, we report the average perfor-
mance along with the standard error.

Are LLM-based query expansion methods ef-
fective for fact verification? To assess the effec-
tiveness of LLM-based QE methods, we compared
their performance against BM25 and Contriever
that use c as query, respectively, as baseline retriev-
ers. For evidence retrieval, we used Recall@k and
NDCG@k (k = 5) as evaluation metrics (Manning,
2009) on the FEVER and SciFact datasets, where
both the ground-truth evidence E and retrieved evi-
dence Ẽ come from the knowledge store K. In con-
trast, Ẽ in AveriTeC consists of human-written evi-
dence rather than extracts from K. Therefore, fol-
lowing previous studies (Schlichtkrull et al., 2023;
Chen et al., 2022), we applied the Hungarian al-
gorithm (Kuhn, 1955) with METEOR (Banerjee
and Lavie, 2005) and BERTScore (Zhang et al.,

2https://huggingface.co/spacy/en_core_web_lg
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Method
FEVER SciFact AVeriTeC

Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1
BM25 31 25 54 51.2 45.5 48.6 17.8 11.6 32

Performance by varying LLMs
GPT-4o-mini 36.4±0.1 29.3±0.1 55.6±0.1 55.1±0.2 47.9±0.1 52.5±0.5 19.1±0.0 12.4±0.0 32.6±0.1

Claude-3-haiku 35.2±0.1 28.3±0.1 55.4±0.1 56±0.1 48.2±0.1 52±0.5 19.3±0.0 12.5±0.0 33.1±0.1
Gemini-1.5-flash 36.2±0.1 29.2±0.1 55.8±0.1 56.2±0.2 49.4±0.1 52.2±0.5 18.9±0.0 12.5±0.0 33.3±0.2
Llama-3.1-8b-it 35.7±0.1 28.6±0.2 55.6±0.2 54.9±0.2 47.8±0.2 51.9±0.3 19±0.0 12.4±0.0 32.2±0.2

Llama-3.1-70b-it 38.3±0.1 31±0.1 56.1±0.1 56.4±0.3 49.2±0.1 52.4±0.7 19.3±0.1 12.7±0.0 33.4±0.2
Mistral-7b-it 35.1±0.3 28±0.2 55.4±0.2 55.1±0.1 47.9±0.1 51.9±0.6 19.2±0.0 12.6±0.0 32.8±0.1

Mixtral-8x7b-it 35.1±0.2 27.9±0.2 55.3±0.2 54.6±0.2 47.7±0.1 51.9±0.4 19.4±0.0 12.7±0.0 33.2±0.1

(a) Query2doc

Method
FEVER SciFact AVeriTeC

Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1
Contriever 26.8 20.2 53.1 55.1 47.3 51.2 17.6 12.6 33.9

Performance by varying LLMs
GPT-4o-mini 37.3±0.1 28.8±0.0 55.6±0.1 61.2±0.2 53.1±0.1 54±0.5 18.7±0.0 13.2±0.0 35.7±0.6

Claude-3-haiku 36.7±0.1 28.1±0.0 55.6±0.1 62.8±0.1 54.7±0.1 53.7±0.4 19.3±0.0 14±0.0 36.2±0.6
Gemini-1.5-flash 35±0.1 26.7±0.1 55.2±0.2 61±0.2 52.9±0.2 53.5±0.7 18±0.0 12.4±0.0 35.7±0.5
Llama-3.1-8b-it 36.7±0.1 28.4±0.1 55.4±0.1 61.2±0.2 53.4±0.2 53.6±0.7 18.9±0.0 13.6±0.0 35.5±0.4

Llama-3.1-70b-it 40.4±0.2 31.7±0.2 55.9±0.1 61.9±0.3 54.1±0.2 53.6±0.5 19±0.2 13.7±0.1 35.4±0.7
Mistral-7b-it 36.3±0.1 27.8±0.0 55.3±0.1 60.7±0.2 52.7±0.2 53.4±0.4 19±0.0 13.6±0.0 35.8±0.7

Mixtral-8x7b-it 37.6±0.1 29.1±0.1 55.7±0.1 61.3±0.2 53.1±0.1 53.3±0.3 19.2±0.0 13.7±0.0 35.8±0.7

(b) HyDE

Table 2: Fact verification performance using baseline retrievers and LLM-based query expansion methods, with the
number of retrieved evidence set to five (k = 5).

Method
FEVER SciFact AVeriTeC

Query2doc HyDE Query2doc HyDE Query2doc HyDE
GPT-4o-mini 75.8±0.1 83.5±0.1 52.8±0.4 59.1±0.7 40.4±0.2 68±0.3

Claude-3-haiku 76.6±0.1 77.8±0.1 56.1±0.4 53.8±0.2 40.8±0.1 62.3±0.2
Gemini-1.5-flash 69.9±0.3 70.2±0.3 50.8±0.6 27.6±0.7 44.1±0.1 59.6±0.3
Llama-3.1-8b-it 68.5±1.0 73±0.9 53.9±0.5 48.2±0.6 37.4±1.1 53.8±1.0
Llama-3.1-70b-it 78.3±0.7 71.7±0.7 57.5±0.3 55±0.8 48.1±0.8 47±4.8

Mistral-7b-it 72.5±0.2 75±0.2 51.1±0.5 49.4±0.8 44.7±0.2 55.6±0.3
Mixtral-8x7b-it 78.7±0.1 81±0.1 55.9±0.6 54.7±0.7 49.4±0.3 56.7±1.3

Table 3: Proportion of expanded queries containing sentences entailed by ground truth evidence.

2020) on the top five retrieved sentences, com-
puting token-level and embedding-level similar-
ity, respectively, based on a binary assignment be-
tween generated and reference sequences. For ver-
dict prediction, we used GPT-4o-mini with the five
retrieved evidence and evaluated performance us-
ing macro F1. Evaluation details are provided in
Appendix B.

As shown in Table 2, both Query2doc and HyDE
consistently outperformed BM25 and Contriever
across all three datasets and for seven different
backbone LLMs (three proprietary and four open
models). The performance gap between each base-
line and its respective expansion method was sta-
tistically significant (p<0.001), demonstrating the
effectiveness of the QE methods for evidence re-
trieval and, consequently, verdict prediction in
these benchmarks. Results for k = 10 are avail-
able in Appendix F, showing a consistent trend.

Do LLM-generated documents include ground
truth evidence? Table 3 presents the proportion
of matched claims observed for the three datasets
by using seven different LLMs. In most cases, more
than 40% of the claims were matched, with a few
exceptions. The lowest proportion (27.6%) was
observed for SciFact when claims were expanded
using HyDE with Gemini-1.5-flash—still a notable
fraction. The highest proportion (83.5%) was ob-
served for FEVER when using HyDE with GPT-4o-
mini. Several examples of LLM-generated docu-
ments and gold evidence are provided in Table A5.

How does performance vary with the match-
ing condition? Table 4 presents fact-verification
performance based on whether LLM-generated
documents contained sentences entailed by gold
evidence, focusing on GPT-4o-mini as the QE
model. We observed a consistent trend across the
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Method Data
FEVER SciFact AVeriTeC

Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1
BM25 ALL 31 25 54 51.2 45.5 48.6 17.8 11.6 32

Query2doc
ALL 36.4±0.1 29.3±0.1 55.6±0.1 55.1±0.2 47.9±0.1 52.5±0.5 19.1±0.0 12.4±0.0 32.6±0.1
M 40.5±0.1 32.8±0.1 58.4±0.0 63.3±0.4 57.1±0.3 53.7±0.3 21.6±0.1 17.6±0.1 38.3±0.3
¬M 23.8±0.3 18.5±0.2 44.9±0.1 45.9±0.4 37.6±0.3 49±0.4 17.4±0.0 9±0.0 27.6±0.1

Contriever ALL 26.8 20.2 53.1 55.1 47.3 51.2 17.6 12.6 33.9

HyDE
ALL 37.3±0.1 28.8±0.0 55.6±0.1 61.2±0.2 53.1±0.1 54±0.5 18.7±0.0 13.2±0.0 35.7±0.6
M 40±0.1 30.9±0.1 57.8±0.0 68.4±0.3 61.4±0.3 57.1±0.2 19.8±0.0 15.5±0.0 37±0.2
¬M 23.4±0.4 17.9±0.3 41.9±0.2 50.8±0.5 41.2±0.4 48.9±0.4 16.4±0.0 8.3±0.1 30.3±0.4

Table 4: Fact verification performance based on whether documents generated by query expansion methods with
GPT-4o-mini contain sentences entailed by gold evidence. Results for other LLMs are presented in Table A2.

three datasets and two expansion methods: perfor-
mance measured on matched claims (where LLM-
generated documents contain sentences entailed by
gold evidence) was significantly higher than that on
both all and unmatched claims, with statistical sig-
nificance at p<0.001. Moreover, with a few excep-
tions, performance on unmatched claims was lower
than that of the corresponding baseline methods
without query expansion—BM25 for Query2doc
and Contriever for HyDE. These trends were con-
sistent across seven different LLMs and for k = 10,
as shown in Table A2 and Table A3.

5 Discussion

Query2doc and HyDE boosted fact-verification
performance across three benchmarks. Our
findings support the effectiveness of LLM-based
query expansion in zero-shot retrieval tasks (Gao
et al., 2023; Jagerman et al., 2023; Lei et al.,
2024; Wang et al., 2024a), particularly on fact-
verification benchmarks. The increased verifica-
tion performance through query expansion further
highlights the crucial role of retrieving suitable ev-
idence for claim verification (Chen et al., 2024a),
suggesting a need for further research into evi-
dence retrieval methods, such as claim decomposi-
tion (Chen et al., 2022; Fan et al., 2020).

Documents generated by LLM-based query ex-
pansion methods frequently included sentences
that were entailed by ground-truth evidence, in-
dicating potential knowledge leakage. By ap-
plying an NLI-based matching algorithm, we exam-
ined whether LLMs reproduced gold evidence in
response to query expansion prompts. Our results
suggest that the seven LLMs studied in this paper
were likely exposed to knowledge sources from the
three benchmarks during training. This observation
aligns with prior research on data leakage (Kandpal
et al., 2023; Samuel et al., 2025) and memorization
in LLMs (Cheng et al., 2024; Burns et al., 2022),

representing the first empirical demonstration in the
context of fact verification and query expansion.

Performance improvements from query expan-
sion were consistent only when LLM-generated
documents contained sentences entailed by gold
evidence. This finding suggests that the suc-
cess of hypothetical document generation may be
largely attributable to the LLM’s internal knowl-
edge encompassing benchmark knowledge sources.
Furthermore, these results indicate that LLM-based
query expansion may be limited in real-world sce-
narios that require retrieving niche or novel knowl-
edge. Future research could address these limitation
by incorporating external knowledge sources into
the query expansion process, as demonstrated in a
recent study (Lei et al., 2024).

6 Conclusion

This study examined the leakage hypothesis for
query expansion, questioning whether an LLM gen-
erates truly hypothetical documents or merely re-
produces what was exposed during the LLM’s train-
ing phase. Through experiments on three widely
used fact-verification benchmarks, we observed a
consistent trend: on average, retrieval and verifi-
cation performance increased only when the ex-
panded query was entailed by gold evidence. This
finding suggests that knowledge leakage may be
present in these benchmarks, artificially inflating
the perceived effectiveness of LLM-based query
expansion. Since verifying claims involving niche
or novel knowledge is often essential in real-world
scenarios, such leakage can hinder accurate evalu-
ation and, consequently, impede method develop-
ment. These results highlight the need for future
research on LLM-based query expansion methods
capable of handling unknown queries, as well as
the creation of evaluation benchmarks that more
accurately reflect real-world conditions involving
previously unseen knowledge.

19174



Limitations

While our analysis provides the evidence that cer-
tain LLM behaviors can signal memorization and
that these behaviors correlate with downstream per-
formance gains, we acknowledge three areas where
further validation is needed. (1) Causal mecha-
nism: Our experiments focus on LLM behaviors
rather than tracing whether specific training data di-
rectly results in the generation of associated knowl-
edge. Consequently, we do not claim a causal link
between data leakage and generation in response
to expansion prompts. Establishing such a connec-
tion remains an open challenge and would benefit
from controlled studies that expose models to syn-
thetic or novel knowledge (Liu et al., 2024; Kasai
et al., 2024). (2) NLI-based matching: To cor-
roborate the NLI-based automatic assessment, we
manually annotated a representative sample and
observed a consistent trend (Table A4) with the au-
tomatic results (Table 4). Adopting a stronger NLI
model would further strengthen our conclusions.
(3) Generalizability: Our analysis focused on three
datasets within the fact-verification domain, and
hence the findings are limited in scope. Further ex-
periments are necessary to determine whether these
findings generalize to other tasks, such as factual
QA (Joshi et al., 2017; Kwiatkowski et al., 2019).
The methodology presented here could be adapted
to those settings.

Ethics and Impact Statement

Our findings suggest that knowledge leakage may
exist in three popular fact-verification benchmarks;
namely, LLMs may have been exposed to infor-
mation related to the benchmarks’ gold evidence
during pretraining and subsequently reproduced it
in response to query-expansion prompts. This ob-
servation has important implications for both fact
verification and broader benchmark-oriented NLP
research, as the performance of LLM-based meth-
ods may be artificially inflated due to the opaque-
ness of the pretraining stage. Consequently, more
trustworthy evaluation frameworks and transparent
LLM development practices, such as those exem-
plified by Groeneveld et al. (2024) and Gao et al.
(2020), are encouraged to better reflect real-world
performance. We used ChatGPT to proofread por-
tions of this manuscript.
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Appendix

A Target Dataset

This study used three fact verification benchmarks.
From the BEIR benchmark (Thakur et al., 2021),
we used the test set for FEVER and the train (505)
and test (188) sets for SciFact. For AVeriTeC, we
used the train (3,063) and dev (500) sets, as its
test set is not publicly available. We excluded
claims for which gold evidence was unavailable.
Table 1 presents the descriptive statistics of the
three datasets used in our experiments.

B Evaluation Metrics

Below, we describe the details of evaluation metric
for evidence retrieval. Recall@K and NDCG@K
are widely used evaluation metrics for information
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retrieval (Manning, 2009), adopted in this study
for evaluating evidence retrieval performance for
FEVER and SciFact. Recall@K assesses the pro-
portion of relevant items retrieved within the top K
results. NDCG@K measures the quality of ranked
results by considering both the relevance of re-
trieved documents and their positions within the
ranking. We used pyrec_eval (Van Gysel and de Ri-
jke, 2018) to measure Recall@K and NDCG@K.

S(Ŷ , Y ) =
1

|Y |max
∑

ŷ∈Ŷ

∑

y∈Y
f(ŷ, y)X(ŷ, y)

(3)
For AVeriTeC, where gold evidence is not

selected from a knowledge store but written
by human annotators, we used METEOR and
BERTScore with the Hungarian algorithm. Equa-
tion 3 presents the algorithm, where f is a pair-
wise scoring function, and X is a boolean func-
tion representing the assignment between the gen-
erated sequences Ŷ and the reference sequences
Y . To measure token-level and embedding-level
similarity, we used METEOR and BERTScore for
f , respectively. METEOR was computed using
NLTK (Bird et al., 2009), and BERTScore was
calculated with DeBERTa-xlarge-MNLI3. We re-
ported observations for varying k: Table 2 and Ta-
ble 4 for k = 5, and Table A1 and Table A3 for
k = 10.

C Experimental Setups

For HyDE, we encoded queries and documents us-
ing Contriever4. For Query2doc, we used BM25
provided in PySerini (Lin et al., 2021). Follow-
ing the same settings in previous study (Gao et al.,
2023), we set LLM hyperparameters as follows:
temperature as 0.7, top_p as 1.0, and max_tokens
as 512. We used the Mann–Whitney U test for sta-
tistical testing on performance differences.

D Computing Environment

We ran experiments using two machines. The first
machine has four Nvidia RTX A6000 GPUs (48GB
per GPU) and 256GB RAM. The second machine
has two Nvidia H100 GPUs (80GB per GPU) and
480GB RAM. The experiments were conducted in

3https://huggingface.co/microsoft/deberta-xla
rge-mnli

4https://huggingface.co/facebook/contriever

a computing environment with the following con-
figuration: Python 3.11.10, PyTorch 2.3.1, Trans-
formers 4.43.4, vLLM 0.5.3, pyrec-eval 0.5, Faiss
1.8, Pyserini 0.40.0, NLTK 3.9.1, bert-score 0.3.13,
rouge-score 0.1.2.

We used GPT-4o-mini, Claude 3 Haiku, Gemini
1.5 Flash via API, while Llama 3.1 (8B and 70B)
and Mistral 7B, and Mixtral 8x7B were accessed
through pretrained checkpoints. The model ids and
parameter sizes are provided below.

• GPT-4o-mini: gpt-4o-mini-2024-07-18
(Parameter size: unknown)

• Claude-3-haiku:
claude-3-haiku-20240307 (Parameter
size: unknown)

• Gemini-1.5-flash: gemini-1.5-flash (Pa-
rameter size: unknown)

• Llama-3.1-8b-it: https://huggingface.co
/meta-llama/Llama-3.1-8B-Instruct
(Parameter size: 8B)

• Llama-3.1-70b-it: https://huggingface.
co/meta-llama/Llama-3.1-70B-Instruc
t (Parameter size: 70B)

• Mistral-7b-it: https://huggingface.co/m
istralai/Mistral-7B-Instruct-v0.3
(Parameter size: 7B)

• Mixtral-8x7b-it: https://huggingface.co
/mistralai/Mixtral-8x7B-Instruct-v0.
1 (Parameter size: 46.7B)

E Prompts

Query Expansion Figure A1a, A1b, and A1c il-
lustrate the HyDE prompts used in this study where
the original prompt is adapted to each dataset. For
Query2doc, we used the same prompt by following
the suggestion in Wang et al. (2023), as shown in
Figure A1d.

Verdict Prediction Figure A2 presents the
prompt used for verdict prediction with GPT-4o-
mini.

Natural Language Inference We used GPT-4o-
mini for natural language inference, employing a
prompt proposed in a previous study (Wang et al.,
2024b), as illustrated in Figure A3. To support its
validity, two authors manually annotated the labels
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Please write a wikipedia passage to verify the
claim.
Claim: [CLAIM]
Passage: [OUTPUT]

(a) The prompt used for HyDE in the FEVER dataset.

Please write a scientific paper passage to sup-
port/refute the claim.
Claim: [CLAIM]
Passage: [OUTPUT]

(b) The prompt used for HyDE in the SciFact dataset.

Please write a fact-checking article to verify the
claim.
Claim: [CLAIM]
Passage: [OUTPUT]

(c) The prompt used for HyDE in the AVeriTeC dataset.

Write a passage that answers the following query:
[CLAIM]
[OUTPUT]

(d) The prompt used for Query2doc.

Figure A1: Prompts used for query expansion.

for a randomly selected set of 200 pairs following
the guidelines presented in Figure A4. The GPT-
based NLI model achieved an F1 score of 0.8 on
the sampled data.

F Supplementary Results

LLM comparison for fact verification Table 2
present the results for evidence retrieval and verdict
prediction by varying backbone LLMs for query
expansion. We observed that Llama-3.1-70b-it gen-
erally performed well when used with Query2doc.
For HyDE, while Llama-3.1-70b-it achieved the
best performance on FEVER, Claude-3-haiku ob-
tained higher evaluation scores in SciFact and
AVeriTeC.

Proportion of matched claims across different
benchmarks Table 3 presents the distribution of
matched claims across three datasets, varying the
LLMs used for query expansion. On average, the
estimated proportion was higher for FEVER than
for the other two datasets. While FEVER was con-
structed using public Wikipedia documents, Sci-
Fact is based on scientific literature, covering niche
knowledge, and AVeriTeC is the most recent dataset

Your task is to predict the verdict of a claim
based on the provided evidence. Select one of the
following labels: [LABEL]. Generate only the
label without additional explanation or content.

Claim: [CLAIM]

Evidence 1: [EVIDENCE 1]
. . .
Evidence N : [EVIDENCE N ]

Label: [OUTPUT]

Figure A2: The prompt used for fact verification with
GPT-4o-mini. N denotes the total number of retrieved
evidence.

Given the premise sentence S1, determine if the
hypothesis sentence S2 is entailed or contradicted
or neutral, by three labels: entailment, contradic-
tion, neutral.
Respond only with one of the labels.
S1: [GOLD EVIDENCE]
S2: [LLM-GENERATED SENTENCE]
Label: [OUTPUT]

Figure A3: The prompt used for NLI.

based on web documents collected by human an-
notators, covering recent knowledge. Given these
characteristics, the highest proportion observed in
FEVER partially supports the validity of the NLI-
based estimation.

Effects of retrieving more evidence Table A1
presents the fact verification performance with an
increased number of retrieved evidence (k = 10).
Performance improves in every case across differ-
ent LLMs and datasets compared to the results with
k = 5. Table A3 shows performance depending on
the matching condition, showing a consistent trend
with Table A2 when retrieving more evidence.

Manual annotation To support the validity of
the NLI-based matching algorithm, we conducted
manual annotations on a sampled dataset. Two au-
thors independently reviewed documents generated
by Query2doc and HyDE for all 500 samples in
the AVeriTeC development set, following the guide-
line presented in Figure A5. A claim was labeled
as matched if the LLM-generated document con-
tained all or part of any gold evidence. For the
backbone LLMs, we used Llama-3.1-70b-it for
Query2doc and Claude-3-haiku for HyDE, as these
models achieved the best performance for their
respective methods. The two annotators achieved
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Method
FEVER SciFact AVeriTeC

Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1
BM25 37.1 27.1 55.3 58.4 48.3 50.6 21 15 33.1

Performance by varying LLMs
GPT-4o-mini 44.2±0.1 32±0.1 57±0.1 64±0.0 51.4±0.1 53.2±0.6 22.3±0.0 15.9±0.0 34.6±0.1

Claude-3-haiku 43.4±0.1 31±0.1 56.9±0.2 64.3±0.2 51.5±0.1 53±0.5 22.5±0.0 16±0.0 34.7±0.1
Gemini-1.5-flash 43.4±0.1 31.7±0.0 56.9±0.1 64.7±0.2 52.8±0.1 53.1±0.6 22.3±0.0 16.2±0.0 34.7±0.2
Llama-3.1-8b-it 43.6±0.1 31.3±0.1 56.8±0.1 63.2±0.3 51.2±0.1 53±0.5 22.3±0.0 15.9±0.0 34.5±0.1

Llama-3.1-70b-it 46.1±0.2 33.7±0.1 57.2±0.2 64.6±0.2 52.5±0.1 53.1±0.3 22.7±0.1 16.3±0.0 34.8±0.1
Mistral-7b-it 43.2±0.2 30.8±0.2 56.8±0.1 63.1±0.2 51±0.1 52.6±0.4 22.5±0.0 16.2±0.0 34.6±0.1

Mixtral-8x7b-it 43.4±0.2 30.8±0.2 56.8±0.2 63.6±0.2 51.3±0.1 52.8±0.4 22.6±0.0 16.1±0.0 34.9±0.1

(a) Query2doc

Method
FEVER SciFact AVeriTeC

Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1
Contriever 34.4 22.8 54.8 65 51.2 54 20.8 16.1 34.8

Performance by varying LLMs
GPT-4o-mini 46.7±0.1 32.1±0.0 56.7±0.1 70±0.1 56.7±0.1 54.6±0.3 22.3±0.0 17±0.0 36.6±0.4

Claude-3-haiku 46.2±0.0 31.4±0.0 56.7±0.1 71.6±0.2 58.3±0.1 55±0.3 22.8±0.0 17.8±0.0 37.6±0.3
Gemini-1.5-flash 44.2±0.1 29.9±0.1 56.5±0.1 69.8±0.1 56.6±0.2 54.8±0.3 21.6±0.0 16.3±0.0 37.1±0.8
Llama-3.1-8b-it 46.4±0.1 31.8±0.1 56.6±0.1 70.1±0.2 57±0.1 54.3±0.5 22.4±0.0 17.4±0.0 36.8±0.3

Llama-3.1-70b-it 49.7±0.2 35±0.2 57±0.1 70.8±0.2 57.8±0.2 55±0.5 22.5±0.2 17.5±0.1 36.7±0.9
Mistral-7b-it 46.1±0.1 31.2±0.0 56.5±0.1 69.8±0.2 56.4±0.2 54.8±0.3 22.7±0.0 17.5±0.0 37.3±0.5

Mixtral-8x7b-it 47.6±0.0 32.6±0.0 56.9±0.2 70.2±0.2 56.8±0.1 54.8±0.5 22.8±0.0 17.6±0.0 37.2±0.5

(b) HyDE

Table A1: Fact verification performance using baseline retrievers and LLM-based query expansion methods, with the
number of retrieved evidence set to ten (k = 10). We report the average performance of query expansion methods
along with standard errors, obtained by repeating the generations eight times.

Premise: [GOLD EVIDENCE]
Hypothesis:
[LLM-GENERATED SENTENCE]

Given the premise, determine whether the hypoth-
esis is entailed.

□ Entailment

□ Non-Entailment

Figure A4: Manual labeling guidelines for natural lan-
guage inference.

a high-level of inter-annotator agreement, with a
Cohen’s kappa of 0.837 across 1,000 generations.
The estimated proportion of matched claims were
50.8% and 59.6%, respectively, closely aligning
with those from the NLI-based method, with differ-
ences falling within the error margin.

Table A4 presents performance depending on
manually annotated matching conditions, showing
a consistent trend with the results from the NLI-
based method (Table 4 and Table A2).

G Qualitative Analysis

Table A5 presents examples of LLM-generated
documents along with gold evidence. In example
(a), the claim concerns Nigeria’s history, and the
gold evidence specifies the period under military

Claim: [CLAIM]
Gold Evidence: [GOLD EVIDENCE]
LLM-generated Document:
[LLM-GENERATED DOCUMENT]

Determine whether the LLM-generated document
contains the whole or part of any gold evidence.

□ Included

□ Not Included

Figure A5: Manual labeling guidelines for determining
whether LLM-generated documents contain gold evi-
dence.

rule, which was reproduced in the generated docu-
ment. Example (b) pertains to U.S. Supreme Court
Justice Ruth Bader Ginsberg, where the gold evi-
dence provides her bibliography and medical his-
tory. The LLM-generated text includes this infor-
mation along with specific years. Notably, it also
introduces an additional fact about lung cancer,
which is not covered by the gold evidence. Exam-
ples (c) and (d) illustrate unmatched cases where
the generated text contains factual errors.
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Method Data FEVER SciFact AVeriTeC
Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1

Query2doc
ALL 35.2±0.1 28.3±0.1 55.4±0.1 56 ±0.1 48.2±0.1 52±0.5 19.3±0.0 12.5±0.0 33.1±0.1
M 38.7±0.1 31.2±0.1 58±0.0 63.7±0.3 56.7±0.3 54.1±0.2 22±0.0 17.7±0.0 38.8±0.3
¬M 23.8±0.1 18.5±0.1 44.7±0.1 46.2±0.6 37.2±0.4 48±0.5 17.4±0.0 8.9±0.0 27.6±0.1

HyDE
ALL 36.7±0.1 28.1±0.0 55.6±0.1 62.8±0.1 54.7±0.1 53.7±0.4 19.3±0.0 14 ±0.0 36.2±0.6
M 39.9±0.2 30.7±0.1 57.5±0.1 71.1±0.5 63.8±0.4 57.5±0.3 20.4±0.1 16.5±0.1 37.8±0.3
¬M 25.5±0.2 18.9±0.2 45±0.2 53±0.5 44.1±0.5 48.8±0.4 17.3±0.1 9.8±0.1 31.9±0.3

(a) Claude-3-haiku

Method Data FEVER SciFact AVeriTeC
Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1

Query2doc
ALL 36.2±0.1 29.2±0.1 55.8±0.1 56.2±0.2 49.4±0.1 52.2±0.5 18.9±0.0 12.5±0.0 33.3±0.2
M 38.5±0.1 31.4±0.0 58.8±0.0 63.4±0.5 56.9±0.4 55±0.5 20.5±0.0 16.5±0.1 38.1±0.4
¬M 30.7±0.1 24.1±0.1 48±0.2 48.9±0.4 41.6±0.3 48.7±0.3 17.6±0.0 9.4±0.1 28.5±0.2

HyDE
ALL 35±0.1 26.7±0.1 55.2±0.2 61±0.2 52.9±0.2 53.5±0.7 18±0.0 12.4±0.0 35.7±0.5
M 37.1±0.1 28.2±0.1 59±0.1 67.1±0.6 60.1±0.4 57.3±0.5 18.8±0.0 14.7±0.1 37.3±0.2
¬M 30.1±0.1 23.1±0.1 45±0.2 58.7±0.4 50.2±0.2 52±0.3 16.8±0.1 9.2±0.1 31.6±0.3

(b) Gemini-1.5-flash

Method Data FEVER SciFact AVeriTeC
Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1

Query2doc
ALL 35.7±0.1 28.6±0.2 55.6±0.2 54.9±0.2 47.8±0.2 51.9±0.3 19±0.0 12.4±0.0 32.2±0.2
M 39±0.2 31.4±0.2 58.6±0.1 63.9±0.4 57.5±0.4 55.1±0.4 21.7±0.1 17.3±0.1 36.6±0.3
¬M 28.5±0.3 22.3±0.3 48.5±0.3 44.2±0.6 36.5±0.4 47.6±0.3 17.4±0.0 9.4±0.1 28.5±0.1

HyDE
ALL 36.7±0.1 28.4±0.1 55.4±0.1 61.2±0.2 53.4±0.2 53.6±0.7 18.9±0.0 13.6±0.0 35.5±0.4
M 39.5±0.1 30.6±0.1 58.2±0.1 68.7±0.7 62.3±0.6 56.3±0.4 20±0.1 16.1±0.1 37.7±0.2
¬M 29.2±0.2 22.4±0.2 46.8±0.2 54.1±0.8 45.1±0.6 50.6±0.4 17.7±0.1 10.6±0.1 31.8±0.3

(c) Llama-3.1-8b-it

Method Data FEVER SciFact AVeriTeC
Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1

Query2doc
ALL 38.3±0.1 31±0.1 56.1±0.1 56.4±0.3 49.2±0.1 52.4±0.7 19.3±0.1 12.7±0.0 33.4±0.2
M 41.3±0.1 33.6±0.1 58.6±0.1 65±0.3 58.3±0.2 54.9±0.5 21.6±0.1 17.2±0.1 38.1±0.3
¬M 27.6±0.4 21.7±0.4 45.9±0.3 44.9±0.5 37±0.3 47.9±0.2 17.3±0.1 8.6±0.1 27.6±0.2

HyDE
ALL 40.4±0.2 31.7±0.2 55.9±0.1 61.9±0.3 54.1±0.2 53.6±0.5 19±0.2 13.7±0.1 35.4±0.7
M 44.3±0.5 35±0.5 58.4±0.1 69.2±0.4 62.1±0.4 56.7±0.3 20.9±0.2 17.3±0.3 38.3±0.2
¬M 30.4±0.3 23.3±0.3 48.9±0.2 52.9±0.7 44.3±0.6 48.9±0.5 17.4±0.1 10.6±0.2 31.5±0.4

(d) Llama-3.1-70b-it

Method Data FEVER SciFact AVeriTeC
Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1

Query2doc
ALL 35.1±0.3 28±0.2 55.4±0.2 55.1±0.1 47.9±0.1 51.9±0.6 19.2±0.0 12.6±0.0 32.8±0.1
M 39±0.2 31.3±0.2 58.2±0.1 64.8±0.3 58±0.2 54.8±0.5 21.5±0.1 17.3±0.1 37.5±0.5
¬M 24.8±0.4 19.1±0.3 46.7±0.2 44.9±0.5 37.2±0.3 48.3±0.3 17.4±0.0 8.8±0.1 27.7±0.2

HyDE
ALL 36.3±0.1 27.8±0.0 55.3±0.1 60.7±0.2 52.7±0.2 53.4±0.4 19±0.0 13.6±0.0 35.8±0.7
M 39.2±0.2 30.1±0.1 57.7±0.1 67.8±0.5 60.9±0.4 55.5±0.7 20.1±0.1 16±0.1 36.8±0.4
¬M 27.5±0.2 20.9±0.1 46.4±0.2 53.8±0.3 44.8±0.3 50.4±0.3 17.7±0.1 10.6±0.1 33.1±0.4

(e) Mistral-7b-it

Method Data FEVER SciFact AVeriTeC
Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1

Query2doc
ALL 35.1±0.2 27.9±0.2 55.3±0.2 54.6±0.2 47.7±0.1 51.9±0.4 19.4±0.0 12.7±0.0 33.2±0.1
M 38.6±0.2 30.9±0.2 57.8±0.1 63.5±0.5 57.3±0.4 54.1±0.3 21.5±0.1 17±0.1 37.3±0.3
¬M 22.3±0.3 17.1±0.2 44.3±0.2 43.4±0.4 35.6±0.3 47.8±0.3 17.3±0.1 8.4±0.1 27.7±0.3

HyDE
ALL 37.6±0.1 29.1±0.1 55.7±0.1 61.3±0.2 53.1±0.1 53.3±0.3 19.2±0.0 13.7±0.0 35.8±0.7
M 40.3±0.1 31.2±0.1 57.7±0.0 68.9±0.4 61.4±0.3 55.4±0.2 20.3±0.1 16.1±0.1 37.1±0.2
¬M 26.4±0.2 20.4±0.2 45.2±0.2 52.2±0.3 43.1±0.2 49.7±0.4 17.7±0.1 10.6±0.1 32.6±0.4

(f) Mixtral-8x7b-it

Table A2: Fact verification performance depending on whether the document generated by query expansion methods
contains sentences entailed by gold evidence, with the number of retrieved evidence set to five (k = 5). We report
performance using different backbone LLMs for query expansion.
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Method Data FEVER SciFact AVeriTeC
Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1

Query2doc
ALL 44.2±0.1 32±0.1 57±0.1 64±0.0 51.4±0.1 53.2±0.6 22.3±0.0 15.9±0.0 34.6±0.1
M 48.8±0.1 35.7±0.1 59.6±0.1 71.7±0.3 60.6±0.3 54.1±0.6 25.3±0.1 21.4±0.1 40.6±0.3
¬M 29.9±0.2 20.5±0.1 47.3±0.2 55.4±0.4 41.2±0.3 50.1±0.4 20.3±0.0 12.2±0.0 29.2±0.2

HyDE
ALL 46.7±0.1 32.1±0.0 56.7±0.1 70±0.1 56.7±0.1 54.6±0.3 22.3±0.0 17±0.0 36.6±0.4
M 50.2±0.1 34.5±0.0 58.8±0.0 76.5±0.3 64.8±0.2 57.7±0.2 23.6±0.0 19.5±0.0 38.1±0.2
¬M 29.4±0.4 20±0.3 44.2±0.2 60.5±0.4 44.9±0.4 49.5±0.3 19.4±0.1 11.8±0.1 31±0.1

(a) GPT-4o-mini

Method Data FEVER SciFact AVeriTeC
Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1

Query2doc
ALL 43.4±0.1 31±0.1 56.9±0.2 64.3±0.2 51.5±0.1 53±0.5 22.5±0.0 16±0.0 34.7±0.1
M 47.3±0.1 34.2±0.1 59.2±0.1 70.9±0.3 59.7±0.3 55.3±0.3 25.7±0.1 21.5±0.0 40.4±0.4
¬M 30.5±0.2 20.7±0.1 47.3±0.2 55.8±0.6 40.9±0.4 49.3±0.2 20.4±0.1 12.2±0.1 29.3±0.2

HyDE
ALL 46.2±0.0 31.4±0.0 56.7±0.1 71.6±0.2 58.3±0.1 55±0.3 22.8±0.0 17.8±0.0 37.6±0.3
M 50±0.1 34.3±0.1 58.5±0.1 78.9±0.3 67.1±0.4 58.7±0.2 24.2±0.1 20.4±0.1 38.9±0.2
¬M 32.8±0.3 21.4±0.2 46.6±0.2 63±0.6 48.1±0.6 50.5±0.3 20.5±0.1 13.5±0.1 33.6±0.3

(b) Claude-3-haiku

Method Data FEVER SciFact AVeriTeC
Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1

Query2doc
ALL 43.4±0.1 31.7±0.0 56.9±0.1 64.7±0.2 52.8±0.1 53.1±0.6 22.3±0.0 16.2±0.0 34.7±0.2
M 46.3±0.0 34.1±0.0 59.8±0.1 71.4±0.3 60.2±0.3 55.3±0.3 24.4±0.0 20.4±0.1 39.5±0.3
¬M 36.7±0.1 26.1±0.1 49.7±0.1 57.9±0.4 45.1± 0.3 49.9±0.3 20.7±0.0 12.8±0.0 29.9±0.3

HyDE
ALL 44.2±0.1 29.9±0.1 56.5±0.1 69.8±0.1 56.6±0.2 54.8±0.3 21.6±0.0 16.3±0.0 37.1±0.8
M 47.1±0.1 31.8±0.1 59.9±0.0 75.5±0.5 63.8±0.4 58.3±0.3 22.6±0.0 18.6±0.1 38.5±0.3
¬M 37.5±0.2 25.6±0.1 47.6±0.2 67.7±0.3 53.8±0.2 53.4±0.2 20.1±0.1 12.9±0.1 33.1±0.4

(c) Gemini-1.5-flash

Method Data FEVER SciFact AVeriTeC
Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1

Query2doc
ALL 43.6±0.1 31.3±0.1 56.8±0.1 63.2±0.3 51.2±0.1 53±0.5 22.3±0.0 15.9±0.0 34.5±0.1
M 47.2±0.1 34.3±0.2 59.5±0.0 71.2±0.3 60.6±0.4 55.7±0.4 25.4±0.1 21±0.1 38.5±0.1
¬M 35.8±0.3 24.8±0.3 50.4±0.2 53.8±0.7 40.2±0.5 49.3±0.2 20.4±0.0 12.8±0.1 30.7±0.2

HyDE
ALL 46.4±0.1 31.8±0.1 56.6±0.1 70.1±0.2 57±0.1 54.3±0.5 22.4±0.0 17.4±0.0 36.8±0.3
M 50±0.1 34.3±0.1 59.1±0.1 77.7±0.6 66.1±0.4 57.2±0.3 23.7±0.1 19.9±0.1 38.9±0.2
¬M 36.7±0.3 24.9±0.2 48.8±0.2 63±0.7 48.6±0.5 51.4±0.4 21±0.1 14.3±0.1 33.3±0.3

(d) Llama-3.1-8b-it

Method Data FEVER SciFact AVeriTeC
Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1

Query2doc
ALL 46.1±0.2 33.7±0.1 57.2±0.2 64.6±0.2 52.5±0.1 53.1±0.3 22.7±0.1 16.3±0.0 34.8±0.1
M 49.4±0.2 36.4±0.1 59.5±0.0 72.5±0.4 61.4±0.2 55.4±0.4 25.4±0.1 21.1±0.1 39.6±0.3
¬M 34.2±0.2 23.9±0.3 48.1±0.2 54±0.5 40.5±0.2 48.9±0.2 20.2±0.0 11.9±0.1 28.9±0.3

HyDE
ALL 49.7±0.2 35±0.2 57±0.1 70.8±0.2 57.8±0.2 55±0.5 22.5±0.2 17.5±0.1 36.7±0.9
M 54.4±0.4 38.6±0.4 59.3±0.0 77.5±0.5 65.6±0.4 57.8±0.3 24.7±0.2 21.3±0.3 39.6±0.3
¬M 37.9±0.2 25.9±0.2 50.7±0.2 62.7±0.6 48.2±0.6 50.8±0.3 20.7±0.1 14.2±0.2 32.9±0.4

(e) Llama-3.1-70b-it

Method Data FEVER SciFact AVeriTeC
Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1

Query2doc
ALL 43.2±0.2 30.8±0.2 56.8±0.1 63.1±0.2 51±0.1 52.6±0.4 22.5±0.0 16.2±0.0 34.6±0.1
M 47.5±0.2 34.3±0.2 59.2±0.0 71.5±0.4 60.8±0.3 55.1±0.2 25.2±0.1 21.1±0.1 39.8±0.3
¬M 31.8±0.4 21.5±0.3 48.9±0.1 54.3±0.5 40.8±0.2 49.4±0.3 20.4±0.0 12.2±0.1 29.3±0.2

HyDE
ALL 46.1±0.1 31.2±0.0 56.5±0.1 69.8±0.2 56.4±0.2 54.8±0.3 22.7±0.0 17.5±0.0 37.3±0.5
M 50±0.2 33.9±0.1 58.9±0.1 76.7±0.4 64.7±0.4 57.4±0.7 23.9±0.1 20.1±0.1 38.5±0.4
¬M 34.3±0.2 23.3±0.1 48.4±0.2 63±0.2 48.5±0.2 51.5±0.3 21.1±0.1 14.3±0.1 34.4±0.3

(f) Mistral-7b-it

Method Data FEVER SciFact AVeriTeC
Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1

Query2doc
ALL 43.4±0.2 30.8±0.2 56.8±0.2 63.6±0.2 51.3±0.1 52.8±0.4 22.6±0.0 16.1±0.0 34.9±0.1
M 47.3±0.2 33.9±0.2 59±0.1 71.3±0.5 60.6±0.4 54.6±0.6 25.1±0.1 20.7±0.1 39±0.2
¬M 28.7±0.3 19.2±0.2 46.7±0.2 53.8±0.5 39.5±0.3 49.2±0.4 20.2±0.1 11.7±0.1 29.5±0.2

HyDE
ALL 47.6±0.0 32.6±0.0 56.9±0.2 70.2±0.2 56.8±0.1 54.8±0.5 22.8±0.0 17.6±0.0 37.2±0.5
M 50.9±0.1 34.9±0.0 58.8±0.0 77.7±0.1 65.2±0.2 56.8±0.3 24.2±0.0 20.1±0.1 38.7±0.3
¬M 33.5±0.3 22.8±0.2 47.2±0.1 61±0.4 46.6±0.3 51.7±0.4 21±0.1 14.3±0.1 33.8±0.4

(g) Mixtral-8x7b-it

Table A3: Fact verification performance depending on whether the document generated by query expansion methods
contains sentences entailed by gold evidence, with the number of retrieved evidence set to ten (k = 10). We report
performance using different backbone LLMs for query expansion.
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Method Data METEOR BERTScore F1

Query2doc
ALL 20.5 13.8 34.7
M 21.6 15.4 40.9
¬M 19.4 12.2 27.3

HyDE
ALL 19.9 14.7 38.7
M 20.7 16.1 40.9
¬M 18.8 12.5 33.6

(a) k = 5

Method Data METEOR BERTScore F1

Query2doc
ALL 23.6 17.3 36.7
M 24.9 19 45.2
¬M 22.2 15.5 26.6

HyDE
ALL 23.9 18.2 38.3
M 24.6 19.7 39.4
¬M 22.7 16.1 34.9

(b) k = 10

Table A4: Fact verification performance on 500 samples
from the AVeriTeC development set using manually
annotated NLI labels. For query expansion, we used
Llama-3.1-70b-it for Query2doc and Claude-3-haiku
for HyDE, as each model achieved the best performance
for its respective expansion method. GPT-4o-mini was
used for verdict prediction.
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Claim U.S. President Donald Trump and his wife, First Lady Melania Trump, have tested
positive for COVID-19

Gold Evidence

• Donald trump tweeted that he had tested positive for Covid 19
on 1st October 2020

• Donald trump tweeted that he and first lady Melania
had tested positive for Covid 19 on 1st October 2020

• The President’s physician, Navy Cmdr. Dr. Sean Conley, wrote that
he received confirmation of the positive tests on Thursday evening.

Generation

On October 1, 2020, it was announced that U.S. President Donald Trump and his
wife, First Lady Melania Trump, had tested positive for COVID-19. This news came
after one of the President’s closest advisors, Hope Hicks, had also tested positive
for the virus earlier that day. The President and the First Lady began experiencing
symptoms shortly after Hicks’ diagnosis and were subsequently tested. Both Trumps
received their positive test results in the early hours of October 2, 2020.
Following their diagnosis, the President and the First Lady immediately began
self-isolating in the White House. President Trump’s physician, Dr. Sean Conley,
issued a statement saying that the President and the First Lady would remain in
quarantine for the next 14 days, as per Centers for Disease Control and Prevention
(CDC) guidelines.
The news of the President’s positive test result sparked widespread concern and
reaction, with leaders from around the world offering their well wishes for a speedy
recovery. The diagnosis also led to increased scrutiny of the White House’s handling
of the pandemic, particularly with regards to the safety protocols in place at the time.
Fortunately, both President Trump and the First Lady made a full recovery from
the virus. President Trump was hospitalized for a few days at Walter Reed National
Military Medical Center, where he received treatment and was later discharged on
October 5, 2020.

(a) Matched example

Claim US Supreme Court Justice, Ruth Bader Ginsburg, fought cancer for decades before
she passed away in September 2020.

Gold Evidence

• Ruth Bader Ginsburg was a U.S. Supreme Court justice,
the second woman to be appointed to the position.

• On September 18, 2020, Justice Ruth Bader Ginsburg,
the second woman to serve on the Supreme Court of the United States,
passed away at the age of eighty-seven

• She died of complications from metastatic pancreatic cancer.
• colon cancer (first diagnosed in 1999), pancreatic cancer (2009)

Generation

Ruth Bader Ginsburg, a trailblazing U.S. Supreme Court Justice, demonstrated
unwavering resilience in the face of adversity, including her prolonged battle with
cancer. Throughout her life, she faced numerous health challenges, including colorec-
tal cancer in 1999, pancreatic cancer in 2009, and lung cancer in 2018. Furthermore,
in 2019, she underwent radiation therapy for a tumor on her pancreas. Despite these
setbacks, Ginsburg continued to serve on the Supreme Court, inspiring countless
individuals with her strength, determination, and unwavering commitment to her
work. Tragically, her courageous fight against cancer came to an end on September
18, 2020, when she passed away at the age of 87, leaving behind an enduring legacy
as a champion of gender equality, social justice, and the rule of law.

(b) Matched example
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Claim While serving as Town Supervisor on Grand Island, Nebraska, US Nate McMurray
voted to raise taxes on homeowners.

Gold Evidence

• Grand Island raised its tax levy on November 8th 2018.
• A Public Hearing was held on Thursday, November 8, 2018 at 7:00p.m.
for the purpose of hearing anyone who wants to comment on the proposed
2019 Town of Grand Island budget. Supervisor Nate McMurray closed
the Public Hearing.

Generation

After researching Nate McMurray’s political career, there is no evidence that he has
ever served as Town Supervisor on Grand Island, Nebraska. Grand Island is a city in
central Nebraska, not a town, and it does not have a position of Town Supervisor.
Nate McMurray is a former town councilman in the town of Grand Island, New
York, which is located in Erie County, New York, not Nebraska. However, there are
no reports or records indicating that McMurray voted to raise taxes on homeowners
while serving on the Grand Island, New York town council.
In conclusion, the claim that Nate McMurray voted to raise taxes on homeowners
while serving as Town Supervisor on Grand Island, Nebraska is false. Nate Mc-
Murray has never held a political position in the state of Nebraska, and the town of
Grand Island, Nebraska does not exist. This appears to be a fabricated claim with no
basis in fact.

(c) Unmatched example
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Claim U.S. mortalities this year are not materially different from the previous 5 years

Gold Evidence

• The cumulative number of deaths in 2020 is far greater than
the cumulative number of deaths of any year from 2015 to 2019,
as shown in the figures in link below.

• The Historical data on death rate shows that
there were more deaths recorded in the singular year 2020
compared to the death rate rate in each year from 2015-2019

Generation

**U.S. Mortality Rates Remain Steady, Showing No Significant Increase from
Previous Years**
According to recent data, mortality rates in the United States for this year are not
showing any significant deviations from the past five years. Despite concerns about
various health crises and trends, the overall number of deaths in the country has
remained relatively stable.
When analyzing the data, it becomes clear that the mortality rates for this year are
largely in line with the averages seen in the previous five years. This suggests that,
despite fluctuations in specific causes of death or regional variations, the overall
trend in mortality rates has not undergone a significant shift.
Several factors could be contributing to this stability, including advances in medical
technology, improvements in healthcare access and quality, and public health initia-
tives aimed at reducing mortality rates. Additionally, the country’s demographics,
such as population size and age distribution, have not changed dramatically enough
to impact mortality rates substantially.
While specific causes of death, such as deaths from accidents, diseases, or other
factors, may have seen some variation, the overall mortality rate has not been signif-
icantly affected. This steady trend is a positive sign, indicating that the country’s
healthcare system and public health efforts are effectively managing and mitigating
mortality risks.
It is essential to note, however, that mortality rates can fluctuate over time due to var-
ious factors, including emerging health crises, changes in population demographics,
or shifts in healthcare policies. Therefore, continuous monitoring and analysis of
mortality data are crucial to identifying potential trends and areas for improvement.
In conclusion, the current mortality rates in the United States are not materially
different from the previous five years, indicating a stable trend. This stability is a
testament to the country’s healthcare system and public health efforts, but it also
highlights the need for continued vigilance and monitoring to address potential
future challenges.

(d) Unmatched example

Table A5: Examples of generated documents and gold evidence for the target claims. Colored highlights indicate
information in the generated documents that overlaps with the gold evidence.
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