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Abstract

Homoglyphs, Unicode characters that are visu-
ally homogeneous to Latin letters, are widely
used to mask offensive content. Dynamic strate-
gies are needed to combat homoglyphs as the
Unicode library is ever-expanding and new sub-
stitution possibilities for Latin letters continu-
ously emerge. The present study investigated
two novel mitigation approaches that do not
rely on strict mappings but instead harness
the power of large language models to neu-
tralize both known and unknown homoglyphs:
(1) indirectly normalizing homoglyphs by re-
placing non-Latin characters with a delimiter
and prompting large language models to “fill in
the blanks” and (2) directly normalizing homo-
glyphs by using large language models to deter-
mine which characters should be replaced with
Latin letters. We found that GPT-4o-mini con-
structed normalized text with an average cosine
similarity score of 0.91 to the original tweets
when applying our indirect method and 0.96
to the original tweets when applying our direct
method. This study indicates that large lan-
guage model-based normalization techniques
can effectively unmask offensive content con-
cealed by homoglyphs. Code and data are avail-
able in our GitHub repository.1

1 Introduction

A significant subset of Unicode characters are visu-
ally similar to Latin letters but possess disjointed
symbolic and linguistic meanings. For example,
the Latin “a” and the Cyrillic “а” appear visually
homogeneous, but their underlying Unicode code
points, U+0061 and U+0430, are not equivalent.

These look-alike characters are referred to as
homoglyphs and present significant challenges for
modern content detection models. Hate speech
infused with homoglyphs lowered the F1 scores
of transformer-based content detection models by
56% on the Offensive Tweets with Homoglyphs
(OTH) dataset (Cooper et al., 2023). Additionally,

Figure 1: Number of new (previously unseen) homo-
glyphs detected in the Offensive Tweets with Homo-
glyphs dataset by year. We observed new homoglyphs
yearly from 2009 to 2022.

our analysis of the OTH dataset indicated that the
set of characters from which progenitors of online
offensive text draw homoglyphs grew each year
from 2009 to 2022 (Figure 1). While several ex-
isting normalization tools and methods exist, the
use of large language models for the mitigation
of homoglyphs has not been explored in detail.
We present two novel methods to normalize ho-
moglyphs. Specifically, the key contributions of
our work include:

• Creating a dataset of 29,846 tweets augmented
with homoglyph patterns derived from real-
world data.1

• Performing indirect and direct homoglyph
normalization through proprietary and open-
source large language models. To our knowl-
edge, we are the first to utilize large language
models to normalize homoglyphs.

• Comparing the robustness of transformer-
based hate speech detection models on
homoglyph-infused and normalized text.

1https://github.com/pcoopercoder/
The-Lies-Characters-Tell

18932

https://github.com/pcoopercoder/The-Lies-Characters-Tell
https://github.com/pcoopercoder/The-Lies-Characters-Tell


2 Related Work

Previous work has demonstrated the effectiveness
of homoglyph obfuscation. Boucher et al. (2021)
used homoglyphs and other perturbations to expose
vulnerabilities in models published by Facebook,
IBM, and Hugging Face. Additionally, Roadhouse
et al. (2024) and Valle Aguilera et al. (2024) ex-
plored the use of homoglyphs inserted in misinfor-
mation to avoid detection. And Creo and Pudasaini
(2024) demonstrated that AI-generated text infused
with homoglyphs avoided detection by content fil-
ters. These prior studies tested the effectiveness of
homoglyphs as an adversarial strategy. Conversely,
the present study investigated solutions to mitigate
the malicious effects of homoglyphs.

The detection of homoglyphs has been studied in
the context of domain spoofing and cyber security
attacks. Almuhaideb et al. (2022) created a tool
for detecting homoglyph phishing attempts by us-
ing a hash function and a machine learning model.
Gupta et al. (2023) and Woodbridge et al. (2018)
explored the use of convolutional neural networks
to combat the usage of homoglyph characters in
web domains. In addition, Ginsberg and Yu (2018)
utilized hit-zone maps for predicting homoglyph
characters. Unlike the previous studies, we focused
on normalizing adversarial homoglyphs in offen-
sive text.

Cooper et al. (2023) trained and evaluated trans-
former hate speech detection models on real-world
offensive tweets with homoglyphs. And Le et al.
(2022) created the ANTHRO dataset which cap-
tured over 600,000 examples of real world text
perturbations and trained transformer models to de-
tect toxic content containing homoglyphs. Kurita
et al. (2019) experimented with training models
on data with synthetically generated perturbations
for content detection and proposed a contextual
denoising autoencoder method robust against ho-
moglyphs. Unlike prior work, the present study pro-
posed normalization as a pre-processing strategy
and evaluated both normalization and downstream
task quality.

3 Approach

To ensure access to fully normalized variants when
deriving our normalization methods, we augmented
an existing corpus of hate and non-hate speech
tweets with real-world homoglyph patterns. The
tweets from the original data were used as a
homoglyph-free baseline.

3.1 Formulation of the Homoglyph-
Augmented Dataset

The real-world homoglyph patterns utilized in the
present study were identified using a randomly se-
lected subset (N = 1, 000) of the OTH dataset
(Cooper et al., 2023). All tokens within the subset
that contained ≥ 1 homoglyph character were as-
signed a manually generated, normalized variant
(e.g., аpрle → apple (homoglyphs in red)). This
process produced a total of 2,433 mappings for 982
unique words.

The pre-existing Hugging Face tweets_hate_
speech_detection dataset (N = 31, 962) by
Sharma (2019) was selected for homoglyph aug-
mentation as it is composed of real-world twit-
ter data—the same corpus from which the OTH
dataset was constructed (licensing information for
both datasets is provided in Appendix A, subsec-
tion A.1).

The generated mappings were applied to the
tweets_hate_speech_detection dataset, where any
word that possessed a known homoglyph-infused
mapping was replaced. If multiple mappings
existed, a single one was randomly selected.
Tweets with no possible word mappings were
dropped. This process yielded 29,846 homoglyph-
augmented tweets. This dataset was used to eval-
uate the effectiveness of several language models
for homoglyph normalization.

3.2 Homoglyph Normalization

Two normalization strategies were applied using
two large language models: GPT-4o-mini (OpenAI
et al., 2024) and Llama 3.1 8B (Llama Team, 2024).

1. Indirect normalization: This method in-
volved first detecting all non-Latin characters
in a given text and replacing them with a se-
lected delimiter character, such as _. Then,
models were prompted to insert the missing
characters into the text based on a set of in-
context examples. We reasoned that indirect
normalization could be a robust technique, as
it does not rely on awareness of specific homo-
glyph characters but rather uses the surround-
ing Latin letters to replace homoglyphs with
characters that are contextually logical.

2. Direct normalization: This method involved
prompting models to replace all non-Latin
characters with their normalized counterparts
based on a set of in-context examples. By
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allowing models the discretion to determine
which characters to normalize, we reasoned
that potential model-internal relations could
be leveraged, as it is likely that both GPT-4o-
mini and Llama 3.1 8B encountered homo-
glyphs during their initial training.

To select an optimal set of in-context exam-
ples for each model and normalization technique,
we experimented with 10 random batches of
k ∈ {1, 3, 5, 10} in-context examples provided to
both GPT-4o-mini and Llama 3.1 8B. For each
k in-context examples from each batch, we ap-
plied both indirect and direct normalization on
1,000 homoglyph-augmented tweets using GPT
and Llama and calculated average cosine similarity
between the original (non-homoglyphed) tweets
and the generated, normalized variants (Appendix
A, Figure 2). Optimal prompts (reported in Ap-
pendix A, subsection A.2) were derived from the
configurations with the highest scores. A discus-
sion of prompt sensitivity is included in Appendix
A, subsection A.3.

We evaluated the quality of our normalizations
at scale by implementing each technique and corre-
sponding optimal prompt on the remaining 28,746
homoglyph-augmented tweets. Data used to con-
struct (n = 100) and tune (n = 1, 000) the op-
timal normalization prompts were excluded. Av-
erage cosine similarity and Levenshtein distances
between the normalizations and the original tweets
were calculated using the Python Natural Lan-
guage Toolkit (Bird and Loper, 2004). To build
evidence towards the validity of our proposed nor-
malization techniques over traditional normaliza-
tion styles, we compare our methods against four
tools (1) the Unidecode Python package,2 (2) the
cyrtranslit Python package (Labrèche, 2023),3

(3) Unicode Normalization Form Canonical Com-
position (NFC), and (4) Unicode Normalization
Form Compatibly Decomposition (NFKD). These
normalization tools were chosen for comparison
as they are standard and publicly available, com-
parably our method requires little implementation
overhead. Existing machine learning methods were
explored for additional comparison but were unten-
able due to domain and codebase issues. The av-
erage cosine similarity and Levenshtein distances
between the original tweets and their homoglyph-
augmented variants were also reported.

2https://pypi.org/project/Unidecode/
3https://pypi.org/project/cyrtranslit/

Normalization Approach Average Cosine
Similarity Score

Proposed
Methods

GPT-4o-mini Indirect 0.91
GPT-4o-mini Direct 0.96
Llama 3.1 8B Indirect 0.81
Llama 3.1 8B Direct 0.89

Existing
Methods

Unidecode 0.78
cyrtranslit 0.77
NFC Form 0.64
NFKD Form 0.62

None 0.64

Table 1: Average cosine similarity between original
tweets (N = 28, 746) and the four proposed normaliza-
tion methods, four existing normalization methods, and
the unnormalized homoglyph-augmented tweets.

Normalization Approach Average Cosine
Similarity Score

Proposed
Methods

GPT-4o-mini Indirect 0.75
GPT-4o-mini Direct 0.89
Llama 3.1 8B Indirect 0.57
Llama 3.1 8B Direct 0.65

Existing
Methods

Unidecode 0.69
cyrtranslit 0.69
NFC Form 0.52
NFKD Form 0.53

None 0.53

Table 2: Average cosine similarity between the human-
normalized tweets from the Offensive Tweets with Ho-
moglyphs evaluation data (N = 700) and four pro-
posed normalization methods, four existing normaliza-
tion methods, and the unnormalized real-world tweets.

3.3 Hate Speech Detection

We selected the two highest and two lowest per-
forming transformer-based hate speech detection
models from the zero-shot analysis reported by
Cooper et al. (2023) for evaluation on the human-
annotated sample (N = 700) of the OTH dataset
(the models analyzed are listed in Appendix A, sub-
section A.4). GPT and Llama direct and indirect
normalization and the four existing normalization
tools were applied to the real-world homoglyphed
tweets. Average cosine similarity and Levenshtein
distances were calculated, and the four hate speech
detection models were evaluated under both a zero-
shot and five-fold cross-validation setting for each
normalization method.
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Normalization Approach Model Number A ∆ P ∆ R ∆ F1 ∆

Human Normalized

1 0.70 - 0.59 - 0.83 - 0.69 -
2 0.72 - 0.61 - 0.84 - 0.71 -
3 0.69 - 0.65 - 0.51 - 0.57 -
4 0.69 - 0.58 - 0.78 - 0.67 -

GPT-4o-mini Indirect

1 0.65 -0.05 0.54 -0.05 0.72 -0.11 0.62 -0.07
2 0.65 -0.07 0.55 -0.06 0.69 -0.15 0.61 -0.10
3 0.66 -0.03 0.63 -0.02 0.40 -0.11 0.49 -0.08
4 0.64 -0.05 0.54 -0.04 0.64 -0.14 0.59 -0.08

GPT-4o-mini Direct

1 0.69 -0.01 0.58 -0.01 0.83 0.00 0.68 -0.01
2 0.70 -0.02 0.59 -0.02 0.84 0.00 0.69 -0.02
3 0.70 0.01 0.67 0.02 0.49 -0.02 0.56 -0.01
4 0.68 -0.01 0.58 0.00 0.75 -0.03 0.66 -0.01

Llama 3.1 8B Indirect

1 0.61 -0.09 0.52 -0.07 0.38 -0.45 0.44 -0.25
2 0.61 -0.11 0.53 -0.08 0.41 -0.43 0.46 -0.25
3 0.63 -0.06 0.63 -0.02 0.20 -0.31 0.31 -0.26
4 0.59 -0.10 0.49 -0.09 0.45 -0.33 0.47 -0.20

Llama 3.1 8B Direct

1 0.68 -0.02 0.60 0.01 0.59 -0.24 0.60 -0.09
2 0.66 -0.06 0.58 -0.03 0.57 -0.27 0.57 -0.14
3 0.68 -0.01 0.78 0.13 0.30 -0.21 0.43 -0.14
4 0.65 -0.04 0.57 -0.01 0.56 -0.22 0.56 -0.11

None

1 0.57 -0.13 0.47 -0.12 0.57 -0.26 0.52 -0.17
2 0.63 -0.09 0.54 -0.07 0.44 -0.40 0.49 -0.22
3 0.61 -0.08 0.52 -0.13 0.27 -0.24 0.35 -0.22
4 0.60 -0.09 0.49 -0.09 0.16 -0.62 0.24 -0.43

Table 3: Zero-shot accuracy (A), precision (P), recall (R), and F1 score (F1) for four hate speech detection models
on the following variants of the Offensive Tweets with Homoglyphs evaluation data (N = 700): human normalized,
GPT-4o-mini indirect and direct normalization, Llama 3.1 8B indirect and direct normalization, and unnormalized.
Deltas between the human normalized and other variants presented for each metric.

4 Results

4.1 Homoglyph Normalization Quality
As shown in Table 1, the average cosine similar-
ity scores associated with all forms of LLM-based
normalization were greater than those yielded by
the traditional normalization methods on the homo-
glyph augmented dataset. Specifically, the GPT-
4o-mini direct normalizations produced the highest
recorded score of 0.96.

The average cosine similarity scores reported
between the normalization methods and the human-
annotated sample of the OTH dataset (presented
in Table 2) aligned with the scores generated on
the synthetic data–the GPT-4o-mini direct normal-
izations yielded the largest similarity score (0.89).
An error analysis of the LLM normalization meth-
ods on the OTH data is included in Appendix A,
subsection A.5.

The lowest average Levenshtein distances for
both the homoglyhph augmented dataset and the
OTH dataset sample (1.03 and 3.44, respectively)
were produced by the GPT-4o-mini direct normal-
ization method. The full Levenshtein distances are
reported in Appendix A, Table 5 and Table 6.

4.2 Hate Speech Detection Evaluation

In Table 3, we present the results of the four hate
speech detection models evaluated on the human-
annotated sample of the OTH dataset in a zero-shot
setting. Excluding the human normalizations, the
highest F1 scores (0.68, 0.69, 0.56, 0.66 for models
1–4, respectively) were achieved on the GPT-4o-
mini direct normalizations.

When five-fold cross-validation was performed
(Table 4), the models trained on GPT-4o-mini di-
rect normalizations achieved the micro-averaged
F1 scores (0.92, 0.92, 0.93, 0.92 for models 1–4, re-
spectively) closest to those generated on the human
normalizations (0.91, 0.94, 0.93, 0.93 for models
1–4, respectively).

The results of the models trained and evaluated
on normalizations produced by the four existing
tools in a zero-shot and five-fold cross validation
setting are reported in Appendix A, Table 7 and Ta-
ble 8. The highest F1 score achieved by any model
on the normalizations produced by an existing tool
was 0.52 for the zero-shot setting and 0.90 when
five-fold cross validation was performed.
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Normalization Approach Model Number A ∆ P ∆ R ∆ F1 ∆

Human Normalized

1 0.92 - 0.89 - 0.92 - 0.91 -
2 0.95 - 0.94 - 0.93 - 0.94 -
3 0.94 - 0.93 - 0.94 - 0.93 -
4 0.95 - 0.94 - 0.93 - 0.93 -

GPT-4o-mini Indirect

1 0.87 -0.05 0.87 -0.02 0.81 -0.11 0.84 -0.07
2 0.88 -0.07 0.86 -0.08 0.84 -0.09 0.85 -0.09
3 0.87 -0.07 0.85 -0.08 0.83 -0.11 0.84 -0.09
4 0.87 -0.08 0.87 -0.07 0.81 -0.12 0.84 -0.09

GPT-4o-mini Direct

1 0.94 0.02 0.94 0.05 0.90 -0.02 0.92 0.01
2 0.94 -0.01 0.92 -0.02 0.93 -0.00 0.92 -0.02
3 0.95 0.01 0.93 0.00 0.94 0.00 0.93 0.00
4 0.93 -0.02 0.90 -0.04 0.93 0.00 0.92 -0.01

Llama 3.1 8B Indirect

1 0.68 -0.24 0.78 -0.11 0.30 -0.62 0.43 -0.49
2 0.79 -0.16 0.79 -0.15 0.66 -0.27 0.72 -0.22
3 0.76 -0.18 0.71 -0.22 0.69 -0.25 0.70 -0.23
4 0.77 -0.18 0.75 -0.19 0.65 -0.28 0.70 -0.23

Llama 3.1 8B Direct

1 0.78 -0.14 0.82 -0.07 0.58 -0.34 0.68 -0.23
2 0.84 -0.11 0.81 -0.13 0.78 -0.15 0.79 -0.15
3 0.87 -0.07 0.88 -0.05 0.78 -0.16 0.83 -0.10
4 0.85 -0.10 0.84 -0.10 0.78 -0.15 0.81 -0.12

None

1 0.80 -0.12 0.86 -0.03 0.59 -0.33 0.70 -0.21
2 0.90 -0.05 0.89 -0.05 0.85 -0.08 0.87 -0.07
3 0.90 -0.04 0.87 -0.06 0.89 -0.05 0.88 -0.05
4 0.90 -0.05 0.87 -0.07 0.89 -0.04 0.88 -0.05

Table 4: Five-fold cross-validation accuracy (A), precision (P), recall (R), and F1 score (F1) for four hate speech
detection models on the following variants of the Offensive Tweets with Homoglyphs evaluation data (n = 700):
human normalized, GPT-4o-mini indirect and direct normalization, Llama 3.1 8B indirect and direct normalization,
and unnormalized. Deltas between the human normalized and other variants presented for each metric.

5 Discussion

For both GPT and Llama, direct normalization, in
which LLMs determined which characters should
be replaced with Latin letters, produced the high-
est quality outputs. On the homoglyph-augmented
tweets, GPT’s average cosine similarity scores
were 0.05 higher for the direct normalizations. Sim-
ilarly, Llama had a delta of 0.08 between the direct
and indirect normalizations. This result is notable
as it indicates that the LLMs possessed both an un-
derstanding of what homoglyphs were and which
Latin letters the homoglyphs had replaced. We rea-
son that indirect normalization was a more difficult
task for the models, as 172 of the identified map-
pings derived from the OTH dataset sample were
fully composed of homoglyphs. While training
on the unnormalized, homoglyphed data granted
all four hate speech detection models a significant
performance boost (this aligns with the findings
of Cooper et al. (2023), the models’ performance
on GPT direct normalizations was nearly identical
to that on the human normalizations for both zero-
shot and five-fold cross-validation. This feature
is useful when large amounts of domain-specific

annotated homoglyphed training data do not exist
since high-quality normalizations can be produced
by LLMs with 10 input examples.

Future work is needed to determine the effec-
tiveness of the proposed normalization methods
on Unicode perturbations which extend past homo-
glyph substitutions for the Latin letters. Specifi-
cally, additional studies may consider the evalua-
tion of LLM-based homoglyph normalization on
datasets such as ANTHRO. Further, little research
currently exists which focuses on the normalization
of homoglyphs of punctuation characters. Future
work may include the evaluation of LLM-based
normalization on perturbations of this type.

6 Conclusion

The homoglyph normalization tools of the future
should not rely on rigid mappings or statically
learned data. As expected, hate speech detection
models performed best on human normalized text,
but normalization of this type is untenable for many
applications. We show that by harnessing the power
of large language models, robust indirect and direct
techniques for combating homoglyphs are possible.
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7 Limitations

The homoglyph patterns that were used in the
present study were derived from the OTH dataset
that predominantly focused on the capture of tweets
containing homoglyphs from the Cyrillic character
family. Accordingly, our homoglyph-augmented
dataset may not contain the full range of possible
homoglyph characters. Thus, the data used to sup-
ply context to the large language models for the
direct normalization approach in the present study
likely includes only a subset of the possible per-
turbations. However, this is a lesser issue for the
indirect normalization approach, as it has a greater
reliance on the context of the non-homoglyph char-
acters than the specific homoglyphs themselves.

8 Ethical Considerations

While the homoglyph-augmented dataset and list of
homoglyphed word mappings contain adversarial
homoglyph usage, we believe that the release of
our data is important to facilitate future work on the
study of malicious Unicode perturbations. As such,
the public GitHub repository provided includes the
full release of our data. If we become aware of
adversarial usage of our work, data will instead be
distributed to researchers on a case-by-case basis.
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A Appendix

A.1 Licensing Information for Utilized Data

Both the tweets_hate_speech_detection dataset,
which was augmented, and the OTH dataset, from
which the real-world homoglyphs were derived,
are open-source. Our use of both aligns with the
intended purposes detailed in their specified licens-
ing.

A.2 Optimal Normalization Prompts

Figure 3 depicts the optimal GPT-4o-mini indirect
normalization prompt. Figure 4 depicts the optimal
GPT-4o-mini direct normalization prompt. Fig-
ure 5 depicts the optimal Llama 3.1 8B indirect
normalization prompt. Figure 6 depicts the opti-
mal Llama 3.1 8B direct normalization prompt. To
access the prompts formatted as text files, please
reference the /prompts folder in our GitHub reposi-
tory.

A.3 Prompt Sensitivity for Normalization
Models

While the standard deviations calculated for the
average cosine similarity scores between the GPT-
produced normalizations and the original tweets
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Figure 2: Results of optimal normalization prompt tuning. Average cosine similarity between original (non-
homoglyphed) tweets and indirect and direct normalizations generated by GPT-4o-mini and Llama 3.1 8B using
k ∈ {1, 3, 5, 10} in-context examples on the associated homoglyph-augmented variants is reported. Experiment
was repeated for 10 randomly selected batches of in-context examples (standard deviations reported as error bars).
The black line corresponds with the average cosine similarity between original tweets and their unnormalized,
homoglyph-augmented variants.

were low (range = [0.01, 0.04]) on the normaliza-
tion tuning data (n = 1, 000), Llama experienced
variable performance depending on the given set
of in-context examples. Across the 10 batches of
k ∈ {1, 3, 5, 10} in-context examples, the Llama
3.1 8B model refused to generate output on over
10.00% of the normalization tuning data, 12 times
for indirect normalization and 8 times for the direct
normalization. At worst, the configuration of k = 5
in-context examples pulled from the third randomly
selected batch caused Llama to refuse output gen-
eration on 95.10% of the normalization tuning data.
We observed that the high failure rates were typi-
cally associated with configurations containing ≥ 1
in-context example with inappropriate language—
likely a result of the model guardrails imposed by
Meta. Conversely, no failures were observed in the
normalizations generated by GPT-4o-mini for any
configuration across the normalization tuning data.

A.4 Hate Speech Detection Models

1. RoBERTa-base binary classification model
trained on 58 million tweets. (Barbieri et al.,
2020).

2. RoBERTa-base binary classification model by
Liu et al. (2019) trained on the English subset
of the FRENK Dataset (Ljubešić et al., 2019).
Note: This is an updated version of the model
used in the OTH paper.

3. RoBERTa-base binary classification model
trained on 11 English hate speech datasets and

Normalization Approach
Average
Levenshtein
Distance

Proposed
Methods

GPT-4o-mini Indirect 2.10
GPT-4o-mini Direct 1.03
Llama 3.1 8B Indirect 4.33
Llama 3.1 8B Direct 2.73

Existing
Methods

Unidecode 4.04
cyrtranslit 3.93
NFC Form 6.46
NFKD Form 6.59

None 6.20

Table 5: Average Levenshtein distances between orig-
inal tweets (N = 28, 746) and the four proposed nor-
malization methods, four existing normalization tools,
and the unnormalized homoglyph-augmented tweets.

Normalization Approach
Average
Levenshtein
Distance

Proposed
Methods

GPT-4o-mini Indirect 7.08
GPT-4o-mini Direct 3.44
Llama 3.1 8B Indirect 12.96
Llama 3.1 8B Direct 10.59

Existing
Methods

Unidecode 6.95
cyrtranslit 6.95
NFC Form 10.73
NFKD Form 10.80

None 10.69

Table 6: Average Levenshtein distances between the
human-normalized tweets from the Offensive Tweets
with Homoglyphs evaluation data (N = 700) and the
four proposed normalization tools, four existing nor-
malization methods, and the unnormalized real-world
tweets.
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Figure 3: Optimal GPT-4o-mini indirect normalization prompt.

Figure 4: Optimal GPT-4o-mini direct normalization prompt.
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Figure 5: Optimal Llama 3.1 8B indirect normalization prompt.

Figure 6: Optimal Llama 3.1 8B direct normalization prompt.
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Rounds 1 and 2 of the Dynamically Generated
Hate Speech Dataset (Vidgen et al., 2021).
Note: This model was referred to as model 6
in the OTH paper.

4. RoBERTa-base binary classification model
trained on 11 English hate speech datasets
and Rounds 1, 2, and 3 of the Dynamically
Generated Hate Speech Dataset (Vidgen et al.,
2021). Note: This model was referred to as
model 7 in the OTH paper.

A.5 Error Analysis of Normalization Methods
Disclaimer: This section includes language that
some readers might find offensive.

We analyzed a randomly selected sample
(n=200) of the OTH dataset tweets to determine
normalization error trends for both traditional and
LLM-based normalization methods. Of the 200
GPT-4o-mini indirect normalizations, 15 contained
at least one residual delimiter underscore character
(_). Similarly, 20 of the indirect Llama 3.1 8B nor-
malizations were found to have at least one residual
underscore. We observed that the residual under-
scores occurred most frequently in tokens which
started with a hashtag (#). It is likely that the mod-
els struggled with indirect normalization in these
cases as underscores are typically used to represent
spaces within hashtags on social media platforms.

We observed another pattern of both GPT and
Llama censoring explicit words when performing
direct normalization. For example, Llama 3.1 8B
returned the direct normalization, “Genie: “You
have three wishes and that’s it.” Me: “I wish for
3 more Genies.” Genie: “F*** you smart ass.”.”
In this case, the word which Llama replaced with
“F***” initially contained only a single homoglyph
(a lookalike character for the Latin letter “c”)—
unprompted, the model chose to censor the full
word. We observed similar instances generated
by GPT. For example, GPT opted to replace ho-
moglyph characters with an asterisk instead of the
letter “c” in each of the six occurrences of the F-
word word, “Fu*k the Fu*king Fu*k*ers before
the Fu*king Fu*k*ers Fu*k you.” The censorship
of expletives by both models was also observed for
instances of the words “bitch” and “ass.”
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Normalization Approach Model Number A ∆ P ∆ R ∆ F1 ∆

Human Normalized

1 0.70 - 0.59 - 0.83 - 0.69 -
2 0.72 - 0.61 - 0.84 - 0.71 -
3 0.69 - 0.65 - 0.51 - 0.57 -
4 0.69 - 0.58 - 0.78 - 0.67 -

Unidecode

1 0.65 -0.05 0.81 0.22 0.16 -0.67 0.26 -0.43
2 0.57 -0.15 0.46 -0.15 0.46 -0.38 0.46 -0.25
3 0.54 -0.15 0.43 -0.22 0.45 -0.06 0.44 -0.13
4 0.56 -0.13 0.45 -0.13 0.49 -0.29 0.47 -0.20

cyrtranslit

1 0.65 -0.05 0.82 0.23 0.15 -0.68 0.25 -0.44
2 0.58 -0.14 0.48 -0.13 0.44 -0.40 0.46 -0.25
3 0.56 -0.13 0.45 -0.20 0.47 -0.04 0.46 -0.11
4 0.56 -0.13 0.46 -0.12 0.46 -0.32 0.46 -0.21

NFC Form

1 0.60 -0.10 0.02 -0.57 0.67 -0.16 0.04 -0.65
2 0.60 -0.12 0.49 -0.12 0.16 -0.68 0.24 -0.47
3 0.57 -0.12 0.47 -0.18 0.57 0.06 0.52 -0.05
4 0.63 -0.06 0.54 -0.04 0.44 -0.34 0.49 -0.18

NFKD Form

1 0.60 -0.10 0.02 -0.57 0.67 -0.16 0.04 -0.65
2 0.60 -0.12 0.49 -0.12 0.16 -0.68 0.24 -0.47
3 0.57 -0.12 0.47 -0.18 0.59 0.08 0.52 -0.05
4 0.63 -0.06 0.55 -0.03 0.44 -0.34 0.49 -0.18

None

1 0.57 -0.13 0.47 -0.12 0.57 -0.26 0.52 -0.17
2 0.63 -0.09 0.54 -0.07 0.44 -0.40 0.49 -0.22
3 0.61 -0.08 0.52 -0.13 0.27 -0.24 0.35 -0.22
4 0.60 -0.09 0.49 -0.09 0.16 -0.62 0.24 -0.43

Table 7: Zero-shot accuracy (A), precision (P), recall (R), and F1 score (F1) for four hate speech detection models
on the following variants of the Offensive Tweets with Homoglyphs evaluation data (N = 700): human normalized,
Unidecode normalized, cyrtranslit normalized, NFC form normalized, NFKD form normalized, and unnormalized.
Deltas between the human normalized and other variants presented for each metric.
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Normalization Approach Model Number A ∆ P ∆ R ∆ F1 ∆

Human Normalized

1 0.92 - 0.89 - 0.92 - 0.91 -
2 0.95 - 0.94 - 0.93 - 0.94 -
3 0.94 - 0.93 - 0.94 - 0.93 -
4 0.95 - 0.94 - 0.93 - 0.93 -

Unidecode

1 0.63 -0.29 0.91 0.02 0.88 -0.04 0.89 -0.02
2 0.85 -0.10 0.90 -0.04 0.70 -0.23 0.79 -0.15
3 0.92 -0.02 0.89 -0.04 0.92 -0.02 0.90 -0.03
4 0.92 -0.03 0.89 -0.05 0.91 -0.02 0.90 -0.03

cyrtranslit

1 0.92 0.00 0.90 0.01 0.89 -0.04 0.89 -0.02
2 0.88 -0.07 0.87 -0.07 0.82 -0.11 0.85 -0.09
3 0.92 -0.02 0.88 -0.05 0.93 -0.01 0.90 -0.03
4 0.91 -0.04 0.88 -0.06 0.90 -0.03 0.89 -0.04

NFC Form

1 0.89 -0.03 0.88 -0.01 0.86 -0.06 0.87 -0.04
2 0.80 -0.15 0.86 -0.08 0.59 -0.34 0.70 -0.24
3 0.90 -0.04 0.87 -0.06 0.89 -0.05 0.88 -0.05
4 0.90 -0.05 0.87 -0.07 0.89 -0.04 0.88 -0.05

NFKD Form

1 0.89 -0.03 0.87 -0.02 0.85 -0.07 0.86 -0.05
2 0.78 -0.17 0.82 -0.12 0.57 -0.36 0.67 -0.27
3 0.89 -0.05 0.89 -0.04 0.83 -0.11 0.86 -0.07
4 0.89 -0.06 0.87 -0.07 0.86 -0.07 0.86 -0.07

None

1 0.80 -0.12 0.86 -0.03 0.59 -0.33 0.70 -0.21
2 0.90 -0.05 0.89 -0.05 0.85 -0.08 0.87 -0.07
3 0.90 -0.04 0.87 -0.06 0.89 -0.05 0.88 -0.05
4 0.90 -0.05 0.87 -0.07 0.89 -0.04 0.88 -0.05

Table 8: Five-fold cross-validation accuracy (A), precision (P), recall (R), and F1 score (F1) for four hate speech
detection models on the following variants of the Offensive Tweets with Homoglyphs evaluation data (n = 700):
human normalized, Unidecode normalized, cyrtranslit normalized, NFC form normalized, NFKD form normalized,
and unnormalized. Deltas between the human normalized and other variants presented for each metric.
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