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Abstract

Unlearning has been proposed to remove
copyrighted and privacy-sensitive data from
Large Language Models (LLMs). Existing ap-
proaches primarily rely on fine-tuning-based
methods, which can be categorized into gradi-
ent ascent-based (GA-based) and suppression-
based methods. However, they often degrade
model utility (the ability to respond to nor-
mal prompts). In this work, we aim to de-
velop a general framework that enhances the
utility of fine-tuning-based unlearning meth-
ods. To achieve this goal, we first investigate
the common property between GA-based and
suppression-based methods. We unveil that
GA-based methods unlearn by distinguishing
the target data (i.e., the data to be removed) and
suppressing related generations—essentially
the same strategy employed by suppression-
based methods. Inspired by this finding, we
introduce Gated Representation UNlearning
(GRUN) which has two components: a soft gate
function for distinguishing target data and a
suppression module using Representation Fine-
tuning (ReFT) to adjust representations rather
than model parameters. Experiments show that
GRUN significantly improves the unlearning
and utility. Meanwhile, it is general for fine-
tuning-based methods, efficient and promising
for sequential unlearning. Our code is available
at github.com/renjie3/GRUN.

1 Introduction

LLMs have shown remarkable capabilities across
various tasks (Achiam et al., 2023; Touvron et al.,
2023). A key factor driving the rapid advancement
is the availability of web-scale datasets. However,
concerns have been raised regarding the use of
such large-scale data, as it often includes copy-
righted and privacy-protected data (Hacker et al.,
2023; Lucchi, 2024). For instance, The New York
Times sued OpenAI and Microsoft because their ar-

ticles have been used in training GPT1. Meanwhile,
the data is protected by General Data Protection
Regulation (GDPR) (Voigt and Von dem Bussche,
2017), and the data owners have the “right to be
forgotten” (Rosen, 2011). Therefore, it is crucial
to implement protections for these datasets. To
address this, unlearning has been proposed to re-
move specific data from LLMs without requiring
full retraining (Liu et al., 2024a,b). The goal is to
eliminate the influence of the target data or adjust
the model behavior as if it had never encountered
the target data.

LLM unlearning is typically a post-training
method, with fine-tuning being widely adopted as
an approach. Existing fine-tuning based unlearning
methods can be roughly divided into two categories.
One is gradient ascent-based (GA-based) meth-
ods, such as gradient ascent (GA) (Jang et al., 2023;
Maini et al., 2024) and its variants (Yao et al., 2023;
Liu et al., 2022; Zhang et al., 2024a; Fan et al.,
2024; Veldanda et al., 2024; Cha et al., 2024; Liu
et al., 2024c; Feng et al., 2024; Bu et al., 2024; Tian
et al., 2024). They negate the training impact of the
target data by reversing the gradient descent loss.
The other, suppression-based unlearning, does not
aim to erase learned information directly (Maini
et al., 2024; Li et al., 2024; Wang et al., 2024c;
Huu-Tien et al., 2024; Shi et al., 2024a; Liu et al.,
2024c; Sinha et al., 2024). Instead, it explicitly
tells the model about what constitutes target data
and guides it to generate human-preferred outputs
while suppressing those related to the target data 2.

However, recent evaluations on fine-tuning-
based methods reveal that there is a significant
trade-off between unlearning and model utility, i.e.,

1https://www.nytimes.com/2023/12/27/business/media/new-
york-times-open-ai-microsoft-lawsuit.html

2In addition to fine-tuning, other methods operating at the
inference stage have also been proposed, such as in-context
learning (ICL) (Pawelczyk et al.) and assistant models (Huang
et al., 2024). Nonetheless, given the widespread adoption of
fine-tuning, we focus on fine-tuning methods in this work.
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the model’s ability to respond to normal prompts
unrelated to the target data (Wang et al., 2024a; Si
et al., 2023; Wu et al., 2024a). This issue has been
widely observed in LLM fine-tuning: as the fine-
tuning dataset is small, it is likely to cause over-
fitting and reduce the general ability (Luo et al.,
2023; Zhai et al., 2023; Howard and Ruder, 2018).
Although they usually use retaining dataset to pre-
serve the model utility (Liu et al., 2022; Shi et al.,
2024b), its small size could limit the generalization.

Therefore, we aim to develop a general frame-
work to enhance the utility of fine-tuning-based
LLM unlearning. However, the two types of fine-
tuning-based methods are defined in totally differ-
ent ways, posing a challenge in developing such a
framework. Thus, we design a preliminary study
to investigate the common property between GA-
based and suppression-based methods (Section 3).
We find that, although GA-based methods appear
to be dedicated to negate the training of target data,
the final GA-unlearned LLMs still recognize target
data and actually treat it as a signal of unlearning.
If target data is in the input, the representations
exhibit a distinct pattern compared with the input
irrelevant to target data. Then unlearned models
suppress related generation. This suggests that the
GA-unlearned models also operate by distinguish-
ing and suppressing target data, which closely re-
semble the models by suppression-based methods.

Inspired by the insights from our preliminary
study that both GA-based and suppression-based
methods rely on distinguishing target data for
unlearning, we introduce Gated Representation
UNlearning (GRUN). GRUN consists of two plug-
and-play components designed explicitly for dis-
tinguishing and suppression: a soft gate function
to distinguish, and a suppression module utiliz-
ing Representation Fine-Tuning (ReFT) (Wu et al.,
2024b). The ReFT module fine-tunes the repre-
sentation instead of the model parameters, which
can avoid distorting the parameters to preserve the
utility. Meanwhile, its strength is controlled by the
soft gate function, which further ensures the gen-
eration unrelated to the target data remains almost
untouched. In essence, the soft gate function se-
lectively activates for target data, while the ReFT
module unlearns by redirecting the embeddings of
target-data-related prompts toward suppression.

We conduct extensive experiments to examine
the effectiveness and efficiency of GRUN. GRUN
requires a lightweight additional module (less than
0.05 % of the LLM’s size) and reduces training

time by over 95% compared to the original method,
yet achieves near-perfect unlearning while main-
taining utility. Moreover, GRUN is a general so-
lution adaptable to various fine-tuning-based un-
learning methods. Our experiments validate this
across various models, including Llama 3.1 and
Mistral, as well as across different datasets, such
as TOFU focusing on the unlearning of fine-tuning
data (Maini et al., 2024), and WMDP focusing on
unlearning pre-training data (Li et al., 2024).

2 Related works

LLM unlearning. Machine unlearning focused on
vision models in the early research (Cao and Yang,
2015; Warnecke et al., 2021; Bourtoule et al., 2021;
Kurmanji et al., 2024; Ren et al., 2024; Li et al.,
2021), but more recently, it has been extended to
LLMs (Eldan and Russinovich, 2023; Yao et al.,
2023; Shi et al., 2024b; Liu et al., 2024b). Fine-
tuning-based methods represent a key category of
unlearning but raise concerns regarding their im-
pact on model utility (Thaker et al., 2024a; Deeb
and Roger, 2024; Doshi and Stickland, 2024; Lynch
et al., 2024). Alternative approaches enable un-
learning during inference (Wang et al., 2024b; El-
dan and Russinovich, 2023; Ji et al., 2024; Thaker
et al., 2024b; Liu et al., 2024a). In this work, we
focus on fine-tuning methods, as they are widely
adopted.

Representation Fine-tuning (ReFT). ReFT
(Wu et al., 2024b) is a recently proposed parameter-
efficient fine-tuning method. Unlike traditional
fine-tuning approaches, which primarily adjust
model weights, ReFT focuses on fine-tuning rep-
resentations, leveraging the rich semantic informa-
tion embedded in the representation space to influ-
ence subsequent generation. Building on the linear
representation hypothesis (Park et al., 2023), which
posits that concepts are encoded within linear sub-
spaces of representations, ReFT learns low-rank
linear transformations to refine representations. It
achieves this by substituting the intermediate rep-
resentations—i.e., the outputs of specific Trans-
former layers—at selected layers and tokens.

3 Preliminary studies

In this section, we first introduce the definitions
about fine-tuning-based unlearning, and then con-
duct experiments to investigate their common prop-
erties.
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(a) Llama 3.1 by GD (b) Llama 3.1 by NPO (c) Mistral v0.1 by GD (d) Mistral v0.1 by NPO

Figure 1: PCA visualizations of embeddings (both before and after unlearning) of target data, retaining data,
and never-seen data. We apply 2-component PCA to project the embeddings into a 2D space and visualize the
distributions. Each subfigure corresponds to a separate PCA projection for an unlearned model.

(a) Llama 3.1 by GD (b) Llama 3.1 by NPO (c) Mistral v0.1 by GD (d) Mistral v0.1 by NPO

Figure 2: PCA visualization and the results of normal Q&A mixed and not mixed with target data. PCA follows the
same operation in Figure 1. The ROUGE-L Recalls of retaining data/world fact are listed below each figure.

3.1 Fine-tuning-based unlearning

Given an LLM f and a target dataset Dt, the goal of
an unlearning task is to get a model fu that behaves
as if it was never trained on Dt. Besides, fu should
also retain the model utility, i.e. the general text
generation capabilities. To achieve this, various
fine-tuning-based methods have been developed,
such as GA-based and suppression-based methods.

In GA-based methods, the unlearning objective
is usually formulated as the following:

argmin
θ

E(x,y)∈Dt
[Lf(y|x;θ)]

+ λE(x,y)∈Dr
[Lr(y|x;θ)] , (1)

where Dr is the retaining dataset to preserve the
model utility, and (x, y) denotes an input-output
pair. θ represents the updated parameters, while Lf

and Lr denote the forgetting and retaining loss func-
tions, respectively, with λ balancing them. Typi-
cally, Lf is the negative training loss (i.e., applying
Gradient Ascent) or a variant, while Lr corresponds
to the training loss on Dr or a regularization term
(e.g., the KL divergence between the f and fu).

We introduce two GA-based methods. Gradient
Difference (GD) (Liu et al., 2022) applies negative
standard training loss on Dt as Lf . Negative Prefer-

ence Optimization (NPO)(Zhang et al., 2024a), de-
rived from DPO (Rafailov et al., 2024), constrains
divergence from the initial checkpoint to regulate
strength of GA.

Suppression-based methods have a similar ob-
jective:

argmin
θ

E(x,y)∈Dt
[Ls(y, x,θ)]

+ λE(x,y)∈Dr
[Lr(y|x;θ)] ,

Ls is the suppression term. In IDK (Maini et al.,
2024), Ls encourages responses like “I don’t know”
for target data, while in RMU (Li et al., 2024), it
pushes target data representations toward a random
vector to disturb target data.

3.2 Findings of GA-based unlearning

In this subsection, we investigate the common
property between GA-based and suppression-based
methods. We find that GA-based methods cannot
remove target data as expected. Instead, the GA-
unlearned models distinguish the target data and
pretend to be unaware. It is actually the same strat-
egy as suppression-based methods. Experiments
are conducted by exploring following questions.
(1) Does reversing the training loss truly negate
the target data’s influence?
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If the GA-based methods could remove the influ-
ence of target data, it is expected that the unlearned
models should behave the same between the target
data and the data it has never encountered. To inves-
tigate this, we conduct an experiment to compare
the model behaviors in these two data cases.

Settings. We use TOFU dataset, which contains
synthetic Q&A pairs about non-existent writers and
books. We split the dataset into three subsets: target
data, retaining data and never-seen data. We first
fine-tune LLMs to learn the knowledge from the
target data and retaining data. Then we unlearn the
target data by GD and NPO. In Figure 1, we plot
the embeddings (both before and after unlearning)
of target data, retaining data and never-seen data.

Results. In Figure 1, we observe that in embed-
ding space, the unlearned models still recognize
target data, and distinguish it with a special pattern.
Before unlearning, the target data, retaining data,
and never-seen data have similar embeddings, as
all three sets are sampled from the same data dis-
tribution. In contrast, after unlearning, the target
data follows a significantly different pattern, dis-
tributed far from the retaining and never-seen data.
This suggests that the model does not truly remove
the target data. Instead, they still recognize it and
distinguish it by pushing it into a distinct region.
(2) Is unlearning performance associated with
this distinct pattern?

To further explore the connection between un-
learning and distinct patterns, we quantify the dis-
tinction and the unlearning effectiveness in Table 1.

Settings. We quantify the distinction using the
degree of overlap between the embeddings of target
and retained data, measured by Class-wise Separa-
bility Discriminant (CSD), i.e., the ratio of intra-
class distance (samples within target and samples
within retaining data) to inter-class distance (be-
tween target data and retaining data) (Ren et al.,
2023; Klecka, 1980). Unlearning effectiveness is
evaluated using ROUGE-L Recall, where a lower
score on target data indicates better unlearning (as
detailed in Section 5.1).

Observation. In Table 1, we observe that when
the pattern is more distinct (i.e., lower CSD), the
target data is more effectively unlearned (i.e., lower
ROUGE-L Recall). For example, Mistral unlearned
by GD has the lowest CSD and the lowest ROUGE-
L Recall, while Llama unlearned by NPO has the
highest CSD and the highest ROUGE-L Recall.
This implies that better unlearning performance is
likely to be associated with better distinction.

Llama 3.1 Mistral v0.1
GD NPO GD NPO

CSD 0.45 3.21 0.13 1.72
ROUGE-L Recall 0.016 0.197 0.001 0.127

Table 1: Unlearning effectiveness and distinction

(3) How do GA-based methods unlearn?
To analyze how the GA-unlearned models pro-

cess the target data, we compare the model be-
haviors between target data and normal Q&A data
(questions that should be correctly answered by
unlearned models).

Settings. We inject target data into normal Q&A
pairs to form the mixed data and compare the
model’s behaviors before and after the injection.
We use retaining data and world fact Q&A pairs
as normal Q&A data. For example, a mixed
data instance is “Where is Eiffel Tower? And
who is the author of Watermelon on the Moon?”,
where “who is the author of . . .” is an instance in
target data. We plot the embeddings and calculate
ROUGE-L Recall (higher score means more
correct answers) in Figure 2.

Results. From Figure 2, we can see that the un-
learned models actually treat target data as the un-
learning signal. Specifically, before adding target
data, the models correctly answer normal questions,
achieving a high ROUGE-L Recall. However, once
mixed with target data, the embeddings of normal
data is dominated by target data (which is pulled to-
ward the distinct area of target data). Consequently,
the model’s ability to answer normal questions de-
teriorates (lower ROUGE-L). This implies that, in-
stead of removing the target data, GA-unlearned
models treat it as a suppression signal.

In summary, our preliminary studies reveal that
GA-based unlearning methods do not erase the
target data as expected. Instead, the models still
recognize it and distinguish it in the embeddings.
Unlearning performance is likely to be associated
with the distinction. When target data appears in
the prompt, the model suppresses related genera-
tions—essentially employing the same strategy as
suppression-based methods.

4 Method

In this section, we first present the design of GRUN
and its training procedure. Lastly, we discuss how
to extend GRUN to sequential unlearning, where
multiple unlearning requests occur over time.
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Figure 3: An overall of the framework of GRUN.

4.1 GRUN

The observation in our preliminary study sug-
gests that the mechanism of both GA-based and
suppression-based methods is to distinguish the
target data. Based on this, we proposed the ReFT-
based Gated Representation UNlearning method to
explicitly take the advantage of this finding.

An overview of GRUN is in Figure 3. GRUN
consists of two plug-and-play components explic-
itly for distinguishing and suppression: a soft gate
function to distinguish target data, and a ReFT mod-
ule to suppress target-data-related generation. We
first explain the elements of ReFT below.

ReFT. As shown in Section 2, ReFT modifies a
model by freezing its parameters while fine-tuning
the intermediate representations of some layers.
Specifically, it applies the following transformation
to update the d-dimensional representation h

(l)
i of

the i-th token at layer l:

ΦReFT(h
(l)
i ) = h

(l)
i + ϕ(h

(l)
i ),

where ϕ(h
(l)
i ) is a trainable low-rank linear trans-

formation defined as

ϕ(h
(l)
i ) = R⊤(Wh

(l)
i + b−Rh

(l)
i ), (2)

where R ∈ Rr×d,W ∈ Rr×d and b ∈ Rr are train-
able parameters, with r ≪ d. Intuitively, the term
Wh

(l)
i + b represents the target representation we

aim to shift towards, while ϕ(h(l)
i ) is the directional

adjustment from h
(l)
i to the target representation

in the space defined by R. By replacing the origi-
nal representation h

(l)
i with the new representation

ΦReFT(h
(l)
i ), ReFT modifies the embeddings of the

input, thereby influencing the subsequent genera-
tion. A figure of ReFT is in Appendix A.

GRUN. On top of ReFT, we define GRUN as:

ΦGRUN(h
(l)
i ) = h

(l)
i + g(h

(l)
i )ϕ(h

(l)
i ), (3)

where g is the gate function. More specifically,
the soft gate g is a single-output regression model
(linear regression or Multi-Layer Perceptron neu-
ral network) with a softmax function following the
output. Thus, the output value of g is in the range
of (0,1). As shown in Figure 3, when the input rep-
resentation h

(l)
i is related to the target data, g(h(l)

i )
is closed to 1 which starts the low-rank transform
for unlearning. In contrast, if the input is not about
target data, then g(h

(l)
i ) is closed to 0 which passes

limited changes on the representation.
While GRUN can be used in any token position

and any Transformer layer, the configuration in our
work is as follows:

(1) The last token of input usually contains all
the semantic information of the input and has a
significant impact on the generation. Thus, we use
GRUN at the last token position of input. (2) To
improve effectiveness, we use GRUN for multiple
layers in a model instead of a single layer. Since
the later layers capture higher-level semantics than
previous layers which are beneficial for the distin-
guishing of gate function, we choose to use GRUN
for later layers (Peng et al., 2018; Jin et al., 2025).
To reduce the mutual influence (as discussed in
Appendix B.1), we choose interval layers instead
of successive layers. Specifically, for the LLMs
studied in the following work, the layers are: the
last layer, the last 7th layer and the last 12th layer.

4.2 Training objective
Our method is a unified method that can be adapted
to different fine-tuning based unlearning loss such
as GA (Yao et al., 2023), GD (Liu et al., 2022),
NPO (Zhang et al., 2024a), IDK (Maini et al.,
2024), RMU (Li et al., 2024) and other fine-tuning
based methods. In other words, GRUN can be also
seen as a new fine-tuning method that is tailored
for the LLM unlearning task.

The training objective is represented as follows:

L =Lu + LG (4)

=Lu + E(x,y,ŷ)∈Dt∪Dr
Ei,lLCE

(
g(h

(l)
i ), ŷ

)
,

where Lu is an unlearning loss which can be GA-
based or suppression-based loss, ŷ is the label to
indicate target data (ŷ = 1) and retain data (ŷ = 0),
and LG is the cross-entropy loss for the output
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of gate function. The unlearning loss Lu is used
to ensure the unlearning purpose. The term LG
fine-tunes the gate function to open (closer to 1) for
target data more and close (closer to 0) for the other
data. This training objective distinguishes the target
data for unlearning and keeps the model utility by
minimizing its impact on the normal input.

4.3 Sequential unlearning
In real-world scenarios, the unlearning requests typ-
ically arise sequentially over time. To process this
sequential unlearning, previous methods have to
re-train the whole set or fine-tune multiple rounds
which would largely reduce the model utility due
to the accumulated parameter distortion (Shi et al.,
2024b). In contrast, in GRUN, we mitigate this
by using an independent ReFT for each unlearning
request and combine them together. Specifically, if
we have M−1 unlearning requests finished and get
the new M -th request, we can fine-tune a separate
gate for the new coming target set and combine
multiple GRUNs by

ΦM
GRUN(h

(l)
i ) = h

(l)
i + c

M∑

j=1

gj(h
(l)
i )ϕ(h

(l)
i ),

where c is the coefficient to balance the strength.
Each gate gj is fine-tuned independently on a re-
quested target dataset Dt,j and then combined. The
coefficient c reduces as the increasing of M (the
details to determine c is in Appendix B.2). In this
way, we can mostly preserve the model utility and
save the training efforts.

5 Experiment

In this section, we first conduct the experiments
across different models and datasets in Section 5.2.
Then we test the performance under different sce-
narios including sequential unlearning and attacks
in Sec. 5.3, and conduct ablations studies in Sec-
tion 5.4 and Appendix 5.

5.1 Experimental settings
Models, baselines and datasets. We use Llama
3.1 (8B) (Dubey et al., 2024) and Mistral v0.1
(7B) (Jiang et al., 2023). We experiment on two
datasets TOFU (unlearn fine-tuning knowledge)
and WMDP (unlearn pre-training knowledge). Fol-
lowing the original settings (Maini et al., 2024), we
use GD, NPO, and IDK as baselines (using both
vanilla and LoRA fine-tuning) in TOFU. Following
Li et al. (2024), we use RMU as the baseline in

WMDP. GD and NPO are GA-based, while IDK
and RMU are suppression-based.
Metrics. For TOFU, we use ROUGE-L Recall and
Probability following Maini et al. (2024). ROUGE-
L Recall assesses correctness of the output text,
while Probability reflects the likelihood of gener-
ating correct responses (Appendix C.1 for details).
WMDP consists of multi-choice Q&A, therefore,
we use the accuracy as the metric to access whether
the model can correctly answer the questions fol-
lowing Li et al. (2024). For all the three metrics,
lower scores on target data indicate better erasing,
while higher scores on normal data indicates bet-
ter utility. Time cost is measured in GPU hours
(number of GPUs × training hours).
Implementation details. For baselines, GD, NPO
and IDK follow Fan et al. (2024), while RMU fol-
lows Li et al. (2024). For GRUN, adapted NPO,
IDK, and RMU are trained for fixed epochs, while
GD uses early stop when Lf in Eq. (1) exceeds
the threshold. We use linear regression as gate for
Llama and 3-layer MLP for Mistral. Both LoRA
and GRUN use rank of 4. All other details are in
Appendix C.2.

5.2 Main results
In this subsection, we present the results of TOFU
and WMDP and compare the time cost of GRUN
with vanilla fine-tuning and LoRA. The unlearning
assessment consists of two aspects: (1) the extent
to which the target data can be removed/unlearned
(unlearning effectiveness), and (2) the preservation
of model utility.
TOFU. To evaluate on TOFU, we compare unlearn-
ing effectiveness, utility, and time cost against three
baselines on two LLMs in Table 2. The LLMs are
first fine-tuned on TOFU’s synthetic dataset, af-
ter which a portion of the dataset is designated as
the target data for unlearning, while the remain-
ing synthetic data serves as the retaining data for
utility. Utility is assessed on three sets of data:
retained data, Q&A about real authors, and Q&A
about world facts, with the overall utility being their
average. From Table 2, our method consistently
outperforms the baselines of vanilla fine-tuning.

Specifically, for GD, GRUN has similar unlearn-
ing effectiveness as the vanilla baseline, while
significantly improving the utility, particularly in
ROUGE-L Recall, where it achieves an increase of
around 20% for both Llama 3.1 and Mistral v0.1.

For NPO, our method substantially enhances its
unlearning effectiveness while also achieving even
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Lu LLM ptgt Method psize Hours
ROUGE-L Recall Prob.

Unlearn↓ Utility(Retain/Fact/World)↑ Unlearn↓ Utility(Retain/Fact/World)↑

Llama
5%

Clean N/A N/A
0.991

0.939 (0.992/0.939/0.890)
0.995

0.566 (0.993/0.448/0.485)
10% 0.992 0.995

Mistral
5%

Clean N/A N/A
0.990

0.710 (0.994/0.515/0.622)
0.994

0.610 (0.995/0.401/0.433)
10% 0.988 0.990

GD

Llama
5%

Vanilla 100% 3.19 0.005 0.703 (0.493/0.854/0.762) 0.000 0.605 (0.575/0.622/0.619)

GRUN 0.001% 0.02 0.002 0.843 (0.888/0.843/0.798) 0.000 0.584 (0.874/0.432/0.446)

10%
Vanilla 100% 6.33 0.005 0.695 (0.483/0.818/0.785) 0.000 0.554 (0.654/0.496/0.513)

GRUN 0.001% 0.02 0.016 0.832 (0.906/0.729/0.862) 0.006 0.592 (0.912/0.402/0.462)

Mistral
5%

Vanilla 100% 3.01 0.004 0.568 (0.742/0.360/0.601) 0.000 0.581 (0.829/0.448/0.466)

GRUN 0.045% 0.06 0.000 0.660 (0.956/0.485/0.539) 0.000 0.588 (0.955/0.417/0.391)

10%
Vanilla 100% 6.07 0.001 0.396 (0.687/0.099/0.403) 0.000 0.558 (0.830/0.358/0.485)

GRUN 0.045% 0.18 0.000 0.595 (0.891/0.390/0.504) 0.000 0.545 (0.886/0.354/0.395)

NPO

Llama
5%

Vanilla 100% 3.96 0.201 0.751 (0.616/0.756/0.883) 0.016 0.645 (0.766/0.546/0.623)

GRUN 0.001% 0.19 0.020 0.886 (0.973/0.857/0.828) 0.000 0.634 (0.977/0.447/0.477)

10%
Vanilla 100% 7.93 0.197 0.738 (0.551/0.811/0.851) 0.025 0.599 (0.730/0.465/0.602)

GRUN 0.001% 0.38 0.029 0.862 (0.928/0.849/0.811) 0.000 0.599 (0.911/0.441/0.446)

Mistral
5%

Vanilla 100% 3.50 0.163 0.530 (0.820/0.256/0.514) 0.030 0.558 (0.912/0.364/0.399)

GRUN 0.045% 0.16 0.000 0.675 (0.984/0.485/0.555) 0.000 0.596 (0.980/0.394/0.414)

10%
Vanilla 100% 6.99 0.127 0.542 (0.842/0.290/0.494) 0.024 0.567 (0.923/0.360/0.419)

GRUN 0.045% 0.34 0.000 0.637 (0.893/0.445/0.573) 0.000 0.531 (0.890/0.342/0.362)

IDK

Llama
5%

Vanilla 100% 1.65 0.023 0.672 (0.578/0.627/0.812) 0.468 0.623 (0.871/0.479/0.520)

GRUN 0.001% 0.08 0.021 0.905 (0.980/0.882/0.853) 0.261 0.625 (0.984/0.434/0.458)

10%
Vanilla 100% 3.33 0.023 0.547 (0.570/0.353/0.718) 0.532 0.614 (0.871/0.459/0.512)

GRUN 0.001% 0.18 0.023 0.865 (0.892/0.879/0.823) 0.291 0.605 (0.938/0.435/0.441)

Mistral
5%

Vanilla 100% 1.53 0.023 0.435 (0.785/0.122/0.399) 0.533 0.574 (0.962/0.366/0.395)

GRUN 0.045% 0.09 0.022 0.683 (0.975/0.480/0.593) 0.570 0.606 (0.987/0.401/0.430)

10%
Vanilla 100% 3.07 0.023 0.489 (0.856/0.145/0.466) 0.657 0.595 (0.975/0.392/0.417)

GRUN 0.045% 0.20 0.040 0.605 (0.914/0.430/0.469) 0.490 0.577 (0.953/0.394/0.386)

Table 2: Results of TOFU. ptgt represents the proportion of target data within the entire synthetic dataset. psize is the
percentage of fine-tuned parameters relative to the entire LLM. “Unlearn” refers to the unlearning effectiveness, and
“Clean” refers to the model before unlearning. The improved performance is highlighted in bold.

higher utility. For example, on Llama, our approach
reduces NPO’s ROUGE-L Recall on the target data
from approximately 0.2 to 0.02 while increasing
utility by around 17.5%.

As for IDK, which is suppression-based, its
vanilla version has a more severe impact on the util-
ity of author-related Q&A (both synthetic and real)
than GA-based methods. However, our method sig-
nificantly improves utility performance, increasing
ROUGE-L Recall by more than 25% in most cases.

From Table 2, we also observe that GRUN is
more efficient, requiring fewer parameters and
lower training costs. We defer the discussion to
following Table 4 for LoRA experiments.
WMDP. Table 3 presents the results of removing
pre-training knowledge in WMDP. WMDP evalu-
ates unlearning by erasing harmful biological and
cyber knowledge while assessing utility using the
benign Q&A dataset MMLU (Hendrycks et al.,
2020). WMDP uses a 4-choice Q&A to measure
the knowledge. We adjust the unlearning strength

RMU Llama 3.1 Mistral v0.1
Bio/Cyber↓ MMLU↑ Bio/Cyber↓ MMLU↑

Before 0.696/0.418 0.611 0.668/0.437 0.581
Vanilla 0.494/0.337 0.581 0.256/0.252 0.529
GRUN 0.372/0.293 0.577 0.293/0.278 0.535

Table 3: Unlearning results on WMDP

psize Hours
ROUGE-L Prob.

unlearn utility unlearn utility

Llama 3.1

GD
LoRA 0.130% 1.27 0.375 0.623 0.059 0.067
GRUN 0.001% 0.02 0.000 0.840 0.000 0.582

NPO
LoRA 0.130% 0.77 0.255 0.886 0.103 0.315
GRUN 0.001% 0.08 0.020 0.896 0.000 0.634

IDK
LoRA 0.130% 1.33 0.054 0.782 0.849 0.346
GRUN 0.001% 0.19 0.021 0.915 0.262 0.625

Table 4: Comparison with LoRA

to maintain similar utility between vanilla RMU
and GRUN, and only compare the unlearning ef-
fectiveness. In Table 3, our approach significantly
improves performance on Llama 3.1 and maintains
a random-guessing accuracy on Mistral v0.1.
LoRA. We compare GRUN with LoRA to further
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(a) Unlearning effectiveness (b) Model utility

Figure 4: Sequential unlearning

Effectiveness
Paraphrase Quantization

Llama Mistral Llama Mistral

GD (GRUN) 0.006 0.005 0.002 0.000
NPO (GRUN) 0.019 0.000 0.021 0.000
IDK (GRUN) 0.044 0.040 0.038 0.034

Table 5: Unlearning effectiveness under attacks

demonstrate its superiority in efficiency. As shown
in Table 4, our method requires fewer parameters
while achieving better performance across all un-
learning and utility metrics, regardless of the model
or fine-tuning loss. Additionally, GRUN reduces
training time by 95% compared to vanilla training
(Table 2) and by 85% compared to LoRA. This
efficiency gain is attributed to two key factors:

• Fewer parameters to update. GRUN updates
less than 0.05% (even 0.001% for Llama) of
the parameters compared to the full LLM.

• A significantly shorter gradient backpropaga-
tion path. GRUN is applied only to the last
few layers, eliminating the computational cost
of backpropagating gradients through the ear-
lier layers. (LoRA updates fewer parameters,
but has to backpropagate the entire network.)

5.3 Different unlearning scenarios
In this subsection, we evaluate GRUN’s perfor-
mance under sequential unlearning and assess its
robustness against two attacks—prompt paraphras-
ing and model quantization—to validate its effec-
tiveness across various unlearning scenarios.
Sequential unlearning. In Figure 4, we first fine-
tune the models with all the synthetic data of TOFU,
and then simulate sequential unlearning by issuing
six unlearning requests, each targeting a different
forget set containing 5% synthetic data. As shown
in Figure4a, the unlearning effectiveness remains
consistent across both baselines and our method.
However, in Figure 4b, our approach significantly
outperforms the baselines in utility when multiple
requests are processed.

(a) Unlearning effectiveness (b) Model utility

Figure 5: Contributions of each components

Robustness. In Table. 5, we evaluate the robust-
ness of GRUN by attacking the unlearned model
to recover the removed knowledge through prompt
paraphrasing and model quantization. We use GPT-
4 to paraphrase the questions to bypass GRUN’s
distinguishing mechanism. Our method remains
stable, preserving the original unlearning effective-
ness. Zhang et al. (2024b) reports that quantization
may negate unlearning; however, our approach ef-
fectively recognizes and removes quantized repre-
sentations with no loss in effectiveness.

5.4 Ablation study

In this subsection, we conduct ablation studies to
analyze the effects of each component of GRUN,
i.e., ReFT, the soft gate, and the gate loss (LG).

We compare vanilla fine-tuning along with three
variants of GRUN to evaluate the contribution of
each component: (1) ReFT-only (without the gate
or LG), (2) GRUN without LG (maintaining the
same structure as GRUN but trained solely with
Lu), and (3) the complete GRUN.

ReFT-only. In Figure 5, switching from vanilla
fine-tuning to ReFT-only increases utility but re-
duces unlearning effectiveness. This suggests that
ReFT enhances utility by freezing model parame-
ters as expected but has limited capability in distin-
guishing target data due to its simple structure.

GRUN without LG. Adding the gate function
(without LG), improves unlearning effectiveness,
particularly for NPO. This indicates that even in the
absence of LG, the gate function can automatically
aid in distinguishing target data during optimiza-
tion. (More empirical analysis in Appendix D.)

The complete GRUN. The complete GRUN
model further enhances both unlearning effective-
ness and utility. This demonstrates that explicitly
guiding GRUN with LG fundamentally strengthens
fine-tuning-based methods.
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6 Conclusions

Unlearning aims to remove copyrighted and
privacy-sensitive data from LLMs, but often de-
grades model utility. We propose GRUN, a general
framework to enhances fine-tuning-based unlearn-
ing. GRUN leverages the shared mechanism be-
tween GA-based and suppression-based methods.
It uses a soft gate function for distinguishing and a
ReFT-based suppression module to adjust represen-
tations. GRUN improves both unlearning effective-
ness and utility, and enables efficient unlearning.

Limitations

Although our method can largely enhance the per-
formance of unlearning, our method still cannot
achieve truly unlearning. We start from the current
methods to discuss how far from the real goal in this
work. Current LLMs are vast and complex, making
it difficult to precisely locate and remove specific
knowledge traces. Future research is needed to
develop more robust and theoretically grounded ap-
proaches to precisely track, isolate, and eliminate
specific knowledge without compromising overall
model capabilities. We hope this work can inpsire
further exploration into this pressing issue.
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Figure 6: An overall of the framework ReFT.

A ReFT

The figure of ReFT is shown in Figure 6.

B Hyper-parameters

B.1 Choosing layers for GRUN
We find that when the layers are too close, it is pos-
sible to influence the each other’s training. For ex-
ample, when we use the last two layers for GRUN,
the unlearning performance of Llama increases to
0.4 for GD. Thus, we use interval layers.

B.2 The coefficient c for sequential unlearning
In our experiments, we tune the hyper-parameter
c to get the best utility while maintaining the un-
learning. This is reasonable since the LLM builder
have the target data which can be used to search
the best hyper-parameters.

C Experimental settings.

C.1 Metrics
For Probability, TOFU uses the normalized like-
lihood for target and retaining data. For real au-
thors and world facts, we follow their settings use
the probability between correct answer and para-
phrased answer (wrong answers). Please refer the
details to Maini et al. (2024).

C.2 Other implementation details.
GRUN is trained for 40 epochs on NPO and IDK.
All the learning rates are 1e-5. The time cost is
tested on A6000 GPUs.

D Additional experiments

To further examine the different behaviors of the
gate function with and without LG, we present the
gate function outputs for target and retaining data
in Table 6. With LG, the gate function behaves as

LG Lu
Gate 1 (l = 20) Gate 2 (l = 25) Gate 3 (l = 31)

target ↑ retain ↓ target ↑ retain ↓ target ↑ retain ↓

No
GD 0.00 0.00 0.99 0.08 1.00 0.05

NPO 1.00 1.00 1.00 1.00 1.00 1.00
IDK 1.00 1.00 0.00 0.00 0.00 0.00

Yes
GD 0.93 0.24 1.00 0.03 0.92 0.02

NPO 0.99 0.09 1.00 0.02 1.00 0.02
IDK 0.99 0.09 1.00 0.02 1.00 0.01

Table 6: Outputs of gate functions. l = 20, 25, 31 rep-
resents the last 12th, last 7th and last layer respectively.
The arrow ↑ (or ↓) means the output is expected to be
close to 1 (or 0).

expected—opening for target data while closing
for retaining data. Even in the absence of explicit
guidance from LG, the gate can still differentiate
effectively, as seen in Gate 2 and Gate 3 of GD.
For IDK, the gate function helps identify the op-
timal layer for ReFT and adjusts by closing re-
dundant layers. A special case arises with NPO
when LG is absent: all gates remain open for both
target and retaining data. Although this structure
appears similar to ReFT-only, it has significantly
enhanced unlearning effectiveness compared with
ReFT-only. We conjecture that the soft gate in-
fluences the optimization process. In the case of
ReFT-only, retaining data may compete with target
data due to their reversed losses. For GRUN with-
out LG, the gate may prioritize forgetting data early
in training, as the loss on retaining data has limited
room to decrease—having already converged be-
fore unlearning. This hypothesis is supported by
the observation that, within the first 10 steps, the
forgetting loss of GRUN without LG is lower than
that of ReFT-only.

E Failure cases

GRUN can occasionally harm model utility. For in-
stance, in the TOFU benchmark, unlearned models
sometimes fail on questions involving real authors,
such as “Who is the author of the play ’Romeo
and Juliet’?”. GRUN is trained on the retaining
data of TOFU, but not real authors. Thus, GRUN
is good at distinguishing retaining data, but may
not generalize well to other data like real authors.
This highlights the importance of the diversity of
retaining data.

F Details about capacity in sequential
unlearning

GRUN demonstrates strong capacity in sequen-
tial unlearning, maintaining utility (measured by

18475



ROUGE recall) above 0.5 even after 11 unlearn-
ing rounds. In contrast, the baseline NPO fails
earlier, with utility dropping below 0.5 after just 6
unlearning steps.
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