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Abstract

Ideation, the process of forming ideas from
concepts, is a big part of the content creation
process. However, the noble goal of helping
visual content creators by suggesting meaning-
ful sequences of visual assets from a limited
collection is challenging. It requires a nuanced
understanding of visual assets and the integra-
tion of open-world knowledge to support cre-
ative exploration. Despite its importance, this
task has yet to be explored fully in existing
literature. To fill this gap, we propose Visual
Story Ideation, a novel and underexplored task
focused on the automated selection and arrange-
ment of visual assets into coherent sequences
that convey expressive storylines.

We also present VISIAR, Visual Ideation
through Sequence Integration and Asset
Rearrangement, a robust framework lever-
aging Multimodal Large Language Models
(MLLMs), and a novel Story Graph mecha-
nism. Our framework operates in three key
stages: visual content understanding, candi-
date asset selection, and asset rearrangement
via MLLMs. In addition, we curated a new
benchmark dataset, called VTravel, to evaluate
our methods both qualitatively and quantita-
tively. User studies and GPT-as-the-judge eval-
uation show that our approach surpasses GPT-
4o based baseline by an average of 33.5% and
18.5% across three different metrics, demon-
strating the effectiveness of our framework for
generating compelling visual stories. 1

1 Introduction

Visual story (Huang et al., 2016) plays a pivotal
role across diverse domains, including digital mar-
keting, recreational content creation, and personal
content generation for social media, due to its abil-
ity to captivate audiences. However, content cre-
ators often face significant challenges in crafting

1Please check our project website for more details:
https://github.com/Jeffery9707/VISIAR

Figure 1: Visual Story Ideation: Given a collection of
visual assets, we produce multiple potential storylines
by selecting and combining visual assets from the col-
lection automatically.

expressive and coherent visual stories from their
personalized assets, as the asset collection can con-
tain several hours of content, making it overwhelm-
ing to sift through manually. More importantly,
ideating compelling storylines from hundreds or
thousands of assets is time-consuming and labor-
intensive, requiring professional expertise in inter-
preting visual content, selecting relevant elements,
and arranging them into an expressive storyline.
Automating the ideation process can not only ac-
celerate visual storytelling but also inspire creators,
broaden access to novice users, and expand creative
possibilities across industries. While research on
visual storytelling (Hong et al., 2023) is of great
interest, this automatic ideation process remains
largely underexplored. To bridge this gap, we in-
troduce a novel task, Visual Story Ideation, aimed
at automatically deriving underlying visual stories
from a collection of visual assets.
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Developing an automatic visual story ideation
system presents significant challenges. Such a sys-
tem must demonstrate a deep understanding of vi-
sual assets, leverage open-world knowledge for cre-
ative story ideation, and efficiently navigate large
collections of assets. The lack of established bench-
marks or a well-defined framework further compli-
cates this task. Current visual storytelling methods
(Hong et al., 2023; Yang et al., 2023) often rely
on predefined sequences of visual assets or accom-
panying text scripts, which are not available in
real-world scenarios (such as creating short reels
with a coherent story from hours of randomly taken
vlogs), leaving the ideation process untouched.

To address these challenges, we propose
VISIAR, Visual Ideation through Sequence
Integration and Asset Rearrangement, a framework
that empowers MLLM for Visual Story Ideation.
It encompasses three key stages: visual content
understanding, candidate asset selection, and as-
set rearrangement for expressive storyline creation.
In the first stage, MLLM is used to analyze vi-
sual content because of their remarkable visual
understanding ability (Yin et al., 2024). However,
MLLM’s limitations of context window and long-
context understanding make it unsuitable for the
designated task. Therefore, in the second stage,
we explore and implement multiple methods for
candidate asset selection to empower MLLM to
navigate through hundreds of visual assets. We
develop feature-based clustering and graph-based
clustering approaches. Specifically, we develop a
group of Story-Graph Enhanced methods, which
construct a story graph using MLLMs to propose
candidate visual assets for each storyline. In partic-
ular, we invent the LLM-Ideation Graph method:
Leveraging MLLM’s open-world knowledge for
story graph construction. Finally, in the third stage,
MLLMs are employed to rearrange the selected
assets and generate expressive storylines.

To establish a benchmark for this novel task, we
curate a new dataset, VTravel, comprising short
video clips to assemble realistic scenarios. User
studies and the GPT-as-the-judge evaluation are
conducted to assess our methods, demonstrating
that our framework with the LLM-Ideation Graph
method surpasses the performance of the state-of-
the-art MLLM baseline in generating coherent and
expressive visual stories.

In summary, our contributions are as follows:

• Novel Task We propose a novel and challeng-

ing task, Visual Story Ideation, which is un-
derexplored yet of significant practical value
for content creators.

• Novel Framework We introduce the first
framework for visual story ideation, compris-
ing three effective stages. In our framework,
we propose innovative methodologies for con-
structing a visual story graph based on asset
collections, empowering MLLMs to tackle the
complex task of visual story ideation.

• New Benchmark Dataset To validate our
framework and establish a robust bench-
mark, we have curated a novel dataset, called
VTravel, which will be made publicly avail-
able upon publication to foster further re-
search and innovation.

2 Related Work

To the best of our knowledge, we are the first to in-
vestigate the challenging Visual Story Ideation task.
Our task is related to the visual storytelling task,
ideation based on Large Language models, and tan-
gentially related to Multi-modal Large Language
models.

2.1 Visual Storytelling
Visual storytelling has been a popular research
topic. The task usually involves generating a text
story from a predefined sequence of images (Huang
et al., 2016; Hong et al., 2023) or videos (Han
et al., 2023). To improve story generation, Sto-
ryteller (ul Haque and Ghani, 2022) proposes an
image caption method to generate story-type cap-
tions for images. (Yang et al., 2024) introduces
generating video narrations with structured story-
lines with LLMs. These works play significant
roles in visual storytelling. However, they all re-
quire a pre-defined sequence of visual assets, which
provide guidance of the storyline and are the results
from the ideation process. (Chen et al., 2019; Yang
et al., 2023; Lu et al., 2023; Yturrizaga-Aguirre
et al., 2022) provides another direction of visual
storytelling by letting users illustrate a pre-defined
story by retrieving clips from a large collection of
images or videos through text script. (Sun et al.,
2024) proposes a new dataset for Vision-Language
Story Understanding, which supports the alignment
between the story script and videos. (Gu et al.,
2023) proposes TeVis, which retrieves an ordered
sequence of images from a large dataset to visual-
ize a high-level text synopsis. Script-to-Storyboard
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Figure 2: Framework Overview: Our framework VISIAR contains three stages. Visual Content Understanding:
Utilize vision feature extractor and MLLM to extract features and text information from the visual assets. Candidate
Assets Selection: Propose candidate assets for storylines through clustering methods. Assets Rearrangement: For
each proposed cluster, use MLLMs to assemble the visual assets and generate a visual story.

pipeline (Tian et al., 2022; Rusu and Rusu, 2024) is
also proposed to utilize text vision retrieval for sto-
rytelling. Those methods generally require a large
collection of images or videos and an existing sto-
ryline. VSC (Choi et al., 2016) offers an alternative
storytelling approach when the temporal informa-
tion is available. It proposes to compose a visual
story from a collection of clips with plot analysis.
Further discussion and comparisons of temporal-
based methods can be found in Appendix A.7. In
summary, current research on visual storytelling
does not provide insight into the story ideation pro-
cess from existing videos or images. Our research
fills in the gap between ideation and current visual
storytelling works.

2.2 Ideation for Storytelling
Ideation is to assist content creators to develop
expressive stories. It is challenging due to its
exploratory and subjective nature. Multiple ef-
forts have been put into this research direction.
TaleStream (Chou et al., 2023) proposes to use
tropes as an intermediate representation of stories
to tackle this task. The system recommends tropes
to help develop a text story. Metamorpheus (Wan
et al., 2024) harnesses LLMs, such as ChatGPT, to
help users relive their dream experience through
visual story ideation. XCreation (Yan et al., 2023)
also uses LLM to develop a Creativity Support Tool
for storybook ideation. ScriptViz (Rao et al., 2024)
provides a tool to assist scripting writing by retriev-
ing frames from a movie dataset and revising the
script. In summary, current ideation works usually
provide a platform to assist users with storytelling,
but no complete storyline is suggested automati-

cally. Our visual story ideation focuses on video
modality and provides a complete storyline without
human interference.

2.3 Multi-modal Large Language Models

Multi-modal Large Language Models such as GPT-
4o (Achiam et al., 2023) and LlaVa (Liu et al.,
2024) bring new insight into Visual Story Ideation
task because of their powerful capability. (Alayrac
et al., 2022; Bai et al., 2023; Li et al., 2023; Driess
et al., 2023; Wu et al., 2024; Wang et al., 2023; Zhu
et al., 2023). However, the limitation of the context
window size and the ability to understand long con-
texts impacts the visual story ideation performance.
Therefore, we propose candidate asset selection in
our framework to address this issue and empower
the MLLM for the visual story ideation task.

3 Methodology

3.1 Method Overview

Given a collection of videos V = {V1, V2, . . . , Vn},
where each video Vi is represented as a se-
quence of frames {Fi,t} indexed by time t, the
goal is to generate a set of ordered "stories"
S = {S1, S2, . . . , Sm}. Each story Sj =
⟨Vj,1, Vj,2, . . . , Vj,k⟩ consists of an ordered subset
of videos from V that together form a coherent and
expressive visual storyline.

To leverage the ideation capabilities of Multi-
modal Large Language Models (MLLMs) while
addressing challenges such as limited context win-
dow size and the complexities of long-context un-
derstanding, our framework is designed with three
stages: visual content understanding, candidate as-
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Figure 3: Graph Connection Creation: We experiment with three methods for creating the connection between
assets. Tag-Connection: Define the edges to be the overlapped content word counts. LLM-Connection: Use LLM
and all the descriptions of videos to create the edges. LLM-Ideation: Create the edges through ideation. Create
imagined assets that connect to the input video. Then, the imagined assets are matched with existing videos by
semantic similarity. Use the similarity to draw connections among visual assets so that the story graph is constructed.

sets selection, and assets rearrangement. Figure 2
shows an overview of our framwork.

In the first stage, keyframes are sampled from
the input videos and transformed into textual repre-
sentations. In the second stage, these features are
utilized to design methods for selecting candidate
visual assets. Finally, in the third stage, the selected
assets are rearranged in a meaningful order, and an
expressive storyline is automatically created with
optional narratives.

3.2 Visual Content Understanding

We employ a multimodal large language model
(MLLM), denoted as M, to understand the vi-
sual content of videos. For each video Vi, we
uniformly sample five frames, represented as
{Fi,t}5t=1, where Fi,t denotes the t-th sampled
frame from video Vi. These frames are input into
M, which is prompted to perform the following
tasks under the assumption that the frames are de-
rived from a short video clip.

• What is this video about? A textual descrip-
tion of the video is extracted and denoted as
Di.

• What kind of story can this video make? Ex-
amples like documentary, nature, and travel

guide the response, resulting in a video type
list Ti.

• What is the feeling from watching this video?
Sentiments are extracted under the assump-
tion that similar emotions enhance coherence,
represented as Ei

• Who are the main characters in this video?
Main characters Ci are extracted, which may
contribute to a cohesive storyline.

• Extract action triplets Action triplets, denoted
as Ai, are extracted since they capture key
content and aid in connecting clips.

Formally, we have:

M({Fi,t}5t=1, P1) → {Di, Ti, Ei, Ci, Ai},

where P1 represents the task-specific prompt.
The output consists of Di as sentences, Ti, Ei, Ci,
and Ai as word bags.

3.3 Candidate Assets Selection
One approach to ideate a visual story from video
collections is to input all sampled frames and de-
scriptions into MLLMs and prompt them to per-
form the ideation task. While feasible for small
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datasets, this becomes impractical for larger ones
due to model limitations. Despite supporting up
to 128k tokens, state-of-the-art MLLMs struggle
with long contexts. Additionally, the computational
cost associated with token usage poses another con-
straint.

To mitigate these issues and optimize MLLMs’
capabilities, we introduce candidate assets selec-
tion as the second stage of our framework. This
stage pre-selects visual assets that contribute to ex-
pressive, coherent stories, forming the basis for
meaningful storylines. We explore multiple selec-
tion approaches, broadly categorized into feature-
based clustering and graph-based methods.

3.3.1 Feature Clustering
The initiative of applying clustering methods over
the collection of videos is that videos with similar
content might be able to compose a visual story.
We experimented with visual feature representa-
tion and semantic feature representation for this
method.

Visual Clustering We uniformly sampled p
frames from each video Vi. We utilize a pre-trained
visual feature extractor, denoted as ϕv, to extract
the visual feature. The visual representation Wv

for Vi is computed as the mean of the extracted
features from its sampled frames:

Wv
i =

1

p

p∑

t=1

ϕv(Fi,t), (1)

After extracting the visual representation, K-means
(Hartigan and Wong, 1979) clustering is applied to
propose the candidate visual assets for each story-
line.

Text Clustering We utilize the extracted textual
content to form a semantic representation for each
video. Ti, Ei, Ci, and Ai are preprocessed to miti-
gate the effects of synonyms.

To generate textual representations, we employ
a textual vectorizer, denoted as ϕt, which processes
grouped single-word textual elements from Ti, Ei,
Ci, and Ai to produce a frequency-based represen-
tation. For the video description Di, we utilize
a sentence embedding model, denoted as ϕs, to
extract high-dimensional embeddings. The com-
plete semantic representation for each video is then
constructed as the concatenation of the textual vec-
torizer output and the embedding model output:

Ws
i = [ϕt(Ti, Ei, Ci, Ai), ϕs(Di)], (2)

where Ws
i represents the semantic representa-

tion of video Vi. Finally, we apply K-means clus-
tering on {Ws

i} to group videos based on their
semantic content, generating clusters of candidate
visual assets for each storyline.

We denote the obtained clusters of videos as
K = {K1,K2, . . . ,Km}.

3.3.2 Graph-based clustering
A good visual story sequence does not necessar-
ily consist of visually or semantically similar as-
sets. Instead, it requires meaningful connections
between the selected visual assets. To address this,
we propose constructing a story graph that repre-
sents these connections using text features or in-
sights from LLMs. Once the graph is constructed,
graph clustering is applied to identify candidate as-
sets for storytelling. Consider videos Vi as nodes in
the story graph G, where the connection between
Vi and Vj is represented as a weighted edge Eij . To
construct the graph and define these edges, we ex-
plore three approaches: Tag-Based Graph, LLM-
Connection Graph, and LLM-Ideation Graph.
Figure 3 provides an illustration of these methods.

Tag-Based Graph The weighted edge Eij is de-
termined by counting the number of overlapping
words between Ti, Ei, Ci, Ai and Tj , Ej , Cj , Aj .
To increase the diversity of events in the proposed
candidate assets, we exclude action information
from Ai and denote it as A∗

i . The weight on the
edge is defined as:

Eij = |(Ti, Ei, Ci, A
∗
i ) ∩ (Ti, Ei, Ci, A

∗
i )| (3)

LLM-Connection Graph Multimodal large lan-
guage models (MLLMs), denoted as M, possess
extensive knowledge and can effectively establish
semantic connections between assets. To ensure the
input remains within the context window size of M,
we provide only the video descriptions {Di}ni=1,
excluding visual content. For each video descrip-
tion Di, M is prompted with the following query:

For the given video description Di, which five
videos can be placed before or after this video from
the video collection {Di}ni=1?

M({Di}, P2) → {V i
k}10k=1,
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where P2 represents the task-specific prompt.
The LLM provides connections by identifying up
to 10 related videos {V i

k}10k=1 for a given video Vi.
The weight Eij is then defined as:

Eij =

{
1, if Vj ∈ {V i

k}10k=1,

0, otherwise.
(4)

This process is repeated for each Di, resulting
in the construction of the story graph G.

LLM-Ideation Graph To leverage the ex-
ploratory and ideation capabilities of LLMs, we
use LLM-Ideation to establish connections be-
tween Vi. For each video description Di, we input
it into the LLM and prompt the following task:

This is a clip taken from a short video. Imagine
what possible q clips could happen before or after
this clip. Give the description of those clips.

For each Di, this process generates a collection
of ideated video descriptions {Iir}qr=1, representing
open-world knowledge. We denote P3 as the task-
specific prompt.

M({Di}, P3) → {Iir}qr=1,

To ground this knowledge in the existing video
collection and establish connections, we calculate
the cosine similarity between the embedding of
ideated clips and the current clip collection. If the
similarity is larger than a threshold θ, we increase
the weight of the corresponding edge.

Eij =

q∑

r=1

|cos(ϕs(I
i
r), ϕs(Dj)) > θ| (5)

In this way, we build up the story graph G with
open-world ideation knowledge.

Graph Clustering After constructing the story
graph G, we apply graph clustering (Louvain)
(Blondel et al., 2008), and obtain clusters of videos
clusters of videos K = {K1,K2, . . . ,Km} based
on their connections with each other instead of sim-
ilarity.

3.4 Assets Rearrangement
In the previous stage, we obtained clusters of
videos K = {K1,K2, . . . ,Km} using different
methods. These clusters represent potential story-
lines. To produce the final visual story, we input
the middle frame Fmid and the video description
Di of videos in Km to the MLLM. We prompt

the MLLM to select and arrange these videos and
provide the video sequence for visual storytelling.

4 Experiments

4.1 Dataset

Ideally, we need a dataset containing hundreds of
videos with diverse potential storylines. However,
to the best of our knowledge, no datasets exist
specifically for visual story ideation. To address
this and to evaluate our methods, we curated a new
dataset: VTravel.

VTravel We collected travel and nature videos
from video platforms under CC-BY licenses. Using
a scene detection model (PySceneDetect, 2024),
we segmented videos into single-scene clips and
manually filtered them, resulting in around 450
clips resembling a user’s travel album. Each clip
is 3–15 seconds long. Please refer to Appendix
A.1 for more details about the construction of this
dataset.

4.2 Models

We choose GPT-4o as the base MLLM M for this
task due to its outstanding multimodal capabilities.
With this, we build the baseline where we provide
the model with the middle frame of all the videos
and their description, prompting it to perform the
visual ideation task. We include more details of
the GPT-4o baseline in the Appendix A.3. For
auxiliary models, especially for our proposed meth-
ods, we further use CLIP (Radford et al., 2021)
as the visual feature extractor ϕv, TF-IDF vector-
izer (Sparck Jones, 1972) as ϕt and Sentence-Bert
(Reimers, 2019) as ϕs.

4.3 Qualitative Evaluation

To comprehensively evaluate each method, we first
perform a qualitative analysis. Given the inherent
challenges of directly comparing methods for the
ideation task, we analyze each approach individu-
ally. Figures 4 illustrate the middle frame sequence
of each clip. Some videos are truncated due to
formatting limitations; additional results with full
video visualized are provided in the appendix A.8.

GPT-4o Baseline When performing the visual
story ideation task, GPT-4o turns to group visual as-
sets with similar content together. It also appears to
select irrelevant clips to form a short video, which
leads to bad results (shown in the red rectangle).
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Figure 4: Qualitative results from our proposed VTravel dataset. The automatically generated topic is in the
first column: The GPT-4o based baseline (A) displays disjoint content sets with an irrelevant clip in the middle
(highlighted in red). Visual (B) and text (C) clustering methods produce monotonous and less engaging stories. The
Tag-Connection graph (D) can create a progressive story but sometimes includes visually incoherent content (in red).
The LLM-Connection graph (E) shares issues with methods B and C, resulting in less expressiveness. In contrast,
the LLM-Ideation Graph (F) demonstrates superior quality, presenting a coherent yet engaging visual story.

Visual & Text Clustering The visual or text clus-
tering methods propose visually or semantically
similar assets as candidates for storytelling. We
found that the generated videos are often composed
of one single activity, resulting in a less expressive,
monotonous storyline.

Tag-Connection Graph The Tag-Connection
Graph method seems to be a happy middle between
asset similarity and storyline development. For ex-
ample, the resulting storyline (D) includes clips of
rivers, forests, and tourism activities, illustrating
a sense of progression in the storyline. However,
the tag-based connectivity is relatively coarse, oc-
casionally leading to the selection of clips that lack
coherence within the visual story.

LLM-Connection Graph Utilizing LLM to sug-
gest the connection between existing assets yields
reasonable results. Although this method success-
fully formulates a storyline, it also tends to group
similar assets for storytelling, which results in less
expressive results. We suspect that the graph con-
struction process may form cycles when assets fo-
cus on the same activity, contributing to these is-
sues. More details are included in Appendix A.5.

LLM-Ideation Graph The LLM-Ideation Graph
Method yields the best results, leveraging LLMs’
open-world knowledge beyond existing video de-
scriptions. The knowledge from LLM is grounded

Figure 5: User Study: The VISIAR-LLM-IG method
improves the performance in all aspects.

in the existing dataset and enriching storyline devel-
opment. For instance, in Figure 4, the storyline (F )
follows Japanese tourists exploring various land-
marks, from statues to traditional Japanese build-
ings. Such coherent development of storylines is
not observed in other methods. These findings sug-
gest that our novel LLM-Ideation Graph Construc-
tion significantly enhances Visual Story Ideation
and provides valuable insights into this challenging
task. For more full video results, please refer to
Appendix A.8.

4.4 Quantitative Evaluation

4.4.1 User Study
Evaluating our proposed task quantitatively is chal-
lenging due to the subjective and complex nature
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Metric GPT-4o Visual Text Tag-Graph VISIAR-LLM-CG VISIAR-LLM-IG
Development 3.2 3.5 3.5 3.5 3.6 3.8
Expressiveness 3.2 3.3 3.4 3.5 3.7 3.8
Coherence 3.3 3.6 3.2 3.4 3.9 3.9
Average 3.23 3.46 3.36 3.46 3.73 3.83

Table 1: GPT-4o Evaluation Scores Across Different Methods

of ideation. To validate the effectiveness of LLM-
Ideation Graph, we compare it with GPT-4o base-
line via user study. We denote this method as
VISIAR-LLM-IG. Please note for this user study,
pairwise comparison for different methods is not
possible because the ideated sequence can be sig-
nificantly different in terms of topic or selected
clips among the methods. Instead, we focuses on
the following attributes to assess the video results:

Development The storyline should demonstrate
a clear progression, incorporating key elements
from Freytag’s Pyramid (Freytag, 1895), particu-
larly the exposition (hook) and resolution (denoue-
ment). A rating of 5 indicates the presence of both
a clear hook and resolution, while a rating of 1
indicates a lack of discernible structure.

Expressiveness While Freytag’s Pyramid offers
a useful structural framework for narratives, it does
not inherently ensure that a story will be engaging
or interesting, which is crucial for a visual story.
Therefore, we ask users to rate it 1 if it appears dull
and lacks transitions or exciting moments, and 5 if
it overall captures meaningful and exciting scenes.

Coherence Another requirement for a visual
story is that all clips should visually complement
each other and share a consistent theme. Therefore,
we ask users to rate coherence from 1 to 5, with
each lower rating indicating a higher proportion of
clips that are out of place (for example, a rating of
2 might indicate 3 or more scenes are out of place).

With these metrics, we conducted a user study
to compare the performance of the GPT-4o base-
line with our LLM-Ideation Graph-based method.
The participants are 15 volunteers who are familiar
with the video media. The results of the user study
are presented in Figure 5. As shown, our method
significantly improves ideation performance across
all aspects, surpassing GPT-4o by 33.5%. We con-
duct Paired t-test and Wilcoxon signed-rank test,
showing that the improvements are statistically sig-
nificant (p < 0.01). More details of the user study,

including an agreement analysis, are included in
Appendix A.4

4.4.2 GPT-as-the-judge
To supplement human evaluation, we implemented
a GPT-as-the-Judge evaluation, which is widely
adopted in works like (Li et al., 2024; Xiong et al.,
2024; Dubois et al., 2024; Hu et al., 2023). GPT-
4o was prompted to rate the videos based on our
survey criteria. The results are in table 1. The
prompt is attached in Appendix A.6

These results show a strong alignment between
GPT-4o’s evaluation and the user study, particularly
in comparing GPT-4o baseline vs. LLM-Ideation.
The overall trends further confirm our observations
in Section 4.3. To evaluate the effectiveness of GPT
as a judge, we include an agreement analysis with
the user study and present additional experiments
with statistical testing in Appendix A.5.

The visual clustering approach exhibits high
coherence due to its focus on visual consistency,
whereas textual clustering, lacking this focus, re-
sults in lower coherence. Both methods fail to
produce expressive stories with satisfying develop-
ment. The tag-graph approach attempts to balance
expressiveness and coherence but remains subop-
timal, as tag information is often low-level and
coarse.

By incorporating the extensive open-world
knowledge and reasoning capabilities of large lan-
guage models (LLMs), both LLM-Connection and
LLM-Ideation approaches improve all evaluation
metrics. Notably, the LLM-Ideation approach
achieves the best performance, yielding the high-
est scores in development and expressiveness while
maintaining a high coherence score. These findings
highlight the effectiveness of our LLM-Ideation
method.

5 Conclusion

In this paper, we introduce Visual Story Ideation,
a novel task focused on selecting and combining
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visual asset sequences to create compelling story-
lines from limited collections. Unlike prior work
relying on predefined sequences or scripts, our ap-
proach automates the ideation process, addressing
a key gap in visual storytelling.

For this task, we also propose VISIAR, Visual
Ideation through Sequence Integration and Asset
Rearrangement, a framework leveraging state-
of-the-art Multimodal Large Language Models
(MLLMs), and a Story-Graph-Enhanced Selection
process. Evaluations on a new dataset, VTravel,
demonstrate its ability to outperform baselines
by generating coherent and expressive asset se-
quences.

Our work establishes a foundation for future re-
search in automated visual story ideation, with po-
tential applications in advertising, media produc-
tion, and creative content generation. We believe
this framework opens new avenues for innovation
in both academic research and practical implemen-
tations of visual storytelling.

6 Limitation

Our framework is promising and provides new in-
sights into MLLM research. There is still space for
improvement in terms of story graph construction.
For example, when utilizing the LLM-Ideation
graph construction method, some assets might not
gain enough connectivity with other assets. The
story graph might not have a nice structure for
clustering in rare cases. We aim to address this
limitation in future research.

We also want to address the fact that our method
aims to ideate storylines from the asset collec-
tion through MLLM automatically. It is possible
that the ideated story inherited the biases from the
MLLM, which could be problematic. Future inves-
tigation on unbiased MLLMs will likely address
this issue.
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A Appendix

A.1 Dataset

A.1.1 Dataset Construction
VTravel We collected travel and nature videos
from video platforms under CC-BY licenses. We
use keywords such as ‘Travel’ and ‘Nature’ to
search the videos. We include videos of various
events and stories to assemble a personal album for
traveling.

5 Human annotators select long videos with
multiple scenes about diverse travel-related events.
Most long videos are around 5 minutes. After ap-
plying scene detection (PySceneDetect, 2024) and
video segmentation on those videos, we obtained
around 600 short clips. The annotators filter videos
based on the following:

• Quality control: Removal of low-quality
videos, including blurry clips due to fast move-
ments, meaningless content, or those with dis-
tracting visual effects.

• Content safety Exclusion of inappropriate
material, such as nudity or content suggesting
violence.

• Relevance Ensuring alignment with travel sto-
rytelling.

As a result, around 450 video clips are selected to
construct the VTravel dataset, resembling a user’s
travel album. This process ensures that VTravel
serves as a diverse and feasible dataset for visual
story ideation. Each clip is 3–15 seconds long. We
resize them to 1280 × 720 resolution. Figure 6
shows a snippet of the dataset. To further analyze
the diversity of the dataset, we apply LDA topic
modeling and present the identified topics using
representative keywords in Table 2. As illustrated
in the chart, our dataset spans various themes in-
cluding nature, events, and human activities, offer-
ing broad visual coverage.

A.1.2 Dataset Comparison
To the best of our knowledge, we are the first to
explore the visual story ideation task and collect
the corresponding dataset. The construction pro-
cess of the VIST dataset shares some similarities

Topic Keywords % Clips
0 street, lights, scene 5.63%
1 person, trees, blue 4.05%
2 flying, birds, red 1.13%
3 view, aerial, landscape 7.43%
4 snowy, night, snow 10.59%
5 person, paragliding, ocean 15.09%
6 person, sky, paragliding 6.31%
7 scene, buildings, swimming 2.93%
8 forest, trees, serene 6.53%
9 wooden, person, traditional 2.70%

10 forest, showing, aerial 2.70%
11 shots, video, person 2.70%
12 forested, showcasing, spectators 1.35%
13 bustling, person, cityscape 2.48%
14 video, bicycle, person 4.28%
15 green, lush, landscape 3.83%
16 area, scene, beach 4.73%
17 view, buildings, aerial 7.43%
18 colorful, narrow, close 4.73%
19 dunes, night, sand 3.38%

Table 2: LDA Topic Modeling (Top 20 Topics)

with our task. However, we would like to clarify
the fundamental differences between the problem
setting of VIST and ours:

VIST Dataset Characteristics

• Uses pre-filtered Flickr albums (10–50 images
per album).

• Each album has a predefined topic (e.g., par-
ties, offices).

• Albums are curated with a 48-hour time con-
straint and a coherent storyline.

Therefore, an album is already a collection of
good candidates for a storyline with possibly pre-
defined topics.

Our Project Characteristics

• We process large-scale, diverse visual assets
(hundreds of images/videos).

• No predefined topics—multiple stories must
be ideated from broad visual data.

• The task is significantly more challenging due
to increased variability.

Using VIST for our task faces the following chal-
lenges:
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Figure 6: VTravel Here is a snippet of the VTravel Dataset, which contains a variety of events and scenes about
nature and travel.

Limited Story Ideation Scope : Within each al-
bum, the topic of the story is pre-defined because
all pictures are from the same category. The num-
ber of pictures is also limited to 50. This constrains
creativity and limits the open-ended ideation our
project aims for.

Lack of Cross-Album Annotations : Combin-
ing images from multiple albums could result in
meaningful stories, but VIST does not annotate
such possibilities. This makes it unsuitable as a
direct resource for ideation.

Thus, while VIST is valuable for storytelling
research, it is not directly applicable to our problem
setting.

We also would like to point out that it is chal-
lenging to annotate the ‘ground truth’ of the visual
story ideation task, as there could be countless com-
binations.

A.2 Experiment Setting

For the feature-based clustering method, we apply
the K-means clustering method. The parameter k,
which determines the number of clustering, is set to
be the number of videos divided by 15. We assume
for each cluster, there should be around 15 videos.

For Graph Clustering, we empirically set the
resolution to be 1.8. For the LLM-Ideation Graph
method, the threshold for determining whether to

add an edge is set to 0.5.
We report the approximate token usage of GPT-

4o for the visual understanding stage. For all ex-
periments, we use low-resolution images as input.
Each video costs around 1500 tokens for text ex-
traction.

A.3 GPT4o Baseline
We provide additional details of the GPT4o base-
line here. The model receives the middle frame and
text description for each video. And the following
prompt is used:

Here are descriptions of several videos along
with one frame from each. Make multiple
stories by selecting and combining some of
the videos based on the text description and
visual features.

For each story, it should contain no more
than 10 videos.

You only need to output the top 20 video
sequences that make the best stories.

Output the theme of the story in this group.
Also output the orders of the selected videos
for each story.

Answer with a JSON object with group id
from 0 to the total number of groups as the
key and the answer as the value.

Here is an example of the output JSON con-
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tent:
"0": "theme": "City at Night", "orders":

["1", "4", "9", "15", "16", "24", "38", "51",
"99", "132"]

A.4 User Study

A.4.1 Survey Setup
Evaluating ideation methods is very challenging.
Due to the exploratory nature of the ideation, pair
comparison is also impossible because the ideated
sequence can be significantly different in terms of
topic or selected clips. Therefore, we conducted a
user study based on volunteer user participation and
asked the users to give ratings on ‘Development,’
‘Expressiveness,’ and ‘Coherence.’ The users are
mostly college students who are familiar with the
Vlog or other types of short videos. We utilize the
following setup to strengthen the credibility of the
evaluation.

• User Study Design: We recruited volunteers
who are familiar with visual storytelling and
hold a Master’s degree or higher. Each par-
ticipant received detailed instructions to align
with the survey’s purpose. We also provide
short training sessions to help participants un-
derstand the metrics and survey details.

• Evaluation Metrics: We defined three key
metrics—development, expressiveness, and
coherence—for annotators to assess.

• Multiple Annotations: Each sample was an-
notated by at least 15 annotators to ensure
reliability. The final score was calculated as
the average of their annotations.

Part of the user study survey and the instructions
are illustrated below:

This is a survey for the visual story ideation
project. You will be asked to rate 20 videos. Each
video is less than one minute. You will be asked
to rate the videos regarding (1) Story development.
(2) Expressiveness (3) Coherence.

Instructions:
(1) Story development ( The title of the video

suggests the topic of the video. Do you agree that
there is such a storyline?)

Rating from 1 to 5.
1: I cannot identify the storyline.
3: I agree that this video is trying to tell a story.

But the semantic development is bad.

5. There is a storyline, and I can identify most
of the development moments in the story.

(2) Expressiveness (How expressive do you think
the story of this video is?)

Rate from 1 to 5:
1. The story is nonsense
3. The story exists but boring. The visual diver-

sity is low.
5. The story exists and is expressive
(3) Coherence (Do you feel all the clips belong

to this video?)
Rate from 1 to 5:
1. The clip combination is meaningless
3. One or two clips seem to be strange. But I

can still tell the story from the video.
5. All clips are coherent in terms of storytelling.

A.4.2 User Study Results
We provide an agreement analysis and show the
results in the table 3. These values fall within the
fair-to-moderate (0.35, 0.55) range, which is rea-
sonable given the subjective nature of the task and
variability among human raters.

In order to further evaluate the user study re-
sults, we performed the paired t-tests and Wilcoxon
signed-rank tests for the within-subject statistical
tests. See table 4 for more details. The results con-
sistently indicate significant differences (p < 0.01)
for all individual aspects as well as the combined
average. This consistency across tests reinforces
the reliability of the findings.

Aspect ICC Score
Development 0.402
Expressive 0.350
Coherence 0.553
Average 0.506

Table 3: User Agreement scores by aspect

A.5 Additional Analysis

We provide additional analysis of the impact of the
story graph on candidate selection, particularly of
the LLM-Connection method.

We observed the LLM-Connection graph often
links similar assets, leading to dense intra-cluster
connections.

Consider the following example:

• (A) A nighttime city scene adorned with fes-
tive lights.

18396



Aspect t-value p-value (t-test) W-value p-value (Wilcoxon)
Development 4.964 0.0006 2.000 0.0029
Expressiveness 5.528 0.0003 0.000 0.0050
Coherence 4.440 0.0013 1.500 0.0029

Average 5.157 0.0004 1.000 0.0020

Table 4: Paired t-test and Wilcoxon signed-rank test results for each aspect and the combined average between
GPT4o and VISIAR-LLM-IG.

• (B) A nighttime scene featuring beautifully
illuminated trees.

• (C) A vibrant display of illuminated trees and
festive decorations.

The LLM connected all those assets to each
other. The clustering process may result in less
expressive storylines due to redundant asset selec-
tion.

A.6 GPT-as-the-judge
A.6.1 Agreement Analysis
To verify the effectiveness of GPT-as-the judge and
the alignment between the automatic evaluation
and the human evaluation, we provide an agree-
ment analysis on GPT4o vs Human. The results
are in table 5.

This demonstrates strong alignment between
GPT and human assessments, supporting the use
of GPT as an evaluator.

Aspect ICC (GPT vs Human)
Development 0.685
Expressive 0.522
Coherence 0.811
Average 0.768

Table 5: GPT and Human Agreement ratings by aspect

A.6.2 Significance Testing
We ran GPT evaluations 20 times per clip. Table 6
reports the mean value of the testing:

With all the ratings obtained, we performed the
Paired t-test and Wilcoxon signed-rank test for the
llm_ideation method against all other methods.
The results are shown in Table 7:

The improvements shown by llm_ideation are
statistically significant over all baselines.

A.6.3 Prompt
We include the prompt used for GPT4o to evaluate
the generated video sequence here:

This is a survey for the visual story ideation
project. You will be asked to rate a video. The
video is combined from some short video clips.
And you will be given one frame form each
clip. The order of the clips matters for the
visual story.

You will be asked to rate the videos regard-
ing (1) Story development. (2) Expressiveness
(3) Coherence.

Instructions:
(1) Story development
[ The title of the video suggests the topic of

the video. Do you agree that there is such a
storyline?]

Rating from 1 to 5.
1: I cannot identify the storyline.
3: I agree that this video is trying to tell a

story. But the semantic development is bad.
5. There is a storyline and I can identify

most of the development moments of the story.
(2) Expressiveness
[How expressive do you think the story of

this video is?]
Rate from 1 to 5:
1. The story is non-sense.
3. The story exists but boring. The visual

diversity is low.
5. The story exists and is expressive.
(3) Coherence
[Do you feel all the clips belong to this

video?]
1. The clip combination is meaningless
3. One or two clips seem to be strange. But

I can still tell the story from the video.
5. All clips are coherent in terms of story-

telling.
Answer with a JSON object with metric

names as the key and the rating as the value.
Here is an example of the output json file’s
content.
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Method Development Expressive Coherence Overall
gpt4o_baseline 3.1600 3.3400 3.1950 3.2317
llm_connection 3.6600 3.7150 3.8350 3.7367
llm_ideation 3.8250 3.8800 3.9750 3.8933
tag_graph 3.4650 3.4750 3.5150 3.4850
text_sim 3.4300 3.4400 3.1550 3.3417
visual_sim 3.4650 3.4550 3.5450 3.4883

Table 6: Mean GPT evaluation scores per method

Comparison Aspect t-test (t, p) Wilcoxon (w, p)
gpt4o_baseline vs llm_ideation Development t = 9.6615, p < 0.0001 w = 1787.0000, p < 0.0001

Expressive t = 8.3195, p < 0.0001 w = 1517.0000, p < 0.0001
Coherence t = 7.5365, p < 0.0001 w = 3401.5000, p < 0.0001
Overall t = 9.0306, p < 0.0001 w = 2646.5000, p < 0.0001

llm_connection vs llm_ideation Development t = 4.3389, p < 0.0001 w = 312.0000, p < 0.0001
Expressive t = 4.8771, p < 0.0001 w = 154.0000, p < 0.0001
Coherence t = 2.0048, p = 0.0463 w = 1883.0000, p = 0.0591
Overall t = 3.9211, p < 0.0001 w = 1825.0000, p < 0.0001

tag_graph vs llm_ideation Development t = 6.2024, p < 0.0001 w = 2057.0000, p < 0.0001
Expressive t = 9.9308, p < 0.0001 w = 322.0000, p < 0.0001
Coherence t = 4.8122, p < 0.0001 w = 3323.5000, p < 0.0001
Overall t = 6.9154, p < 0.0001 w = 3197.5000, p < 0.0001

text_sim vs llm_ideation Development t = 7.2606, p < 0.0001 w = 2077.0000, p < 0.0001
Expressive t = 9.9853, p < 0.0001 w = 654.0000, p < 0.0001
Coherence t = 11.1432, p < 0.0001 w = 562.0000, p < 0.0001
Overall t = 10.8082, p < 0.0001 w = 2070.0000, p < 0.0001

visual_sim vs llm_ideation Development t = 6.2024, p < 0.0001 w = 1358.0000, p < 0.0001
Expressive t = 8.6144, p < 0.0001 w = 658.0000, p < 0.0001
Coherence t = 4.9444, p < 0.0001 w = 3326.0000, p < 0.0001
Overall t = 6.9863, p < 0.0001 w = 3226.0000, p < 0.0001

Table 7: Paired t-test and Wilcoxon signed-rank test results comparing llm_ideation with other methods. Statisti-
cally significant results are indicated by p < 0.0001 unless otherwise noted.

{ "Development": 4, "Expressiveness": 3,
"Coherence": 2 }

Please proceed with the story sequence. The
sequence is provided by video frames and de-
scriptions in the correct order.

A.7 Temporal Baseline Discussion

Our method does not rely on temporal informa-
tion, making it applicable to a wider range of use
cases. To further demonstrate its effectiveness, we
compare it with a naive temporal baseline.

We simulate a sequence of video clips captured
by a user during a single activity, each annotated
with a timestamp. The naive temporal baseline
stitches the clips together in chronological order,
following the approach suggested in (Choi et al.,
2016).

We apply both our method and the temporal base-
line, with the results shown in Figure 7.

As illustrated, the temporally ordered sequence
begins with clips of human activities, followed by
scenes of the surroundings, as the users turn to
focus on the human first and then appreciate the
environment. This simple chronological stitching
fails to produce a coherent or expressive story. In
contrast, our approach yields more compelling and
satisfying results without assuming any temporal
structure.

A.8 Additional Results
We included more results in this section. For each
ideated story, MLLM will automatically generate
the theme of the story and use it as the title. See
Figure 8, 9, 10, 11, 12, 13 for the additional results.
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Figure 7: Results for LLM-Ideation Graphs and simulated temporal baseline

Figure 8: Results for LLM-Ideation Graph: Full results including all the clips
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Figure 9: Results for LLM-Ideation Graph: Full results including all the clips

Figure 10: Results for GPT4o: Full results including all the clips
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Figure 11: Results for Text Similarity Clustering: Full results including all the clips

Figure 12: Results for Visual Similarity Clustering: Full results including all the clips
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Figure 13: Results for Tag Graph Method: Full results including all the clips

Figure 14: Results for LLM-Connection Graph: Full results including all the clips
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