
Findings of the Association for Computational Linguistics: ACL 2025, pages 18350–18361
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

FPE2M2: Approaching Lossless and Efficient Quantization with Native
Floating Point

Ke Yi1,2 Jianwei Zhang2 Zhiying Xu2 Xinlong Yang2 Yang Zhou2

Minmin Sun2 Zengke Liu3 Tong Zhang1 Junyang Lin2 Jingren Zhou 2

Abstract

Auto-regressive decoding is a memory-bound
job, meaning decoding inference performance
is limited by the bandwidth rather than the com-
putational capabilities of the GPU. Weight-only
quantization is a promising method to address
the memory-bound limitations. Previous stud-
ies have followed one of two approaches. Some
have exclusively studied integer quantization
while ignoring the Gaussian distribution nature
of LLMs’ weights. Others have proposed non-
uniform quantization, but incurred additional
memory overhead due to lookup tables. In this
work, we extend the floating-point standard
to the ExMy quantization schema, which al-
locates x bits for the exponent and y bits for
the mantissa to represent a number. In terms
of runtime efficiency, we demonstrate that the
conversion from ExMy to FP16 can be real-
ized through register-level operations, which
can get almost the same performance as INT5.
In terms of quantization loss, we analyze that
of different ExMy settings, where the E2M2
schema achieves an optimal balance, offering
the highest efficiency with lossless accuracy.
We further propose the FPE2M2 framework
that supports lossless weight-only quantization
inference and validate the FPE2M2 framework
on Qwen and LLaMA Models across various
modalities, such as text, image, and audio tasks,
which achieves a faster inference speed while
maintaining nearly lossless accuracy. 1

1 Introduction

LLMs have demonstrated outstanding performance
and potential for various tasks. However, the high
cost of inference has limited their application in
practical commercial scenarios. Specifically, the
pipeline of LLM inference can be divided into two
stages: pre-filling and decoding. Owing to the auto-
regressive nature of LLMs, the decoding stage is

1The work was conducted during Ke Yi’s internship at
Qwen Team. 1 South China Univesity of Technology 2 Al-
ibaba Group 3 University of Chinese Academy of Sciences..

afflicted by the I/O bottleneck, as it generates only
one token at a time. These challenges motivate the
research on model compression techniques aiming
to alleviate the bottleneck.

Quantization is a prevalent model compression
technique that represents weights with lower pre-
cision. When the compression ratio is high, for
instance, 4-bit quantization, the loss in accuracy
becomes non-negligible. Previous studies (Fran-
tar et al., 2022; Lin et al., 2023) employ calibra-
tion sets to adjust the weights of LLMs for re-
duced quantization loss. Nevertheless, the quan-
tized LLM may overfit the calibration set and ex-
hibit poor performance on unseen data, as noted
by (Williams and Aletras, 2024). From another
perspective, those works primarily focus on integer
quantization, which overlooks the characteristic
that model weights adhere to a Gaussian distribu-
tion. (Dettmers et al., 2024) observes the charac-
teristic and introduces a non-uniform quantization
schema to decrease quantization loss further. How-
ever, the conversion from non-uniform quantized
values to full precision values relies on lookup ta-
bles. Notably, accessing the lookup table can incur
significant overhead during the memory-bound de-
coding stage.

This work extends the IEEE 754 floating-point
standard to a low-bit schema. Specifically, a float-
ing point with an x-bit exponent and a y-bit man-
tissa is denoted as ExMy. ExMy differs from the
previous standard by replacing Infinity and Nan
with regular numbers. Based on our observation,
the conversion between ExMy and FP16 can be
accomplished by register-level operations, obviat-
ing the need for lookup tables. Furthermore, we
comprehensively analyze the quantization loss for
various non-uniform quantization schemes, and
FPE2M2 can reach the sweet spot of achieving loss-
less quantization of the minimum bit width. We
comprehensively validate the Qwen, LLaMA, and
DeepSeek Distillation Models framework on text,

18350

image, and audio tasks. We achieve a faster infer-
ence speed with negligible loss. Our contributions
are as follows:

• We review the loss of different bit width al-
location schemas and validate that FPE2M2
is the lossless quantization with minimum bit
width.

• We propose a novel approach for rapid conver-
sion from FPE2M2 to FP16 with only register-
level operations, which is highly efficient in
the memory-bound decoding stage.

• We further comprehensively validate the
framework on mainstream LLMs for text, im-
age, and audio tasks, achieving a faster infer-
ence with negligible accuracy loss.

2 Related Work

2.1 LLM Quantization

Quantization represents a practical methodology
for reducing model size and accelerating infer-
ence. From a serving perspective, quantization
can be categorized into weight-only and weight-
activation quantization. Weight-activation quan-
tization can accelerate computation by leveraging
low-bit GEMM kernels suitable for compute-bound
scenarios, namely the pre-filling stage. Qserve
(Lin et al., 2024) further implement the A8W4KV4
and better accelerate. LLM.int8() (Dettmers et al.,
2022) employs mixed INT8/FP16 decomposition to
handle activation outliers. Subsequent work (Yuan
et al., 2023) rearranges the channels to reduce the
variance within one quantization group, further en-
hancing accuracy. Atom (Zhao et al., 2024) inte-
grates the reorder technique and mixed INT4/INT8
precision to maintain accuracy and accelerate com-
pared to the FP16 baseline. (Ashkboos et al., 2024;
Liu et al., 2024; Yi et al., 2024) pairwise rotates the
activation and weight to suppress outliers and main-
tain output equalization, enabling INT4 inference
with well-smoothed activations. It should be noted
that the above methods only serve the compute-
bound pre-filling stage. Weight-only quantization
is more suitable for the I/O bound decoding stage,
as it employs low-bit representations for weight
matrices, thereby saving memory movement. One
effective way to reduce quantization error is shrink-
ing the quantization range, i.e., sub-channel quan-
tization. In the general case, quantization is per-
formed on the channel level, which has a much

less impact on the accuracy than the whole weight
matrix. Applying sub-channel quantization could
further reduce the quantization error, but it could
result in a remarkable overhead. Orthogonal to
Sub-channel quantization, GPTQ (Frantar et al.,
2022) used Hessian-based error compensation to
reduce quantization errors. AWQ (Lin et al., 2023)
compressing weight quantization error according to
the activation outliers. Those methods can achieve
comparable accuracy compared with sub-channel
quantization under the per-channel setting. How-
ever, they depend on the calibration dataset, which
leads to a potential over-fitting problem (Williams
and Aletras, 2024).

2.2 Non-uniform Quantization

Previous works focus on optimizing the quantiza-
tion error for integer quantization. However, uni-
form quantization naturally causes more errors due
to the Gaussian distribution of LLMs’ weights. NF
(Dettmers et al., 2024) propose a non-uniform quan-
tization structure that fits the Gaussian distribution
assumption well and achieves better accuracy than
Integer quantization. AFPQ (Zhang et al., 2023) ob-
serves LLM’s weights as asymmetric, and applying
asymmetric quantization further improves the ac-
curacy. LLM-FP4 (Liu et al., 2023) represents FP4
in both weight-only quantization and activation-
weight quantization and validates the effectiveness
of FP4. The above methods are all based on 4-
bit quantization, which makes it hard to achieve
a negligible accuracy drop. Moreover, some of
those methods ignore the importance of conversion
speed (Liu et al., 2023) or find it hard to optimize
the conversion speed (Zhang et al., 2023).

3 Preliminaries and Motivation

3.1 Definition of ExMy

Extending the IEEE 754 standard, the ExMy is
represented as a sign bit, exponent bit, which can
be represented as:

Xnormal = (−1)s2e(1 + d1
21

+
d2
22

+ · · ·+ dm
2m

)

Xsubnormal = (−1)s(d1
20

+
d2
21

+ · · ·+ dm
2m−1

)

where s ∈ {0, 1} denotes the sign bit, and di ∈
{0, 1} is the mantissa bits. e denotes the exponent
parts; the subnormal number has e = 0. To be
noticed that the bias of ExMy’s exponent part is
0, and the special values, i.e., ‘Nan’ and ‘Inf’, are

18351

E2M1: 2^1 slots per 2^2 interval

60 1 2 3 4 8 12

Figure 1: The positive part of E2M1.

INT4
INT4+GPTQ

INT4+128g
FP4

FP5
FP6

83

10

…

Evaluation on different Quantization Schema

FP16

75

Figure 2: Preliminary ablation study on different quan-
tization bit width. The evaluation is based on Qwen2.5-
7B with the GSM8K benchmark. ‘128g’ denotes the
Sub-Channel setting with group size 128.

replaced by regular numbers. An example of E2M1
is shown in Figure 1.

3.2 Rethinking the Sweet Point of
Quantization

Based on the binary system, representation with
2n bits is more conducive for hardware implemen-
tation, e.g., 2-bit, 4-bit, 8-bit, 16-bit. FP16/BF16
is widely used for training and inference without
accuracy loss. Recent works (Dettmers et al., 2022;
Xiao et al., 2023) show that INT8/FP8 could also
achieve lossless inference with higher efficiency
than FP16/BF16. To further improve the efficiency,
some works quantize the weights into 4-bit or 2-bit.
The latter option suffers from severe accuracy loss,
while the former balances efficiency and accuracy.
As a result, previous works (Frantar et al., 2022;
Lin et al., 2023) consider 4-bit as a sweet spot and
attempt to restore the accuracy loss based on the
4-bit quantization.

As mentioned in Section 2.1, Sub-Channel Quan-
tization and GPTQ are two popular methods for
restoring the accuracy loss of INT4 quantization.
Besides that, we also involve FP4 quantization,
which adheres to the Gaussian distribution of
LLMs’ weights and brings less accuracy. However,

as depicted in Figure 2, quantization utilizing the
aforementioned methods still exhibits a significant
accuracy loss (10%) compared to FP16. The accu-
racy loss becomes negligible when the bit width
exceeds 5. In terms of providing negligible quanti-
zation error and attaining higher inference speed,
5-bit quantization represents the optimal choice
and deserves more attention.

3.3 E2Mx Consistently Dominates under
Different Bit Width

The issue is regarding allocating the bits for the
exponent and mantissa portions for optimal per-
formance. Under the assumption that the weight
of LLMs obeys a Gaussian distribution, we exam-
ine the relationship between quantization error and
Sigma of the distribution for different ExMy as
shown in Figure 3. The result reflects two impor-
tant observations:

• E2Mx consistently dominates other ExMy un-
der the Sigma of LLMs’ weight distribution.

• The trend of quantization error remains con-
sistent across different bit widths.

To simplify the analysis among different quantiza-
tion schemas, we scale both the quantization grids
and weights to the range of [-1,1]. The sigma is
collected on the scaled weights.

For the first observation, we provide a statistical
analysis of the Sigma of different LLMs’ weight
distribution C, which is in accordance with the
sweet point of E2Mx. For the second observation,
we provide a simple proof in Appendix B that the
quantization error of ExMy is four times that of
ExM(y+1), approximating a linear relationship.

Based on the above analysis, the significance
of E2M2 is highlighted, thereby motivating us to
devise an efficient implementation of E2M2 quan-
tization in the next section.

4 Method

4.1 Preliminaries
Floating Point Quantization For integer quan-
tization, the high-precision floating point number
is quantized through scaling and rounding, which
can be formulated as:

s =
max(|X|)
Qmax

,Q = ⌊X
s
⌉, (1)

where Qmax represents the maximum value of
the quantized number. However, the rounding oper-
ation could not be strictly applied to floating point

18352

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Qu
an

tiz
at

io
n

Er
ro

r
1e 2

LLM's weight

E1M2
E2M1

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0

1

2

3

4

5

6

7

1e 3

LLM's weight

E1M3
E2M2
E3M1

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
1e 3

LLM's weight

E1M4
E2M3
E3M2
E4M1

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Sigma of Distribution

0.0

0.2

0.4

0.6

0.8

1.0

Qu
an

tiz
at

io
n

Er
ro

r

1e 3

LLM's weight

E1M5
E2M4
E3M3
E4M2

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Sigma of Distribution

0.0

0.5

1.0

1.5

2.0

2.5
1e 4

LLM's weight

E1M6
E2M5
E3M4
E4M3

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Sigma of Distribution

0

1

2

3

4

5

6

1e 5

LLM's weight

E1M7
E2M6
E3M5
E4M4

Quantization Error vs. Sigma of Distribution

Figure 3: Preliminary analysis on the impact of different bit width allocation schemes. The quantization error is
metricized by the L2 distance between the original and quantized weights. Quantization schemes with the same bit
width are compared within the same figure range of the Sigma of weight results from mainstream LLMs.

quantization since the quantization slot is not uni-
form, as illustrated in Figure 1.

In order to efficiently determine the nearest quan-
tized number for X: Firstly, obtain the length of
the interval L = log2(max(X, 2)). Secondly, ob-
tain the length of slot v = L/2M . Thirdly, rescale
the interval and X to ensure that the slot v = 1
and X′ = X/v. Fourthly, now the slot is uniform,
round X′ to the nearest integer and then scale back
to the original scale. The above rounding process
could be formulated as follows:

v = log2(max(X, 2))/2M

X′ = X/v,Q′ = ⌊X′⌉,Q = Q′ ∗ v

where M is the number of bits of the exponent part.

Dequantization Unlike the quantization process,
the conversion from quantized ExMy to FP16 is
performed in real-time, necessitating low time com-
plexity. In integer dequantization, prior works
have employed register-level operations to replace
the low-throughput built-in conversion function, as
shown in Figure 4 (a). This conversion depends
on the following insight: For any unsigned inte-
ger x less than 8 bits, the bitwise OR operation
0x6400|x yields a result that is numerically equiv-
alent to x+ 1024.

Extending to the signed integer, Qmax is first
added to the signed integers immediately after
quantization to convert them into unsigned inte-

gers. Subsequently, the operation of subtracting
Qmax is integrated into the final step, as depicted
in Figure 4 (a).

For non-uniform quantization, the method above
is not applicable. Previous research (Dettmers et al.,
2024) has employed a lookup table for conversion,
as shown in Figure 4 (b). However, accessing the
lookup table is I/O intensive and inefficient for the
memory-bound decoding stage.

4.2 Fast Conversion from ExMy to FP16
With the constraint of equation 3.1, we propose a
fast conversion method from ExMy to FP16 based
on numerical operations, as shown in Figure 4 (c).
The conversion depends on the key insight:

X = (Q << 8) ∗ 215

where X denotes the FP16 value before quantiza-
tion, and Q denotes the quantized E2M2. The bias
of the exponent part of FP16 is 15, whereas the bias
of E2M2 is 0. Hence, we scale the shifted Q with
215 in the equation above. It is worth noting that
1) The above conversion supports both normal and
subnormal numbers; 2) The conversion assumes
that X is positive. 3) The shifted Q is approxi-
mately 2−15. Directly calculating on that without
scaling can easily result in underflow; 4) It is not
equivalent to directly setting some exponent bits
to 1 to avoid underflow, since it would violate the
definition of a subnormal number.

18353

1 0 1 0 0

1 0 1 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

T = Q | (0x6400)
1 1 0 0 1 1 0 1 0 1

W = T – (1024+16)

(a) Conversion from INT5 to FP16

FP16

Key Value

(b) Convert NF5 to FP16 by lookup table

0 1 0 0

1 0 0 0 0 0 0 0 0 0 01 0 0 0 0

1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 00 0 0 0 1
T = (Q<<8) | (0x0f00)

1 0 0 0 0 0 0 0 0 0 00 1 1 1 1
S = (Q<<11 & 0x8000) | (0x3c00)

1 0 0 0 0 0 0 0 0 0 01 0 0 0 0
W = T * S

(c) Ours: Fast Conversion from FPE2M2 to FP16

Figure 4: Illustration of the conversion from quantized
value back to FP16 value. (a) A fast conversion from
INT5 to FP16 involves register-level operations, such as
ADD and OR operations. (b) A naive conversion from
non-uniform quantized value to FP16, including access-
ing the lookup table, which is I/O intensive. (c) The
proposed conversion from E2M2 to FP16. Given that its
definition is extended from the IEEE 754 standard, the
conversion can be implemented by only register-level
operations.

To efficiently handle both underflow and nega-
tive numbers, the sign bit is fused into a multiplica-
tion operation, as demonstrated in the final step of
Figure 4 (c).

S = (−1)s215
X = ((Q << 8)|(0x0f00)) ∗ S

where s is the sign bit.

4.3 System Level Optimization
The above description is based on single-element
conversion. For real-time inference, it is necessary
to optimize the bandwidth utilization by integrating
multiple elements into INT32 and processing them
in parallel in real time. To achieve storage of 5-
bit E2M2 in INT32 without any blank space, 32
instances of 5-bit E2M2 are compressed into 5
INT32. Subsequently, the method of reconstructing

Algorithm 1: Dequantization from E2M2
to FP16

Input :Quantized tensor Q[5]
Output :Dequantized tensor DQ[16]

1 Initialize array e2m2[16];
2 for i← 0 to 3 do
3 e2m2[i · 4]←

(Q[i] << 8)&0x0f000f00;
4 e2m2[i · 4 + 1]←

(Q[i] << 4)&0x0f000f00;
5 e2m2[i · 4 + 2]←

(Q[i])&0x0f000f00;
6 e2m2[i · 4 + 3]←

(Q[i] >> 4)&0x0f000f00;
7 end

8 for i← 0 to 15 do
9 s← Q[4]&0xf800f800;

10 s← s&0xf3c003c00;
11 DQ[i]← hmul2(s, e2m2[i]);
12 Q[4]← Q[4] >> 1;
13 end

FP16 from E2M2 will be demonstrated through
careful design.

Sign Splitting To simplify the index calculations,
the 5-bit E2M2 is divided into a 4+1 scheme; in
this scheme, the first 4 bits are exponent bits and
mantissa bits, i.e., E2M2, and the last bit is the sign
bit. The 4-bit portion of E2M2 is stored in four
INT32 continuously, and the remaining sign bits
are stored in a single INT32.

Layout Organization In the mainstream system,
FP16 (Half) is stored within INT32 as a pair, as
shown in Figure 6 (a). This design results in effi-
cient memory access and high memory bandwidth
utilization. Under this design, it is essential to or-
ganize the data layout as shown in Figure 6 (b),
which enables the parallel extraction of the pair
weights. Through the masking (AND) operation,
we could extract the E2M2 from the compressed
INT32. Similarly, the masking operation is applied
for the sign parts, and certain bits are set to 1 for
the latter multiplication operation. The extracted
E2M2 and sign are multiplied to obtain the final
dequantized FP16. The entire layout is illustrated
in Figure 6, and the pseudo-code is shown in Algo-
rithm 1.

18354

Half Half

Half2

1 11 1 1 11 1

1. E2M2 = Q & 0x 0f00 0f00 2. S = QS & 0x 8000 8000 | 0x3c00 3c00 Occupied
Blank

3. DQ = hmul2(E2M2, S)

(a) Basic Structure for FP16 Computation (b) Extract a pair of weights in parallel

Figure 5: Illustration of the low-level implementation. (a) The basic structure to store FP16/half value in the
low-level computation. (b) To extract two quantized FPE2M2 values in parallel, we first split the sign part and
E2M2 part and store them in separate INT32. For the pair of FP16 values in one INT32, their quantized E2M2/sign
part should possess a gap of 16 bits.

7 1 3 5 57 1 3 37 1 3 5 57 1 6 0 2 4 46 0 2 26 0 2 4 46 0

0 2 4 6 1 3 5 7

Figure 6: The overview of 32 quantized FPE2M2 value
stored in five INT32.

5 Experiments

5.1 Models and Datasets

We conduct experiments on mainstream LLMs,
including LLaMA families (Touvron et al.,
2023) (LLaMA3-8B), Qwen families (Yang
et al., 2024) (Qwen2.5-3B, Qwen2.5-7B,
Qwen2.5-14B, Qwen2.5-72B) and Model distilled
by DeepSeek-R1 (DeepSeek-R1-Qwen-14B,
DeepSeek-R1-LLaMA3-8B). Quantization em-
ploys a per-channel symmetric scheme with a
round-to-nearest (RTN) strategy. We evaluate
the performance of the models on zero-shot
Common Sense QA benchmarks(ARC-e, ARC-c
(Clark et al., 2018), BoolQ (Clark et al., 2019),
and OBQA (Mihaylov et al., 2018)), MMLU
(Hendrycks et al., 2021), GSM8K (Cobbe et al.,
2021), Chinese benchmarks (Ceval(Huang et al.,
2023)), Visual benchmarks (MME (Fu et al., 2023),
POPE (Li et al., 2023), ChartQA (Masry et al.,
2022), AI2D (Kembhavi et al., 2016)) and Audio
benchmarks (MELD (Poria et al., 2019)).

5.2 On Text tasks

We conduct experiments on text tasks, including
ArcEasy, ArcChallenge, BoolQ, OBQA, MMLU,
GSM8K-Flex, GSM8K-Strict, and Ceval. We com-
pare the performance of the models on text tasks
with different quantization schemes. The results
are shown in Table 1. Non-uniform quantization
(NF5 and FPE2M2) consistently outperforms inte-
ger quantization (INT4, INT5) across all models
and benchmarks. Notably, non-uniform quantiza-
tion with 5-bit has achieved nearly lossless perfor-

mance, which fluctuates around 0.3% compared
with complete precision. It is worth noting that the
conversion from NF5 to FP16 relies on the lookup
table, which causes remarkable overhead, as shown
in Section 5.5.

5.3 On Multi-modal tasks

We also compare the proposed approaches and
the state-of-the-art methods on the multi-modal
tasks, as presented in Table 2. We evaluate Visual
tasks with Qwen2-VL-7B and audio functions with
Qwen2-Audio-7B. FPE2M2 quantization consis-
tently surpasses other integer quantization schemes
and performs fluctuation around baseline perfor-
mance. While INT4 has a 6% accuracy drop and
INT5 has a 0.6% accuracy drop compared with
complete precision. In some instances, e.g., Au-
dio Taks, FPE2M2 even surpasses full precision
performance by 2%.

5.4 Ablation Studies

Different Allocation for Exponent and Mantissa
We conduct an ablation study on the allocation of
exponent and mantissa for FPE2M2, as presented
in 3. The results are consistent with the observation
in 3.3, where the E2M2 achieves the best perfor-
mance, and E4M0 has the worst.

Orthogonal Approach for Quantization Loss
Optimization We conduct an ablation study that
employs an orthogonal approach to alleviate the
accuracy drop of quantization, as presented in 4.
Sub-channel settings have a consistent performance
gain on integer quantization, e.g., INT4 and INT5,
while the gain is uncertain for non-uniform quanti-
zation, e.g., FPE2M1 and FPE2M2. The reason is
that the Sub-channel settings have fewer elements
within a quantization group, i.e,. 128, violating
the assumption that the quantization group obeys
s Gaussian distribution. For GPTQ settings, we
perform the algorithm with MMLU as a calibration

18355

Table 1: Downstream accuracy (%) on text tasks including ArcEasy, ArcChallenge, BoolQ, OBQA, MMLU,
GSM8K-Flex, GSM8K-Strict, Ceval. Each block is based on the same foundation model specified in the first row.
The best accuracy is highlighted in red, and the second best is highlighted in blue.

Quant Method ArcEasy ArcChallenge BoolQ OBQA MMLU GSM8K-Flex GSM8K-Strict Ceval Avg.

Qwen2.5-3B-Instruct 48.1 72.9 80.1 42.0 65.2 63.4 10.7 74.2 57.1
INT4 26.7 24.4 37.8 31.8 25.5 0 0 25.5 21.4
INT5 49.3 71.1 79.4 41 61.7 63.0 11.9 69.6 55.9
NF5 47.4 71.3 80.2 41.8 64.9 60.7 19.8 71.7 57.2
FPE2M2 47.1 69.7 78.2 41.6 64.9 64.8 19.1 74.1 57.4

Qwen2.5-7B-Instruct 55.0 81.3 86.3 48.8 72.2 82.9 76.3 79.6 72.7
INT4 47.7 66.5 80.4 43.2 64.7 11.3 6.9 67.4 48.5
INT5 54.7 79.0 85.5 47.6 71.3 75.9 68.9 78.3 70.1
NF5 55.1 80.2 86.1 47.8 71.7 82.4 77.6 78.9 72.5
FPE2M2 55.2 80.3 86.4 48.2 71.6 83.2 80.1 78.1 72.9

Qwen2.5-14B-Instruct 62.4 81.5 89.6 47.4 78.8 50.9 79.1 83.8 71.6
INT4 54.3 76.0 84.8 44.8 74.4 44.5 65.9 77.5 65.3
INT5 59.7 79.5 87.9 46.0 78.2 39.7 77.4 82.7 68.9
NF5 60.9 80.2 87.8 46.4 78.6 50.5 81.5 82.8 71.1
FPE2M2 62.5 82.9 87.9 47.6 78.4 58 76.8 83.2 72.2

Qwen2.5-72B-Instruct 63.4 83.2 90.4 48.8 83.7 89.4 90.7 89.3 79.9
INT4 57.5 77.6 88.2 45.2 80.8 55.4 63.6 84.5 69.1
INT5 63.4 82.8 90.6 47.8 83.0 84.6 90.6 88.4 78.9
NF5 63.8 82.7 90.5 50.6 83.6 88.4 90.9 88.9 79.9
FPE2M2 64.5 83.2 90.8 49.4 83.4 87.7 90.3 89.6 79.8

LLaMA3-8B 53.24 77.74 80.9 44.8 62.05 50.8 50.57 47.4 58.4
INT4 42.2 67.4 75.1 40.8 47.1 8.8 5.1 33.1 39.9
INT5 50.2 78.5 81.4 46.0 59.6 39.6 39.3 43.8 54.8
NF5 53.0 78.5 81.5 45.2 61.4 46.4 45.8 45.5 57.2
FPE2M2 53.2 78.4 80.2 45.4 61.2 46.9 46.0 45.8 57.2

DPSK-DS-Qwen-14B 53.5 74.9 87.7 43.4 73.2 87.1 86.8 76.4 72.9
INT4 47.7 70.4 85.0 40.2 68.5 69.7 75.8 69.1 65.8
INT5 53.6 73.7 87.3 43.4 71.8 66.4 86.5 73.6 69.5
NF5 53.9 75.5 87.5 42.8 72.1 87.1 87.4 75.7 72.7
FPE2M2 54.3 75.3 87.6 43.6 72.8 86.5 85.8 76.1 72.7

DPSK-DS-Llama-8B 42.4 66.1 83.0 41.6 54.1 63.9 62.1 44.2 57.2
INT4 40.6 59.2 77.4 35 43.7 53.4 48.5 34.3 49.0
INT5 42.2 64.6 82.3 41.2 52.6 63.7 60.9 41.0 56.0
NF5 42.6 64.4 83.3 40.6 53.7 64.8 62.4 43.6 56.9
FPE2M2 42.7 64.7 83.4 42.8 53.3 64.9 62.0 42.7 57.1

Table 2: Downstream accuracy (%) on multi-modal tasks including POPE, MMMU, ChartQA, RealWorldQA,
MME, AI2D, OCRBench, Meld_dev, Meld_test. We evaluate visual tasks with Qwen2-VL-7B, and audio tasks
with Qwen2-Audio-7B.

Method POPE MMMU ChartQA AI2D OCRBench Avg. MME Meld_dev Meld_test

FP16 88.4 50.8 81.7 80.3 80.9 76.4 2325.3 54.5 54.7
INT4 86.9 45.3 77.2 77.7 69.9 71.4 2248.5 47.8 50
INT5 88.4 49.8 80.8 79.8 80.7 75.9 2283.6 54.3 54.3
NF5 88.4 50.4 81.6 79.7 81 76.2 2313.9 54.4 54.3
FPE2M2 88.9 50.6 81.8 80.3 81.1 76.5 2321.0 55.6 55.9

set. It performs well in cases with large accuracy
drops, i.e., INT4. However, the phenomenon of
over-fitting to the calibration set is seen in cases
that have a small accuracy drop, leading to an over-
all performance drop.

5.5 Efficiency Analysis

We evaluate the GEMM kernel with low-bit quan-
tization on RTX 4070 Ti and H100, as shown in
Figure 7. We implement INT4, INT5, and NF5 as
baselines and take speedup compared with FP16 as

18356

Table 3: Ablation study on the different ExMy quantization schemes with five bits.

Quant Method ArcEasy ArcChallenge BoolQ OBQA MMLU GSM8K-Flex GSM8K-Strict Ceval Avg.

Qwen2.5-7B-Instruct 54.9 81.2 86.3 48.8 72.1 82.8 76.2 79.6 72.7
FPE1M3 54.7 79.0 85.5 47.6 71.3 75.9 68.9 78.3 70.1
FPE2M2 55.2 80.3 86.4 48.2 71.6 83.2 80.1 78.1 72.9
FPE3M1 53.3 79.3 84.6 47 70.9 79.8 69.8 77.8 70.3
FPE4M0 48.5 70.9 77.6 43.4 59.8 56.4 56.0 60.9 59.2

Table 4: Downstream accuracy (%) on text tasks including ArcEasy, ArcChallenge, BoolQ, OBQA, MMLU,
GSM8K-Flex, GSM8K-Strict, Ceval. Each block is based on the same quantization schema specified in the first row.

Quant Method ArcEasy ArcChallenge BoolQ OBQA MMLU GSM8K-Flex GSM8K-Strict Ceval Avg.

INT4 47.7 ↑ 66.5 ↑ 80.4 ↑ 43.2 ↑ 64.7 ↑ 11.3 ↑ 6.9 ↑ 67.4 ↑ 48.5
+Sub-Channel 53.1 ↑ 77.7 ↑ 84.6 ↑ 47.8 ↑ 70.0 ↑ 76.8 ↑ 69.1 ↑ 75.9 ↑ 69.4
+GPTQ 51.7 ↑ 74.9 ↑ 83.6 ↑ 43.3 ↑ 70.0 ↑ 73.1 ↑ 67.8 ↑ 73.3 ↑ 67.2
FPE2M1 55.7 ↑ 80.5 ↑ 84.7 ↑ 47.0 ↑ 69.6 ↑ 74.2 ↑ 68.9 ↑ 75.4 ↑ 69.5
+Sub-Channel 53.2 ↓ 79.3 ↓ 86.2 ↓ 47.8 ↑ 71.1 ↑ 79.8 ↓ 73.2 ↑ 78.8 ↑ 71.2
+GPTQ 52.7 ↓ 78.8 ↓ 86.1 ↓ 46.0 ↓ 70.0 ↑ 79.1 ↓ 75.6 ↑ 76.3 ↑ 70.6

INT5 54.7 ↑ 79.0 ↑ 85.5 ↑ 47.6 ↑ 71.3 ↑ 75.9 ↑ 68.9 ↑ 78.3 ↑ 70.1
+Sub-Channel 55.0 ↑ 80.5 ↑ 86.2 ↑ 48.2 ↑ 71.6 ↑ 79.2 ↑ 71.6 ↑ 79.4 ↑ 71.4
+GPTQ 54.0 ↓ 80.4 ↑ 85.4 ↓ 47.5↓ 71.6 ↑ 82.1 ↑ 72.7 ↑ 78.1↓ 71.5
FPE2M2 55.2 ↑ 80.3 ↑ 86.4 ↑ 48.2 ↑ 71.6 ↑ 83.2 ↑ 80.1 ↑ 78.1 ↑ 72.9
+Sub-Channel 55.0 ↓ 80.0 ↓ 86.5 ↑ 48.0 ↓ 71.9 ↑ 81.6 ↓ 79.0 ↓ 79.6 ↓ 72.7
+GPTQ 54.4 ↓ 81.4 ↑ 86.2 ↓ 49.2 ↑ 71.8 ↑ 81.5 ↓ 74.4 ↓ 78.5 ↓ 72.2

bs = 1 bs = 2 bs = 4 bs = 8 Avg.

1.0

2.0

3.0

R
T

X
-4

07
0T

i

bs = 1 bs = 2 bs = 4 bs = 8 Avg.

2.0

4.0

bs = 1 bs = 2 bs = 4 bs = 8 Avg.
N=8192,K=22016

1.0

1.5

2.0

H
10

0

bs = 1 bs = 2 bs = 4 bs = 8 Avg.
N=4096,K=11008

0.8

1.0

1.2

1.4

INT4 INT5 NF5 FPE2M2

Figure 7: Same-batch throughput comparison between quantized inference and full precision inference on RTX-
4070ti and H100.

the metric. Compared with INT5, FPE2M2 brings
limited overhead, including a few more register-
level multiplications and masking operations. NF5
brings noticeable overhead, including access to a
lookup table, which is inefficient under memory-
bound scenarios.

6 Conclusion

This work presents FPE2M2, extending the IEEE
754 floating-point standard to low-bit quantiza-
tion and achieving lossless quantization with 5-bit
FPE2M2. FPE2M2 is built on the assumption that
weights of LLMs obey a Gaussian Distribution,
which brings less quantization error compared with
Integer quantization. Compared with other non-
uniform quantizations, e.g., NF5, FPE2M2 can be
easily implemented with negligible overhead and

is generalized across various large language mod-
els (LLMs). Through a comprehensive analysis of
different quantization schemes, we take 5-bit as a
sweet spot for LLM quantization, where FPE2M2
can achieve near-lossless performance with negli-
gible overhead.

18357

References
Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-

ian L. Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. 2024. Quarot:
Outlier-free 4-bit inference in rotated llms. Preprint,
arXiv:2404.00456.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Tim Dettmers, Mike Lewis, Younes Belkada, and
Luke Zettlemoyer. 2022. Llm.int8(): 8-bit matrix
multiplication for transformers at scale. Preprint,
arXiv:2208.07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng,
Ke Li, Xing Sun, et al. 2023. MME: A compre-
hensive evaluation benchmark for multimodal large
language models. arXiv:2306.13394.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu,
Maosong Sun, and Junxian He. 2023. C-eval: A
multi-level multi-discipline chinese evaluation suite
for foundation models. Preprint, arXiv:2305.08322.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Min-
joon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
2016. A diagram is worth a dozen images. Preprint,
arXiv:1603.07396.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Eval-
uating object hallucination in large vision-language
models. arXiv:2305.10355.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Xingyu Dang, and Song Han. 2023. Awq: Activation-
aware weight quantization for llm compression and
acceleration. arXiv preprint arXiv:2306.00978.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang,
Guangxuan Xiao, Chuang Gan, and Song Han.
2024. Qserve: W4a8kv4 quantization and sys-
tem co-design for efficient llm serving. Preprint,
arXiv:2405.04532.

Shih-yang Liu, Zechun Liu, Xijie Huang, Pingcheng
Dong, and Kwang-Ting Cheng. 2023. Llm-fp4: 4-bit
floating-point quantized transformers. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, page 592–605. As-
sociation for Computational Linguistics.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge
Soran, Dhruv Choudhary, Raghuraman Krishnamoor-
thi, Vikas Chandra, Yuandong Tian, and Tijmen
Blankevoort. 2024. Spinquant: Llm quantization
with learned rotations. Preprint, arXiv:2405.16406.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. 2022. Chartqa: A benchmark
for question answering about charts with visual and
logical reasoning. Preprint, arXiv:2203.10244.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In EMNLP.

Soujanya Poria, Devamanyu Hazarika, Navonil Ma-
jumder, Gautam Naik, Erik Cambria, and Rada Mi-
halcea. 2019. Meld: A multimodal multi-party
dataset for emotion recognition in conversations.
Preprint, arXiv:1810.02508.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Miles Williams and Nikolaos Aletras. 2024. On the
impact of calibration data in post-training quantiza-
tion and pruning. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 10100–
10118, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087–38099. PMLR.

18358

https://arxiv.org/abs/2404.00456
https://arxiv.org/abs/2404.00456
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2305.08322
https://arxiv.org/abs/2305.08322
https://arxiv.org/abs/2305.08322
https://arxiv.org/abs/1603.07396
https://arxiv.org/abs/2405.04532
https://arxiv.org/abs/2405.04532
https://doi.org/10.18653/v1/2023.emnlp-main.39
https://doi.org/10.18653/v1/2023.emnlp-main.39
https://arxiv.org/abs/2405.16406
https://arxiv.org/abs/2405.16406
https://arxiv.org/abs/2203.10244
https://arxiv.org/abs/2203.10244
https://arxiv.org/abs/2203.10244
https://arxiv.org/abs/1810.02508
https://arxiv.org/abs/1810.02508
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2024.acl-long.544
https://doi.org/10.18653/v1/2024.acl-long.544
https://doi.org/10.18653/v1/2024.acl-long.544

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024. Qwen2 techni-
cal report. Preprint, arXiv:2407.10671.

Ke Yi, Zengke Liu, Jianwei Zhang, Chengyuan Li,
Tong Zhang, Junyang Lin, and Jingren Zhou. 2024.
Rotated runtime smooth: Training-free activation
smoother for accurate int4 inference. Preprint,
arXiv:2409.20361.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xing-
gang Wang, Yuzhang Shang, Guangyu Sun, Qiang
Wu, Jiaxiang Wu, and Bingzhe Wu. 2023. Rptq:
Reorder-based post-training quantization for large
language models. Preprint, arXiv:2304.01089.

Yijia Zhang, Sicheng Zhang, Shijie Cao, Dayou Du,
Jianyu Wei, Ting Cao, and Ningyi Xu. 2023. Afpq:
Asymmetric floating point quantization for llms.
Preprint, arXiv:2311.01792.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tianqi Chen, and Baris Kasikci. 2024. Atom: Low-
bit quantization for efficient and accurate llm serv-
ing. Proceedings of Machine Learning and Systems,
6:196–209.

18359

https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2409.20361
https://arxiv.org/abs/2409.20361
https://arxiv.org/abs/2304.01089
https://arxiv.org/abs/2304.01089
https://arxiv.org/abs/2304.01089
https://arxiv.org/abs/2311.01792
https://arxiv.org/abs/2311.01792

A Limitations

Non-uniform quantization depends on the assump-
tion that the weights of LLMs obey Gaussian Distri-
bution, which is not always the case. For example,
the weights of LLaMA3-70B have remarkable out-
liers, leading to a server accuracy drop for integer
and non-uniform quantization based on per-channel
settings. While GPTQ and Sub-Channel can ad-
dress this issue, they still suffer from overfitting or
inefficiency. As a result, the sweet point of quanti-
zation is still open to explore for the models with
remarkable outliers.

B A simple proof of linear relationship
between quantization error of ExMy
and ExM(y+1)

First, recall that in ExMy representationwith ex-
ponent bits x and mantissa bits y. We proceed as
follows::

Xnormal = (−1)s2e(1 + d1
21

+
d2
22

+ · · ·+ dm
2m

)

Xsubnormal = (−1)s(d1
20

+
d2
21

+ · · ·+ dm
2m−1

)

where s ∈ {0, 1} is the sign bit, and di ∈ {0, 1} is
the mantissa bits. e denotes the exponent parts; the
subnormal number has e = 0. Here we define the
interval Li, i ∈ [2, 2x], which starts from 2i−1 and
ends at 2i. L1 is the first interval, starting from 0
and ending at 2. To be noticed that, the number of
x defines the number of intervals, and the number
of y defines the number of slots in each interval.
Hence, compared with ExMy, ExM(y+1) just have
two times more slots in each interval, and the length
of each slot is 1/2 times smaller, as shown in 8. The
quantization error can be calculated by:

E[Q] =

∫ +∞

−∞
p(x) ∗ e(x)dx (2)

where Q is the quantization error, p(x) is the prob-
ability density function of the weight, and e(x) is
the L2 error.

Here we briefly approximate the p to be constant
function p(x) = 1. For the first interval of E2M1,

the quantization error is:

E[Q] =

∫ 2

0
p(x) ∗ e(x)dx

=

∫ 2

0
1 ∗ e(x)dx

= 2 ∗
∫ 1

0
x(1− x)dx

=
1

3

For the first interval of E2M2, the quantization
error is:

E[Q] =

∫ 2

0
p(x) ∗ e(x)dx

=

∫ 2

0
1 ∗ e(x)dx

= 4 ∗
∫ 1/2

0
x(1/2− x)dx

=
1

12

The real quantization error with p(x) being the
normal distrition has been shown in the main text
3.

C Statistical analysis of Sigma of different
LLMs’ weight distribution

The quantization process entails two steps: Firstly,
scale the weight to the maximum value of the quan-
tization range. Secondly, round the weight to the
nearest integer. To simply the analysis among dif-
ferent quantization schema, we scale the quanti-
zation grids to the range of [−1, 1] and scale the
weight to the range of [−1, 1]. Subsequently we
collect the sigma of different LLMs’ weight dis-
tribution after scaling, and show the results in 9.
For cases where the model has a size larger than
14B, the sigma is relatively small in the very early
layer. Apart from that, the sigma is typically in
the range of 0.12 to 0.28, which accounts for 97%
of the weight distribution. Moreover, 0.25 is the
prevalent value for the sigma in most layers, which
is the optimal point of E2Mx.

18360

E2M1: 2^1 slots per 2^2 interval

60 1 2 3 4 8 12
E2M2: 2^2 slots per 2^2 interval

60 1 2 3 4 8 12

L2
 E

rr
or

The first interval of E2M1
0 1 2 0 1 2

The first interval of E2M2

L2
 E

rr
or

Figure 8: E2M1 and E2M2

0 10 20 30 40
Layer

0.05

0.10

0.15

0.20

0.25

0.30

Si
gm

a

(a) DeepSeek-R1-Distill-Qwen-14B

0 10 20 30 40 50 60
Layer

0.05

0.10

0.15

0.20

0.25

0.30

Si
gm

a

(b) DeepSeek-R1-Distill-Qwen-32B

0 10 20 30
Layer

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

Si
gm

a

(c) Llama-3-8B

0 10 20
Layer

0.15

0.20

0.25

0.30

0.35

Si
gm

a

(d) Qwen-0.5B

0 10 20
Layer

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Si
gm

a

(e) Qwen-1.5B

0 10 20 30
Layer

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Si
gm

a

(f) Qwen-3B

0 10 20
Layer

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Si
gm

a

(g) Qwen-7B

0 10 20 30 40
Layer

0.05

0.10

0.15

0.20

0.25

0.30

Si
gm

a

(h) Qwen-14B

0 10 20 30 40 50 60
Layer

0.05

0.10

0.15

0.20

0.25

0.30

Si
gm

a

(i) Qwen-32B

Figure 9: Sigma of different LLMs’ weight distribution

18361

