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Abstract

Current evaluation practices in Simultaneous
Speech Translation (SimulST) systems typi-
cally involve segmenting the input audio and
corresponding translations, calculating quality
and latency metrics for each segment, and av-
eraging the results. Although this approach
may provide a reliable estimation of translation
quality, it can lead to misleading values of la-
tency metrics due to an inherent assumption
that average latency values are good enough
estimators of SimulST systems’ response time.
However, our detailed analysis of latency eval-
uations for state-of-the-art SimulST systems
demonstrates that latency distributions are of-
ten skewed and subject to extreme variations.
As a result, the mean in latency metrics fails to
capture these anomalies, potentially masking
the lack of robustness in some systems and met-
rics. In this paper, a thorough analysis of the
results of systems submitted to recent editions
of the IWSLT simultaneous track is provided
to support our hypothesis and alternative ways
to report latency metrics are proposed in order
to provide a better understanding of SimulST
systems’ latency.

1 Introduction

In recent years, there has been a growing demand
for real-world applications that use Simultaneous
Speech Translation (SimulST) systems to provide
real-time translation across languages. Current use
cases include live broadcasts of news, lectures, and
debates, where the continuous audio stream mainly
consists of spoken speech. These applications re-
quire systems that do not only deliver high-quality
translations consistently, but also maintain low la-
tency to ensure effective communication and keep
the audience engaged with the audiovisual content.

Current evaluation of latency in SimulST re-
lies on automatic or reference segmentation of
datasets (Di Gangi et al., 2019; Wang et al., 2020)

to split the input audio and its translations, comput-
ing metrics for each segment, and averaging the re-
sults. However, this latency estimation for SimulST
systems has significant limitations (Iranzo-Sanchez
et al., 2021; Papi et al., 2024), and reported latency
figures may differ from the actual behavior of sys-
tems in a real-world scenario.

Beyond the segmentation-related issues identi-
fied in these previous work, we argue that a major
cause of the observed discrepancies may be due to
the exclusive reliance on the mean when reporting
results. While mean latencies allow to simplify sys-
tem comparison to speed up their development, we
hypothesize that by relying solely on the mean, we
may be overlooking spurious or faulty system be-
haviors, as well as anomalies in the current latency
metrics. While the presence of outliers is relatively
common when evaluating machine learning sys-
tems with any metric, their significance and impact
in latency evaluation of SimulST systems are cur-
rently being greatly underestimated. Thus, mean
values of latency metrics may result in misleading
conclusions when comparing SimulST systems.

In this paper we demonstrate that latency met-
rics, as currently reported by their average values,
are not a sufficiently accurate characterization of
SimulST systems’ response time in the presence
of latency distributions that do not follow a normal
distribution. To this purpose, latency metrics of
systems submitted to recent editions of the IWSLT
SimulST track were thoroughly analysed. Our find-
ings reveal that average latency metrics can mask
undesirable systems’ behavior, potentially result-
ing in misleading conclusions. This highlights the
need for more robust evaluation methods for la-
tency in SimulST systems. Our contributions are
summarized as follows:

* We performed a detailed analysis of recent
SimulST systems submitted to IWSLT in
terms of latency metrics.
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* This analysis demonstrates the limitations of
current latency metrics as reported by their
mean in order to detect undesirable SimulST
systems’ response time, preventing a fair com-
parison across systems.

* We report a series of latency phenomena that
must be considered and gauged when eval-
uating SimulST systems to guarantee their
consistent response time.

* We propose the usage of a series of descriptive
statistics that provide a more robust overview
of SimulST systems’ response time and allows
for a more holistic comparison.

2 Related Work

The evaluation of SimulST systems is performed
in two dimensions: translation quality and la-
tency. While translation quality is typically evalu-
ated by using conventional translation metrics such
as BLEU (Papineni et al., 2002; Post, 2018) and
COMET (Rei et al., 2020, 2022; Guerreiro et al.,
2024), multiple metrics have been developed for
measuring the latency of SimulST systems. Ear-
lier proposed metrics such as Average Proportion
(AP) (Cho and Esipova, 2016) and Consecutive
Wait Length (CW) (Gu et al., 2017) have been
mostly superseded in usage by Average Latency
(AL) Ma et al., 2019) and proposed variants such
as Differentiable Average Lagging (DAL) (Cherry
and Foster, 2019) and Length-Adaptive Average
Lagging (LAAL) (Papi et al., 2022) which try to
remedy several limitations in the original AL met-
ric definition. Another more recent metric which
has received a fair amount of adoption is Average
Token Delay (ATD) (Kano et al., 2023; ?), which
tries to fix several limitations underlining AL based
metrics. Additionally, Wein et al. (2024) and Mak-
inae et al. (2024) have proposed metrics tailored
towards the evaluation of the quality and latency of
translations closer to human interpretation.

As characterized in Iranzo-Sanchez et al. (2021),
current latency measures for SimulST can be de-
fined as a normalisation of a latency cost (in terms
of words or milliseconds) required to generate a
translation ¢ provided a source sentence x and its
corresponding reference translation y:

1

with Z being a normalisation function, ¢ an index
over the target positions and C; a cost function for

each target position i. Depending on the latency
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onds read when a token is written at position ¢, and
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length ratios. On the other hand, 7'(-) represents
the ending time of each input or output token, a (%)
the index of the input token corresponding to j;
and d(7) measures the difference between previous
input-translation prefix pairs (T<g(;), §<i). The
normalisation function Z depends on the metric
according to
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Papi et al. (2024) analyzed the behaviour of
current SimulST systems surveying the current
literature to define standardized terminology and
taxonomy across different SimulST papers, while
also identifying overlooked challenges in current
SimulST systems and recommendations for future
work in the field. Related to this, Xu et al. (2024)
identified how current computationally-aware met-
rics are incorrectly calculated in current standard
SimulST evaluation toolkits. Finally, Machacek
et al. (2023a) showed how MT quality metrics have
good correlation with Human Ratings for IWSLT
2022 and Sperber et al. (2024) analyzed the IWSLT
2023 evaluation campaign across different aspects.

3 Limitations of mean latencies

In this section, the limitations of mean latencies are
illustrated with a simplified example computed on
real data from IWSLT competitions to show how
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Mean P90 P95 P99 Max Year #L Task Tgt Avglen #S #T

System A 2.4 42 53 75 313 de 579 2580 5
System B 24 35 39 48 104 Must-C  ja 5.12 2841 3
2022 3 zh 5.12 2841 3

Table 1: Comparison of latency mean, percentiles 90%, ) )
95% and 99%, and maximum value for two SimulST Sie 6.25 059 5
systems. IWSLT ja 5.38 1768 3
zh 542 2136 3
2024 1 IWSLT ja 592 1570 3

high latencies may be underestimated in SimulST.
Table 1 shows a latency comparison in seconds
between two SimulST systems falling in a low la-
tency band and with similar translation quality. La-
tency figures for the mean, percentile scores for
90%, 95% and 99%, and the maximum value are
reported. As observed, the mean latency of both,
system A and B, is 2.4 seconds. However, system
A provides 10% of their translations with a latency
between 4.2 and 31.3 seconds, while system B does
in the range from 3.5 to 10.4 seconds.

If we were to pick between the two systems con-
sidering conventional latency metrics based on the
mean, system A would be considered as good as
system B. However, by looking into latency distri-
bution across samples, the values of system A on
approximately 10% of the samples significantly dif-
fers from the mean more than system B. By deploy-
ing system A instead of B in a real streaming ST
scenario, the probability that latency spikes appear
is high enough to lead to an accumulation of delays
that causes a desynchronization between the audio
stream and the translation text being generated. In
other words, the content of the target stream will
not be up to date with the source stream. This
behaviour is highly undesirable for the end-user ex-
perience, and system A would not be an acceptable
choice in a real streaming scenario, while system
B with a more consistent latency would have been
selected on the basis of its percentile scores.

4 TIWSLT as a Case Study

To investigate the limitations of the conventional
latency metrics illustrated in the simplified example
provided above, the latency of SimulST systems
on IWSLT evaluation campaigns are analyzed and
compared. In this study, the evaluation logs from
IWSLT 2022 and 2024 Simultaneous Translation
Speech-to-Text tracks (Anastasopoulos et al., 2022;
Ahmad et al., 2024) were processed for all available

Table 2: Basic information of the evaluation logs from
IWSLT 2022 and 2024 SimulST tracks. The number
of latency bands, samples and teams are represented by
#L, #S and #T, respectively. In addition, tasks, target
languages (Tgt), average length in seconds are provided.

team submissions provided in standard JSON files'
of the SimulEval toolkit (Ma et al., 2020).

Table 2 shows a general overview of the evalua-
tion logs involved in the study. The IWSLT 2022
SimulST task featured English (En) as the source
language, with three target directions evaluated:
German (De), Japanese (Ja), and Mandarin Chinese
(Zh). Five teams entered the German track, while
three teams did it for both, Japanese and Chinese
tracks. For the 2022 edition, three latency bands
were defined and systems were classified into low,
medium and high latency bands given by the AL
metric. For IWSLT 2024, we were only able to get
access to En-Ja results where three teams partici-
pated under a single latency band. In IWSLT 2024,
team names were anonymized as requested by the
IWSLT organizers.

Results for IWSLT 2022 shared tasks were avail-
able for the MuST-C 2.0 tst-COMMON parti-
tion (Di Gangi et al., 2019) and various segmenta-
tions of the official test set, for which the reference
segmentation of the datasets was selected. For
IWSLT 2024, results were only available on the
official test sets. We focused on the Speech-to-Text
track logs and left out the available Text-to-Text
logs from our study.

For the IWSLT 2022, the delays available in the
evaluations logs were used to recalculate AL and
DAL scores using the latest version of the SimulE-
val toolkit?. In addition, LAAL and ATD scores,

"https://dl.fbaipublicfiles.com/simultaneous_
translation/iws1t2022_simul-s2t_logs.tgz

2SimulEval 1.1.4: commit 536de82. We found slight dis-
crepancies between the metric scores values provided in the
original logs and those obtained with this SimulEval version.
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which were still not available at the time of the
shared task, were calculated. For each team the
corresponding submitted system was selected. For
those systems that did not comply with the latency
constraints, we treat them as if they were in the
nearest latency band. Finally, the CUNI-KIT par-
ticipation in the En-De track was left out due to
tokenization issues, while the Xiaomi participation
in the En-Zh track was not available.

5 IWSLT Analysis

First of all, the evaluation logs were checked to
detect the possible errors in the dataset, such as
mismatched source-target pairs and misaligned seg-
mentations. These errors would jeopardize the anal-
ysis of latency solely explained by the performance
of SimulST systems. As a result of this initial er-
ror analysis, we decided to focus on the official
IWSLT 2022 and 2024 test sets, as these proved
largely error-free in contrast to the IWSLT 2022
MuST-C sets. Results for the MuST-C partition can
be found in Appendix A.

5.1 Violin plots

Figure 1 shows from top to bottom latency sample
distributions as violin plots for AL, DAL, LAAL
and ATD, respectively. For each latency metric,
the three teams participating in the official IWSLT
2024 English-Japanese task are displayed. Each
violin plot also represents the mean (orange dot),
the median (white bar) when not overlapped with
the mean, and the range from the first to the third
quartile (edges of horizontal rectangle) as it is typ-
ically done in a box plot. When comparing these
four latency metrics, it can be observed that AL,
DAL and LAAL exhibit similar shape distributions,
while ATD distributions are clearly different from
the rest. However, LAAL and DAL distributions
in contrast to the AL distribution, stay in the posi-
tive range avoiding negative delays. As expected,
latency distributions for all the three teams possess
right long tails for high latencies that translates
into a certain degree of right-skewness. However,
right-skewness in Team 1 and Team 2 is aggra-
vated compared to Team 3, observing mean values
clearly falling on the right-hand side of median val-
ues. Based on these observations, we decided to
focus our analysis on the latency metric LAAL, as
this does not significantly impact the overall con-
clusions. Figures for the rest of latency metrics are
available in Appendix B.

Figure 1: AL, DAL, LAAL and ATD latency distribu-
tions for the IWSLT 2024 En-Ja task represented from
top to bottom as violin plots for the three teams. Long
tails extending beyond a 8-second delay were cropped
for clearer visualisation.

Figure 2 shows LAAL distributions for the
IWLST 2022 team participations for English into
German (top), Mandarin Chinese (middle) and
Japanese (bottom), across low (left), medium (cen-
ter) and high (right) latency bands. Compared to
the IWSLT 2024 latency distributions in Figure 1,
differences between systems are more pronounced
across all participations in IWSLT 2022, with sys-
tems seemingly following more unique distribution
shapes. However, most systems exhibit similar
mean values with slight latency differences of a
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Figure 2: LAAL distributions for the IWSLT2022 team
participations for English into German (top), Mandarin
Chinese (middle) and Japanese (bottom), across low
(left), medium (center) and high (right) latency bands.

few tenths of a second that, as shown, concealed
widely different latency patterns. In addition, dras-
tic changes in distribution shapes can be observed
in all languages across teams and latencies bands.
For example, latency distributions in the NAIST
En-De 2022 systems for low and medium latency
bands significantly differ from that for the high la-
tency band. In general, long right tails representing
high latencies are observed for all models in a sim-
ilar way to the IWSLT 2024 systems. However,
these right tails are specially long in IWSLT 2022
systems for the high latency band when compared
to those in the low and medium latency bands.

5.2 Normal probability plots

From the latency distributions in Figures 1 and 2,
it can be observed that the shapes and right tails of
these distributions significantly deviate from those

expected in a normal distribution. Therefore, the
mean may not properly capture the expected la-
tency of these systems whose latency distributions
move away from normality (Sainani, 2012). Thus,
we assessed the degree of normality of the latency
distributions as a way to partially reflect how re-
liable the mean is as a estimation of the system’s
response time.

Shapiro—Wilk tests for normality (Shapiro and
Wilk, 1965) were performed for all systems and
latency metrics. In all tests we obtained p-values
below our chosen o = 0.01, rejecting the null
hypothesis that the distributions are normally dis-
tributed. To graphically represent how the latency
distributions deviate from normal distributions, nor-
mal probability plots (Dodge, 2008) were gener-
ated from the evaluation logs. Normal probability
plots are a variant of Q-Q plots (Wilk and Gnanade-
sikan, 1968) in which observed values of our data
sample are displayed with respect to the quan-
tiles obtained from a normal distribution, typically
N (0, 1). More precisely, in our case sample-level
latencies (y-axis) are sorted from lowest to the high-
est and distributed along the percentiles (x-axis) of
a N (0,1). In this way, the sample-level latency at
the 50th percentile is the median value leaving 50%
of the data samples below, that is, data samples
with a lower latency. Intuitively, if our data sam-
ples comes from a normal distribution, the resulting
plotted points would closely follow a straight line.
Data samples featuring a high curvature with distri-
bution edges diverging from a straight line denote
latency distributions away from normality.

Figure 3 shows the normal probability plot for
the English-Japanese IWLST 2024 systems. As
explained above, sample-level latencies are repre-
sented in the y-axis, along, in this case, percentiles
of a (0, 1) are displayed in the x-axis. As ob-
served, Team 1 and Team 2 latency distributions
turn away from normality more clearly than Team 3
whose latency distribution approximately follows a
straight line. On the one hand, as already observed
in Figure 1, percentile values above 80%-90% for
Team 1 and Team 2 suffer from considerable longer
right tails than Team 3. On the other hand, normal
probability plots also allow to easily compare sys-
tems on the left side of the tail with Team 3 low
latencies being higher than those of the other teams.

To further illustrate the capability of normal
probability plots as a visual aid to compare systems
and capture latency distributions, Figure 4 shows
sample-level latencies for AISP_SJTU (top) and
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Figure 3: LAAL normal probability plot for IWSLT
2024 English-Japanese teams representing sample-level
latencies (y-axis) w.r.t. percentiles (x-axis) of a A/(0,1).

HW-TSC (bottom) IWSLT 2022 En-Zh systems.
In this figure reference lines were plotted repre-
senting the ideal expected percentiles that would
be obtained from a normal distribution with the
observed mean and standard deviation of each sys-
tem. While HW-TSC’s latency distribution in the
low (orange), medium (magenta) and high (blue)
latency bands seem to follow considerable normal
distributions, AISP_SJTU’s latency distribution in
the same bands tend to show a steep slope towards
the right tails, denoting a higher frequency of sam-
ples with increased latencies. Normal probability
plots for other teams involved in the IWSLT 2022
task are available in Appendix C.

Having shown the capability of normal proba-
bility plots to compare latency distributions across
systems, Table 3 shows a complementary view of
latency distributions to the normal probability plot
in Figure 3. More precisely, Table 3 shows from
left to right for each team in the English-Japanese
IWSLT 2024 task: BLEU score, and LAAL mean
(M), median (mdn), percentiles 90%, 95% and
99%, and maximum value. This table is an exten-
sion of Table 1 provided in the simplified example
of Section 3, corresponding Team 2 and Team 3 to
System A and System B, respectively. As observed,
percentiles 90%, 95% and 99% allow to character-
ize systems’ high latencies, while all three systems
having similar mean and median values. Team 2
exhibits the highest BLEU score at the cost of sam-
ples with higher latency ending up with a sample of
up to 31 seconds. In this case, one could consider
that Team 3, while slightly behind in terms of trans-
lation quality to that of Team 2, can be considered

team = AISP_SJTU

LAAL (s
14 4 (s)

2 Percentile (%)
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Figure 4: LAAL normal probability plot for IWSLT
2022 En-Zh AISP_SJTU (top) and HW-TSC (bottom)
participations representing sample-level latencies (y-
axis) w.r.t percentiles (x-axis) of a A/(0, 1).

a better system due to its consistent lower latency
towards the right tail of the distributions.

Similarly to Table 3, Table 4 shows from top
to bottom, low, medium and latency bands in the
English-Chinese IWSLT 2022 task, and reporting
from left to right: BLEU score, and LAAL mean
(M), median (mdn), percentiles 90%, 95% and
99%, and maximum value. As shown, across all
bands the AISP_SJTU system achieves the high-
est BLEU scores and fairly low mean and me-
dian LAAL values ranging from 2.0 to 4.1 sec-
onds. However, its latency for percentiles 90%,
95% and 99% are significantly higher than those of
the other two teams, consistently suffering across
latency bands from considerable worst cases with
deltas ranging from 4.0 to 5.5 seconds between
percentiles 95% and 99%, and from 10.1 to 19.7
seconds between 99% and the maximum value.
Similar tables for English-German and English-
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team BLEU M mdn p90 p95 p99 max
Team1 12.1 2.1 19 33 40 6.5 14.6
Team?2 193 24 20 42 53 75 313
Team3 179 23 22 35 39 48 104

Table 3: BLEU scores and LAAL mean (M), median
(mdn), percentiles 90%, 95% and 99%, and maximum
value in the English-Japanese IWSLT 2024 task.

team BLEU M mdn p90 p95 p99 max
Low

AISP_SITU 30.7 20 1.6 33 45 8.6 18.5

CUNIKIT 26.7 19 18 29 33 46 84

HW-TSC 19.1 22 22 34 37 46 122
Medium

AISP_SITU 31.2 3.0 25 54 7.0 11.5 27.5

CUNIKIT 27.0 29 28 44 51 6.6 104

HW-TSC 260 3.0 3.0 45 49 60114
High

AISP_SJITU 32.0 4.1 3.8 6.8 8.2 12.2 32.1

CUNLKIT 272 39 40 60 69 88 124

HW-TSC 276 36 36 55 6.1 73125

Table 4: BLEU scores and LAAL mean (M), median
(mdn), percentiles 90%, 95% and 99%, and maximum
value in the English-Chinese IWSLT 2022 task for low
(top), medium (middle), high (bottom) latency bands.

Japanese IWSLT 2022 are available in Appendix D.

5.3 Over-wait

When analysing high latency samples on the right
end of the distribution, a considerable amount of
long samples are detected in which some SimulST
systems exhibit a degenerated behavior waiting
approximately until the end of the input to generate
the translation. We refer to this phenomenon as
the over-wait of a system. In other words, the ratio
between the latency score and the length of the
input tends to one. While this behavior is to be
expected to appear in short samples, it is extremely
undesirable in the case of long samples.

Figure 5 illustrates the phenomenon of over-wait
using sample-level latencies from the low (top),
medium (middle) and high (bottom) latency bands
generated by the AISP_SJTU system participat-
ing in the English-Chinese IWSLT 2022 task. As
shown, each sample is plotted according to its
source length (x-axis) and its latency (y-axis), with

r
Lat. band 0.75 0.85 095 1.00
low 65 65 62 62
medium 17.0 16.0 157 15.7
high 483 387 33.1 326

Table 5: Over-wait (%) considering samples longer than
5 seconds with ratio € {0.75, 0.85, 0.95, 1.00} in the
low, medium and high latency bands for the AISP_SJTU
team in the English-Chinese IWSLT 2022 task.

points falling on the diagonal indicating that the
system did not write any token until reading the
complete input. Lighter and darker colors corre-
spond to ratios closer and further to one, respec-
tively. As expected, short samples tend to accumu-
late ratios close to one, while it is not so frequent
for long samples, but yet significant.

To characterize over-wait, let us define OW/" as
the percentage of samples whose duration is higher
than ¢ and the ratio between their latency score
and their input length exceeds r. Table 5 reports
over-wait OW} withr € {0.75, 0.85, 0.95, 1.00}
in terms of LAAL in the low, medium and high
latency bands for the AISP_SJTU team in the
English-Chinese IWSLT 2022 task. As expected,
over-wait increases as we move from low over
medium to high latency band. In the latter band,
this means that in approximately one third of the
samples the system waited for the end of the in-
put to generate the full translation, behaving as a
conventional offline translation system. The com-
putation of over-wait for SimulST systems allows
to easily detect this undesirable behavior in simulta-
neous translation. Over-wait figures for the rest of
IWSLT 2022 systems are available in Appendix E.

6 Recommendations

In the previous section, a series of tools for descrip-
tive statistics have been presented and illustrated
on real data to study and characterize the latency
of SimulST systems. The results presented in the
previous section has allowed us to reflect on effec-
tive ways to report latency for SimulST systems in
order to gain insight into their actual behavior in a
real scenario.

First of all, as already encouraged in the evalua-
tion of translation quality (Post, 2018; Zouhar et al.,
2024), it is strongly recommended to report, in ad-
dition to the evaluation tool, the software version
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Figure 5: Sample-level latencies versus input length in
low (top), medium (middle) and high (bottom) latency
bands for the participation of the AISP_SJTU team in
the English-Chinese IWSLT 2022 task.

of the tool in order to guarantee reproducibility.

Our analysis shows how reporting a measure
of central tendency such as the mean is not able
to properly capture the underlying latency of
a SimulST system and misleading comparisons
across systems could be drawn. For this reason,

it is convenient to provide descriptive statistics
that offer an overall view of the system latency be-
yond the mean. In this sense, violin and specially
normal probability plots were found significantly
useful and enlightening to consistently compare
systems and detect undesirable system latencies.
In addition, normal probability plots proved to be
an effective tool for assessing the normality of la-
tency distributions, while also capturing other key
descriptive statistics such as skewness and kurto-
sis, as well as the differences in percentile values
across different systems. Complementarily, figures
reporting latencies for higher percentiles, along
with mean and median, are also recommended to
prove the robustness of the system latency. Finally,
over-wait scores are very valuable to identify the
percentage of samples in which a SimulST system
is exhibiting a degenerated offline behavior.

7 Conclusions

In this paper, we have critically examined the cur-
rent practices for evaluating latency in SimulST sys-
tems, focusing on the limitations of relying solely
on mean latency metrics. Through a detailed anal-
ysis of systems submitted to recent editions of the
IWSLT SimulST track, mean latency metrics have
demonstrated to fail to provide a complete view of
SimulST systems’ response time, particularly in the
presence of skewed latency distributions and high
latency values. Our findings reveal that the mean la-
tency can mask unacceptable latency values which
are critical for understanding the performance of
these systems in a real scenario.

Alternative methods have been proposed for re-
porting descriptive statistics of latency metrics, em-
phasizing the importance of considering the entire
latency distribution rather than just the mean value.
Specifically, violin and specially normal probabil-
ity plots were recommended to graphically report
latency values per percentile in order to provide a
more comprehensive view of the system behavior.

Our analysis underscores the need for more ro-
bust evaluation practices in SimulST research. We
strongly believe that by adopting the recommenda-
tions outlined in this paper, researchers and practi-
tioners can gain a deeper understanding of system
performance, leading to more reliable and consis-
tent SimulST systems in real-world applications.

Future work should continue to explore the de-
velopment of new metrics and evaluation method-
ologies that better align with the challenges of real-
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time translation, ensuring that SimulST systems
meet the demands of end-users in dynamic and
continuous speech scenarios. In particular, the
more realistic stream-level latency metrics (Iranzo-
Sénchez et al., 2021) must be revisited taking into
account the lessons learned in this work.

8 Limitations

In this article we have restricted ourselves to the
usage of non-computationally aware metrics to sim-
plify the resulting analysis and to avoid possible
inconsistencies such as those indicated in Xu et al.
(2024). Findings in non-computationally aware
metrics can be easily extrapolated to computation-
ally aware measures, since the former can be un-
derstood as a best case scenario for the latter. In
addition, this study was performed on a limited
subset of languages and models obtained from the
past IWSLT editions. A more extensive study with
larger models (Machacek et al., 2023b; Commu-
nication et al., 2023; Labiausse et al., 2025), lan-
guages directions and datasets may provide deeper
insight on distinct aspects of latency evaluation.
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A IWSLT 2022: MuST-C

Figure 6 shows MuST-C LAAL violin plots LAAL.
Figures 7, 8 and 9 show LAAL normal probability
plots for En-De, En-Zh and En-Ja of the MuST-C
partition from IWSLT 2022. Figure 10, 11 and 12
show LAAL vs Input length over-wait graphs for
En-De, En-Zh and En-Ja of MuST-C from IWSLT
2022.
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Figure 6: LAAL distributions for the IWSLT 2022 Must-
C team participations. From left to right, low, medium
and high band systems for each language.

B IWSLT 2022: Official, Other Metrics

Figures 13, 14 and 15 show violin plots for AL,
DAL and ATD on the official IWSLT 2022 datasets
for all available languages.

C IWSLT 2022: Normal Probability Plots

Figures 16, 17 and 18 show LAAL normal proba-
bility plots for all languages of IWSLT 2022.

D IWSLT 2022: Additional Tables

Tables 6 and 7 show numerical results for En-De
and En-Ja.

E TIWSLT 2022-2024: Over-wait

Figure 19, 20 and 21 show LAAL vs Input length
over-wait graphs for En-De, En-Zh and En-Ja of
IWSLT 2022. Figure 22 shows results for IWSLT
2024 En-Ja.
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Figure 13: AL distributions for the IWSLT 2022 official ~ Figure 14: DAL distributions for the IWSLT 2022 offi-
test sets team participations. From left to right, low, cial test sets team participations. From left to right, low,
medium and high band systems for each language. medium and high band systems for each language.
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(c) En-Ja. Top to bottom: CUNI-KIT, HW-TSC, NAIST.
Figure 15: ATD distributions for the IWSLT 2022 offi-

cial test sets team participations. From left to right, low,
medium and high band systems for each language.

team BLEU M p50 p90 p95 p99 max
Low
FBK 102 09 08 1.6 2.0 34 10.6
HW-TSC* 139 19 1.8 29 33 43 125
NAIST 134 1.0 09 1.7 20 29 84
UPV 160 1.0 09 1.6 19 28 89
Medium
FBK 20.1 19 1.8 30 35 49 93
HW-TSC 19.1 2.6 25 38 43 54 109
NAIST 152 1.8 1.5 3.1 3.8 84 18.7
UPV 21.1 19 1.8 2.8 3.1 43109
High
FBK 236 40 40 58 6.5 8.0 12.0
HW-TSC 19.7 42 42 62 69 8.0 13.1
NAIST 154 4.6 3.5 95 125 17.7 283
UPV 23,5 35 36 50 54 6.8 109

Table 6: Metric Values for Official Test Set for
IWSLT2022 English to German. The low HW-TSC
system did not originally comply with the latency con-
straints.

team BLEU M mdn p90 p95 p99 max
Low
CUNI-KIT 16,5 2.7 26 42 47 59 10.0
HW-TSC 5.6 24 23 3.6 4.1 48 12.7
NAIST 87 23 22 33 36 43 98
Medium
CUNI-KIT 16.6 4.1 4.1 6.7 7.5 9.6 135
HW-TSC 11.7 3.1 3.1 47 51 6.2 120
NAIST 94 34 24 7.1 93 14.6 32.1
High
CUNI-KIT 16.7 44 44 7.3 83 10.7 183
HW-TSC 114 3.6 36 57 62 7.3 132
NAIST 9.8 46 34 93 122 17.0 32.1

Table 7: Metric Values for Official Test Set for
IWSLT2022 English to Japanese.
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Figure 16: IWSLT2022 En-De Official Test set LAAL normal probability plot.
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Figure 17: IWSLT2022 En-Zh Official Test set LAAL

normal probability plot.
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Figure 18: IWSLT2022 En-Ja Official Test set LAAL
normal probability plot.
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Figure 19: Over-wait graphs for IWSLT 2022 LAAL En-De.
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Figure 20: Over-wait graphs for IWSLT 2022 LAAL En-Zh.
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Figure 21: Over-wait graphs for IWSLT 2022 LAAL En-Ja.
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Figure 22: Over-wait graphs for IWSLT 2024 LAAL En-Ja.
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