
Findings of the Association for Computational Linguistics: ACL 2025, pages 18167–18188
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

PROMPTCOT: Synthesizing Olympiad-level Problems for Mathematical
Reasoning in Large Language Models

Xueliang Zhao♠⋆* Wei Wu⋆† Jian Guan⋆ Lingpeng Kong♠†

♠The University of Hong Kong ⋆Ant Group
{xlzhao,lpk}@cs.hku.hk

{wuwei19850318, jianguanthu}@gmail.com

Abstract

The ability of large language models to
solve complex mathematical problems has pro-
gressed significantly, particularly for tasks re-
quiring advanced reasoning. However, the
scarcity of sufficiently challenging problems,
particularly at the Olympiad level, hinders fur-
ther advancements. In this work, we introduce
PROMPTCOT, a novel approach for automati-
cally generating high-quality Olympiad-level
math problems. The proposed method synthe-
sizes complex problems based on mathematical
concepts and the rationale behind problem con-
struction, emulating the thought processes of
experienced problem designers. We provide a
theoretical analysis demonstrating that an op-
timal rationale should maximize both the like-
lihood of rationale generation given the asso-
ciated concepts and the likelihood of problem
generation conditioned on both the rationale
and the concepts. Our method is evaluated
on standard benchmarks including GSM8K,
MATH-500, and AIME2024, where it consis-
tently outperforms existing problem generation
methods. Furthermore, we demonstrate that
PROMPTCOT exhibits superior data scalability,
consistently maintaining high performance as
the dataset size increases, outperforming the
baselines.

1 Introduction

“In mathematics the art of proposing a
question must be held of higher value
than solving it.”

—— Georg Cantor

Recent advancements in large language models
(LLMs) have greatly enhanced their capability for
solving complex problems through planning and

* This work was done during an internship at Ant Group.
† Corresponding authors.

reasoning. Particularly in mathematics, strong rea-
soning models such as OpenAI o1 (Jaech et al.,
2024) and DeepSeek r1 (Guo et al., 2025) have sig-
nificantly pushed the boundaries of AI from master-
ing grade school problems (Yang et al., 2024b) to
excelling at Olympiad-level challenges (Guo et al.,
2025). The remarkable achievements have inspired
the community to explore dedicating more com-
putational resources to the inference stage. Con-
sequently, the scaling paradigm of LLMs is shift-
ing from training time to test time (Snell et al.,
2024). While powerful reasoning LLMs, such as
DeepSeek r1, have been open-sourced, the details
of math problem acquisition remain obscured in
the published literature (e.g., the technical report
of DeepSeek r1), and such data is still kept private.
Consequently, studies aiming to reproduce o1-like
or r1-like performance have to rely on open-source
math datasets (Li et al., 2024b), which are often
constrained by scale and difficulty. This leaves an
open research question (RQ): how can we obtain
high-quality, sufficiently challenging math prob-
lems at scale? We emphasize that RQ is crucial
for test-time scaling research, as it serves as a pre-
requisite for effectively initiating the supervised
fine-tuning (SFT) or reinforcement learning (RL)
process.

We investigate the automated generation of
Olympiad-level math problems as a principled ap-
proach to addressing RQ. Prior to our work, several
projects have curated math datasets, typically in-
volving problem synthesis procedures. Existing
synthesis methods can be categorized into three
frameworks: (1) direct generation through prompt-
ing powerful LLMs (Huang et al., 2024; Tang et al.,
2024; Li et al., 2024b; Toshniwal et al., 2024), (2)
mining from pretraining corpora (Yue et al., 2023;
Li et al., 2024d), and (3) problem evolution, ei-
ther through simple-to-simple rephrasing (Yu et al.,
2023) or difficulty-based progression (Xu et al.,
2023; Luo et al., 2023). While these efforts progres-

18167

Dataset Qwen2.5-Math-72B-Instruct DeepSeek-R1-Distill-Qwen-7B Micro Avg. Accuracy on MATH-500 and AIME2024
Accuracy (↓) Avg. Reasoning Tokens (↑) Fine-tuned Qwen2.5-Math-7B ∆ (↑)

AIME2024 30.0 4,159 - -

PROMPTCOT (ours) 48.9 6,502 80.8 +1.2
OpenMathInstruct (Toshniwal et al., 2024) 63.3 1,578 75.8 -3.8
NuminaMath (Li et al., 2024b) 60.9 3,039 76.6 -3.0
Evol-Instruct (Luo et al., 2023) 65.9 1,346 74.0 -5.6
KPDDS (Huang et al., 2024) 73.2 1,225 72.3 -7.3

Table 1: Difficulty and efficacy evaluation for different mathematical datasets. Accuracy: Performance of Qwen2.5-
Math-72B-Instruct on the problems in different datasets. Note that we directly apply the model to solve the problems
without any tuning, so the metric reflects difficulty of the problems for Qwen2.5-Math-72B-Instruct (↓: lower
accuracy indicates higher difficulty). Avg. Reasoning Tokens: Average number of tokens in reasoning processes
generated by DeepSeek-R1-Distill-Qwen-7B when processing the problems in different datasets (↑: larger numbers
means DeepSeek-R1-Distill-Qwen-7B needs more tokens to complete reasoning, suggesting greater problem
difficulty). Micro Avg. Accuracy on MATH-500 and AIME2024: Performance of Qwen2.5-Math-7B after
fine-tuning on different datasets. Accuracy is computed as a weighted average over MATH-500 and AIME 2024.
Note that fine-tuning is conducted using both the problems and their corresponding solutions. Further details are
provided in Section 3. ∆: Difference in performance between Qwen2.5-Math-7B and Qwen2.5-Math-7B-Instruct
(↑: larger margins suggests bigger contributions from the corresponding datasets). Note that no tuning is performed
on Qwen2.5-Math-7B-Instruct, so its Micro Avg. Accuracy remains fixed at 79.6.

sively contribute to LLM reasoning, the problems
provided by these methods now are not challenging
enough for state-of-the-art models, making them
less effective in further advancements. Table 1 pro-
vides a detailed analysis of problem difficulty in
typical published works and open-source datasets,
along with their efficacy in enhancing state-of-the-
art LLMs. From this, we observe clear gaps in
terms of difficulty between the problems in exist-
ing work and those in AIME, as well as the limited
utility of these problems in further improving LLM
performance.

The primary challenge in synthesizing
Olympiad-level math problems lies in their scarcity
in existing corpora. As a result, the complex
reasoning patterns required for such problems
are undertrained, making it difficult for LLMs
to assign sufficient probability to them during
inference. More broadly, what we aim to explore
is by nature a low-resource generation problem,
which is prevalent across various applications
yet inherently contrasts with the fundamental
working mechanisms of LLMs. We focus on the
mathematical domain, but our method can be easily
adapted to other domains. Specifically, we propose
PROMPTCOT, a novel problem generation method
that synthesizes a complex math problem based
on given math concepts (e.g., “Prime Numbers”,
c.f. Figure 1) and a rationale that emulates a
veteran teacher’s thought process when designing
math problems for students. The idea is inspired
by the success of LLMs in “solving” difficult
problems, where detailed reasoning procedures

(e.g., chain-of-thoughts (Wei et al., 2022a)) have
proven particularly effective. Through theoretical
analysis, we show that an optimal rationale
should simultaneously maximize the likelihood
of rationale generation given the concepts and
the likelihood of problem generation conditioned
on both the rationale and the concepts. Based
on this analysis, we implement PROMPTCOT
by first querying an LLM to generate rationales
for prepared Olympiad-level math problems and
their associated concepts, and then fine-tuning an
LLM as a problem generation model using a set of
concept-rationale-problem triples.

We conduct extensive experiments on mul-
tiple benchmarks focused on mathematical
reasoning, including GSM8K (Cobbe et al.,
2021), MATH-500 (Lightman et al., 2023), and
AIME2024 (AIME-2024). Evaluation results
demonstrate that, compared to a range of exist-
ing generation methods and datasets, PROMPTCOT
leads to more significant improvements on state-of-
the-art LLMs after distillation in both short-CoT
and long-CoT settings, achieving 0.4%-4.8% abso-
lute gains on MATH-500 and 6.7%-20% absolute
gains on AIME2024. An extended experiment fur-
ther shows that PROMPTCOT exhibits remarkable
advantages over the baseline method as the number
of problems gradually increases, highlighting its
superior data scalability.

Our contributions are three-fold: (1) We pro-
pose synthesizing Olympiad-level math problems
to enhance LLM reasoning. While previous re-
search (Snell et al., 2024) has identified problem

18168

Foundational
Concepts (𝒄)

1. Properties of Exponents
2. Modular Arithmetic
3. Prime Numbers
4. Congruence Theorems

Rationale ①

Rationale ②

Rationale ③

Olympiad-level
Problem (𝒙)

Find the least odd prime
factor of 20198 + 1

Potential Rationales (𝒛)

Likelihood of being derived

① ② ③

𝑝(𝑧|𝑐)

Rationales

Likelihood of deriving olympiads

① ② ③

𝑝(𝑥|𝑧, 𝑐)

Rationales

Foundational
Concepts

Rationale ②
Olympiad-level

Problem

Update

Update Sample

Quality
Evaluation

Arbitrary Set
of Concepts

Rationale Problem

Problem Generation Model

Rationale Generation (§ 2.2) Problem Generation Model (§ 2.3)

Figure 1: Overview of the proposed method. Left: Given an Olympiad problem and its foundational concepts
(extracted using an LLM), the goal is to identify rationales that act as “amplifiers” to enhance the likelihood of
generating the Olympiad problem (i.e., p(x | z, c)) while ensuring that these rationales can be easily derived
from the foundational concepts (i.e., p(z | c)). Right: Once an appropriate rationale is found, we use the
⟨foundational concepts, rationale,Olympiad problem⟩ triple to train a model capable of predicting both the rationale
and the Olympiad problem from any given set of concepts. The model can be further optimized through rejection
sampling, where the quality of generated outputs is evaluated and used for subsequent model training.

difficulty as a key factor in improving LLMs’ rea-
soning capabilities, to the best of our knowledge,
we are the first to formally pose difficult problem
generation as a research question (i.e., RQ); (2)
We propose PROMPTCOT as a principled approach
to generating Olympiad-level math problems. To
the best of our knowledge, we are the first to ap-
ply the chain-of-thought paradigm to the task of
problem generation; and (3) We conduct extensive
experiments to evaluate the efficacy of PROMPT-
COT. Notably, PROMPTCOT is the only method
that enables Qwen2.5-Math base models to surpass
their Instruct versions. Furthermore, a 7B model
distilled using the problems generated by PROMPT-
COT is able to achieve performance comparable to
state-of-the-art 32B models on mathematical rea-
soning tasks.

2 Method

Figure 1 provides an overview of PROMPTCOT. In
summary, our method comprises three key steps:
(1) Concept Extraction: Foundational concepts
are extracted from seed prompts collected from
Olympiad math sources (§2.1); (2) Rationale Gen-
eration: A rationale is inferred for each problem
based on its associated concepts by maximizing
both the probability of the rationale given the con-
cepts and the probability of the problem given
both the rationale and the concepts (§2.2); and (3)
Problem Generation Model Training: Concept-
rationale-problem triples are used to fine-tune an
LLM as a problem generation model, followed by
a rejection sampling fine-tuning stage for further
self-improvement, ensuring the quality of gener-

ated problems (§2.3).

2.1 Concept Extraction

We collect a large set of seed prompts from
the AoPS 1 platform which contains challenging
Olympiad-level math problems. Problems overlap-
ping with common test benchmarks are filtered out
to prevent data leakage. For each seed prompt,
domain-specific concepts are extracted using a
large language model. The model is provided with
a query instruction (see Appendix A for details)
that directs it to identify the salient concepts associ-
ated with the problem. While tailored to mathemat-
ics in our study, these concepts serve as a concise
abstraction of the underlying reasoning in problem
design and can be readily adapted to other domains
by replacing the seed prompts with those relevant
to the target domain.

2.2 Rationale Generation

For effective problem generation, the underlying
rationale should (i) be naturally derived from a
set of foundational concepts and (ii) increase the
likelihood of producing a high-quality problem. To
capture this idea, let us denote the set of extracted
K concepts by

c = {c1, c2, . . . , cK}.

We introduce a latent variable z that represents the
rationale connecting these concepts to the original
problem x. The generation process is then formu-
lated as

1https://artofproblemsolving.com/

18169

https://artofproblemsolving.com/

Algorithm 1 Rationale-Guided Problem Generation
Require: A set of seed prompts {p1, p2, . . . , pn} and an LLM for concept extraction and rationale generation.
1: Initialize training set T ← ∅.
2: for all seed prompt x ∈ {x1, x2, . . . , xn} do
3: Concept Extraction: Query the LLM (using the instruction in Appendix A) to extract a set of foundational concepts c.
4: Rationale Generation: Query the LLM (using the instruction in Appendix B) with x and c to generate a rationale z.
5: Add the triplet ⟨c, z, x⟩ to T .
6: Model Training: Train a problem generation model on T with MLE and rejection sampling.
7: Inference: For any given set of foundational concepts c′, use the trained model to generate a rationale z′ and a problem x′,

and aggregate these problems into the set {x′
1, x

′
2, . . . , x

′
m}.

Output: A set of high-quality and challenging problems {x′
1, x

′
2, . . . , x

′
m}.

p(x | c) =
∑

z

p(x, z | c)

=
∑

z

p(x | z, c), p(z | c)

Ideally, we aim to maximize p(x | c); how-
ever, marginalizing over the latent variable z is
intractable. Therefore, we introduce a variational
distribution q(z | c, x) to approximate the true
posterior p(z | c, x) and derive an evidence lower
bound (ELBO) via Jensen’s inequality:

log p(x | c) ≥ Eq(z|c,x)

[
log

p(x, z | c)
q(z | c, x)

]
.

Lemma 1 (Optimal Variational Distribution). The
optimal variational distribution q⋆(z | c, x) that
maximizes the ELBO satisfies

q⋆(z | c, x) ∝ p(x | z, c)p(z | c).

The proof is provided in Appendix D. This result
implies that the optimal distribution over the la-
tent rationale is governed by two key factors: the
extent to which the rationale is naturally derived
from the set of foundational concepts c (as indi-
cated by p(z | c)), and the degree to which this
rationale increases the likelihood of generating a
high-quality problem (as indicated by p(x | z, c)).
In our framework, these insights ensure that the
inferred rationale not only reflects the core input in-
formation but also contributes to the production of
the problems. In practice, z is obtained by querying
a large language model with a dedicated instruction
(see Appendix B).

2.3 Problem Generation Model
Through concept extraction and rationale genera-
tion, we construct a dataset D = {(c, z, x)} from
the seed prompts, where x represents a problem,
c denotes the foundational concepts relevant to

x, and z captures the underlying thought process
behind x. An LLM is then fine-tuned on D as a
problem generation model, enabling it to jointly
synthesize a rationale and the corresponding prob-
lem given a set of foundational concepts. The train-
ing objective is defined by Maximum Likelihood
Estimation (MLE).

To further ensure that synthesized problems are
of high quality, we implement an iterative rejection
sampling mechanism using the fine-tuned problem
generation model from the previous step. Specif-
ically, for each concept set c ∈ D, the model
generates candidate rationale-problem pairs (z̃, x̃).
These candidates undergo rigorous quality assess-
ment through two independent LLMs serving as
evaluators, which assign ratings based on prede-
termined criteria (detailed evaluator instructions
are provided in Appendix C). Only candidate pairs
receiving unanimous “perfect” ratings from both
evaluators are retained for subsequent model op-
timization, thereby ensuring that the fine-tuning
process exclusively incorporates exemplars of the
highest quality. Algorithm 1 presents a formal sum-
mary of the rationale-guided problem generation
procedure.

At inference time, the fine-tuned problem gen-
eration model is supplied with an arbitrary set of
foundational concepts sampled uniformly from the
entire training corpus. It then generates rationale-
problem pairs (z′, x′) that adhere to the rigorous
quality standards established during training. This
approach enables the generation of a large corpus
of high-quality and challenging math problems that
are robust and well-grounded in the underlying
concepts.

When using the synthesized problems for LLM
reasoning, we leverage a powerful teacher model
(details are presented in Section 3) to generate
detailed, step-by-step solutions for each prob-
lem, thereby constructing a comprehensive training
dataset Dtrain = {(x′, s′)}, where s′ denotes the

18170

solution corresponding to problem x′, for training
downstream mathematical reasoning models.

3 Experiments

3.1 Datasets and Evaluation Metrics

We employ three standard benchmarks focused
on mathematical reasoning. Specifically, we use
the following datasets: (1) GSM8K (Cobbe et al.,
2021) is a dataset consisting of grade-school level
math word problems that require logical reasoning.
It tests a model’s ability to solve elementary-level
math problems; (2) MATH-500 (Lightman et al.,
2023) is a dataset containing high school-level
math problems. It serves to assess a model’s ability
to handle more advanced mathematical reasoning;
and (3) AIME 2024 (AIME-2024) is a benchmark
that includes particularly challenging math prob-
lems from the American Invitational Mathematics
Examination (AIME), designed to assess advanced
problem-solving skills. These problems are signifi-
cantly more difficult than typical high school-level
math problems, requiring advanced reasoning and
problem-solving strategies. We use exact match ac-
curacy as the primary metric for evaluating the per-
formance of our method in math problem-solving
tasks. Specifically, for these tasks, accuracy is de-
termined by comparing the predicted final answer,
enclosed by \boxed, with the ground-truth answer.

3.2 Baseline Methods

We evaluate the proposed method in two settings:
short-CoT and long-CoT. Short-CoT refers to the
vanilla CoT (Wei et al., 2022a), where reasoning to-
kens are generated before deriving the final answer.
Long-CoT (OpenAI, 2024b; Guo et al., 2025), on
the other hand, requires the model to generate a
deep reasoning process, which may include self-
reflections, prior to producing the final CoT se-
quence. For the short-CoT setting, we compare
our method with the following problem generation
baselines: (1) Evol-Instruct: This method (Luo
et al., 2023) aims to enhance the quality of instruc-
tion data by improving both its complexity and
diversity, thus facilitating the generation of more
varied and challenging problems; (2) KPDDS: A
data synthesis framework (Huang et al., 2024)
that generates question-answer pairs by leverag-
ing key concepts and exemplar practices derived
from authentic data sources; (3) OpenMathIn-
struct: This method (Toshniwal et al., 2024) uti-
lizes few-shot learning to prompt an LLM to cre-

ate new math problems based on existing exam-
ples, without explicit instructions for adjusting
difficulty or introducing new constraints; and (4)
NuminaMath: This approach (Li et al., 2024b)
uses an LLM to generate novel math questions
starting from a reference problem. Additionally,
we compare with an open-source model Qwen2.5-
Math-Instruct, which is known for its state-of-
the-art performance without relying on long-CoT
reasoning. For methods that have not released the
generated problems, specifically Evol-Instruct and
KPDDS, we follow their papers and use Llama-
3.1-70B-Instruct (Dubey et al., 2024) as the LLM
to generate the problems, ensuring that the num-
ber of generated problems is consistent with ours.
For NuminaMath 2 and OpenMathInstruct 3, we
directly use the published problem sets. For all
problem generation baselines, we use Qwen2.5-
Math-72B-Instruct as the teacher model to gener-
ate solutions, ensuring a fair comparison across
methods. For the long-CoT setting, we compare
the proposed method with: DeepSeek-R1-Distill-
Qwen, a leading model (Guo et al., 2025) that
incorporates long-CoT reasoning (OpenAI, 2024b),
allowing for more thorough and comprehensive
problem-solving processes that generate solutions
with deeper reasoning.

3.3 Implementation Details
We implement PROMPTCOT in two configurations:
(1) PROMPTCOT-Qwen, distilled from Qwen2.5-
Math-72B-Instruct (Yang et al., 2024b), which is
capable of generating short-CoT (vanilla Chain-
of-Thought) reasoning, and (2) PROMPTCOT-DS,
distilled from DeepSeek-R1-Distill-Qwen-7B (Guo
et al., 2025) (i.e., the teacher model), which is
designed to generate long-CoT reasoning (Ope-
nAI, 2024b). For PROMPTCOT-Qwen, we gen-
erate a total of m = 905, 459 problems, while
for PROMPTCOT-DS, we generate m = 114, 763
problems4. For concept extraction, we construct
a dataset consisting of 6, 365 seed prompts. We
use Llama-3.1-70B-Instruct to extract the relevant
concepts, with the number of concepts per prob-
lem set to k = 5. In the rationale generation
phase, we leverage Llama-3.1-70B-Instruct (Dubey
et al., 2024), Qwen2.5-72B-Instruct (Yang et al.,

2https://huggingface.co/AI-MO
3https://huggingface.co/datasets/nvidia/

OpenMathInstruct-2
4We generate significantly fewer problems in the long-CoT

setting than in the shot-CoT setting, as solution generation in
the long-CoT setting is considerably more costly.

18171

https://huggingface.co/AI-MO
https://huggingface.co/datasets/nvidia/OpenMathInstruct-2
https://huggingface.co/datasets/nvidia/OpenMathInstruct-2

Models Base GSM8K MATH-500 AIME2024

short-CoT
Qwen2.5-Math-1.5B-Instruct - 84.8 75.8 10.0
Openmathinstruct-1.5B Qwen2.5-Math-1.5B 84.9 63.8 13.3
NuminaMath-1.5B Qwen2.5-Math-1.5B 85.1 69.0 16.7
Evol-Instruct-1.5B Qwen2.5-Math-1.5B 84.6 67.4 10.0
KPDDS-1.5B Qwen2.5-Math-1.5B 83.4 64.4 6.7
PROMPTCOT-Qwen-1.5B Qwen2.5-Math-1.5B 87.1 78.4 26.7

long-CoT
DeepSeek-R1-Distill-Qwen-1.5B† - 85.1 80.2 23.3
PROMPTCOT-DS-1.5B DeepSeek-R1-Distill-Qwen-1.5B 86.1 85.0 43.3

Table 2: Evaluation results across three mathematical reasoning benchmarks for models with 1.5B parameters.
Bold numbers indicate the highest performance in each respective setting. † indicates results reproduced using our
prompt.

Models Base GSM8K MATH-500 AIME2024

short-CoT
Qwen2.5-Math-7B-Instruct - 95.2 83.6 13.3
Openmathinstruct-7B Qwen2.5-Math-7B 92.0 79.6 10.0
NuminaMath-7B Qwen2.5-Math-7B 92.9 81.8 20.0
Evol-Instruct-7B Qwen2.5-Math-7B 88.5 77.4 16.7
KPDDS-7B Qwen2.5-Math-7B 89.9 76.0 10.0
PROMPTCOT-Qwen-7B Qwen2.5-Math-7B 93.3 84.0 26.7

long-CoT
DeepSeek-R1-Distill-Qwen-7B† - 91.7 91.6 43.3
PROMPTCOT-DS-7B DeepSeek-R1-Distill-Qwen-7B 92.6 93.0 60.0

Table 3: Evaluation results across three mathematical reasoning benchmarks for models with 7B parameters. Bold
numbers indicate the highest performance in each respective setting. † indicates results reproduced using our
prompt.

2024a), and Qwen2.5-32B-Instruct to diversify the
dataset, resulting in a total of 19, 095 concept-
rationale-problem triples. We initialize the problem
generation model with Llama-3.1-8B. During the
MLE training stage, we employ a learning rate
of 2 × 10−5 and a batch size of 64. In the re-
jection sampling phase, we perform three rounds
of evaluation, using Llama-3.1-70B-Instruct and
Qwen2.5-72B-Instruct as evaluators. For the re-
jection sampling process, we continue to use the
same learning rate of 2 × 10−5 and batch size of
64 as in the MLE training stage. All experiments
are conducted on 8×A100 80GB machines.

3.4 Main Results

The results of our experiments, presented in Ta-
bles 2 and 3, reveal the following key insights: (1)
Our method achieves state-of-the-art performance
across multiple benchmarks, outperforming the
baselines on both short-CoT and long-CoT settings.
This highlights the efficacy of our rationale-driven
approach in generating high-quality problems; (2)
As the problem difficulty increases from GSM8K
to MATH-500 and AIME2024, our method’s ad-

vantage becomes more pronounced. This is par-
ticularly evident on AIME2024, which demands
more advanced reasoning and problem construc-
tion. Our approach excels at generating Olympiad-
level problems, capturing the more complex reason-
ing needed for such tasks; and (3) Our method fur-
ther enhances the performance of long-CoT models
like DeepSeek-R1-Distill-Qwen. The generation of
Olympiad-level problems, with their higher com-
plexity, taps into the full potential of long-CoT
reasoning, enabling deeper and more effective rea-
soning processes.

Models GSM8K MATH-500 AIME2024

PROMPTCOT (full) 87.1 78.4 26.7

- rationale 82.3 67.0 10.0
- optimal 86.3 72.6 16.7
- rejection sampling 85.9 75.2 20.0

Table 4: Ablation study results for 1.5B parameter mod-
els. Bold numbers indicate the highest performance.

18172

4 Discussions

In addition to the extensive evaluation across multi-
ple benchmarks, we seek to further understand the
underlying mechanisms of PROMPTCOT. Specifi-
cally, we explore the following research questions:
(1) RQ1: How do the different components of
PROMPTCOT contribute to its performance? (2)
RQ2: How does the difficulty of the problems gen-
erated by PROMPTCOT compare to those from typ-
ical published works and open-source datasets? (3)
RQ3: How does PROMPTCOT compare to state-
of-the-art models with larger parameter sizes? (4)
RQ4: What are the scaling properties of the prob-
lems generated by PROMPTCOT?

4.1 Ablation Study for RQ1

We perform an ablation study using 1.5B param-
eter models in the short-CoT setting and evaluate
three variants of PROMPTCOT: exclusion of the
rationale, denoted as “- rationale”; exclusion of
the optimality condition for the rationale, referred
to as “- optimal”;5 and exclusion of the rejection
sampling process, represented as “- rejection sam-
pling”.

The results in Table 4 show that the full ver-
sion of PROMPTCOT consistently outperforms all
variants, emphasizing the importance of each com-
ponent. Excluding the rationale leads to the largest
performance drop, indicating the crucial role of
the rationale in guiding problem generation. The “-
optimal” variant also experiences a performance de-
crease, albeit smaller, highlighting the significance
of the rationale’s optimal construction. The ex-
clusion of rejection sampling has the least impact,
suggesting that while it helps align the problem
generation model with predefined quality criteria,
the difficulty of problems plays a more important
role in reasoning tasks.

4.2 Analysis of Problem Difficulty for RQ2

While Table 1 in Section 1 has presented analy-
sis on problem difficulty, we provide more details
here. We assess the performance of Qwen2.5-Math-
Instruct when tested on problem sets produced by
different problem generation methods, including
PROMPTCOT and other baselines. Specifically, we
calculate the accuracy of Qwen2.5-Math-Instruct
on these problem sets to compare their difficulty.

5Upon implementation, we removed the two conditions
marked as “(IMPORTANT)” in the instruction for rationale
generation (Appendix B)

We use the accuracy on AIME2024 as a reference.
For open-source datasets, including NuminaMath
and OpenMathInstruct, we use the provided an-
swers in the datasets as the ground truth to calculate
accuracy. For other methods, including KPDDS,
Evol-Instruct, and PROMPTCOT, we use a strong
reasoning model, DeepSeek-R1-Distill-Qwen-7B,
to label the ground truth answers, applying self-
consistency (Wang et al., 2022) with 8 rollouts to
ensure answer validity. The results in Figure 2 in-
dicate that the difficulty of the problems generated
by PROMPTCOT is closer to AIME, outperforming
the other methods by a significant margin.

Additionally, we compare the reasoning tokens
required for different problems. To compute the
number of reasoning tokens, we use the DeepSeek-
R1-Distill-Qwen-7B model.In this experiment, rea-
soning tokens include both the portion between
“<think>” and “</think>” tags, as well as the fi-
nal CoT. The results in Table 1 demonstrate that
PROMPTCOT-generated problems require a con-
siderably higher number of reasoning tokens com-
pared to the other methods, reflecting the increased
difficulty of the problems generated by PROMPT-
COT.

Models MATH-500 AIME2024

QwQ-32B 90.6 50.0
DeepSeek-R1-Distill-Qwen-32B† 90.4 63.3
S1-32B 93.0 56.7

PROMPTCOT-DS-7B 93.0 60.0

Table 5: Performance comparison with state-of-the-
art models having 32B parameters on MATH-500 and
AIME2024. † indicates results reproduced using our
prompt.

4.3 Performance Comparison for RQ3

We further compare PROMPTCOT-DS-7B with
state-of-the-art reasoning models that have signif-
icantly larger parameter sizes to evaluate whether
our model can match the reasoning capabilities typ-
ically associated with larger models. Specifically,
we compare PROMPTCOT-DS-7B with the models
QwQ (Team, 2024), DeepSeek-R1-Distill-Qwen-
32B (Guo et al., 2025), and S1-32B (Muennighoff
et al., 2025), all of which leverage long-CoT to
solve problems. The results presented in Table 5
show that PROMPTCOT-DS-7B achieves perfor-
mance comparable to the state-of-the-art 32B pa-
rameter models. This suggests that our approach,
through synthesizing Olympiad-level problems, en-

18173

AIM
E2

02
4

Pr
om

pt
Co

T

Ope
nM

at
hIn

st.

Num
ina

Mat
h

Ev
ol-

Ins
t.

KPD
DS

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (
%

)

Qwen2.5-Math-1.5B-Instruct

AIM
E2

02
4

Pr
om

pt
Co

T

Ope
nM

at
hIn

st.

Num
ina

Mat
h

Ev
ol-

Ins
t.

KPD
DS

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (
%

)

Qwen2.5-Math-7B-Instruct

AIM
E2

02
4

Pr
om

pt
Co

T

Ope
nM

at
hIn

st.

Num
ina

Mat
h

Ev
ol-

Ins
t.

KPD
DS

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (
%

)

Qwen2.5-Math-72B-Instruct

Figure 2: Performance comparison of models with varying capabilities, using Qwen2.5-Math series models, across
problems from diverse sources.

ables smaller models to perform at a level previ-
ously associated with much larger models, high-
lighting the effectiveness of our method in enhanc-
ing reasoning capabilities without requiring an in-
crease in parameter size.

200k 400k 600k 800k
Problem Set Size

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (
%

)

PromptCoT
OpenMathInstruct

Figure 3: Comparison of Scaling Performance between
PROMPTCOT and OpenMathInstruct across Varying
Problem Set Sizes

4.4 Scaling Properties for RQ4
We evaluate the scaling property of PROMPTCOT
by comparing it with OpenMathInstruct across
varying problem sizes, ranging from 200K to
800K problems. To conduct the evaluation, we
use Qwen2.5-Math-1.5B as the base model and
Qwen2.5-Math-Instruct-72B to generate solutions
for the problems. We select MATH-500 as the eval-
uation dataset due to its balanced difficulty and
appropriate scale. The results shown in Figure 3
demonstrate that PROMPTCOT consistently outper-
forms OpenMathInstruct across all problem sizes.
PROMPTCOT exhibits significant scalability, main-
taining superior performance as the dataset size
increases, while OpenMathInstruct’s performance
gradually plateaus with larger problem sets.

5 Related Work

Mathematical Reasoning with LLMs. Recent
advances in LLMs’ mathematical capabilities have

been driven by three key directions: data enrich-
ment, methodological innovation, and test-time
scaling. While extensive mathematical pre-training
corpora (Paster et al., 2023; Wang et al., 2024;
Azerbayev et al., 2024; Shao et al., 2024) and cu-
rated fine-tuning datasets (Yue et al., 2023, 2024;
Li et al., 2024a; Toshniwal et al., 2024; Wen et al.,
2025; Ye et al., 2025) have enhanced model per-
formance, concerns persist about their true reason-
ing capabilities versus pattern memorization (Li
et al., 2024c; Mirzadeh et al., 2024; Zhang et al.,
2024; Kambhampati, 2024). To address these limi-
tations, researchers have explored in-context learn-
ing (Zhao et al., 2024c), advanced prompting tech-
niques (Wei et al., 2022b; Press et al., 2023; Imani
et al., 2023; Zhao et al., 2024b), specialized train-
ing approaches (Zhao et al., 2024a; Mitra et al.,
2024; OpenAI, 2024a), and tool integration (Gao
et al., 2023; Schick et al., 2024). Notable break-
throughs include DeepSeek-R1’s (Guo et al., 2025)
rule-based reinforcement learning and test-time
scaling advances (Wu et al., 2024; Guan et al.,
2025; Muennighoff et al., 2025). However, generat-
ing Olympiad-level problems remains challenging.

Prompt Synthesis. Current prompt synthesis ap-
proaches fall into three categories: LLM-driven
generation, data-derived synthesis, and heuristic
composition. LLM-driven methods use advanced
models to generate prompts from seeds (Wang
et al., 2023; Li et al., 2024b), sometimes incorporat-
ing personas (Ge et al., 2024) or concepts (Huang
et al., 2024; Tang et al., 2024). Xu et al. (2024)
introduced auto-regressive template completion for
query generation. Data-derived approaches extract
prompts from existing sources, using techniques
like instruction backtranslation (Li et al., 2024d;
Zhao et al., 2024d) and web corpus refinement (Yue
et al., 2024). Heuristic composition methods sys-
tematically combine simpler elements, as demon-

18174

strated in visual reasoning (Cheng et al., 2024)
and mathematical problem construction (Luo et al.,
2023; Yu et al., 2024). While these methods show
promise, they lack comprehensive rationales in syn-
thesis, limiting their ability to generate sophisti-
cated problems. Our approach addresses this by
explicitly incorporating rationales during synthe-
sis.

6 Conclusion

In this paper, we introduce PROMPTCOT, a novel
approach for synthesizing Olympiad-level math
problems. Our method integrates rationale gener-
ation to guide problem synthesis, inspired by the
success of LLMs in reasoning tasks such as chain-
of-thought. By leveraging this rationale and un-
derlying mathematical concepts, we generate com-
plex, high-quality problems that are well-suited
to improve the reasoning capabilities of LLMs.
Through extensive experimentation across multi-
ple mathematical reasoning benchmarks, including
GSM8K, MATH-500, and AIME2024, we show
that PROMPTCOT outperforms existing problem
generation methods.

Ethical Considerations

In accordance with the established Code of Ethics,
this study utilizes only publicly available data and
information, ensuring that no private or confidential
resources are involved.

Limitations

While PROMPTCOT makes significant strides in
the generation of challenging mathematical prob-
lems, there are several limitations that should be
addressed in future work to fully unlock its poten-
tial:

(1) The problem generation model used in
PROMPTCOT is based on Llama-3.1-8B, which,
due to its relatively smaller scale, may still strug-
gle to generate exceptionally challenging problems,
such as those seen in the International Mathemat-
ical Olympiad (IMO). Although it performs well
for tasks within the scope of current benchmarks,
its capacity limits the generation of problems re-
quiring more advanced reasoning and complexity.
In future work, we plan to explore the use of larger
pre-trained models to improve the quality and diffi-
culty of the generated problems, enabling the syn-
thesis of more sophisticated problem sets.

(2) While PROMPTCOT has successfully scaled
problem generation to 905K problems, this scale re-
mains modest compared to the vast amounts of data
used for LLM pretraining. Expanding the problem
generation capacity to larger scales is crucial for
generating more diverse and challenging problem
sets. Future research should focus on extending
the scalability of problem generation to better align
with the scale of current LLM training data, con-
tributing to the development of more robust and
capable models.

Acknowledgements

We extend our gratitude to the HKU NLP group
and the anonymous reviewers for their invalu-
able suggestions, which significantly enhanced
this work. This work is partially supported by
the joint research scheme of the National Natural
Science Foundation of China (NSFC) and the Re-
search Grants Council (RGC) under grant number
N_HKU714/21.

References
AIME-2024. https://huggingface.co/datasets/ai-

mo/aimo-validation-aime.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck.
2024. Llemma: An open language model for mathe-
matics. Preprint, arXiv:2310.10631.

Chuanqi Cheng, Jian Guan, Wei Wu, and Rui Yan. 2024.
From the least to the most: Building a plug-and-
play visual reasoner via data synthesis. Preprint,
arXiv:2406.19934.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao
Mi, and Dong Yu. 2024. Scaling synthetic data
creation with 1,000,000,000 personas. Preprint,
arXiv:2406.20094.

18175

https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2406.19934
https://arxiv.org/abs/2406.19934
https://arxiv.org/abs/2406.20094
https://arxiv.org/abs/2406.20094

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang,
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
2025. rstar-math: Small llms can master math reason-
ing with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Yiming Huang, Xiao Liu, Yeyun Gong, Zhibin Gou,
Yelong Shen, Nan Duan, and Weizhu Chen. 2024.
Key-point-driven data synthesis with its enhance-
ment on mathematical reasoning. arXiv preprint
arXiv:2403.02333.

Shima Imani, Liang Du, and Harsh Shrivastava.
2023. Mathprompter: Mathematical reasoning us-
ing large language models. In Proceedings of
the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 5: Industry
Track), pages 37–42.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Subbarao Kambhampati. 2024. Can large language
models reason and plan? Annals of the New York
Academy of Sciences, 1534(1):15–18.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nan-
ning Zheng, Han Hu, Zheng Zhang, and Houwen
Peng. 2024a. Common 7b language models al-
ready possess strong math capabilities. Preprint,
arXiv:2403.04706.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lip-
kin, Roman Soletskyi, Shengyi Huang, Kashif Rasul,
Longhui Yu, Albert Q Jiang, Ziju Shen, et al. 2024b.
Numinamath: The largest public dataset in ai4maths
with 860k pairs of competition math problems and
solutions. Hugging Face repository, 13:9.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng
Kong, and Wei Bi. 2024c. Gsm-plus: A compre-
hensive benchmark for evaluating the robustness of
llms as mathematical problem solvers. arXiv preprint
arXiv:2402.19255.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer
Levy, Luke Zettlemoyer, Jason Weston, and Mike
Lewis. 2024d. Self-alignment with instruction back-
translation. Preprint, arXiv:2308.06259.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.
Preprint, arXiv:2410.05229.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and
Ahmed Awadallah. 2024. Orca-math: Unlocking
the potential of slms in grade school math. arXiv
preprint arXiv:2402.14830.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. Preprint, arXiv:2501.19393.

OpenAI. 2024a. Introducing openai o1-
preview. https://openai.com/index/
introducing-openai-o1-preview/.

OpenAI. 2024b. Learning to reason with llms, septem-
ber 2024.

Keiran Paster, Marco Dos Santos, Zhangir Azer-
bayev, and Jimmy Ba. 2023. Openwebmath: An
open dataset of high-quality mathematical web text.
Preprint, arXiv:2310.06786.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A Smith, and Mike Lewis. 2023. Measur-
ing and narrowing the compositionality gap in lan-
guage models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pages
5687–5711.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom.
2024. Toolformer: Language models can teach them-
selves to use tools. Advances in Neural Information
Processing Systems, 36.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and
Furu Wei. 2024. Mathscale: Scaling instruction
tuning for mathematical reasoning. arXiv preprint
arXiv:2403.02884.

18176

https://doi.org/10.1111/nyas.15125
https://doi.org/10.1111/nyas.15125
https://arxiv.org/abs/2403.04706
https://arxiv.org/abs/2403.04706
https://arxiv.org/abs/2308.06259
https://arxiv.org/abs/2308.06259
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2310.06786
https://arxiv.org/abs/2310.06786

Qwen Team. 2024. Qwq: Reflect deeply on the bound-
aries of the unknown.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav
Kisacanin, Alexan Ayrapetyan, and Igor Gitman.
2024. Openmathinstruct-2: Accelerating ai for math
with massive open-source instruction data. arXiv
preprint arXiv:2410.01560.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. Preprint,
arXiv:2212.10560.

Zengzhi Wang, Xuefeng Li, Rui Xia, and Pengfei Liu.
2024. Mathpile: A billion-token-scale pretraining
corpus for math. Preprint, arXiv:2312.17120.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022a. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Jiaxin Wen, Jian Guan, Hongning Wang, Wei Wu, and
Minlie Huang. 2025. Unlocking reasoning potential
in large language models by scaling code-form plan-
ning. In The Thirteenth International Conference on
Learning Representations.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2024. Inference scaling laws:
An empirical analysis of compute-optimal inference
for problem-solving with language models. arXiv
preprint arXiv:2408.00724.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-
tian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. 2024. Magpie: Alignment data
synthesis from scratch by prompting aligned llms
with nothing. Preprint, arXiv:2406.08464.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, et al. 2024b. Qwen2.
5-math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint
arXiv:2409.12122.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. Preprint, arXiv:2502.03387.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2024.
Metamath: Bootstrap your own mathematical
questions for large language models. Preprint,
arXiv:2309.12284.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist mod-
els through hybrid instruction tuning. Preprint,
arXiv:2309.05653.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen.
2024. Mammoth2: Scaling instructions from the
web. Preprint, arXiv:2405.03548.

Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson,
Catherine Wu, Will Song, Tiffany Zhao, Pranav
Raja, Charlotte Zhuang, Dylan Slack, Qin Lyu, Sean
Hendryx, Russell Kaplan, Michele Lunati, and Sum-
mer Yue. 2024. A careful examination of large lan-
guage model performance on grade school arithmetic.
Preprint, arXiv:2405.00332.

Xueliang Zhao, Xinting Huang, Wei Bi, and Ling-
peng Kong. 2024a. Sego: Sequential subgoal op-
timization for mathematical problem-solving. In
The 62nd Annual Meeting of the Association for
Computational Linguistics (11/08/2024-16/08/2024,
Bangkok, Thailand).

Xueliang Zhao, Xinting Huang, Tingchen Fu, Qintong
Li, Shansan Gong, Lemao Liu, Wei Bi, and Lingpeng
Kong. 2024b. Bba: Bi-modal behavioral alignment
for reasoning with large vision-language models. In
ACL (Findings).

Xueliang Zhao, Wenda Li, and Lingpeng Kong.
2024c. Subgoal-based demonstration learning for
formal theorem proving. In Forty-first International
Conference on Machine Learning.

Xueliang Zhao, Lin Zheng, Haige Bo, Changran Hu,
Urmish Thakker, and Lingpeng Kong. 2024d. Sub-
goalxl: Subgoal-based expert learning for theorem
proving. arXiv preprint arXiv:2408.11172.

18177

https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2312.17120
https://arxiv.org/abs/2312.17120
https://openreview.net/forum?id=dCPF1wlqj8
https://openreview.net/forum?id=dCPF1wlqj8
https://openreview.net/forum?id=dCPF1wlqj8
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2405.03548
https://arxiv.org/abs/2405.03548
https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2405.00332

A Instruction for Concept Extraction

The following prompt extracts domain-specific concepts from each seed prompt. This instruction directs
the large language model to identify the salient concepts underlying the given mathematical problem.

Concept Extraction Prompt

As an expert in educational assessment, analyze this problem:
{problem}
Break down and identify {num_concepts} foundational concepts being tested. List these knowledge
points that:

• Are core curriculum concepts typically taught in standard courses,

• Are precise and measurable (not vague like "understanding math"),

• Are essential building blocks needed to solve this problem,

• Represent fundamental principles rather than problem-specific techniques.

Think through your analysis step by step, then format your response as a Python code snippet
containing a list of {num_concepts} strings, where each string clearly describes one fundamental
knowledge point.

B Instruction for Rationale Generation

The following prompt is used to guide the large language model in generating a detailed thought process
that serves as the rationale for prompt generation. Note that we emphasize two requirements with
“(IMPORTANT)” markers in the prompt, aiming to enhance p(x|z, c) and p(z|c), respectively.

Rationale Generation Instruction

Imagine you are an expert in educational problem design.
You will be shown these components:
Problem: {problem}
Fundamental Concepts: {list of concepts}
Difficulty Level: {difficulty_level}
Your task is to reverse-engineer a clear thinking process that shows how a teacher might design
this problem. This thinking process should:

• Show how combining the given foundational concepts naturally leads to a problem at the
specified difficulty level.

• Include all key decisions and reasoning that shaped the problem design.

• (IMPORTANT) Be so precise and detailed that another teacher following these exact steps
would recreate the identical problem.

• (IMPORTANT) Be so natural and logical that another teacher could derive the same thinking
process using only the foundational concepts and difficulty level.

Present your answer after “Thinking Process:” with the complete step-by-step thinking process
described above.

18178

C Instruction for Rejection Sampling

Evaluation Prompt

As a critical expert in educational problem design, evaluate the following problem components:
=== GIVEN MATERIALS ===

• 1. Problem & Design Rationale: {rationale_and_problem}
(The rationale describes the author’s thinking process and justification in designing this problem)

• 2. Foundational Concepts: {concept_text}

• 3. Target Difficulty Level: {level}

=== EVALUATION CRITERIA ===
Rate each criterion as: [Perfect | Acceptable | Bad]

• 1. FORMAT

– Verify correct implementation of markup tags:
– <!– BEGIN RATIONALE –> [design thinking process] <!– END RATIONALE –>

– <!– BEGIN PROBLEM –> [problem] <!– END PROBLEM –>

• 2. FACTUAL ACCURACY

– Check for any incorrect or misleading information in both problem and rationale
– Verify mathematical, scientific, or logical consistency

• 3. DIFFICULTY ALIGNMENT

– Assess if problem complexity matches the specified difficulty level
– Evaluate if cognitive demands align with target level

• 4. CONCEPT COVERAGE

– Evaluate how well the problem incorporates the given foundational concepts
– Check for missing concept applications

• 5. SOLVABILITY

– Verify if the problem has at least one valid solution
– Check if all necessary information for solving is provided

=== RESPONSE FORMAT ===
For each criterion, provide:

• Rating: [Perfect | Acceptable | Bad]

• Justification: Clear explanation for the rating

=== FINAL VERDICT ===
After providing all criterion evaluations, conclude your response with:

’Final Judgement: [verdict]’

where verdict must be one of:

• ’perfect’ (if both FACTUAL ACCURACY and SOLVABILITY are Perfect, at least two other criteria are Perfect,
and no Bad ratings)

• ’acceptable’ (if no Bad ratings and doesn’t qualify for perfect)

• ’bad’ (if ANY Bad ratings)

Note: The ’Final Judgement: [verdict]’ line must be the final line of your response.

18179

D Proof of the Optimal Variational Distribution

In this section, we provide a rigorous derivation of the optimal variational distribution q⋆(z | c, x) that
maximizes the evidence lower bound (ELBO)

L(q) = Eq(z|c,x)

[
log

p(x, z | c)
q(z | c, x)

]

subject to the normalization constraint
∑

z

q(z | c, x) = 1.

We wish to maximize the functional

L(q) =
∑

z

q(z | c, x) log p(x, z | c)
q(z | c, x) ,

with respect to q(z | c, x), subject to ∑

z

q(z | c, x) = 1.

To incorporate the constraint, we define the Lagrangian functional

J (q, λ) =
∑

z

q(z | c, x) log p(x, z | c)
q(z | c, x) + λ

(∑

z

q(z | c, x)− 1

)
,

where λ is a Lagrange multiplier.
For each z, we take the derivative of J (q, λ) with respect to q(z | c, x). Using standard calculus of

variations, we obtain:
∂J

∂q(z | c, x) = log
p(x, z | c)
q(z | c, x) − 1 + λ.

Setting this derivative to zero for optimality, we have

log
p(x, z | c)
q(z | c, x) − 1 + λ = 0.

Rearrange the above equation to isolate q(z | c, x):

log
p(x, z | c)
q(z | c, x) = 1− λ.

Exponentiating both sides yields
p(x, z | c)
q(z | c, x) = e1−λ,

or equivalently,
q(z | c, x) = p(x, z | c) e−(1−λ).

We now enforce the normalization constraint:
∑

z

q(z | c, x) = e−(1−λ)
∑

z

p(x, z | c) = e−(1−λ) p(x | c) = 1.

Solving for e−(1−λ), we obtain

e−(1−λ) =
1

p(x | c) .

Substituting this result back into the expression for q(z | c, x), we arrive at the optimal variational
distribution:

q⋆(z | c, x) = p(x, z | c)
p(x | c) .

This completes the proof.

18180

E Case Study

To further demonstrate the effectiveness of PROMPTCOT, we visualize the step-by-step rationale genera-
tion and the corresponding problem produced by our problem generation model (as detailed in §2.3) in
Figure 4 and 5, highlighting how the rationale is grounded in the problem’s core elements and guides the
model towards generating Olympiad-level problems.

Figures 6 - 10 show the solutions generated by PROMPTCOT-Qwen-7B and PROMPTCOT-DS-7B for
various problem sources.

18181

Foundational Concepts:

1. Geometric arrangements and intersection points, including the concept of interior points created by intersecting lines

2. Understanding of expected value in probability theory

3. Understanding of ratios and proportions, particularly in the context of comparing areas of geometric shapes

4. Ability to apply algebraic manipulations, such as solving linear equations and simplifying expressions, to solve problems

5. Knowledge of integer arithmetic and the properties of integers, including powers of 2

Rationale:
Step 1: Concept Selection and Combination
To design a problem at the AMC12 difficulty level, we need to combine multiple foundational concepts in a way that creates a
challenging yet solvable problem. We start by selecting concepts that naturally fit together. In this case, we choose:

• Geometric arrangements and intersection points (Concept 1)

• Expected value in probability theory (Concept 2)

• Ratios and proportions (Concept 3)

• Algebraic manipulations (Concept 4)

• Integer arithmetic and properties of integers (Concept 5)

We want to create a problem that requires the student to apply these concepts in a cohesive and logical manner.

Step 2: Problem Theme and Context
To make the problem more engaging, we decide to use a geometric theme involving intersecting lines. We choose a square as
the geometric shape, as it is simple and familiar to students. We also introduce the idea of interior points created by intersecting
lines, which will be used to calculate expected values.

Step 3: Problem Statement and Parameters
We define the problem statement: "For each interior point P of a square, let a(P) denote the number of distinct intersection
points of the lines that pass through P and the sides of the square." This statement introduces the concept of intersection points
and sets the stage for the problem.
To add complexity, we introduce two specific points, A and B, and ask for the ratio a(A)

a(B)
. This requires students to apply their

understanding of ratios and proportions (Concept 3).

Step 4: Expected Value and Probability
To incorporate expected value (Concept 2), we introduce the idea of a randomly chosen point P . We want students to think
about the expected number of intersection points for a randomly chosen point, which will be used to calculate the ratio a(A)

a(B)
.

Step 5: Algebraic Manipulations and Integer Arithmetic
To make the problem more challenging, we decide to ask for the sum of the digits of the ratio a(A)

a(B)
. This requires students to

apply algebraic manipulations (Concept 4) and integer arithmetic (Concept 5) to simplify the expression and find the sum of its
digits.

Step 6: Difficulty Level and Constraints
To ensure the problem is at the AMC12 difficulty level, we need to balance the complexity of the concepts and the calculations
required. We decide to keep the problem statement concise and focused on the key concepts, rather than introducing additional
complexity.

Step 7: Finalizing the Problem
After considering the above steps, we finalize the problem:
"For each interior point P of a square, let a(P) denote the number of distinct intersection points of the lines that pass through
P and the sides of the square. For example, a(P) has the values shown below for some points P in the square. What is the sum
of the digits of a(A)

a(B)
?"

This problem requires students to apply a range of concepts in a logical and cohesive manner, making it suitable for the AMC12
difficulty level.

Final Problem:
For each interior point P of a square, let a(P) denote the number of distinct intersection points of the lines that pass through P
and the sides of the square. For example, a(P) has the values shown below for some points P in the square. [Diagram showing
a square with points A, B, C, D and their corresponding a(P) values] What is the sum of the digits of a(A)

a(B)
?

Figure 4: Case study of rationale and problem generation.

18182

Foundational Concepts:

1. Skill in solving inequalities involving integers

2. Ability to recognize and analyze patterns in number sequences, including multiples of a number

3. Understanding of the unit circle and the periodicity of trigonometric functions, especially within the interval from 0 to 2π

4. Understanding of the concept of collinearity, including the ability to determine whether three points lie on the same line
in 3D space

5. Ability to set up and solve algebraic equations to represent and solve problems

Rationale:
Step 1: Selecting Foundational Concepts and Difficulty Level
I start by selecting the foundational concepts and the desired difficulty level for the problem. In this case, I choose the
concepts of solving inequalities involving integers, recognizing patterns in number sequences, understanding the unit circle and
periodicity of trigonometric functions, understanding collinearity, and setting up and solving algebraic equations. The desired
difficulty level is HMMT-Nov, which suggests a challenging problem that requires careful analysis and application of multiple
concepts.

Step 2: Brainstorming Ideas
Next, I brainstorm ideas that combine the selected concepts. I consider problems involving sequences of integers, trigonometric
functions, and 3D geometry. I think about how these concepts can be connected, and I start to form ideas about problems that
could require the application of multiple concepts.

Step 3: Focusing on Collinearity and Trigonometric Functions
I decide to focus on the concept of collinearity in 3D space, as it is a rich area for problem design. I think about how I can use
trigonometric functions to create a scenario where three points are collinear. I consider the unit circle and the periodicity of
trigonometric functions, and I realize that I can use the fact that the cosine and sine functions are periodic with a period of 2π to
create a repeating pattern.

Step 4: Introducing a Sequence of Integers
To incorporate the concept of sequences of integers, I decide to introduce a sequence an that is defined in terms of n. I consider
how I can use the fact that an is an integer to create a problem that requires careful analysis of the sequence. I think about how
I can use the sequence to create a scenario where the three points are collinear.

Step 5: Creating a Scenario with Collinear Points
I decide to create a scenario where three points are collinear in 3D space, and the coordinates of the points are defined in terms
of the sequence an. I think about how I can use the fact that the cosine and sine functions are periodic with a period of 2π to
create a repeating pattern, and I realize that I can use this to create a scenario where the three points are collinear. I decide to
use the coordinates (xn, yn, zn), where xn = cos(an), yn = sin(an), and zn = n.

Step 6: Defining the Problem
I define the problem as finding the number of integers 1 ≤ k ≤ 2017 such that the points (xk, yk, zk), (xk+1, yk+1, zk+1), and
(xk+2, yk+2, zk+2) all lie on the same line. I realize that this problem requires the application of multiple concepts, including
solving inequalities involving integers, recognizing patterns in number sequences, understanding the unit circle and periodicity
of trigonometric functions, understanding collinearity, and setting up and solving algebraic equations.

Step 7: Finalizing the Problem
I finalize the problem by specifying the interval 0 ≤ an < 2π and the condition that an is an integer. I realize that this condition
ensures that the problem is well-defined and that the solution can be found using careful analysis of the sequence an. I am
confident that the problem is at the desired difficulty level, and I am excited to see how students will approach the problem.

Final Problem:
Let a1, a2, . . . be a sequence of integers such that 0 ≤ an < 2π for all n, and such that there exists a positive integer M for
which an = an+M for all n. For how many integers 1 ≤ k ≤ 2017 do there exist real numbers xk, yk, zk such that the points
(xk, yk, zk) , (xk+1, yk+1, zk+1), and (xk+2, yk+2, zk+2) all lie on the same line, and such that xk = cos (ak) , yk = sin (ak),
and zk = k ?

Figure 5: Case study of rationale and problem generation.

18183

Problem:
Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day
with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg. How much in dollars does she
make every day at the farmers’ market?

Thought Process:
<think>
Okay, so I need to figure out how much Janet makes every day from selling her duck eggs at the farmers’ market. Let me
try to break this down step by step.
First, the problem says that Janet’s ducks lay 16 eggs per day. That seems straightforward. So, she has 16 eggs each day
that she can potentially sell or use for something else.
Next, she eats three eggs for breakfast every morning. Hmm, so every day, she consumes 3 eggs. That means those 3 eggs
aren’t available for sale anymore. So, I should subtract those 3 eggs from the total number of eggs she lays each day. Let
me write that down:
Total eggs laid: 16
Eggs eaten for breakfast: 3
So, eggs left after breakfast: 16− 3 = 13
Wait, hold on. Is that all? Because she also bakes muffins for her friends every day using four eggs. So, she uses another 4
eggs for baking muffins. That means I need to subtract those 4 eggs as well. Let me adjust my calculation:
Eggs used for muffins: 4
So, total eggs used: 3 (eaten) +4 (baked) = 7
Therefore, the remaining eggs she can sell would be the total eggs minus the ones she ate and minus the ones she used for
muffins. Let me compute that:
Eggs sold = Total eggs - Eggs eaten - Eggs used for muffins
Eggs sold = 16− 3− 4 = 9
So, she has 9 eggs left to sell each day. Now, she sells each fresh duck egg for $2 at the farmers’ market. To find out how
much money she makes daily, I need to multiply the number of eggs she sells by the price per egg.
Money made = Eggs sold × Price per egg
Money made = 9× $2 = $18
Let me just double-check my calculations to make sure I didn’t miss anything. She starts with 16 eggs. She eats 3, which
leaves her with 13. Then she uses 4 for muffins, leaving her with 9. She sells each of those 9 for $2, so 9× 2 is indeed 18.
Is there any other detail I might have overlooked? The problem mentions she lays 16 eggs per day, eats 3 for breakfast,
bakes muffins with 4, and sells the rest. There doesn’t seem to be any other usage or expense mentioned. So, it looks like
all the eggs are either consumed or sold, no leftover eggs or additional costs.
Therefore, I think my calculation is correct. She makes $18 each day from selling her duck eggs at the farmers’ market.
Final Answer
Janet makes 18 dollars every day at the farmers’ market.
</think>

Solution:
Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast every morning and uses 4 eggs to bake muffins daily. The
remaining eggs are sold at the farmers’ market for $2 per egg.

1. Total eggs laid: 16

2. Eggs eaten for breakfast: 3

3. Eggs used for muffins: 4

4. Eggs sold: 16− 3− 4 = 9

5. Money made from selling eggs: 9× 2 = 18

Thus, Janet makes 18 dollars every day at the farmers’ market.

Figure 6: Solution generated by PROMPTCOT-DS-7B for a GSM8K problem.

18184

Problem:
Jen enters a lottery by picking 4 distinct numbers from S = {1, 2, 3, · · · , 9, 10}. 4 numbers are randomly chosen from S.
She wins a prize if at least two of her numbers were 2 of the randomly chosen numbers, and wins the grand prize if all
four of her numbers were the randomly chosen numbers. The probability of her winning the grand prize given that she
won a prize is m

n
where m and n are relatively prime positive integers. Find m+ n.

Solution:
1. Calculate the total number of ways to choose 4 numbers from S:
The set S contains 10 elements, so the number of ways to choose 4 distinct numbers from S is:

(
10

4

)
=

10!

4!6!
= 210

2. Calculate the number of ways Jen can win a prize:
Jen wins a prize if at least 2 of her numbers match the randomly chosen numbers. We will use the complement rule to find
this. First, we calculate the number of ways she can win no prize or exactly 1 prize.

• Number of ways she wins no prize:
She must choose 4 numbers from the 6 numbers that are not the randomly chosen numbers. The number of ways to
do this is: (

6

4

)
=

6!

4!2!
= 15

• Number of ways she wins exactly 1 prize:
She must choose 1 number from the 4 randomly chosen numbers and 3 numbers from the 6 numbers that are not the
randomly chosen numbers. The number of ways to do this is:

(
4

1

)(
6

3

)
= 4 · 6!

3!3!
= 4 · 20 = 80

Therefore, the number of ways she wins no prize or exactly 1 prize is:

15 + 80 = 95

So, the number of ways she wins a prize is:
210− 95 = 115

3. Calculate the number of ways Jen can win the grand prize:
Jen wins the grand prize if all 4 of her numbers match the randomly chosen numbers. The number of ways to do this is:

(
4

4

)
= 1

4. Calculate the probability of winning the grand prize given that she won a prize:
This is the ratio of the number of ways she can win the grand prize to the number of ways she can win a prize:

1

115

Since 1 and 115 are relatively prime, the probability is in its simplest form. Therefore, m = 1 and n = 115, and the sum
m+ n is:

1 + 115 = 116

The final answer is:
116

Figure 7: Solution generated by PROMPTCOT-Qwen-7B for an AIME2024 problem.

18185

Problem:
There exist real numbers x and y, both greater than 1, such that logx (y

x) = logy
(
x4y
)
= 10. Find xy.

Solution:
To solve the problem, we start with the given equations:

logx(y
x) = 10 and logy(x

4y) = 10

Step 1: Convert logarithmic equations to exponential form
For the first equation, logx(y

x) = 10, we have:
x10 = yx

For the second equation, logy(x
4y) = 10, we have:

y10 = x4y

Step 2: Take natural logarithm of both sides
Starting with x10 = yx, we get:

10 lnx = x ln y

Rearranging this equation, we obtain:
ln y

lnx
=

10

x

Taking the natural logarithm of both sides of y10 = x4y , we get:

10 ln y = 4y lnx

Rearranging this equation, we obtain:
ln y

lnx
=

4y

10
=

2y

5

Step 3: Set equal expressions
Since both expressions are equal to ln y

ln x
, we can set them equal to each other:

10

x
=

2y

5

Step 4: Solve for xy
Cross-multiplying gives:

50 = 2xy

Solving for xy, we get:
xy = 25

Thus, the value of xy is 25 .

Figure 8: Solution generated by PROMPTCOT-Qwen-7B for an AIME2024 problem.

18186

Problem:
Alice chooses a set A of positive integers. Then Bob lists all finite nonempty sets B of positive integers with the property
that the maximum element of B belongs to A. Bob’s list has 2024 sets. Find the sum of the elements of A.

Solution:
Let’s denote the elements of A as a1, a2, . . . , an where a1 < a2 < · · · < an.

Step 1: Analyze the sets B
For each element ai in A, the sets B that have ai as their maximum element are all subsets of {1, 2, . . . , ai} that include
ai. The number of such subsets is 2ai−1 because we can choose any subset of {1, 2, . . . , ai − 1} and add ai to it.

Step 2: Set up the equation
The total number of sets B is the sum of 2ai−1 for all i from 1 to n:

2a1−1 + 2a2−1 + · · ·+ 2an−1 = 2024

Step 3: Convert 2024 to binary

202410 = 111111010002

This binary representation tells us that:

2024 = 210 + 29 + 28 + 27 + 26 + 25 + 23

Step 4: Identify the elements of A
From the binary representation, we can identify:

a1 − 1 = 3

a2 − 1 = 5

a3 − 1 = 6

a4 − 1 = 7

a5 − 1 = 8

a6 − 1 = 9

a7 − 1 = 10

Therefore, the elements of A are:

a1 = 4, a2 = 6, a3 = 7, a4 = 8, a5 = 9, a6 = 10, a7 = 11

Step 5: Calculate the sum
The sum of the elements of A is:

4 + 6 + 7 + 8 + 9 + 10 + 11 = 55

Thus, the sum of the elements of A is 55 .

Figure 9: Solution generated by PROMPTCOT-Qwen-7B for an AIME2024 problem.

18187

Problem:
Find the largest possible real part of (75 + 117i)z + 96+144i

z
where z is a complex number with |z| = 4.

Solution:
Step 1: Express z in polar form
Let z = 4eiθ = 4(cos θ + i sin θ)
Then 1

z
= 1

4eiθ
= 1

4
e−iθ = 1

4
(cos θ − i sin θ)

Step 2: Expand first term
(75 + 117i) · 4(cos θ + i sin θ)
= 4(75 cos θ + 75i sin θ + 117i cos θ + 117i2 sin θ)
= 4(75 cos θ + 75i sin θ + 117i cos θ − 117 sin θ)
= 4((75 cos θ − 117 sin θ) + (75 sin θ + 117 cos θ)i)
= (300 cos θ − 468 sin θ) + (300 sin θ + 468 cos θ)i

Step 3: Expand second term
(96 + 144i) · 1

4
(cos θ − i sin θ)

= 1
4
(96 cos θ − 96i sin θ + 144i cos θ − 144i2 sin θ)

= 1
4
(96 cos θ − 96i sin θ + 144i cos θ + 144 sin θ)

= 1
4
((96 cos θ + 144 sin θ) + (−96 sin θ + 144 cos θ)i)

= (24 cos θ + 36 sin θ) + (−24 sin θ + 36 cos θ)i

Step 4: Add terms
(300 cos θ − 468 sin θ + 24 cos θ + 36 sin θ)
+(300 sin θ + 468 cos θ − 24 sin θ + 36 cos θ)i
= (324 cos θ − 432 sin θ) + (324 sin θ + 504 cos θ)i

Step 5: Find maximum real part
The real part is 324 cos θ − 432 sin θ
Maximum value of a cos θ + b sin θ is

√
a2 + b2

Here, a = 324 and b = −432
Maximum value =

√
3242 + (−432)2

=
√
104976 + 186624

=
√
291600

= 540

Therefore, the largest possible real part is 540 .

Figure 10: Solution generated by PROMPTCOT-Qwen-7B for an AIME2024 problem.

18188

