ShieldHead: Decoding-time Safeguard for Large Language Models

Warning: Contains explicit and harmful examples across critically unsafe categories.

Zitao Xuan'?, Xiaofeng Mao?, Da Chen®*, Xin Zhang?, Yuhan Dong', Jun Zhou?
! Tsinghua University, 2Ant Group, *University of Bath

Abstract

In light of the widespread deployment of
Large Language Models (LLMs), the respon-
sibility for safeguarding and regulating LLM-
generated content has taken on heightened sig-
nificance. Recent advancements in LLM-based
moderation methods, e.g., LlamaGuard, have
demonstrated remarkable promise in identify-
ing safety risks associated with both inputs and
outputs in human-Al interactions. However, in-
tegrating LLM-based safeguards into a chatbot
system requires an additional inference stage
involving a moderation LLM with billions of
parameters, which significantly increases com-
putational costs and reduces overall efficiency.
In this paper, we demonstrate that simply learn-
ing a classification head on the last-layer hid-
den states of the dialogue model provides a
strong capability to identify harmful contents.
The classification head, referred to as Shield-
Head, serves as an auxiliary branch paralleled
with next-token-prediction LM head, enabling
the detection of potential risks in past text se-
quences. Additionally, a label disambiguation
technique is employed to supervise ShieldHead
with both token-level and sentence-level labels,
which further enhances its performance. Shield-
Head exhibits remarkable efficiency during in-
ference, providing real-time moderation results
alongside token-wise streaming output during
the chatbot system’s decoding phase. Extensive
experimental results demonstrate the superior-
ity of the proposed framework: a state-of-the-
art performance on the XSTest and SafeRLHF
datasets while running at a speed about 300x
faster (<1ms) than previous LLM-based mod-
eration models with ~99% less parameters of
LlamaGuard.

1 Introduction

The widespread application of large language
models (LLMs) has ushered in transformative ef-
fects across domains such as content generation

*Correspondence to Da Chen (da.chen@bath.edu)

(Josh Achiam, 2023; Team, 2024a), Al agent (Zhi-
heng Xi and etc., 2023) and conversational assistant
(Liu et al., 2024). Despite exhibiting impressive
capabilities, the deployment of LLMs is accompa-
nied by a plethora of safety challenges that pose
substantial risks, such as privacy violations (Li
et al., 2023), harmful content generation (Desh-
pande et al., 2023), facilitation of illegal activities
(Zhang et al., 2023), etc. As LLMs become increas-
ingly prevalent, an effective and efficient content
moderation tool is essential to detect safety risks,
ensuring safe and responsible interactions.

82
ShieldHead (Ours)
811 Avg.F1=8128
Latency < 1
o 80 1
S Avg. F1=80.42
5 791 d
@ Latency = 764
o Avg. F1=77.62
u'. 781 Latency = 249
;>" -
771
GPT4
7®] ALV;;; j;ﬁf Avg. F1=76.46
Y Latency = 1410
75 | |]
0 500 10001500

Latency (ms)

Figure 1: Performance v.s. Latency of different mod-
eration methods. The latency is calculated on XSTest
response and includes network delay for GPT-4.

The rise of LLMs has transformed content mod-
eration, dividing approaches into two categories:
(1) traditional moderation APIs, such as Perspec-
tive API (Lees et al., 2022), OpenAl Content Mod-
eration API (Markov et al., 2023), and Azure
Content Safety API (Azure., 2024), which rely
on rule-based or discriminative classifiers, and
(2) LLM-based moderation tools, exemplified by
LlamaGuard (Inan et al., 2023; Team, 2024b;
Llama Team, 2024), ShieldGemma (Zeng et al.,
2024), etc. The formers provide fast APIs and have
the advantage in speed, as they use non-parametric

18129

Findings of the Association for Computational Linguistics: ACL 2025, pages 18129-18143
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

r
I Response No
i i
Query s
Can | commit A |
emal ; o [
L
L Pipeline of Traditional LLM-Based Safety Guardrails)
2 emmmmmmm,y 0000 pmmemmem————)
’, >, - =s
Safety Prototype % e Token Level \
I' tychd typ : I' Disambiguated Label | Sentence Level Label
1 1
: Safe Prototype : 1 :
1 I Moving ! Different |
: _ :Average : l [Tokens |
1 Unsafe Prototype I_>: : : Prediction L
1 _ 1 _.J_ 1
\ S _ Safe Unsafe A Alsotn
e [T 14 H
Moving Safe Unsafe J
Average tTOP K Leok Vemm———— -
0.1
LM Head
(Hidden States
{ RNXd
Can | commit >
suicide?
Query
L Pipeline of ShieldHead (Ours))

Figure 2: The comparison between the traditional LL.M-based safety guardrails with the proposed ShieldHead
pipeline. Upper part: traditional LLM-based safety guardrails use a fine-tuned billion-size moderation model
which unions the completed query and response pair to output a safe or unsafe prediction. Lower part: Our pipeline
identifies risks at token-level, by training a lightweight ShieldHead parallelized with LM head. We use red color to

represent an unsafe prediction from the moderator.

rules or smaller models to efficiently judge harm-
ful content (Markov et al., 2023). However, they
have weaker language comprehension and reason-
ing ability compared to LLMs and are unable to dif-
ferentiate the distinct roles of users and Al agents.
In contrast, LLM-based moderation methods, pi-
oneered by LlamaGuard, take advantage of the
powerful instruction following and reasoning capa-
bilities inherent in LLM. These methods employ
instruction-tuning to train LLMs for risk classifi-
cation (Zeng et al., 2024). However, these LLMs
contain billions of parameters, and the training and
inference of them are computationally expensive
and time-consuming. Therefore, most LLM-based
moderators are inefficient and can only run offline,
where the auditing process needs to wait until the
chatbot completes the generation of its response.
Such a post-event process increases the likelihood
of harmful content being exposed by Al chatbots.
An effective and efficient online safeguard is ur-
gently needed to provide real-time results based on
token-level streaming output from chatbot systems.

Given the advantages and limitations of both
baseline categories, we explore integrating faster,
smaller classification methods into more accurate

LLM-based pipelines. To this end, we propose
utilizing the strong capabilities of dialogue LL.Ms
as a pre-trained feature extractor for moderation
tasks. Motivated by previous work (Llama Team,
2024) that fine-tunes pre-trained LLM to harmless-
ness reward models simply by replacing next token
prediction with reward score prediction objective,
we suppose that a capable dialogue LLM should
encode sufficient context required for identifying
harmful content. Empirical evidence is presented
in Table 3, where training a safety classifier based
on the last token hidden states of the dialogue LLM
yields an average F1 score of 76.7, surpassing Lla-
maGuard by 2.6 points.

Based on this observation, we propose Shield-
Head, a novel LLM risk moderation pipeline that
reuses the hidden states of the dialogue model.
Different from traditional safeguards (Han et al.,
2024; Zeng et al., 2024) which moderate sentence-
level safety, ShieldHead additionally has a token-
level moderation objective. To mitigate the huge
labor cost of token-level annotation, we adopt a
prototype-based label disambiguation technique
(Wang et al., 2022), which assigns sentence-level
labels as initial pseudo targets for each token, and

18130

updates the token-level pseudo targets based on the
closest class prototype. The experiments indicate
that ShieldHead accurately identifies both token-
level and sentence-level harmfulness. Since Shield-
Head has much fewer parameters, the additional
introduced computational effort can be negligible
compared with the overall pipeline. Also, Shield-
Head can deliver real-time content moderation re-
sults concurrently with text generation. Overall,
Figure 1 demonstrates our ShieldHead achieves op-
timal performance and efficiency compared with
other safety moderation methods. Our contribu-
tions are summarized as follows:

* We introduce ShieldHead, a novel approach
which moderates safety risk by reusing the hid-
den states of dialogue model. With label dis-
ambiguation technique, ShieldHead learns both
sentence-level and token-level labels, achieving
superior performance on risk moderation.

* ShieldHead is a real-time moderator that au-
dits safety risks alongside token-wise streaming
output during the chatbot’s decoding phase. It
achieves latency of less than 1 ms and utilizes
approximately ~1.1% parameters to surpass
LlamaGuard with a large margin.

* Through extensive experiments, ShieldHead
achieves state-of-the-art on XSTest and
SafeRLHF datasets. The averaged F1 score of
ShieldHead on 3 prompt harmfulness and 2
response harmfulness datasets has surpassed all
other content moderation methods.

2 Methodology

The overview of the proposed ShieldHead frame-
work is shown in Figure 2. Given a query “Can |
commit suicide?”, traditional LL.M-based safety
guardrails (in the upper part) sequentially wait
for the dialogue model providing a completed re-
sponse, i.e. “No, but you can try taking poison
...”. A fine-tuned billion-size moderation model
unions the query and response pair to output a safe
or unsafe prediction. In contrast, our pipeline (in
the lower part) identifies risks at token-level, by a
ShieldHead classifier parallelized with LM head.
Concretely, once the dialogue model decodes the
first token “[No]”, the safety score corresponding
to the token, which is 0.1 in the figure, is given
by ShieldHead. With the decoding process contin-
ued, ShieldHead outputs a high-risk score 0.9 for
the token “[poison]”, which means that there is a

high probability of existing safety risks in the past
sequences. The detailed classification module of
ShieldHead is presented in Section 2.1. The label
disambiguation module is illustrated in Section 2.2,
which is used for training the proposed ShieldHead.

2.1 ShieldHead for Safety Classification

In this paper, we do not follow the generative train-
ing objective, which is characterized by an expan-
sive vocabulary, necessitating a strong instruction-
following capacity to ensure precise “safe” or “un-
safe” outputs. Instead, we propose to directly op-
timize a classification head based on the last-layer
hidden state of LLMs. Since previous LLM-based
safety moderation models and dialogue models
both utilize a causal inference paradigm for to-
ken prediction, their token inference processes are
reusable. By adding a multi-task head during the
dialogue model’s decoding process, the risk classi-
fication results of the past sequence can be simul-
taneously predicted once the model decodes the
next token. This process is referred to the real-time
moderation of LLM’s content.

ShieldHead pipeline is formalized as follows.
Suppose the targeted dialogue model H with the
output content needs to be moderated. For input
sentence j, H output the last-layer hidden state of
token 7 as h(; j) € R? where d is the hidden size.
The classifier ShieldHead(-) is composed of a mul-
tilayer perceptron (MLP), generates the predicted
token-level probability p‘(‘;k]e)“ € R as follows:

token

PGy = Softmaz(ShieldHead(h 5)) (1)
)DL, and
pt(‘l’kjercl) € R! indicates the probability of h(;,j be-
ing classified as category c. In this study, we set
C = 2, classifying tokens and sentences as either
safe or unsafe. Notably, our framework theoreti-
cally supports multiclass classification for different
safety risk categories (e.g., explicit content, bias)
using sentence-level multiclass labels, without re-
quiring token-level labels. To maintain generality
in our formulas, we use C' instead of 2.

where p‘(‘glze)“ =

2.2 Label Disambiguation

To achieve the token-level safety classification
training, token-level safety data is essential. How-
ever, the cost of annotating token-level safety
data is significantly higher than sentence-level or
conversation-level annotation, and to the best of our
knowledge, no open-source datasets or effective

18131

data synthesis methods currently exist. A straight-
forward and feasible approach is to use sentence-
level labels for all tokens at the token level. How-
ever, this introduces substantial noise, as unsafe
sentences often contain numerous safe or neutral
tokens (e.g., “are”, “the”, and other subjects or
verbs).

To address this issue and enhance the model’s
classification accuracy, we introduce a label disam-
biguation module, which consists of a prototype for
each class. Intuitively, prototypes represent the cen-
tral or “common” hidden features of each class and
are used to update token-level labels, making them
more accurate. More accurate token-level labels,
in turn, are used to refine the prototype, enhancing
its accuracy. Let P = [Py, ..., Pc], P € RE*4 rep-
resent the prototype, initialized with a zero vector.
Hidden state features h of tokens with the highest
prediction probability p belonging to the respective
class (i.e., {1, ..., C}) are utilized to update proto-
types, and prototype labels s are calculated based
on the proximity between these hidden features and
prototypes.

Prototype Label Generation: At time ¢, let
the prototype vector for class ¢ be P! € R?. To-
kens with Top@k prediction confidence pt(‘;k]e‘(‘:)
TopK.(p t("k]e)“) for class ¢ was predicted by Shield-
Head. Hidden state features of these Top @k tokens
7! are used to update the corresponding class’s
embedding in the prototype P.. Subsequently,
a moving-average update method is employed to
compute the prototypes P.*! as follows:

P{’E“ = Normalize(7y - Pﬁ +(1—7)- h(m’))’
for h(%]) S 7—; (2)

where -y is the coefficient that adjusts the update
rate, decreasing from v = 0.99 to v = 0.95 as
the training epochs progress. The prototype label
scores S(; j) € R are then computed based on the
proximity of token-level features to the prototypes,
as shown below:

S(i,j) = Softma:c ('P : h(i,j)) (3)
where s(; ;) indicating the category of the i-th
token in the j-th sentence.

Before calculating the token-level loss, the dis-
ambiguation soft labels at the token level are up-
dated using the prototype label scores, as shown
below:

Vi) =

o - yéyj) + (1 O') *8(4,5) “4)

where o is the parameter adjusting the moving-
average update rate decreasing from ¢ = (.98 to
o = 0.5 as the training epochs progress.

2.3 Loss Function

In the token-level supervision, a cross-entropy-like
loss is utilized as:

N M C
Etoken = Zzzyé ij,¢) IOg t(;kjer(l;) (5
Jj=11

i=1 c=1

where yt,) fepresents the c-th category of the
token

updated soft label at time ¢, and Piy, indicates
the c-th category of the predicted probablhty of the
i-th token in the j-th sentence. NV is the number of
sentences in a batch and M is the number of tokens
in a sentence.

In the context of sentence-level supervision, we
utilize the predictive results of the final token of
prompt and response to compute the cross-entropy
losses, denoted as Lprompt and Lyes, for prompts and
responses, respectively. The overall loss function
as follows:

L= »Cprompt + »Cres +)\»Ctoken (6)

where) is the hyperparameter controlling the
relative contribution between sentence-level loss
and token-level loss.

3 Experiments and Results

3.1 Setups

Training Datasets. In this study, we aim to create a
framework for token-level and real-time safety risk
classification, rather than improving safety classifi-
cation through enhanced data synthesis processes
and a greater amount of high-quality annotated data.
Consequently, existing open-source datasets are
adopted for training. We specifically utilize WILD-
GUARDTRAIN (WGTRAIN) (Han et al., 2024),
which provides the necessary sentence-level labels
for both prompts and responses. Each token is as-
signed an initial value based on its sentence-level la-
bel during the initial training phase. Detailed train-
ing settings are presented in the Appendix A.1.1.
Test Datasets. The evaluation benchmarks
used for testing ShieldHead can be summarized
into two categories. For prompt harmfulness clas-
sification, XStest (Rottger et al., 2023), ToxicChat

18132

Table 1: Comparisons of F1 scores (%) between ShieldHead (with Gemma2-9B as base model) and the SOTA
approaches on prompt and response safety classification in existing public benchmarks

Tasks Prompt Harmfulness (F1) Response Harmfulness (F1)

Datasets XSTest OpenAl Mod ToxicChat Avg. | BeaverTails S-RLHF Avg.

OpenAl Mod API 57.6 79.0 25.4 54.0 75.5 10.1 42.8
GPT-4 (zero-shot) 89.5 70.5 68.3 76.1 86.1 67.9 77.0
GPT-4 (few-shot) 89.5 74.4 70.2 78.0 88.5 76.3 72.4
LlamaGuard3 92.0 79.8 50.4 74.1 75.5 87.4 81.5
WildGuard (Mistral-7B-v0.3) | 94.8 72.1 67.1 78.0 84.1 84.0 84.1
WildGuard (Gemma2-9B) 93.2 72.1 65.9 77.1 82.0 83.8 82.9
ShieldGemma-9B 82.6 82.1 69.4 78.0 76.0 78.0 77.0
ShieldHead (Ours) 95.1 76.3 66.5 79.3 80.0 88.5 84.3

(Lin et al., 2023) and OpenAl Moderation (Markov
et al., 2023) are adopted. For response harmful-
ness classification, the test subset of BeaverTails
(Jiaming Ji and Yang., 2024) and Safe-RLHF (Dai
et al., 2024) are used. Other than prompt/response
harmfulness, the token-wise harmfulness classifica-
tion results of ShieldHead are additionally reported
in Section 3.2.2. There are no public available
benchmarks on token-wise harmfulness, so a small
subset of BeaverTails is manually labeled for the
token-wise evaluation.

3.2 Comparison with SOTA Methods

3.2.1 Sentence-level safety classification

We conducted a comprehensive comparison of
ShieldHead with the LLM-based safety classifi-
cation models and an online moderation API, as
detailed in Tables 1. In this scenario, akin to other
moderation models, ShieldHead is capable of per-
forming safety classification on any given sentence
directly, without the necessity for additional train-
ing. In the domain of prompt classification, Shield-
Head achieved a superior F1 score, surpassing all
competing models on the XSTest dataset and ex-
ceeding the second-best by an average of 1.3%
across all public prompt harmfulness benchmarks.
In response classification, ShieldHead also demon-
strated exceptional performance, outperforming the
second-best model by 1.1% and surpassing GPT-4
by 20.6% on the Safe-RLHF dataset. Furthermore,
it achieved the highest average F1 score overall.

For sentence-level classification, encompassing
both prompt and response classification, our model
consistently surpassed GPT-4, the OpenAl Moder-
ation API, and other LLM-based methods in terms
of the average F1 score. This demonstrates that
our framework can achieve superior performance
with a minimal number of trainable parameters and
inference latency.

3.2.2 Token-level safety classification

To assess the efficacy of ShieldHead for safety clas-
sification at the token level, we constructed and uti-
lized the Beavertails-token dataset, which provides
token-level labels. From Beavertails (Jiaming Ji
and Yang., 2024), we randomly sampled 30 prompt-
response pairs, comprising 15 safe and 15 unsafe
instances at the conversation level. The tokenizer
from Llama-3.1-8B-Instruct is employed to divide
these pairs into tokens. Two independent annota-
tors provided annotations for each token within the
pairs. During annotation, prompts and responses
were reviewed independently, and all tokens follow-
ing an unsafe token in the sentence were marked
as unsafe. The dataset comprised a total of 2,694
tokens, with 1,745 labeled as unsafe and 949 as
safe. Detailed annotation method is presented in
Appendix A.4.

Subsequently, token-level safety classification
was conducted using the ShieldHead model trained
with Llama-3.1-8B-Instruct. The results of the
token-level safety classification yielded an F1 score
of 84.7% and an accuracy of 78.0%, demonstrating
the potential of ShieldHead in effectively identi-
fying safety at the token level. For comparison,
GPT-4 was tested with three samples as few-shot
in-context examples for word-level safety classifi-
cation, with details of the prompt template shown
in Section A.5. Due to challenges in ensuring that
GPT-4 adheres to token (subword) segmentation,
word-level testing was performed. For a fair com-
parison, word-level classification results of Shield-
Head was recalculated by using the label and pre-
diction of the first token in multi-token words as
the representative and yielded an F1 score of 85.1%
and an accuracy of 78.9%. In contrast, GPT-4’s out-
put included 29 sentences where the number of pre-
dictions differed from the actual number of words.
Excluding these cases, the word-level safety classi-

18133

Table 2: ShieldHead with different base models. Avg. F1 scores (%) on Prompt Classification benchmarks and

Response Classification benchmarks.

Base Prompt Harmfulness (F1) Response Harmfulness (F1)
Models XSTest OpenAl Mod ToxicChat Avg. | BeaverTails S-RLHF Avg.
Gemma2-2B 93.3 76.0 65.2 78.2 80.1 87.1 83.6
Gemma2-9B 95.1 76.3 66.5 79.3 80.0 88.5 84.3
Gemma2-27B | 93.0 76.0 67.7 78.9 82.0 87.2 84.6
Llama3.1-8B | 95.1 74.9 64.3 78.1 82.6 76.7 79.7
Llama3.1-70B | 94.7 76.1 66.9 79.2 82.1 81.0 81.6

fication yielded an F1 score of 73.6% and accuracy
of 68.0%. GPT-4’s performance in word-level clas-
sification underperforms ShieldHead by F1-score
of 11.5% and accuracy of 10.9%. To the best of
our knowledge, no other baseline models currently
support token-level safety risk classification.

3.3 Analysis of Inference Performance

In our comparative analysis of inference efficiency
among ShieldHead, other LLM-based models, and
the OpenAl Moderation API, as shown in Figure
1, we observed that ShieldHead achieved superior
F1 scores under conditions of optimal inference
speed. This notable performance can be attributed
to ShieldHead’s unique ability to simultaneously
generate response outputs and perform safety clas-
sification for each token. ShieldHead does not re-
quire the dialogue model to complete its response
prior to safety risk classification. This approach
effectively eliminates the inefficiencies associated
with the traditional two-step process of generating
a response followed by subsequent safety classi-
fication. Furthermore, ShieldHead’s significantly
reduced parameter size (approximately 1.1% of
Llama-Guard) ensures that its additional compu-
tational overhead is negligible within the overall
pipeline. In practice, a LLaMA-8B model with-
out any prefix costs 48 ms to decode one token,
while our ShieldHead only takes 0.4 ms (less than
1%). Consequently, this integration significantly
enhances the overall efficiency of moderation tasks.

3.4 Ablation Study

Adaptability of ShieldHead framework for
streaming safety classification across diverse
base models and model scales. As demonstrated
in Table 2, ShieldHead effectively facilitates safety
classification across various base models and model
sizes. Overall, the choice of base model influ-
ences the performance of safety classification, par-
ticularly in response classification tasks. Notably,
Gemma2-9B outperforms Llama3.1-8B by 1.2%

and 4.6% in average F1 score for Prompt Classifica-
tion and Response Classification, respectively, with
the largest disparity observed on the Safe-RLHF
dataset at 11.8%. Additionally, there is a general
trend of improved safety classification performance
with increased model size, although the gains are
relatively moderate. Specifically, Gemma2-27B
outperforms Gemma?2-2B by 0.7% and 1.0% in
average F1 score for Prompt Classification and Re-
sponse Classification.

Each major component of ShieldHead con-
tributes to enhancing safety classification perfor-
mance. We conducted ablation studies to assess the
impact of the designed components in our proposed
method, including sentence-level and token-level
co-supervision, as well as the label disambiguation
module. The results, presented in Table 3, demon-
strate that ShieldHead benefits from all its compo-
nents. Relying solely on token-level loss, without
sentence-level supervision, results in significant
performance declines, with average F1 scores drop-
ping by 4.4% and 4.1% in prompt and response
classification, respectively. In contrast, using only
sentence-level supervision yields relatively good
performance, yet still lags behind the full Shield-
Head by 1.4% and 1.7% in prompt and response
classification F1 scores, with the largest gap reach-
ing a drop of 3.0 on datasets including Toxic Chat
and Beavertails. A detailed analysis of the roles
played by different modules is meticulously docu-
mented in Table 5 and Appendix A.1.2.

Table 3: Ablations of ShieldHead showing the con-
tributions of the designed modules. Avg. F1 scores
(%) on Prompt Classification benchmarks and Response
Classification benchmarks.

Model ‘ Prompt ‘ Response
w/o Sentence Loss 73.7 77.6
w/o Token Loss 76.7 80.0
w/o Label Disambi. 75.8 79.7
ShieldHead (Our) 78.1 81.7

The number of layers (parameters) in Shield-

18134

Head can affect safety classification perfor-
mance. We conducted a comparative analysis of
training with ShieldHead (with Llama3.1-8B as
base model) of varying layers and trainable param-
eters, as is shown in Figure 3. Our findings indicate
that for models with up to five layers, an increase in
the number of layers and parameters corresponds
to improved performance across various datasets.
Specifically, employing a 5-layer MLP results in a
4.7% higher F1 score in prompt classification and
a 5.0% higher F1 score in response classification
compared to a single-layer MLP. Beyond five lay-
ers, there is a slight drop in the model performance
of response classification while the performance of
prompt classification does not exhibit significant
improvements. Notably, even with a 5-layer MLP,
the number of trainable parameters constitutes only
3.28% of those required for full parameter fine-
tuning.

84 1 o
BB =n o
/”’
) n__-
2 82 ot | e
O PRe D~
UI) e -
7’ -
E 80 ,/' o
. v g
o n _”
> -
X 781
76 Prompt
B Response

1 2 3 4 5 6
Layer

Figure 3: Performance v.s. ShieldHead’s parameters.

Employing moving averages and reducing up-
date rates improve model performance by mit-
igating early training noise. v and o denote the
update rates for prototypes and token-level labels,
respectively. As shown in Table 4, reducing ~y and
o yields better performance than using fixed values.
Setting v = 0 corresponds to a simple averaging
approach, and the moving average method outper-
forms simple averaging (+1.3% on prompts and
+1.0% on responses). The utilization of a mov-
ing average yields superior performance due to the
inherent unreliability of the classifier during the
initial stages of training. During this phase, the se-
lection of top-k tokens for updating the prototypes
may not be fully accurate. Therefore, a conserva-
tive update approach is used initially to prevent
noise, with the update rate gradually increasing as
the classifier becomes more reliable. A detailed
analysis is shown in Appendix A.1.2.

Table 4: ShieldHead with different momentum coef-
ficients. Avg. F1 scores (%) on Prompt Classification
benchmarks and Response Classification benchmarks.

Momentum Prompt | Response
~v=0.99 75.8 79.9
~v=0.95 77.5 81.0
~v=0.5 76.5 80.9
=0 (simple average) 76.8 80.7
o=1 (w/o Label Disambi.) 75.8 79.7
0=0.98 75.8 80.1
0=0.5 77.1 81.3
ShieldHead (Our) 78.1 81.7

3.5 Interpretability

As illustrated in Figure 4, the proposed Shield-
Head effectively identifies risky tokens, such as
“racist” in the scenario with the unsafe response,
and “steal” in the safe scenario. This visualization,
complemented by the quantitative token-level met-
rics described in Section 3.2.2, provides clear and
straightforward evidence of ShieldHead’s potential
in performing token-level safety risk classification.

Moreover, ShieldHead’s decision-making pro-
cess is based on hidden states, which, in GPT-like
models, encompass all cumulative information pre-
ceding the current token. This feature explains
ShieldHead’s ability to classify the same word dif-
ferently based on context. For instance, the term
“steal” appears in both the prompt and response of
the unsafe scenario, it is identified as risky in the
prompt but not in the response. The presence of
“not permissible to” in the preceding context of the
response contributes to this differentiation. This
observation further substantiates the presence of
safety risk-related features within the hidden state,
highlighting ShieldHead’s capability to effectively
extract these features for safety risk classification.

4 Related Work

4.1 Safety Content Moderation

Extensive research in content moderation can be
categorized into two main approaches. The first
involves online content moderation tools, such as
the Perspective API (Lees et al., 2022), OpenAl
Content Moderation API (Markov et al., 2023), and
Azure Content Safety API (Azure., 2024), which
have been pivotal in detecting harmful language.
The second leverages LLLMs’ strong instruction-
following capabilities to detect safety issues with
minimal supervision. Advances have been made
through fine-tuning LLMs, exemplified by systems

18135

Scenario with unsafety response

> > & V- & RS
N o ¢ & F > e & F O S N N L o & B
A T i i R R R N @ P N ¥ & £ 4
Prompt
Response
Prompt
Response - ‘
NS4 Q& F ¢ ; o Qo g
o DS O P L@ Ny AE e O e & Q& e
N «\\?} & \69\ © P S q,be & NP ‘\cf,:\ RS N o s S @é%\
§ Q?}é‘ © 8 & & IS

Scenario with safety response

Figure 4: Visualization of token-level predictions with ShieldHead for safety classification. Two scenarios are
presented: one depicting a safe response and the other an unsafe response. In this visualization, the intensity of the
color red correlates with predictions approaching 1, indicating higher unsafety at the token level. Conversely, the
intensity of the color green signifies predictions approaching 0, indicating higher safety at the token level.

like Llama-Guard (Inan et al., 2023; Team, 2024b;
Llama Team, 2024), ShieldGemma (Zeng et al.,
2024), and others, achieving significant progress
in content moderation. However, our work is dis-
tinct in several key aspects. Unlike previous ef-
forts, ShieldHead offers a universal token-level se-
curity classification framework that enables real-
time monitoring at the model layer without the need
for additional guardrail training. This enhances de-
fense efficiency and addresses tasks that previous
models could not support satisfactorily.

4.2 Label Disambiguation

In token-level safety risk classification tasks, di-
rectly assigning sentence-level labels to each to-
ken within a sentence often results in label am-
biguity. In this paper, we leverage the concept
of Partial Label Learning (PLL) to design a label-
disambiguation-based Multiple Instance Learning
(MIL) approach for safety risk classification.

PLL involves annotating each training instance
with a candidate label set that includes the true
label. A central challenge in PLL is label disam-
biguation, which requires identifying the correct
label from these candidates (Zhang et al., 2016;
Lyu et al., 2019). For our task, obtaining token-
level labels is costly and limits large-scale training,
making token-level classification suitable for PLL.
Compared to supervised learning, PLL labels are
more ambiguous and require denoising for accu-
rate classification. Traditional averaging methods
(Hillermeier and Beringer, 2005; Zhang and Yu,

2015) treat all candidates equally but risk false posi-
tives. Recognition-based methods (Jin and Ghahra-
mani, 2002) consider the true label a latent variable
and include margin-based (Nguyen and Caruana,
2008; Wang et al., 2020), graph-based (Zhang et al.,
2016; Wang et al., 2020; Xu et al., 2019; Lyu et al.,
2019), and clustering-based approaches (Liu and
Dietterich, 2012). Recently, Pico introduced a uni-
fied framework combining representation learning
and label disambiguation (Wang et al., 2022), using
contrastive learning for embeddings and a proto-
type strategy to update pseudo-labels according to
the nearest class, addressing label ambiguity.

5 Conclusion

In this paper, we introduce ShieldHead, an effi-
cient safety risk moderation pipeline for LLMs,
designed to deliver real-time results based on the
token-level streaming output of a chatbot system.
ShieldHead achieves a substantial advantage in
both prompt and response classification tasks, uti-
lizing only approximately 1.1% of trainable pa-
rameters and maintaining an inference latency of
less than 1ms (300x faster), compared to existing
safety risk moderation methods. While ShieldHead
outperforms existing moderation methods in per-
formance and real-time applicability, enhancing
the accuracy of token-level safety classification re-
mains a critical area for future research, which is
crucial for practical applications. In conclusion,
ShieldHead presents significant potential for en-

18136

hancing the safety capabilities of LLMs and miti-
gating the risks associated with content generated
by these models effectively and efficiently.

Limitations

Despite the significant advantages in efficiency and
latency of our proposed method, it still has some
limitations for future directions.

Fairness: Although we utilized the WGTrain
dataset, which strives to minimize bias, discrepan-
cies in labels may still occur when identity groups
are interchanged. Furthermore, as an LLM-based
safety classifier, our performance is heavily reliant
on the semantic understanding of the base model,
making it susceptible to biases potentially intro-
duced in the base model’s training dataset and pre-
training process (Chen et al., 2024).

Generalization: While our ShieldHead frame-
work performs well across multiple public external
benchmarks on both prompt classification and re-
sponse classification, it is trained using the same
WGTrain dataset as WildGuard. As noted in the
WildGuard study, much of their data is synthetic,
which may not perfectly represent natural human
inputs encountered in real-world scenarios. Further
experiments are required to verify its generalization
across other datasets.

Token-Level Classification: Currently, there is
no large-scale, open-source dataset available for
token-level safety classification evaluation. We vi-
sualized token-level predictions to demonstrate the
effectiveness of ShieldHead and conducted token-
level data annotation based on beavertails as a
means of assessing the classification capabilities
of ShieldHead. However, the dataset’s limited size
means it cannot cover all possible real-world sce-
narios.

Multiclass Unsafe Content Classification: In
practical applications, it may be necessary to de-
termine specific categories of unsafe content. This
study focuses on binary classification between safe
and unsafe. Although the proposed ShieldHead
with prototype-based label disambiguation tech-
nique supports multi-classification, further explo-
ration is deferred to future work.

Ethics Statement

Despite achieving state-of-the-art F1 scores, Shield-
Head is not immune to errors and biases in safety
classification. When integrated into automated
moderation systems, these inaccuracies can po-

tentially allow unsafe content to bypass detection.
Users should remain cognizant of this limitation
and the potential for inaccuracies.

References

Azure. 2024. Azure ai content safety.
https://azure.microsoft.com/en-us/products/ai-
services/ai-content-safety.

URL

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi
Yang, and Yue Zhang. 2023. Fast-detectgpt: Ef-
ficient zero-shot detection of machine-generated
text via conditional probability curvature. ArXiv,
abs/2310.05130.

Tom B. Brown, Benjamin Mann, Nick Ryder, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. ArXiv, abs/2005.14165.

Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng
Jiang, and Benyou Wang. 2024. Humans or llms
as the judge? a study on judgement biases. ArXiv,
abs/2402.10669.

Sehyun Choi, Tianqing Fang, Zhaowei Wang, and
Yangqiu Song. 2023. Kcts: Knowledge-constrained
tree search decoding with token-level hallucination
detection. ArXiv, abs/2310.09044.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo
Xu, Mickel Liu, Yizhou Wang, and Yaodong Yang.
2024. Safe rlhf: Safe reinforcement learning from
human feedback. In The Twelfth International Con-
ference on Learning Representations.

A. Deshpande, Vishvak Murahari, Tanmay Rajpurohit,
A. Kalyan, and Karthik Narasimhan. 2023. Toxicity
in chatgpt: Analyzing persona-assigned language
models. ArXiv, abs/2304.05335.

Seungju Han, Kavel Rao, Allyson Ettinger, Liwei Jiang,
Bill Yuchen Lin, Nathan Lambert, Yejin Choi, and
Nouha Dziri. 2024. Wildguard: Open one-stop mod-
eration tools for safety risks, jailbreaks, and refusals
of 1lms.

Eyke Hiillermeier and Jiirgen Beringer. 2005. Learning
from ambiguously labeled examples. Intell. Data
Anal., 10:419-439.

Hakan Inan, K. Upasani, Jianfeng Chi, Rashi Rungta,
Krithika Iyer, Yuning Mao, Michael Tontchev, Qing
Hu, Brian Fuller, Davide Testuggine, and Madian
Khabsa. 2023. Llama guard: Llm-based input-
output safeguard for human-ai conversations. ArXiv,
abs/2312.06674.

Josef Dai Xuehai Pan Chi Zhang Ce Bian Boyuan Chen
Ruiyang Sun Yizhou Wang Jiaming Ji, Mickel Liu
and Yaodong Yang. 2024. Beavertails: Towards
improved safety alignment of llm via a human-
preference dataset. Advances in Neural Information
Processing Systems, 36.

18137

https://openreview.net/forum?id=TyFrPOKYXw
https://openreview.net/forum?id=TyFrPOKYXw
http://arxiv.org/abs/2406.18495
http://arxiv.org/abs/2406.18495
http://arxiv.org/abs/2406.18495

Rong Jin and Zoubin Ghahramani. 2002. Learning with
multiple labels. In Neural Information Processing
Systems.

Sandhini Agarwal Lama Ahmad Ilge Akkaya Florencia
Leoni Aleman Diogo Almeida Janko Altenschmidt
Sam Altman Shyamal Anadkat et al Josh Achiam,
Steven Adler. 2023. Gpt-4 technical report.

Alyssa Lees, Vinh Q. Tran, Yi Tay, Jeffrey Scott
Sorensen, Jai Gupta, Donald Metzler, and Lucy
Vasserman. 2022. A new generation of perspective
api: Efficient multilingual character-level transform-
ers. Proceedings of the 28th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining.

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang,
and Yangqgiu Song. 2023. Multi-step jailbreaking
privacy attacks on chatgpt. ArXiv, abs/2304.05197.

Zi Lin, Zihan Wang, Yongqi Tong, Yangkun Wang,
Yuxin Guo, Yujia Wang, and Jingbo Shang. 2023.
Toxicchat: Unveiling hidden challenges of toxicity
detection in real-world user-ai conversation.

Li-Ping Liu and Thomas G. Dietterich. 2012. A condi-
tional multinomial mixture model for superset label
learning. In Neural Information Processing Systems.

Na Liu, Liangyu Chen, Xiaoyu Tian, Wei Zou, Kai-
jiang Chen, and Ming Cui. 2024. From llm to con-
versational agent: A memory enhanced architecture
with fine-tuning of large language models. ArXiv,
abs/2401.02777.

Al @ Meta Llama Team. 2024. The llama 3 herd of
models.

Gengyu Lyu, Songhe Feng, Tao Wang, Congyan Lang,
and Yidong Li. 2019. Gm-pll: Graph matching based
partial label learning. IEEE Transactions on Knowl-
edge and Data Engineering, 33:521-535.

Todor Markov, Chong Zhang, Sandhini Agarwal, Flo-
rentine Eloundou Nekoul, Theodore Lee, Steven
Adler, Angela Jiang, and Lilian Weng. 2023. A holis-
tic approach to undesired content detection in the
real world. Proceedings of the AAAI Conference on
Artificial Intelligence, 37(12):15009-15018.

Tao Meng, Sidi Lu, Nanyun Peng, and Kai-Wei Chang.
2022. Controllable text generation with neurally-
decomposed oracle. ArXiv, abs/2205.14219.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D. Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detec-
tion using probability curvature. In International
Conference on Machine Learning.

Nam Nguyen and Rich Caruana. 2008. Classification
with partial labels. In Knowledge Discovery and
Data Mining.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai,
Roman Ring, John Aslanides, Amelia Glaese, Nat
McAleese, and Geoffrey Irving. 2022. Red teaming
language models with language models. In Confer-
ence on Empirical Methods in Natural Language
Processing.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Paul Rottger, Hannah Rose Kirk, Bertie Vidgen,
Giuseppe Attanasio, Federico Bianchi, and Dirk
Hovy. 2023. Xstest: A test suite for identifying exag-
gerated safety behaviours in large language models.
arXiv preprint arXiv:2308.01263.

Gemma Team. 2024a. Gemma.

Llama Team. 2024b. Meta llama guard 2. https:
//github.com/meta-1lama/PurplelLlama/blob/
main/Llama-Guard2/MODEL_CARD.md.

Haobo Wang, Yuzhou Qiang, Chen Chen, Weiwei Liu,
Tianlei Hu, Zhao Li, and Gang Chen. 2020. Online
partial label learning. In ECML/PKDD.

Haobo Wang, Rui Xiao, Yixuan Li, Lei Feng, Gang Niu,
Gang Chen, and Junbo Jake Zhao. 2022. Pico: Con-
trastive label disambiguation for partial label learning.
ArXiv, abs/2201.08984.

Ning Xu, Jiaqi Lv, and Xin Geng. 2019. Partial label
learning via label enhancement. In AAAI Conference
on Artificial Intelligence.

Benjamin Mann Jared Kaplan etc. Yuntao Bai,
Andy Jones. 2022. Training a helpful and harmless
assistant with reinforcement learning from human
feedback. ArXiv, abs/2204.05862.

Wenjun Zeng, Yuchi Liu, Ryan Mullins, Ludovic Peran,
Joe Fernandez, Hamza Harkous, Karthik Narasimhan,
Drew Proud, Piyush Kumar, Bhaktipriya Radharapu,
Olivia Sturman, and Oscar Wahltinez. 2024. Shield-
gemma: Generative ai content moderation based on
gemma. ArXiv, abs/2407.21772.

Min-Ling Zhang and Fei Yu. 2015. Solving the partial
label learning problem: An instance-based approach.
In International Joint Conference on Artificial Intelli-
gence.

Min-Ling Zhang, Bingruolan Zhou, and Xu-Ying Liu.
2016. Partial label learning via feature-aware disam-
biguation. Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining.

Zhexin Zhang, Leqi Lei, Lindong Wu, Rui Sun,
Yongkang Huang, Chong Long, Xiao Liu, Xuanyu
Lei, Jie Tang, and Minlie Huang. 2023. Safetybench:
Evaluating the safety of large language models with
multiple choice questions. ArXiv, abs/2309.07045.

18138

http://arxiv.org/abs/2310.17389
http://arxiv.org/abs/2310.17389
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://doi.org/10.34740/KAGGLE/M/3301
https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard2/MODEL_CARD.md
https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard2/MODEL_CARD.md
https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard2/MODEL_CARD.md

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

Wenxiang Chen Zhiheng Xi and etc. 2023. The rise and
potential of large language model based agents: A
survey. ArXiv, abs/2309.07864.

A Appendix
A.1 More Details about ShieldHead

A.1.1 Implementation Details

We initially assessed our method against state-of-
the-art LLM-based and online API approaches
across multiple public benchmarks, as shown in
Section 3.1. Our experiments utilized F1 scores as
the evaluation metric for all benchmarks. To en-
sure fairness, we used consistent data splits for all
evaluations. We use the LLaMA-Factory (Zheng
et al., 2024) codebase for model training, with
4 A100 80GB GPUs (8 A100 80GB GPUs for
Llama3.1-70B) using a total batch size of 8, a
max sequence length of 4096. During training,
the AdamW optimizer was employed with a learn-
ing rate of 1 x 107> and a warmup ratio of 0.1,
no weight decay. ShieldHead was trained for one
epoch over the training set. Token-level labels were
initialized to their corresponding sentence-level la-
bels, and prototypes were initialized to zero. We
implemented a warm-up strategy for label disam-
biguation, during which only the prototypes were
updated, and the token-level labels remained un-
changed for the initial 2000 steps. The duration
of training is contingent upon the base model em-
ployed. Specifically, when utilizing the Llama-
3.1-8B-Instruct model as base model, the training
process can be completed in under one hour.

We utilize WILDGUARDTRAIN (WGTRAIN)
(Han et al., 2024) as training dataset, which pro-
vides the necessary sentence-level labels for both
prompts and responses. WGTRAIN contains a total
of 86,759 entries, consisting of 48,783 standalone
prompts and 37,976 prompt-response pairs. Our
focus is on the 37,976 pairs, classified as follows:
16,647 pairs with both safe prompts and responses,
12,946 with unsafe prompts but safe responses, 27
with safe prompts and unsafe responses, and 8,356
where both are unsafe. We designate 10% of these
pairs as a validation set.

A.1.2 More Results for Ablation Study

In Table 5 and Table 6, we report full evalua-
tion results of ShieldHead with and without de-
signed modules and with different number of layers
across all public benchmarks. Introducing token-
level labels without label disambiguation results in
decreased performance compared to solely using
sentence-level labels. This method falls short by
2.3% and 2.0% in average F1 scores for prompt and
response classification, respectively, when com-
pared to the complete ShieldHead. Additionally, it
experiences declines of 0.9% and 0.3% compared
to the ShieldHead variant without token-level co-
supervision. This result shows that the proposed
label disambiguation module effectively mitigates
the noise introduced by token-level supervision,
maximizing its benefits and ultimately enhancing
model performance.

Benefit of using moving-average during train-
ing. Moving average and simple average do not
perform the same function. We conducted an abla-
tion experiment to compare their effects, as shown
in Table 7. There are two potential ways to up-
date prototypes using the simple average of hid-
den features: (1) by calculating a simple average
over all tokens at the start, or (2) by calculating it
per batch during training. In the first case, when
token-level labels are initially assigned based on
noisy sentence-level labels, the simple average pro-
duces biased prototypes, which prevents the pro-
totypes from reducing the noise of token-level la-
bels. ShieldHead outperforms the first case model
by an average F1-score of 2.1% and 1.9% across
prompt and response benchmarks, respectively. In
the second case, calculating the simple average per
batch can still introduce batch-specific biases, as
prototypes are calculated independently for each
batch. This prevents the prototypes from accumu-
lating information over time, leading to less stable
or reliable prototypes. ShieldHead outperforms the
second case model by an average F1-score of 1.3%
and 1.0% across prompt and response benchmarks,
respectively.

Benefit of reducing momentum coefficients
during training. To demonstrate the effect of the
moving average update and the impact of reducing
~ and o during training, we included an additional
ablation study as shown in Table 8 and Table 9. ~
and o represent the update rates for the prototypes
and token-level labels, respectively. Overall, the
results show that reducing ~y and o yields better per-

18139

http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

Table 5: Ablation Study. Comparisons of F1 scores (%) between ShieldHead (with Llama3.1-8B as base model)
with and without designed modules on prompt and response safety classification in existing public benchmarks.

Model Prompt Harmfulness (F1) Response Harmfulness (F1)
XSTest OpenAl Mod ToxicChat Avg.|BeaverTails S-RLHF Avg.
w/o Sentence Loss | 91.8 71.3 58.1 73.7 73.5 81.6 77.6
w/o Prompt Loss 92.0 70.9 59.3 74.1 76.2 85.9 81.1
w/o Response Loss | 95.4 74.8 64.0 78.1 74.2 84.0 79.1
w/o Token Loss 94.1 74.8 61.3 76.7 73.7 86.2 80.0
w/o Label Disambi. | 93.0 72.0 62.3 75.8 76.2 83.1 79.7
ShieldHead (Our) | 95.1 74.9 64.3 78.1 76.7 86.6 81.7

Table 6: Ablation Study. Comparisons of F1 scores (%) between ShieldHead (with Llama3.1-8B as base model)
with different number of layers on prompt and response safety classification in existing public benchmarks.

Layer Trainable Parm. Prompt Harmfulness (F1) Response Harmfulness (F1)

(%) XSTest OpenAl Mod ToxicChat Avg.|BeaverTails S-RLHF Avg.
1 0.416 94.9 73.9 60.6 76.5 74.5 82.9 78.7
2 0.832 94.9 75.8 64.5 78.4 76.4 87.8 82.1
3 1.136 95.1 74.9 64.3 78.1 76.7 86.6 81.7
4 1.745 95.9 76.2 66.8 79.6 79.2 88.3 83.8
5 3.284 96.6 77.2 69.5 81.1 79.0 88.4 83.7
6 3.721 96.4 77.6 71.3 81.8 79.7 87.3 83.5

Table 7: Ablation Study. Comparisons of F1 scores (%) between ShieldHead (with Llama3.1-8B as base model)
and simple average methods on prompt and response safety classification in existing public benchmarks.

Prompt Harmfulness (F1) Response Harmfulness (F1)
XSTest OpenAl Mod ToxicChat Avg. BeaverTails S-RLHF Avg.

Model

Simple average

. 93.0 72.6 625 76.0 765 83.0 79.8

(prototype remains constant)
Simple avfyri%‘; perbatch | g3, 741 630 768 759 855 807
ShieldHead (Our) 95.1 74.9 643 781 76.7 86.6 81.7

formance than using fixed values. The utilization current batch is considered, without taking histori-
of a moving average yields superior performance cal information into account). The moving average
due to the inherent unreliability of the classifier dur- approach outperforms the simple average by an av-
ing the initial stages of training. During this phase, erage F1-score of 1.3% and 1.0% across prompt
the selection of top-k tokens for updating the pro- and response benchmarks, respectively. Similarly,
totypes may not be fully accurate. Therefore, a setting 0=0 corresponds to an ablation where the
conservative update approach is used initially to token-level labels are used without the label dis-
prevent noise, with the update rate gradually in- ambiguation algorithm (since the labels are not
creasing as the classifier becomes more reliable. updated).

Note that setting v=0 corresponds to using a sim-
ple average for each batch (when calculating the
prototype in each batch during training, only the

18140

Table 8: Ablation Study. Comparisons of F1 scores (%) between ShieldHead (with Llama3.1-8B as base model)
with different vy values on prompt and response safety classification in existing public benchmarks.

Model Prompt Harmfulness (F1) Response Harmfulness (F1)
XSTest OpenAl Mod ToxicChat Avg.|BeaverTails S-RLHF Avg.

~v=0.99 93.0 72.2 62.1 75.8 76.3 83.5 79.9
~v=0.95 95.2 73.5 63.9 77.5 76.3 85.7 81.0

~v=0.5 93.3 73.6 62.6 76.5 76.0 85.8 80.9

~v=0 (simple average) | 93.2 74.1 63.0 76.8 75.9 85.5 80.7
ShieldHead (Our) 95.1 74.9 64.3 78.1 76.7 86.6 81.7

Table 9: Ablation Study. Comparisons of F1 scores (%) between ShieldHead (with Llama3.1-8B as base model)
with different o values on prompt and response safety classification in existing public benchmarks.

Model Prompt Harmfulness (F1) Response Harmfulness (F1)

XSTest OpenAl Mod ToxicChat Avg.|BeaverTails S-RLHF Avg.

o=1 (w/o Label Disambi.) | 93.0 72.0 62.3 75.8 76.2 83.1 79.7
0=0.98 93.3 72.2 61.9 75.8 75.6 84.5 80.1

0=0.5 94.5 72.8 64.1 77.1 76.7 85.8 81.3
ShieldHead (Our) 95.1 74.9 64.3 78.1 76.7 86.6 81.7

A.1.3 Performance in Safety-Critical
Scenarios

Identifying unsafe instances as safe (false nega-
tives, with "safe" considered negative and "unsafe"
considered positive) is crucial in safety-critical sce-
narios. In our model training, we took into account
and calculated a variety of metrics, including the
False Negative Rate (FNR), although our primary
focus was on the F1 score. The FNR results are
shown in Table 10. ShieldHead on ToxicChat ex-
hibits a relatively high FNR, as the number of pos-
itive samples (unsafe) is much smaller than the
number of negative samples (safe), with a ratio of
approximately 1:10, which increases the difficulty
of the task. Nonetheless, the model demonstrated
generally strong performance across different base
model sizes, with the lowest FNRs of 0.14 and
0.13 on the prompt and response benchmarks, re-
spectively, showing the potential of ShieldHead in
safety-critical scenarios.

A.2 Public Benchmarks for Evaluations

XSTest Dataset (Rottger et al., 2023): This eval-
uation dataset consists of 450 prompts, including
250 safe prompts across ten prompt types that well-
calibrated models should not refuse to comply with,
and 200 unsafe prompts as contrasts that, for most

LLM applications, should be refused. In our eval-
uation, prompts which LLM applications should
refuse to response was labeled as unsafe.

OpenAl Moderation Dataset (Markov et al.,
2023): This evaluation dataset consists of 1,680
prompts, each labeled according to eight distinct
risk categories. In our evaluation, all prompts were
utilized, and every risk category was labeled as
unsafe.

ToxicChat Test Set (Lin et al., 2023): This
dataset includes a test split containing harm labels
for real-world user requests sourced from the Vi-
cuna online demo. It features 2,853 prompts, an-
notated by humans, with labels indicating prompt
harmfulness and whether a prompt is adversarial.
In our evaluation, any prompt marked as harmful
is labeled unsafe.

BeaverTails Test Set (Jiaming Ji and Yang.,
2024): This test set is part of a manually-annotated
dataset, comprising 3,021 prompt-response pairs
with harm labels. The prompts are derived from
HH-RLHEF red teaming (Yuntao Bai, 2022) splits
and other sources, while responses are generated
using the Alpaca-7B model, followed by human an-
notations. The dataset spans 14 harm categories, all
of which were labeled as unsafe in our evaluation.

SafeRLHF Test Set (Dai et al., 2024): This

18141

Table 10: FNR scores of ShieldHead with different base models on prompt and response safety classification in

existing public benchmarks.

Model Prompt Harmfulness (FNR) Response Harmfulness (FNR)
XSTest OpenAl Mod ToxicChat Avg. | BeaverTails S-RLHF Avg.
Gemma2-2B 0.03 0.17 0.37 0.19 0.14 0.09 0.12
Gemma?2-9B 0.03 0.17 0.32 0.16 0.15 0.09 0.12
Gemma2-27B | 0.04 0.14 0.35 0.14 0.17 0.09 0.13

dataset is a test split from a preference dataset fea-
turing prompts followed by two responses and a
comparison of these responses. Sharing prompts
with the BeaverTails dataset, it emphasizes com-
parison data with manual human preference anno-
tations. For efficiency, we selected the subset with
Alpaca3-8B responses, comprising a total of 2,327
prompt-response pairs.

A.3 Existing Safety Risks Moderation Tools

We compare our ShieldHead against several meth-
ods: OpenAl Moderation API, LlamaGuard3
(Llama Team, 2024), WildGuard (Han et al., 2024),
ShieldGemma-9B (Zeng et al., 2024) and GPT-4
(Josh Achiam, 2023). For GPT-4, we utilize the
OpenAl API (model=gpt-4-0613) with the prompt
used in WildGuard (Han et al., 2024). For other
methods, we simply adopt their default prompt and
evaluation setting.

A.3.1 LLM-based safety classification model

Llama-Guard (Inan et al., 2023): Llama-Guard
is an instruction-tuned model based on Llama-2
7B, aimed at classifying harms within both input
prompts and model responses. It supports the clas-
sification of 6 distinct types of safety risks. The
model is trained using prompts from the Anthropic
Red Teaming dataset (Perez et al., 2022), supple-
mented with proprietary responses and labels that
indicate the harmfulness of prompts and responses.

Llama-Guard2 (Team, 2024b): Llama-Guard2
is an advanced version of Llama-Guard, developed
using Llama-3 8B. It defines and supports the clas-
sification of 11 safety risk types. Building based
on the Llama-Guard training set, it focuses on chal-
lenging examples by augmenting existing prompts
with flipped labels. This approach aims to refine
the model’s ability to identify complex safety risks
accurately.

Llama-Guard3 (Llama Team, 2024): Llama-
Guard3 is an instruction-tuned model based on

Llama-3.1 8B, supporting 14 types of safety risk
classifications. Its training set extends from Llama-
Guard, with an emphasis on multilingual capabili-
ties and tool usage. It incorporates additional hu-
man and synthetically generated data to enhance
adaptability and precision across diverse contexts.

ShieldGemma (Zeng et al., 2024): Shield-
Gemma is an instruction-tuned model based on
Gemma?2, available in multiple parameter scales
(2B, 9B, and 27B). Its training dataset is derived
from Anthropic/hh-rlhf (Yuntao Bai, 2022) and
is downsampled to 15,000 samples to align with
Llama-Guard.

WildGuard (Han et al., 2024): WildGuard is
an instruction-tuned model based on Mistral-7b-
v0.3, supporting multi-task recognition including
Prompt Harm, Response Harm, and Refusal De-
tection. Its training relies on the WILDGUARD-
TRAIN (WGTRAIN) dataset, consisting of a total
of 86,759 entries, with 48,783 standalone prompts
and 37,976 prompt-response pairs. The training
data for WildGuard is publicly accessible, promot-
ing transparency and facilitating further research.

A.3.2 LLM-based safety classification model

GPT-4 Classification (Josh Achiam, 2023): We
follow the prompts used for GPT-4 classifica-
tion in WildGuard (Han et al., 2024). In Wild-
Guard, a search of several prompt variants is con-
ducted, including providing additional guidelines
and prompting chain-of-thought reasoning, finding
that this prompt performs the best overall across
evaluations. We use gpt-4-0613 for all GPT-4 clas-
sification.

A.4 Annotation method on token-level
classification

A.4.1 Annotation agreement

As to the annotation agreement, we followed the
best practice from prior studies, such as ToxicChat
(Lin et al., 2023) and Beavertails (Jiaming Ji and

18142

Yang., 2024), adapting their sentence-level anno-
tation method to our token-level annotation: Two
independent annotators were tasked with labeling
each token within the sentence. Any disagreements
between the annotators were resolved through dis-
cussion to reach mutual agreement on all tokens.

A.4.2 Intuition for token-level annotation

Most work in text generation considers all pre-
ceding tokens when performing next token pre-
diction (Radford and Narasimhan, 2018; Brown
et al., 2020), and our work aims to classify safety
of the responses generated by these text generators.
Therefore, intuitively, we follow this manner.

Hence, in this paper, we adopt the cumulative ef-
fect of GPT-like models (Radford and Narasimhan,
2018; Radford et al., 2019; Brown et al., 2020).
Instead of directly labeling each token individually
(treat them independently), we label tokens taking
into account all the preceding context. Our safety
risk classification is derived from the conditional
probability p(sy|t1, ..., ty), where t; to t,, repre-
sent the first to the nth token, and s,, denotes the
safety risk classification of the nth token.

The manual annotation method is used only for
the evaluation set, whereas token-level labels used
during training are obtained through the prototype-
based disambiguation method. In our experiments,
following the cumulative effect of GPT-like mod-
els, we use the safety classification of the last token
in a sentence as the prediction for the sentence. We
achieve state-of-the-art performance in sentence-
level safety classification. This also demonstrates
that the cumulative effect is applicable in the con-
text of safety classification in our work.

A.4.3 Existing token-level annotation methods

In addition to its application in safety risk classi-
fication, as proposed in this paper, accumulative
token-level annotation is also applied in other tasks.
For example, RIPA (Choi et al., 2023) proposes
that once the first hallucinated token is detected,
all subsequent generated tokens should be labeled
as hallucinated. NADO (Meng et al., 2022) in-
troduced the concept that the occurrence of hal-
lucination in a token is related to its prefix from
the perspective of the conditional distribution for-
mula. Our method, NADO (Meng et al., 2022), and
RIPA (Choi et al., 2023), leverages the cumulative
effect of GPT-like models, where the conditional
probability of subsequent tokens is influenced by
the preceding tokens. Similar to our annotation

method, these approaches also use accumulative
annotation. However, their objectives differ from
ours. For example, RIPA constructs a reward based
on these accumulative token-level labels. Besides,
Fast-detectgpt (Bao et al., 2023) use token-level
conditional probability curvature as a cumulative
effect to determine whether the text is Al-generated.
Fast-detectgpt (Bao et al., 2023) and DetectGPT
(Mitchell et al., 2023) label the first few tokens as
“human-written,” and all tokens following the first
Al-generated token as “Al-generated”.

In summary, accumulative annotation has been
employed in previous work as well, further validat-
ing the effectiveness of our annotation method.

A.5 Example for GPT-4 Prompts

You are a classifier for analyzing interactions between hu-
mans and LLMs. Given a request from a human user, deter-
mine whether the human user’s request is harmful. Please
just response with harmful or unharmful without any other
words.

Here are two examples:

Prompt: How can I rob the bank?

Prompt harmfulness: harmful

Prompt: What’s the weather like today?

Prompt harmfulness: unharmful

Following is the request and response for you to classify:
Prompt: {prompt}

Prompt harmfulness:

Table 11: Instruction prompt to use a few WGTRAIN
samples as a few-shot in-context learning examples for
sentence-level safety classification.

You are a classifier for analyzing interactions between hu-
mans and LLMs. Given a request from a human user or
a response from an LLM assistant, determine whether the
sentence is harmful word by word. Please respond solely
with O for non-harmful content and 1 for harmful content,
without any additional commentary.

Here are three examples:

Sentence: How can I rob the bank?

Sentence harmfulness: 0,0,0, 1, 1, 1

Sentence: To have cyber sex, you’ll need to find someone
who is interested in virtual sex and get comfortable being
sexual online. Start by slowly getting sexual and increasingly
more intimate through suggestive conversations.

Sentence harmfulness: 0,0,0,1,1,1,1,1,1,1,1,1, 1,1, 1,
1,1, 1,1,1,1,1, 1,1, 1,1, 1,1,1, 1,1, 1,1

Following is the request and response for you to classify:
Sentence: {prompt}

Sentence harmfulness:

Table 12: Instruction prompt to use a few WGTRAIN
samples as a few-shot in-context learning examples for
word-level safety classification.

18143

