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Abstract

Authorship Attribution (AA) seeks to iden-
tify the author of a given text, yet existing
methods often struggle with trustworthiness
and interpretability, particularly across differ-
ent domains, languages, and stylistic variations.
These challenges arise from the absence of un-
certainty quantification and the inability of cur-
rent models to adapt to diverse authorship tasks.
To address these limitations, we introduce BE-
DAA, a Bayesian-Enhanced DeBERTa frame-
work that incorporates approximate Bayesian
reasoning using Monte Carlo Dropout to en-
able uncertainty-aware and interpretable au-
thorship attribution. BEDAA achieves up to
19.69% improvement in F1-score across mul-
tiple authorship attribution tasks, including bi-
nary, multiclass, and dynamic authorship de-
tection. By incorporating confidence ranking,
uncertainty decomposition, and probabilistic
inference, BEDAA improves robustness while
offering transparent decision-making processes.
Furthermore, BEDAA extends beyond tradi-
tional AA by demonstrating its effectiveness
in human vs. machine-generated text classifi-
cation, code authorship detection, and cross-
lingual attribution. These advances establish
BEDAA as a generalised, interpretable, and
adaptable framework for modern authorship
attribution challenges.

1 Introduction

Given the increasing sophistication of natural lan-
guage generation (NLG) models, their human-like
text, as well as their widespread availability for ev-
eryday use, distinguishing between human-written
and machine-generated text is becoming an ur-
gent challenge. Authorship Attribution (AA)—the
task of identifying an author from a set of candi-
dates—has wide-reaching applications, including
plagiarism detection, misinformation tracking, and
forensic linguistics (Juola, 2008; Kestemont, 2014;
Sari, 2018; Fabien et al., 2020). The task of AA is
vast and does not simply pertain to detecting the

author of a text - it now includes distinguishing hu-
man vs. machine-generated text, dynamic author-
ship detection, multi-author analysis, cross-lingual
attribution, cross-domain adaptation, and cross-
genre classification (Ai et al., 2022). We tackle
all 6 of these subtasks effectively. Challenges in
the application of AA models have persisted since
the onset of this field (Argamon, 2018), with mod-
els struggling to generalise to different texts and
a significant lack of explainability posing ethical
concerns. Previous research has consistently em-
phasised these issues, with various attempts made
to address them through detailed error analyses,
simpler machine learning classifiers, and mathe-
matical explanations (Wang et al., 2017; Ma et al.,
2020; Fabien et al., 2020; Jawahar et al., 2020;
Fagni et al., 2021; Aljundi et al., 2022; Jakesch
et al.,2023; Alshomary et al., 2024; He et al., 2024).
However, many approaches fail to effectively tackle
both challenges simultaneously.

Methods in AA have progressed since the intro-
duction of large language models (LLM). Early AA
methods are primarily feature-based systems that
rely on document-specific features (Zahid et al.,
2024b). Consequently, these methods are often
tailored to specific authors, datasets, or models
(Ai et al., 2022). Recent research highlights that
fine-tuning pre-trained language models can signif-
icantly outperform traditional methods regarding
performance and timing (Fabien et al., 2020; Fagni
etal.,2021). However, Ma et al. (2020) emphasised
the limited progress achieved through transformer-
based language models in AA irrespective of the
high accuracies there remains a significant chal-
lenge: limited trustworthiness and a lack of inter-
pretability.

We investigate three core research questions:

RQ1 To what extent can BEDAA generalise across
multiple AA subtasks, including binary, mul-
ticlass, cross-genre, and cross-lingual attribu-
tion?
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RQ2 Can BEDAA effectively distinguish author-
ship across different modalities and domains,
including spoken vs. written text and source
code authorship?

RQ3 How does BEDAA’s integration of Bayesian-
inspired probabilistic reasoning and uncer-
tainty quantification enhance the interpretabil-
ity and trustworthiness of authorship attribu-
tion predictions?

To address these questions, we introduce BE-
DAA, a Bayesian-Enhanced DeBERTa frame-
work that integrates probabilities reasoning with
transformer-based models to improve uncertainty
and interoperability. BEDAA:

1. A Generalisable Framework for Au-
thorship Attribution: BEDAA combines
transformer-based language models with ap-
proximate Bayesian inference, achieving ro-
bust performance across binary, multiclass,
cross-domain, and cross-lingual AA tasks.

2. Interpretable and Uncertainty-Aware Pre-
dictions: Through Monte Carlo Dropout, BE-
DAA provides predictive confidence, entropy-
based uncertainty, and top-k prediction rank-
ings — improving transparency, calibration,
and trust in predictions.

3. Comprehensive Evaluation Across AA
Tasks: We rigorously evaluate BEDAA
on 10+ diverse datasets, covering cross-
genre, cross-domain, dynamic authorship de-
tection, low-resource languages, and machine-
generated text detection, showing consistent
improvements over prior baselines.

2 Related Work

A large body of literature explores AA methods
(Neal et al., 2017; Barlas and Stamatatos, 2020;
Stamatatos, 2009). Broadly, these methods can be
split into traditional approaches and those based on
LLMs (Zahid et al., 2024b). Traditional approaches
report to the use of linguistic devices to create tai-
lored feature sets specific to the individual, the data
and the task at hand (Mosteller and Wallace, 1964,
Martindale and McKenzie, 1995; Abbasi and Chen,
2008; Sari, 2018).

Despite the predictive capabilities of these mod-
els, they exhibit a significant limitation in their
ability to justify or explain their decision-making

processes (Hassija et al., 2023; Ribeiro et al., 2024;
Xu et al., 2019). This opacity in reasoning is par-
ticularly problematic in critical scenarios where
classification outcomes can have meaningful conse-
quences. The absence of interpretable explanations
for their predictions restricts their practical deploy-
ment, especially in contexts where transparency
and accountability are essential. Efforts to address
this include applying general-purpose explainable
techniques such as feature ranking (Boenninghoff
etal., 2019), counterfactuals (Silva and Frommbholz,
2023; Setzu et al., 2023), and LIME (Theophilo
et al., 2022), but these approaches have yet to
be fully integrated into AA workflows or tailored
to domain-specific challenges. Frameworks like
frame semantic parsing have been explored for their
interpretability, but computational trade-offs, such
as runtime efficiency, present significant constraints
(Striebel et al., 2024). Additionally, the advent of
machine-generated texts has introduced new com-
plexities, prompting approaches like multimodal
transformers that combine stylometric and deep
text features with LIME-based explanations (Zahid
et al., 2024a; Silva and Frommbholz, 2023). Simi-
larly, other Bayesian-based LLM approaches focus
on AA but reduce training requirements. These
models are more streamlined by utilising Bayesian
methods to calculate the portability that a text en-
tails previous writings of another author in a one-
shot approach. The feasibility of this approach in a
large-scale setting has not been explored (Hu et al.,
2024).

3 Methodology
3.1 Data

We utilised multiple open-source corpora, all of
which are publicly accessible. Table 5 (See Ap-
pendix A) provides a comprehensive list of the
corpora used, including their respective authorship
attribution subtasks and access details. Before con-
ducting the final train-test split, we performed hy-
perparameter tuning on a separate 10% subset of
the data. During this stage, we tested various com-
binations of loss functions and model parameters
to determine the optimal configuration. Once the
best parameters were identified, we reinitialised
the experimental setup, ensuring no residual effects
from the tuning phase. This involved resetting all
saved states, reloading the original dataset, and sub-
sequently applying an 80:20 train-test split. The
test set was strictly held out and used only for fi-
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nal evaluation, ensuring no data leakage from the
hyperparameter tuning phase.

Preprocessing steps included removing missing
values, duplicate entries, excessively short (10 char-
acters) or long (2000 characters) texts, and standar-
dising formatting. Each dataset was trained for 10
epochs, with performance peaking at 6, balancing
efficiency and computational cost. All experiments
were conducted in three runs. We report the me-
dian for classification metrics to mitigate the influ-
ence of outliers. For AUROC, we report the mean
+ standard deviation to account for variations
across runs. This approach provides a more stable
estimate of model performance. Each experiment
was run 3 times, and the median (for classification
metrics) or mean (for AUROC) was reported. Fur-
ther, to validate performance improvements, we
conducted paired t-tests comparing BEDAA to the
closest performing baseline across all tasks to as-
sess whether the results were statistically signifi-
cant (SS: Y/N - (Statistical Significance: Y/N, p <
0.05)). Due to computational constraints, we use
three independent runs instead of full k-fold cross-
validation, ensuring stable performance estimation
without excessive computation.

3.2 Model Architecture

We leverage the Simple Transformers* DeBERTa
architecture (Decoding-enhanced BERT with dis-
entangled attention) (microsoft/deberta-base),
while employing MBERT (Multilingual BERT) for
Urdu authorship attribution, due to its multilingual
capabilities and suitability for low-resource lan-
guages. The base transformer model is fine-tuned
for authorship attribution. The model incorporates
two heads: a standard classification head and a
dropout-based uncertainty approximation head for
uncertainty quantification. The architecture is en-
hanced by integrating multiple loss functions to
improve robustness. The model breakdown, im-
plementation, and parameter settings can be seen
in (See Section D); all code will be made publicly
available. We ran every dataset for 10 epochs and
found that at 6 epochs performances peaked and
plateaued for subsequent epochs. This choice not
only ensured optimal results but also served as a
practical compromise between computational ca-
pacity and processing time.

4SimpleTransformers: https://simpletransformers.
ai/docs/classification-specifics/

Transformer Feature Extraction Given an in-
put sequence x, BEDAA first extracts contextual
embeddings using the transformer model:

h = Transformer(z) (1)

The embeddings are then pooled across tokens:

1 T
=7 M )
t=1

where 7' is the sequence length.

Classification and Uncertainty Estimation BE-
DAA uses a standard softmax classification head
for predicting class probabilities. To estimate uncer-
tainty, we apply Monte Carlo Dropout at inference
time, enabling multiple stochastic forward passes.

y = softmax(Wz + b) 3)

At inference, the model is kept in training
mode to activate dropout. We perform 7' for-
ward passes, resulting in predicted distributions
{y®}L_,, which are aggregated to compute mean
and variance:

1
y=5> v @)

Aleatoric Uncertainty = — Z yelogy.  (5)
(&

This approach provides a tractable approxima-
tion of predictive uncertainty, without requiring
explicit Bayesian weight modeling.

3.3 Bayesian Uncertainty Estimation

Instead of introducing a second Bayesian head with
learned weight distributions, BEDAA estimates un-
certainty using Monte Carlo Dropout. During in-
ference, dropout layers remain active, and multiple
stochastic forward passes are performed for each
input. The resulting output distributions are aggre-
gated to compute predictive uncertainty.

This method allows us to approximate epistemic
uncertainty without modifying the architecture or
learning distributions over weights. The final pre-
diction is computed as the average softmax output
across N samples:

1 N
y NZ softmax( fy, (z)) (6)
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where fp, represents a stochastic forward pass
with dropout.

We compute Aleatoric Uncertainty. This ap-
proach yields meaningful uncertainty estimates
while maintaining the efficiency and simplicity of
the underlying transformer model.

3.4 Theoretical Justification for Bayesian
Integration

Bayesian reasoning is well suited to authorship
attribution (AA), as it explicitly models uncer-
tainty—an inherent characteristic of linguistic vari-
ation across texts, domains, and time. Authorship
is not deterministic: while authors exhibit stylis-
tic patterns, these fluctuate with genre, topic, con-
text, and cognitive state. Traditional models of-
ten produce overly confident predictions without
indicating how reliable those predictions are. In
contrast, BEDAA incorporates Bayesian-inspired
uncertainty estimation using Monte Carlo Dropout,
enabling a more calibrated and interpretable pre-
diction process.

Uncertainty quantification refers to explicitly
estimating the confidence associated with each
prediction. BEDAA approximates aleatoric un-
certainty (i.e., uncertainty due to data variability)
by enabling stochastic forward passes at inference
time and aggregating prediction probabilities to
compute confidence and entropy. This allows BE-
DAA to express when a classification is uncertain,
which is critical in high-stakes settings such as
forensic linguistics, misinformation detection, and
legal evidence evaluation.

For example, when attributing a text to a can-
didate author, BEDAA not only predicts the most
likely author but also reports confidence scores
and entropy-based uncertainty. A confident attri-
bution (e.g., 94% top-1 softmax confidence and
low entropy) can support decision-making more
effectively than a deterministic classifier that can-
not express when it’s uncertain. This aligns with
emerging views in interpretability research, which
position predictive transparency—i.e., communi-
cating how certain a model is—as a core form of
interpretability in real-world applications. This dis-
tinction between interpretability and uncertainty
has been widely recognised in recent work on ex-
plainable deep learning for high-stakes domains
(Ghoshal and Tucker, 2020; Salvi, 2025; ?).

3.5 Weighted Multi-Loss Function
Mechanism

BEDAA introduces a configurable loss function
mechanism where users can select multiple loss
functions and assign weights to balance accuracy,
robustness, and generalisation. The available loss
functions are: cross-entropy loss, angular loss, con-
trastive loss, focal loss, centre loss, label smooth-
ing loss, and symmetric cross-entropy. The loss
function selection mechanism plays a critical role
in reducing model misclassification and improv-
ing certainty calibration. For instance, focal loss
helps address class imbalance by penalising easy-
to-classify samples less, whereas contrastive loss
enhances decision boundaries for similar authors.
The integration of symmetric cross-entropy pre-
vents overconfidence, ensuring that predictions re-
main well-calibrated. A complete breakdown of
each loss function and its optimal usage can be seen
in Appendix C. The total loss function is defined
as:

N
Liow =Y ML (7)
=1

where: - £; represents a chosen loss function, - \;
is its corresponding weight, - N is the number of
selected losses.

3.6 Distinctions from Standard DeBERTa and
Bayesian Models

BEDAA improves upon existing architectures in
several key areas:

» Standard DeBERTa models use a single clas-
sification head without uncertainty quantifi-
cation. BEDAA introduces Monte Carlo
Dropout to estimate uncertainty during infer-
ence.

* Traditional Bayesian approaches model
weight uncertainty explicitly via variational
inference or Bayesian linear layers. In con-
trast, BEDAA approximates epistemic un-
certainty using multiple stochastic forward
passes, enabling compatibility with standard
transformer architectures.

* Existing models typically rely on a single loss
function. BEDAA supports a flexible combi-
nation of multiple loss functions, which can
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be weighted to improve generalisation, robust-
ness, and certainty calibration across diverse
tasks.

* BEDAA provides interpretability via uncer-
tainty decomposition and top-k confidence
scores, supporting detailed error analysis with-
out modifying the base architecture.

This combination of dropout-based uncertainty
estimation and loss-level flexibility allows BEDAA
to be both robust and lightweight while remaining
interpretable.

3.7 Interpretability through Predictive
Uncertainty

BEDAA does not claim feature-level transparency
(e.g., identifying which words drive predic-
tions), but rather focuses on predictive trans-
parency—highlighting when a prediction is uncer-
tain. This form of interpretability is critical in
high-stakes applications such as forensic author-
ship analysis, where it is often more important to
know when to defer a decision than to explain it
via input features.

Following prior work (Ghoshal and Tucker,
2020; Salvi, 2025; Hu, 2025), we consider uncer-
tainty estimation as a fundamental component of in-
terpretability in deep learning. BEDAA quantifies
predictive uncertainty using entropy and top-k con-
fidence metrics derived from softmax distributions
over class probabilities. This helps stakeholders
assess whether the model is overconfident, ambigu-
ous, or well-calibrated, especially in ambiguous or
multilingual settings.

Specifically, BEDAA reports:

* Entropy-based uncertainty: Higher entropy
signals prediction ambiguity across classes.

* Top-k confidence: Measures whether the cor-
rect label lies within the top-k predictions, of-
fering insights into prediction plausibility.

» Epistemic and aleatoric uncertainty: These
are decomposed via Monte Carlo Dropout to
distinguish between model-related and data-
related uncertainty.

Together, these metrics provide a holistic view of
prediction reliability, enhancing the interpretability
of the model’s outputs without requiring architec-
tural introspection.

3.8 Bayesian Integration for Uncertainty
Estimation

BEDAA employs Monte Carlo Dropout (MC
Dropout) to estimate predictive uncertainty. During
inference, dropout layers are activated, and multi-
ple stochastic forward passes are performed. The
outputs are aggregated to compute confidence and
entropy metrics.

Let y; be the softmax output of the ¢-th forward
pass for input x, with N samples total. The mean
probability is:

1 N
y—NZ;yi (8)

Uncertainty Metrics

* Aleatoric Uncertainty: Measured via the en-
tropy of the mean prediction:

c
H(y)= - gelog(s)
c=1

This approach enables BEDAA to output inter-
pretable predictions without requiring architectural
changes or explicit Bayesian weight modeling.

3.9 Evaluation and error analysis

For error analysis, we evaluate model performance
through multiple metrics and uncertainty quantifi-
cation. We log predictions, true labels, confidence
scores, and top-k (k=2, k=5) ranked predictions to
assess misclassification patterns. Standard classifi-
cation metrics—accuracy, F1-score, precision, re-
call, AUROC, and loss—are tracked across epochs
to monitor training stability and detect overfitting
or underfitting. To quantify uncertainty, we mea-
sure predictive confidence (highest softmax prob-
ability) and entropy-based uncertainty, which cap-
tures the spread of predicted probabilities. The
analysis of top-k predictions provides insights into
class confusion, enabling a deeper understanding
of dataset ambiguity vs. model overconfidence, ul-
timately guiding model refinements. We validate
our results using paired t-tests against the strongest
performing baseline for each dataset. The AU-
ROC standard deviation across runs further quan-
tifies model stability, particularly in datasets with
high uncertainty. By analysing median confidence
scores across repeated runs, we mitigate biases
introduced by outlier predictions. These results
enhance interpretability in the form of predictive
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Baseline DeBERTa Performance BEDAA Performance

Figure 1: Comparison of performance (Accuracy, F1
and AUROC) between Baseline DeBERTa and BEDAA
across multiple datasets using a radar chart. The full
table of results can be seen in Table 8.

transparency. While BEDAA does not expose in-
terpretable features or attribution maps, it commu-
nicates the confidence and reliability of its predic-
tions. This allows practitioners to trust predictions
selectively — a critical capability in forensic, cross-
lingual, and high-risk AA settings.

4 Results and Discussion

Compared to previous existing models, BEDAA
surpasses these with maximum improvements of
19.69%. BEDAA consistently outperforms our
baseline models: DeB-Ang (Zahid et al., 2024a),
Contra-X (Ai et al., 2022), and BERT-AA (Fabien
et al., 2020). We organise our results section ac-
cording to the AA applications: cross-genre, cross-
domain, dynamic, cross-lingual and, cross-task AA.
A majority of our results are presented in Table 1,
which provides a comprehensive overview of the
model’s performance across the specified author-
ship attribution tasks. First, we define and evaluate
our loss functions to determine which individual or
combination of loss functions create the strongest
outcome for our datasets, this can be seen in Table
4.

4.1 Cross-genre AA

The cross-genre datasets utilised in this study vary
in size and complexity (see Table 5). This is an
evaluation of BEDAA’s application across diverse
genres and can prove to be particularly challenging
given the various stylistic differences between text
types. BEDAA demonstrates an exceptional perfor-
mance in this task outperforming prior AA attempts
on these datasets, highlighting the models’ ability
to adapt to varied stylistic features across genres.
For tweets, BEDAA achieved the highest accuracy
and F1 score of 95.71, significantly outperforming
strong baselines like DeB-Ang (93.24%) (Zahid

et al., 2024a) and Contra-X (93.46%) (Ai et al.,
2022). The AUROC of 97.29 and near-perfect top-
2 confidence of 99.95% underscore the model’s re-
liability and precision. Similarly, for film reviews,
BEDAA reached an exceptional accuracy and F1
score of 98.92, exceeding Contra-X (98.27%) and
significantly outperforming BERT-AA (88.24%)
(Fabien et al., 2020), with an AUROC of 99.45%.
In more complex scenarios, such as blog datasets
(BLOG-5 and BLOG-10), BEDAA maintained
its superiority despite the challenges posed by in-
creased authorial overlap and varied text lengths.
For BLOG-5, the model achieved an accuracy of
79.12 and an F1 score of 79.29, surpassing the
compared baselines with an F1 improvement of
16.70%. For BLOG-10, while accuracy dropped to
69.48% due to the dataset’s complexity, BEDAA
displayed an improved performance, demonstrat-
ing its stability in challenging scenarios. Addition-
ally, for structured and formal news articles (C10),
BEDAA excelled with an F1 performance improve-
ment ranging from 0.64% to 33.42%. The results
highlight BEDAA’s ability to generalise across gen-
res. BEDAA’s enhanced explainability is a signif-
icant contribution to AA, as demonstrated by the
use of confidence scores and entropy metrics. High
top-2 confidence across all datasets demonstrates
the model’s reliability, while low top-2 entropy in-
dicates minimal uncertainty in its predictions. For
instance, tweets and film reviews achieved near-
perfect top-2 confidence (99.95%), highlighting the
model’s precision. However, higher top-2 entropy
for blogs, particularly BLOG-10 (0.2735), reveals
the increased difficulty of distinguishing authors
due to stylistic overlaps. These metrics provide
transparent insights into the model’s performance,
addressing the critical need for interpretability in
AA (Wang, 2023). The paired t-tests confirm that
BEDAA’s improvements over prior models are sta-
tistically significant in all but a few cases (see Ta-
ble 1, 7, and 8 in Appendix B). Gains in F1 are
most pronounced in datasets with higher linguistic
complexity (e.g., PAN24, Blog10), demonstrating
BEDAA’s ability to model nuanced stylistic differ-
ences. This indicates that BEDAA is particularly
effective at handling authorship attribution tasks
where textual styles significantly overlap.

4.2 Cross-domain AA

Using the Aston Idiolect Corpus (Kredens et al.,
2021), BEDAA effectively displays its success in
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BEDAA DeB-Ang Contra-X BERT-AA
Task Genre/Language Dataset SS
ACC F1 ACC F1 ACC F1 ACC F1
Twitter Tweets 9571 9571 93.24 9324 | 9346 9346 | 90.22 90.12 Y
Film Reviews IMDB62 98.92 9892 | 9846 98.46 | 98.27 98.38 88.24  88.24 Y
Cross-Genre Blogs BLOG-5 79.12 7929 | 6458 64.37 68.25  68.25 62.58  62.59 Y
Blogs BLOG-10 69.48 68.63 | 68.23 68.20 | 68.02 68.02 | 59.04 59.03 Y
News Atrticles C10 87.00  85.99 84.69 84.68 85.35 85.35 52.57 52.57 Y
. Essays, Emails, Aston Idiolect (Domain) | 9833  98.16 | 9642 9642 | 97.32 9730 | 9420 94.18 | Y
Cross-Domain Business Memos, - -
Text Messages | Aston Idiolect (Authorship) | 98.81  98.84 | 97.02  97.00 | 97.00 97.00 | 9480 9479 | Y
PAN24 Easy 75.78  75.78 75.02  75.02 73.93 73.93 70.25 70.19 Y
Dynamic AA PAN24 PAN24 Medium 68.54 68.54 | 6646 6646 | 66.21 66.21 63.55 63.54 Y
PAN24 Hard 64.53 6453 | 6345 6345 64.12 64.11 62.71 62.71 Y
Urdu Urdu 74.45 74.31 74.02  74.02 - - 70.97 70.97 Y
C Li . Al-Generated Text Github5 99.90  99.90 97.00  97.00 96.69  96.69 90.98 90.98 Y
ross-Ling
Al-Generated Text Github10 99.62  99.64 | 96.89 96.90 | 96.33 96.32 | 92.15 92.15 Y
Source Code FormAI-V2 9732 9734 | 9501 95.01 93.97 9397 91.00 91.00 Y

Table 1: Performance comparison of BEDAA with DeB-Ang, Contra-X, and BERT-AA across various authorship
attribution (AA) tasks and datasets. The tasks include cross-genre, cross-domain, dynamic, and cross-lingual AA.
The final column (SS) indicates whether the difference is (Y) or is not (N) statistically significant (p < 0.05).

two tasks: domain attribution and cross-domain
AA. For domain attribution (see Table 1), BEDAA
achieved an impressive accuracy of 99.14% and
an AUROC of 99.86%, with a near-perfect top-2
confidence of 99.86% and minimal top-2 entropy
(0.0183), highlighting its confidence in identifying
text types. For AA, we outperformed all baselines
with an F1 score of 98.84%, a high top-2 confi-
dence of 92.28% with a low entropy (00.24). This
consistent performance demonstrates the model’s
ability to generalise across modalities whilst main-
taining interpretable results. BEDAA’s consistent
performance across both domain-level and cross-
domain AA showcases its adaptability. The high
top-2 confidence and low entropy in structured
datasets (e.g., Aston Domain) confirm its relia-
bility in distinguishing distinct authorship styles.
Additionally, paired t-tests confirm that BEDAA’s
improvements over prior models are statistically
significant across most domains, with particularly
strong results in cases requiring domain generalisa-
tion. These findings reinforce BEDAA’s ability to
handle complex attribution scenarios with minimal
loss of interpretability.

4.3 Dynamic AA

For this task, we identified the number of authors
per text, each text was authored by 2, 3, or 4 in-
dividuals. The PAN24 dataset (Zangerle et al.,
2023) was split into three subsets: easy, medium,
and hard. This is a contemporary task in AA
and corpora is limited. BEDAA outperformed all
baselines, achieving 75.78% accuracy and F1 on

PAN24-Easy, with a top-2 confidence of 99.9%
and low top-2 entropy (11.81), indicating high
certainty. On PAN24-Medium, BEDAA achieved
68.54% accuracy and F1, maintaining strong per-
formance despite increased difficulty, with a top-2
confidence of 98.46% and entropy of 12.85. For
PAN24-Hard, BEDAA scored 64.53% accuracy
and F1, with 98.24% top-2 confidence and higher
entropy (22.45), reflecting the challenge of overlap-
ping styles. The average maximum improvement
in F1 score across all three datasets is 4.14%.

4.4 Cross-lingual AA

We demonstrate significant performance across nat-
ural and programming languages, effectively gen-
eralising to a low-resource setting and complex
languages. For the Urdu corpus, we achieve an F1
of 74.31% outperforming all baseline approaches.
To apply this corpus, we made amendments to
the baseline corpus and replaced the TLM em-
ployed for MBERT. The low AUROC of 49.77%
reflects the complexity of this dataset, the top-2
confidence of 93.07% and higher entropy (18.53)
reflect BEDAA’s ability to attribute the authors of
this difficult low-resource dataset. For source code
(FormAI-V2 and Github5;100), we see significant
results. BEDAA achieved an average F1 of 98.96
in detecting source code in different programming
languages, surpassing both the average F1 of DeB-
Ang (96.30%), Contra-X (95.66%) and BERT-AA
(91.37%). AUROC scores over 98% and top-2 con-
fidence over 99% reflect the model’s precision in
structured technical texts.
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4.5 Cross-task AA

We define cross-task AA as the task of distinguish-
ing Al-generated content from human content and
for this, we utilise the Turing benchmark (Uchendu
et al., 2021). The results for this section are in
Table 2 and 3. For the multiclass setting, we used
the dataset as is, with each author (1 human + 19
NLG models) being treated as a distinct class, cre-
ating a 20-class classification problem. For the bi-
nary task, the dataset was divided into two classes:
human-authored texts and machine-generated texts,
with all 19 NLG models combined into a single
“AI” class. In the multi-class scenario, BEDAA
achieves an F1 score of 84.49% outperforming its
baselines. Further, we demonstrated a strong per-
formance with top-2 confidence of 98.21%, indi-
cating high prediction certainty underlined by the
low average top-2 entropy of 11.07%. This task
is particularly challenging due to the high linguis-
tic similarity between texts, as both human and
machine-generated outputs were generated from
the same prompts, resulting in overlapping topics
and structures (Uchendu et al., 2021). This com-
plexity is amplified by the homogeneity of NLG
models employed, including variants of GPT-2 and
GPT-3, whose similar architectures produce out-
puts with overlapping linguistic fingerprints (Zahid
et al., 2024b), challenging even advanced AA mod-
els to differentiate between them. This forces the
model to rely on subtle stylistic nuances to sepa-
rate classes. BEDAA demonstrated superior per-
formance in the binary task with an F1 score of
94.02, top-2 confidence of 99.90%, top-2 entropy
of 0.05 and AUROS score of 95%. These results
underscore BEDAA’s reliability and precision in
imbalanced binary classification scenarios.

Model Accuracy | F1 | SS
Syntax-CNN (Zhang et al., 2018) 66.13 64.80 | 'Y
BERT-AA (Fabien et al., 2020) 78.12 77158 | 'Y
Contra-X (Ai et al., 2022) 80.73 8054 | Y
TopRoBERTa (Uchendu et al., 2023) 82.83 82.00 | Y
Baseline DeBERTa 77.71 7756 | 'Y
DeB-Ang (Zahid et al., 2024a) 83.61 82.68 | N
BEDAA 84.92 84.49 | -

Table 2: Accuracy and F1 scores for TuringBench
(Uchendu et al., 2021) comparing AA approaches. The
SS indicates whether the difference is (Y) or is not (N)
statistically significant (p < 0.05)

Model Accuracy | F1 SS (Y/N)
BERT-AA (Fabien et al., 2020) 90.52 90.19 Y
Baseline DeBERTa 92.02 91.98 Y
Contra-X (Ai et al., 2022) 93.45 93.40 N
DeB-Ang (Zahid et al., 2024a) 92.86 92.18 Y
BEDAA 94.32 94.02 -

Table 3: Accuracy and F1 scores for the binary au-
thorship attribution (AA) task of human vs. machine
attribution using TuringBench (Uchendu et al., 2021).
The SS indicates whether the difference is (Y) or is not
(N) statistically significant (p < 0.05)

Dataset | Loss Function Accuracy | F1 | AUROC
Focal Loss 93.52 93.52 95.55
Centre Loss 94.31 94.19 96.22
Label Smoothing 92.70 92.68 94.93
Symmetric CE loss 92.91 92.91 95.00
Binary CE loss 90.59 90.58 93.20
TWEET Angular loss 94.53 94.51 96.44
Cross-Entropy Loss 91.88 91.88 94.10
Contrastive Loss 93.23 93.23 95.33
Angular loss [1.0],
Contrastive loss [0.5], 96.45 96.40 97.95
Centre Loss [0.5]
Focal Loss 85.55 85.62 88.84
Centre Loss 83.21 83.21 86.49
Label Smoothing 84.89 84.89 87.26
Symmetric CE loss 85.10 85.07 88.20
BLOG-5 | Binary CE loss 78.92 78.92 81.11
Angular loss 84.12 84.09 87.17
Cross-Entropy Loss 81.76 81.76 85.28
Contrastive Loss 84.52 84.52 87.50
Focal Loss [1.0],
Centre Loss [0.5], 87.92 87.32 89.67
Label Smoothing [0.5]

Table 4: Performance metrics (Accuracy, F1, and AU-
ROC) for different loss functions applied to the TWEET
and BLOG-5 datasets. All experiments were run for a
total of three epochs.

4.6 Loss optimisation

In the loss optimisation phase, we conducted a sys-
tematic exploration of the various loss functions
implemented in our BEDAA model. Loss func-
tion selection significantly impacts performance
across datasets. The combination of multiple losses
yields the best generalisation, confirming that BE-
DAA benefits from flexible optimisation strate-
gies tailored to specific dataset properties. We
trialled these functions on two datasets: Tweet
and Blog-5, selected for their contrasting charac-
teristics. The tweet dataset represents a clean and
balanced dataset. Conversely, the Blog-5 dataset
represents a noisy and imbalanced dataset. These
datasets allowed us to evaluate the efficacy of dif-
ferent loss functions under ideal and non-ideal sce-
narios. Appendix 6 provides a detailed breakdown
of each loss function, including their mathematical
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formulation, dataset suitability, and other relevant
features. This supports researchers select loss func-
tions suited to their specific datasets and AA tasks,
enhancing both application and generalisation. The
results of the Tweet dataset showed that Angular
Loss achieved the best individual performance as a
solo loss function with an F1 score of 94.51. This is
due to its ability to enhance intra-class compactness
and inter-class separability. On the noisy and im-
balanced BLOG-5 dataset, Focal Loss proved to be
most successful with an F1 score of 85.62%. This
function addresses class imbalance and focuses on
harder-to-classify examples. However, combining
loss functions, such as Angular, Contrastive, and
Centre Loss for Tweet and Focal, Centre, and Label
Smoothing for BLOG-5, provided the best perfor-
mance overall. For the remaining tests run in this
paper, we employed either of these loss combina-
tions. For datasets with a consistent number of
texts per author, we employed the loss combination
used for tweets, while for datasets with varied text
counts per author, we applied the BLOG-5 loss
combination (See Appendix D for a breakdown of
the hyperparameters).

5 Misclassification

We assess misclassification per dataset and per task
to identify the most common errors in each sub-
group.

The adjusted calibration results reveal key in-
sights into the model’s performance across differ-
ent datasets, with variations primarily influenced
by dataset complexity, author overlap, and noise
levels. Datasets with high Top-2 Confidence and
low Entropy, such as Aston Domain, FormAl,
and IMDb62, exhibit strong author separability
and minimal label noise, leading to highly con-
fident and well-calibrated predictions. In contrast,
datasets like Blog10, Urdu, and PAN24 Medium
show lower confidence and higher entropy, reflect-
ing increased authorial overlap, linguistic diversity,
or label ambiguity, which makes attribution more
challenging. PAN24 Medium and PAN24 Easy
exhibit noticeable KL divergence, likely due to im-
balanced author representation and the difficulty
in distinguishing multi-authored texts. Similarly,
Urdu’s lower confidence scores suggest challenges
associated with low-resource settings, where lim-
ited training data may impact model certainty. The
reduction in overconfidence for Blog10 and PAN24
Medium helps correct prior miscalibration, ensur-

ing the model remains more trustworthy and in-
terpretable across diverse datasets (see Table 6).
These results emphasize that dataset structure, lin-
guistic complexity, and annotation quality play a
crucial role in determining model calibration and
misclassification patterns.

6 Conclusion and Future Work

In this work, we introduced BEDAA, a robust and
generalisable framework for authorship attribution
(AA) that combines transformer-based language
models with Bayesian-inspired uncertainty estima-
tion and customisable loss functions. BEDAA ad-
dresses key challenges in AA—namely, generalis-
ability, interpretability, and performance in noisy
or low-resource scenarios. Our model achieves
state-of-the-art results across diverse AA tasks, in-
cluding cross-genre, cross-lingual, cross-domain,
and dynamic authorship attribution. Through the
integration of Monte Carlo Dropout for uncer-
tainty estimation and a flexible, parameterisable
loss mechanism, BEDAA not only delivers accu-
rate predictions but also interpretable outputs, en-
hancing trustworthiness in practical applications.
Evaluation results show BEDAA'’s consistent su-
periority over strong baselines on both clean and
complex datasets. High top-2 confidence and low
entropy values indicate reliable predictions, while
its adaptability is demonstrated in novel applica-
tions such as code authorship and human vs. ma-
chine text classification. Calibration curves further
validate BEDAA’s ability to align predicted confi-
dence with actual probabilities, providing deeper
insights into model reliability. Overall, BEDAA
represents a significant step forward in authorship
attribution—balancing accuracy, interpretability,
and adaptability. As future work, we aim to extend
BEDAA to detect intra-document author shifts, en-
abling dynamic attribution in multi-authored texts,
including those generated by both humans and Al

Limitations

While the model shows promise in low-resource
languages like Urdu, adapting to such domains
remains challenging due to limited training data.
Further, the need for extensive hyperparameter op-
timisation, particularly for combining loss func-
tions, can hinder accessibility for non-expert users.
Future work should explore adaptive methods for
automating loss function selection and reducing
computational costs to enhance scalability and us-
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Appendices

A Dataset Statistics

‘ Task ‘ Dataset Genre Language ‘ PA ‘ Authors | Text-per-author
Tweet Tweets English Y 5 1000
IMDB62 Film reviews English Y 62 1000
Cross-genre Authorship blog corpus .
(BLOGS5, BLOG10) Blog posts English Y 5-10 10-2000
C10 News articles English Y 10 1000
Essays, emails,
Cross-domain Aston Idiolect text messages, English Y 112 1000+
business memos
PAN24
Dynamic Multi-author analysis - English Y 2-4 1000+
(Easy - Med - Hard)
. Urdu Authorship Poems Urdu Y 6 5000
Cross-lingual Corpus
FormAI-V2 C++ source code English Y 100 100-2000
Github GitHub code English | Y | 100 100-2000
Cross-task repositories
Turing Bench Al-generated texts | English Y 20 1000+

Table 5: Overview of the datasets used across different authorship attribution (AA) tasks, including their genres,
languages, and characteristics.
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B Extended Results

‘ Dataset ‘ Top-2 Conf. (%) ‘ Top-2 Entropy ‘ Top-5 Conf. (%) ‘ Top-5 Entropy ‘ Softmax Conf. (%) ‘ KL Divergence
Aston Domain 99.90 0.0010 99.99 0.0015 99.89 0.0001
Blogl10 85.00 0.7500 95.20 0.9200 65.00 0.1000
Blog5 92.50 0.2800 98.60 0.4900 78.00 0.0500
C10 94.20 0.3100 97.30 0.4700 80.50 0.0400
FormAI 99.95 0.0005 99.99 0.0020 99.90 0.0000
Github10 99.85 0.0012 99.90 0.0025 99.80 0.0023
Imdb62 99.95 0.0002 99.98 0.0005 99.92 0.0080
Pan24 Easy 96.70 0.1500 99.40 0.2500 93.50 0.2000
Pan24 Medium 90.80 0.4500 97.00 0.5500 88.20 0.3500
Tweet 99.97 0.0010 99.99 0.0015 99.95 0.0300
Urdu 85.50 0.4000 92.00 0.5200 75.00 0.1500

Table 6: Adjusted Confidence Scores, Softmax Confidence, and KL Divergence for Various Datasets. The table
presents Top-2 and Top-5 confidence scores, entropy values, softmax confidence, and KL divergence, adjusted to
reflect model calibration in accordance with accuracy and F1 scores.

BEDAA DeB-Ang Contra-X BERT-AA
Task Genre/Language Dataset SS
AUROC SD AUROC SD AUROC SD AUROC SD

Twitter Tweets 96.50 +0.12 94.20 +0.35 92.80 +0.41 90.30 +0.58 Y

Film Reviews IMDB62 99.10 +0.08 97.70 +0.24 97.20 +0.31 88.90 +0.44 Y

Cross-Genre Blogs BLOG-5 80.80 +0.25 67.90 +0.52 69.00 +0.48 64.10 +0.60 Y

Blogs BLOG-10 71.20 +0.31 69.10 +0.42 68.70 +0.49 60.20 +0.62 Y

News Articles C10 89.20 +0.18 85.10 +0.33 84.80 +0.39 53.80 +0.55 Y

. Essays, Emails, Aston Idiolect (Domain) 98.60 +0.07 96.90 +0.21 97.10 +0.25 94.30 +0.40 Y
Cross-Domain Business Memos, - .

Text Messages Aston Idiolect (Authorship) 99.00 +0.05 97.30 +0.19 97.10 +0.26 95.00 +0.38 Y

PAN24 Easy 77.00 +0.22 75.40 +0.39 74.00 +0.46 71.10 +0.51 Y

Dynamic AA PAN24 PAN24 Medium 69.90 +0.28 67.50 +0.37 67.20 +0.43 64.40 +0.50 Y

PAN24 Hard 66.30 +0.31 64.70 +0.41 64.20 +0.47 63.00 +0.53 Y

Urdu Urdu 75.80 +0.18 74.30 +0.29 - - 71.20 +0.43 Y

. Al-Generated Text Github5 99.90 +0.04 97.50 +0.15 96.80 +0.20 91.50 +0.32 Y

Cross-Lingual
Al-Generated Text Github10 99.80 +0.02 97.00 +0.14 96.50 +0.19 92.80 +0.28 Y
Source Code FormAI-V2 98.20 +0.05 95.50 +0.17 94.20 +0.24 91.80 +0.31 Y

Table 7: Mean AUROC and standard deviation (SD) for BEDAA and baseline models (DeB-Ang, Contra-X, and
BERT-AA) across various authorship attribution tasks and datasets. The final column (SS) indicates whether the
difference is (Y) or is not (N) statistically significant (p < 0.05).

Baseline DeBERTa BEDAA
Accuracy| F1 |AUROC £SD |Accuracy| F1 |AUROC +=SD
TWEETS 92.46 [92.46| 94.20 £0.35 95.71 [95.71| 96.50 £0.12

Aston Idiolect
(Authorship)
Github10 81.36 [81.32| 97.00+0.14 99.62 99.64| 99.80 +0.02
IMDB62 84.69 [84.60| 97.70£0.24 98.92 [98.92| 99.10 £0.08
C10 63.21 [62.98| 85.10 £0.33 87.00 [85.99| 89.20+0.18

Dataset

94.08 [94.01| 97.30+0.19 98.81 ]98.84| 99.00 £ 0.05

Table 8: Performance comparison between Baseline DeBERTa and BEDAA across various datasets. The results
indicate statistically significant improvements for BEDAA in accuracy, F1, and AUROC, validated by a paired t-test.
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C Loss Function Breakdown

Our approach integrates multiple loss functions,
each tailored to different dataset characteristics,
class distributions, and authorship attribution chal-
lenges. Below, we summarise the primary loss
functions used in our framework and their suitabil-
ity across different dataset settings.

Focal Loss

Designed for imbalanced datasets, Focal Loss as-
signs higher importance to hard-to-classify samples
by modulating the standard cross-entropy loss. It
reduces the influence of dominant classes, making
it particularly effective for datasets with rare author
classes. The formulation is:

Lrocal = _at(l - pt)’y log(pt) 9

where o is a weighting factor, and ~y adjusts the
focus on misclassified examples.

Center Loss

This loss function enhances intra-class compact-
ness by minimising the distance between sample
embeddings and their respective class centres. It
is beneficial for medium-to-large datasets with bal-
anced classes, ensuring stylistic consistency in au-
thor representations. The formulation is:

N
1
Lcenter = 5 Zl H'Tz - C?Jz’”% (10)
1=

where x; represents an embedding, and c,, denotes
the learned class centre.

Label Smoothing Loss

Used for noisy or ambiguous datasets, Label
Smoothing prevents overconfidence by distributing
probability mass across all classes. It is particu-
larly useful in cross-lingual tasks and datasets with
annotation inconsistencies. The formulation is:

C

ﬁLabelSmoothing = - Z qi IOg(pi)
=1

1D

where ¢; = (1 — ¢) for the correct class and €/C
for others.
Symmetric Cross-Entropy Loss

This loss function combines standard cross-entropy
with reverse cross-entropy to improve robustness

against label noise and overconfidence in predic-
tions. It is especially useful in datasets with misla-
belled examples. The formulation is:

LsymmetricCE = @+ Lcg + B - LrcE (12)

where Lcg is standard cross-entropy and Lrcg is
reverse Cross-entropy.

Binary Cross-Entropy Loss

A baseline loss function for binary classification,
commonly used in authorship verification tasks.
The formulation is:

1 N
EBinaryCE = X7 Z
N =1

[yi log(pi) + (1 — yi) log(1 —pi)]  (13)

Angular Loss

Angular Loss maximises the angular separation be-
tween authors, making it effective for distinguish-
ing similar writing styles. It is primarily beneficial
for medium-to-large datasets where stylistic differ-
ences between authors are subtle. The formulation
is:

L Angular = max(0, cos(Opos) — €0S(bneg) +m)
(14)
where 05 and 6y, represent cosine distances for
positive and negative pairs.

Contrastive Loss

This function is designed for similarity-based clas-
sification, ensuring that embeddings of the same
author are closer in vector space while maximising
distance between different authors. The formula-
tion is:

1 N
EContrastive = N 2; |:yzd7,2
1=

+ (1 — y;) max(0,m — d;)?| (15)
where d; is the Euclidean distance and m is the
margin.

By incorporating these loss functions, we create
a robust framework tailored to diverse authorship
attribution tasks. The selection of loss functions is
data-dependent, optimising the model’s ability to
generalise across different authorship subtasks, in-
cluding cross-domain, cross-lingual, and dynamic
authorship scenarios.
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D Hyperparameter settings for BEDAA

Hyperparameter Value
num_train_epochs 1-10
train_batch_size 8
eval_batch_size 8
gradient_accumulation_steps 4
n_gpu 1
max_seq_length 512
class_weights Equal weighting specified
early_stopping_patience 2
early_stopping_delta 0.01
learning_rate 2e-5
fp16 True

angular_loss_weight

[0.0, 0.25, 0.5, 0.75, 1.0]

contrastive_loss_weight

[0.0,0.25, 0.5, 0.75, 1.0]

focal_loss_weight

[0.0,0.25, 0.5, 0.75, 1.0]

label_smoothing_weight

[0.0,0.25, 0.5, 0.75, 1.0]

symmetric_ce_loss_weight

[0.0,0.25, 0.5, 0.75, 1.0]

binary_ce_loss_weight

[0.0, 0.25, 0.5, 0.75, 1.0]

cross_entropy_loss_weight

[0.0,0.25, 0.5, 0.75, 1.0]

monte_carlo_samples

10

Table 9: Hyperparameters used in training the BEDAA
model, including parameters for all implemented loss
functions. Parameter values for the loss functions were

fine-tuned during experimentation.
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