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Abstract

Despite recent advances in Video Large Lan-
guage Models (VideoLLMs), effectively un-
derstanding long-form videos remains a sig-
nificant challenge. Perceiving lengthy videos
containing thousands of frames poses substan-
tial computational burden. To mitigate this
issue, this paper introduces Generative Frame
Sampler (GenS), a plug-and-play module in-
tegrated with VideoLLMs to facilitate effi-
cient lengthy video perception. Built upon
a lightweight VideoLLM, GenS leverages its
inherent vision-language capabilities to iden-
tify question-relevant frames. To facilitate
effective retrieval, we construct GenS-Video-
150K, a large-scale video instruction dataset
with dense frame relevance annotations. Exten-
sive experiments demonstrate that GenS consis-
tently boosts the performance of various Vide-
oLLMs, including open-source models (Qwen2-
VL-7B, Aria-25B, VILA-40B, LLaVA-Video-
7B/72B) and proprietary assistants (GPT-4o,
Gemini). When equipped with GenS, open-
source VideoLLMs achieve impressive state-
of-the-art results on long-form video bench-
marks: LLaVA-Video-72B reaches 66.8 (+4.3)
on LongVideoBench and 77.0 (+2.7) on MLVU,
while Aria obtains 39.2 on HourVideo surpass-
ing the Gemini-1.5-pro by 1.9 points. We re-
lease the code, dataset and models at https:
//generative-sampler.github.io.

1 Introduction
Recent advances in Large Multimodal Models
(LMMs) (Li et al., 2023a; Dai et al., 2023; Wang
et al., 2024a; Liu et al., 2023, 2024a; Chen et al.,
2023; Tong et al.) have shown remarkable progress,
yet understanding long videos remains a significant
challenge (Zohar et al., 2024; Li et al., 2024b). Cur-
rent video-oriented LMMs (Zhang et al., 2024b,
2023; Li et al., 2023b, 2025; Zhang et al., 2024a),
known as VideoLLMs, typically employ an im-

∗Corresponding authors.

age encoder such as CLIP (Radford et al., 2021) or
SigLIP (Zhai et al., 2023) to encode individual video
frames as an initial step in video perception. When
processing hours-long videos containing thousands
of frames, a critical challenge emerges: how to
efficiently sample representative frames from the
original video sequence?

Existing VideoLLM assistants primarily employ
two approaches for sampling lengthy videos: 1)
uniform sampling based on the VideoLLM’s max-
imum context length, which leads to significant
visual information loss due to limited fixed-interval
sampling; 2) frame-per-second (FPS) sampling,
as implemented in long-context models like Gem-
ini (Gemini Team, 2024), which can capture frames
at 1 FPS for comprehensive visual coverage. How-
ever, it obtains thousands of frames for hours-long
videos, resulting in booming memory consumption
and slow inference speed.

Intuitively, for VideoLLM assistants, most
frames in long videos are redundant when address-
ing a specific user instruction (i.e., query). To
mitigate visual redundancy, several works propose
language-guided frame sampling via CLIP to re-
trieve query-aware frames efficiently (Arefeen et al.,
2024; Wang et al., 2024c,b). However, CLIP-based
frame samplers have three major limitations. For
visual side, its frame-by-frame matching fails to
capture temporal relationships implied by succes-
sive frames, as depicts in Figure 1 (a). For textual
side, it is constrained by limited language capabili-
ties, only able to process concise and simple user
queries. Additionally, it embeds frames and textual
queries separately to calculate cosine similarity,
which hinders sufficient vision-language interac-
tion to achieve complex multi-hop reasoning (Fu
et al., 2024; Wu et al., 2024a; Chandrasegaran et al.,
2024).

To mitigate these limitations, we present
Generative Frame Sampler (GenS), a VideoLLM-
based approach to retrieve relevant frames through
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Answer: 
“Go for a walk by 
the lake.”

Uniform Sampling

CLIP-based Frame Sampler

Generative Frame Sampler (Ours)

Question: What did the male 
protagonist in the video do immediately 
after finishing his personal report at the 
meeting?

Answer:
“Watch a friend unbox
a watch.”

Answer:
“cook and have 
lunch.”

VideoQA Assistant

Sample Frames from the Long Video

VideoQA Assistant

VideoQA Assistant

Generative Sampler (Ours)

Figure 1: (a) An example of long video question-answering (VideoQA) using different frame samplers. Our
Generative Frame Sampler (GenS) accurately identifies relevant frame sequences based on the user question, further
enhancing the performance of the downstream VideoQA assistant. (b) VideoQA accuracy results of state-of-the-art
VideoQA assistants (Aria (Li et al., 2025) and GPT-4o (OpenAI, 2024)) when equipped with different frame
samplers on the Vision-Centric subset of LongVideoBench (Wu et al., 2024a) .

flexible user instructions. Built upon an advanced
long-context VideoLLM (Li et al., 2025), our ap-
proach inherits fundamental video-language per-
ception capabilities. First, as Figure 1 (a) il-
lustrates, GenS effectively captures temporal re-
lationships between successive frames, such as “
immediately after”. Second, powered by built-in
LLMs (Dubey et al., 2024; Chiang et al., 2023),
GenS comprehends complex and flexible textual
instructions. Third, its native multi-modal architec-
ture enables complex multi-hop reasoning by align-
ing long-range temporal cues with language seman-
tics. As demonstrated in Figure 1 (b), by selecting
more relevant visual frames, GenS substantially
enhances the performance of VideoQA Assistants
across both open-source (Aria (Li et al., 2025))
and proprietary (GPT-4o (OpenAI, 2024)) models.
Compared with uniform sampling, GenS improves
Aria’s accuracy by 13.4 points (≤64 frames) and
GPT-4o’s accuracy by 13.6 points (≤40 frames) on
the challenging long-form video benchmark (Wu
et al., 2024a). These significant improvements
highlight that efficient video perception is a critical
bottleneck for modern VideoQA Assistants, and
GenS provides an practical solution to boost their
full potential.

To develop the GenS sampler, we address two
primary challenges: Firstly, there is a shortage
of training data, as existing video instruction

datasets (Zhang et al., 2024b; Maaz et al., 2024; Liu
et al.) lack dense annotations of relevant frames
across diverse videos and user instructions. Sec-
ondly, the optimal generative format for relevant
frames sampling remains under-explored. To ad-
dress the first challenge, we introduce GenS-Video-
150K, a novel synthetic VideoQA dataset with
question-relevant frame annotations via GPT-4o.
The relevant frame annotations are: 1) dense, with
20% of all frames annotated, and 2) fine-grained,
with specific confidence scores (levels 1 to 5) as-
signed to each relevant frame. For the second
challenge, we explore different generative formats
for indexing relevant frames. Empirical results
show that directly appending textual labels (“Frame
Number [N]”) before visual frames is sufficient
to distinguish sequential frames. GenS outputs
the relevant frame spans with confidence scores
as a natural language generation task ({“Frame
Nstart-Nend: relevance score”, ...}).

To summarize, our main contributions are three-
fold: 1) We propose GenS, a novel generative
frame sampler that leverages VideoLLMs to iden-
tify question-aware relevant frames. It serves as a
plug-and-play sampler that enhances input frames
for VideoQA Assistants. 2) We introduce GenS-
Video-150K, a large-scale video instruction dataset
that densely annotates relevant frames with fine-
grained confidence scores across diverse video

17901



questions. 3) Through extensive experiments, we
demonstrate that GenS significantly enhances the
performance of both open-source (Qwen2VL, Aria,
VILA-v1.5, LLaVA-Video) and proprietary (GPT-
4o and Gemini-1.5-pro) VideoQA Assistants. No-
tably, when equipped with GenS, LLaVA-Video-
72B achieves state-of-the-art performance with
accuracy scores of 77.0 on MLVU and 66.8 on
LongVideoBench, while Gemini1.5-pro attains 40.7
on HourVideo with averaging 45.7 minutes video
duration.

2 Method

We introduce the novel GenS method that effectively
selects instruction-aware frames from long-form
videos. To address the challenge of insufficient train-
ing data, we first construct GenS-Video-150K, a
video instruction dataset with dense relevant frame
annotations (Section 2.1). We then present the
GenS architecture, focusing on an efficient gener-
ative format for VideoLLM-based frame retrieval
(Section 2.2). Finally, we demonstrate how to in-
tegrate GenS with existing VideoQA Assistants to
enhance long-form video perception (Section 2.3).

2.1 GenS-Video-150K Dataset Collection
Our objective is to construct (video, user instruction,
relevant frames) samples that enable the GenS to
identify salient frames for user instructions. Exist-
ing datasets for grounded VideoQA (Bärmann and
Waibel, 2022) and event localization (Anne Hen-
dricks et al., 2017; Ren et al., 2024; Liu et al.; Wu
et al., 2024b) are limited by their domain specificity,
naive instruction, and sparse key frame annotations,
make them inadequate for training robust frame
samplers in real-world long-form video understand-
ing. To address these limitations, we introduce
GenS-Video-150K across diverse video topics and
flexible user instructions, with two key features: 1)
dense frame relevance annotations, with approxi-
mately 20% of frames marked as relevant, and 2)
fine-grained scoring, where each relevant frame is
assigned specific confidence scores (1-5).

We observe that even powerful proprietary
LMMs like GPT-4o (OpenAI, 2024) struggle to
achieve satisfactory retrieval performance when di-
rectly processing thousands of frames from lengthy
videos (verified in Table 4). To ensure high dataset
quality, we decompose the synthetic data creation
into a carefully designed four-stage pipeline lever-
aging GPT-4o. All prompts are provided in the

Appendix A.2.

Stage 1: Dense Video Frame Captioning. We
first curate a diverse collection of videos from YT-
Temporal-1B (Zellers et al., 2022), encompassing a
broad range of topics from YouTube 1. Inspired by
prior works (Chen et al., 2024a), we generate differ-
ential paragraph captions for each frame at a dense
sampling rate (0.2 fps), focusing on distinguishing
new visual content from previous frames. This
dense frame captioning approach has been widely
adopted as a preliminary step in video instruction
dataset construction (Chen et al., 2024a; Zhang
et al., 2024b).

Stage 2: Construct Video QAs with Grounded
Frames. In this stage, we generate 12 distinct
types of video question-answer (QA) pairs with
grounded frames based on the dense frame cap-
tions. Specifically, we prompt GPT-4o to analyze
every 50 consecutive frame captions and generate
QA pairs of assigned types. Frames referenced dur-
ing QA generation are marked as grounded frames
(detailed in Appendix A.2). To ensure robust gen-
eralization, we maintain a balanced distribution
between generative and multiple-choice questions
(50% each). For multiple-choice questions, we
augment the retrieval query by incorporating candi-
date options alongside the user question. We also
strategically include 1% negative samples (ques-
tions with no relevant frames) to enhance model
robustness against irrelevant queries.

Stage 3: Extend Relevant Frames. We expand
the set of relevant frames beyond those strictly
grounded obtained in Stage 2. GPT-4o typically
references only a small subset of frames during
VideoQA generation, resulting in a low retrieval
ratio Rf =

Ngrd

Ntotal
, where Ngrd represents the num-

ber of grounded frames and Ntotal denotes the total
number of captioned frames. Training with such
a small Rf would limit GenS’s ability to provide
comprehensive frame coverage for long-context
video understanding. Therefore, we employ CLIP-
based retrieval to increase Rf from 5% to 30%
approximately to add candidate relevant frames.

Stage 4: Score Fine-grained Relevant Confi-
dence. Finally, we score the relevance (from 0
to 5, 0 is non-relevant and 5 is the most relevant)
among all candidate relevant frames given the video
and user question. This stage accurately refines the

1https://www.youtube.com/
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Table 1: Statistics of GenS-Video-150K dataset.

Property Value
Format {video, question, answer, scored relevant frames}
Total Samples 150K
Avg Video Duration 647.5 seconds (10.8 minutes)
Avg Task Number 12
Relevant Frame Rate around 20%
Relevance Scores 0-5 (0: non-relevant, 5: most relevant)

relevant frames in a global view of the whole video.
Moreover, it provides fine-grained supervision to
distinguish multi-level relevances to enable a top-K
retrieval by confidence score duration inference.

Data Statistics. Our four-stage pipeline yields
150K data samples, with representative examples
shown in Appendix Figure 4. Table 1 provides a
comprehensive overview of our dataset statistics.
Each video has an average duration of 647.5 seconds
(10.8 minutes) and contains approximately 129.5
captioned frames. Of these frames, an average of
20% are annotated as relevant with fine-grained
confidence scores ranging from 0 to 5 (where 0 in-
dicates non-relevant and 5 indicates most relevant),
thereby providing dense supervision.

2.2 GenS Architecture
We design the GenS architecture based on the state-
of-the-art Aria model (Li et al., 2025), which offers
three key advantages: 1) As a native multimodal
model, Aria demonstrates superior capability in
understanding interleaved video-language contexts,
enabling effective identification of relevant frames
with textual indexing. 2) With a context window
supporting up to 256 input frames, Aria’s archi-
tecture excels at modeling temporal relationships
implied in diverse user instructions. 3) Through
its Mixture-of-Experts (MoE) architecture (Jiang
et al., 2024; Krajewski et al., 2024) with 3.9B acti-
vated parameters, Aria strikes an optimal balance
between inference efficiency and multimodal per-
formance compared to conventional 7B-parameter
VideoLLMs (Zhang et al., 2024b; Wang et al.,
2024a; Chen et al., 2023; Lin et al., 2023).

2.2.1 Efficient Frame Indexing
Leveraging Aria’s advanced capabilities in encod-
ing interleaved visual-textual representations, we
implement an efficient frame indexing mechanism
by prepending each frame with a textual number
[N] that denotes the [N-th Frame]. This enables
GenS to uniquely identify and retrieve relevant
frames based on their temporal positions.

For output representation, we adopt a JSON-
based format similar to proprietary video assis-
tants like Gemini and GPT-4o, where GenS gen-
erates frame relevance predictions as a language
modeling task. The output schema flexibly ac-
commodates both discrete frame annotations (e.g.,
{“frame number”: relevance score}) and con-
tinuous temporal spans (e.g., {“start frame -
end frame”: relevance score}) based on the
retrieval context. Our experiments in Section 3.5
demonstrate that organizing retrieved frames by rel-
evance scores yields better performance compared
to temporal ordering.

2.2.2 Adaptation for Various Input FPS
GenS is designed as a plug-and-play frame sam-
pling module that seamlessly integrates with ex-
isting VideoQA Assistants (Zhang et al., 2024b;
Wang et al., 2024a; Chen et al., 2023; Lin et al.,
2023; Wang et al., 2024c). To handle varying can-
didate frame number and sampling densities across
downstream VideoQA models, we implement a
flexible frame retrieval mechanism that supports
both dense (high FPS) and sparse (fixed-interval)
frame sampling patterns. Specifically, we normal-
ize the candidate frame indices to a unified range
of 1-256 within each retrieval temporal window,
ensuring robust retrieval performance regardless of
the original frame sampling rate.

2.3 Training and Inference Paradigm
We train GenS on both our GenS-Video-150K
and existing human-annotated event-level video
datasets, specifically the E.T. Instruct dataset (Liu
et al.), to enhance training data diversity. However,
directly mixing E.T. Instruct data degrades GenS’s
performance due to its sparse grounded frame an-
notations. Therefore, we integrate and post-process
the E.T. Instruct dataset to better align with our
frame sampling task (details in Section 3.1).

During inference, GenS processes videos at ar-
bitrary frame rates, retrieving instruction-relevant
frames with confidence scores within each tempo-
ral window (maximum 256 frames). The retrieval
across multiple temporal windows can be paral-
lelized for efficient processing. Output relevant
frames are naturally sorted by confidence scores,
with the number of relevant frames Nret varying
based on the specific question and video content.
We select the top K frames for input to a VideoQA
model, where K = min(Nret, Nctx), with Nctx be-
ing the VideoQA model’s maximum context length.
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VideoQA Model Size Sampled Frames LongVideoBenchval (avg 12min) MLVUval (avg 12min)
Full V-Centric Full V-Centric

Proprietary LMMs
GPT-4o - 256/0.5fps 66.7 - 64.6 -
Gemini-1.5-Pro - 256/256 64.0 - - -

Open-source Video LLMs
LLaVA-Video 7B 64/64 58.9 50.0 70.4 66.9
LLaVA-Video w/ GenS 7B 54/50 63.3 (+4.4) 56.7 (+6.7) 73.4 (+3.0) 70.6 (+3.7)
Qwen2-VL 7B 64/64 56.0 45.9 64.7 62.3
Qwen2-VL w/ GenS 7B 54/50 58.7 (+2.7) 49.2 (+3.3) 66.9 (+2.2) 64.8 (+2.5)
Aria 25B-A3.9B 256/256 62.7 54.4 69.5 62.1
Aria w/ GenS 25B-A3.9B 54/95 66.1 (+3.4) 59.3 (+4.9) 72.6 (+3.1) 67.5 (+5.4)
VILA-v1.5 40B 14/14 57.4 47.0 57.8 52.5
VILA-v1.5 w/ GenS 40B 14/14 59.6 (+2.2) 50.2 (+3.2) 63.5 (+5.7) 58.3 (+5.8)
LLaVA-Video 72B 64/64 62.5 51.6 74.3 72.5
LLaVA-Video w/ GenS 72B 54/50 66.8 (+4.3) 58.9 (+7.3) 77.0 (+2.7) 74.1 (+1.6)

Table 2: Performance on LongVideoBench (Wu et al., 2024a) and MLVU (Zhou et al., 2024) benchmarks using
multiple-choice accuracy metrics. V-Centric denotes a vision-centric subset containing questions that explicitly
require video understanding rather than language-only reasoning, while filtering short videos. Sampled Frames N/M
indicates sampled N frames for LongVideoBench and M frames for MLVU separately. Using GenS, we select the K
most relevant frames (K <= max frame number of VideoQA models) and report the average number of input frames.

3 Experiments
3.1 Experimental Settings
Evaluation Benchmarks. We evaluate GenS
on several long-form video benchmarks in-
cluding LongVideoBenchval (LVB) (Wu et al.,
2024a), MLVUDev (Zhou et al., 2024), and
HourVideo (Chandrasegaran et al., 2024). These
benchmarks assess multiple-choice question-
answering accuracy on videos ranging from min-
utes to hours in duration. For LVB and MLVU,
we construct a more challenging Vision-Centric
subset by filtering out both questions answerable
through pure language reasoning and videos of
short duration. Additionally, we evaluate the zero-
shot temporal grounding capability of GenS on
the Charades-STA (Gao et al., 2017) dataset using
mean Intersection over Union (mIoU) and Recall@1
at IoU thresholds of 0.3, 0.5, and 0.7.
Training Dataset. We utilize timestamp-output
tasks from E.T.Instruct 164K (Liu et al.), extracting
75K base training samples (denoted as E.T. Instruct-
75K). To enhance the density of grounded frame
annotations, we post-process these samples through
timestamp label aggregation and textual query con-
catenation within each video, yielding 41K samples
(denoted as E.T. Instruct-41Kagg.). The final train-
ing data for GenS combines this aggregated E.T.
Instruct dataset with GenS-Video-150K.
Implementation Details. We train the open-source
Aria 2 model with a frozen vision encoder. The
model supports a maximum sequence length of

2https://github.com/rhymes-ai/Aria

32K tokens, accommodating up to 256 frames per
sequence. Training consists of 300 iterations with
a global batch size of 256, completed in 10 hours
using 32 H800 GPUs. We provide complete hy-
perparameter settings in Appendix A.3. During
inference, the MOE architecture of GenS utilizes
only 3.9B activated parameters. We obtain original
frames from the input video at 1 FPS to ensure com-
prehensive visual coverage, and then sample frames
within each 256-frame interval using a sliding win-
dow approach. For multiple-choice questions, we
append candidate options to the retrieval query.

3.2 Results on Long-form Video Tasks
GenS functions as a plug-and-play frame sampling
module that enhances visual perception capabilities
across VideoQA models. We evaluate its effective-
ness across three categories of VideoQA models:
I) Advanced proprietary VideoLLMs, specifically
GPT-4o (OpenAI, 2024) and Gemini-1.5-pro (Gem-
ini Team, 2024); II) Open-source competitive Vide-
oLLMs with standard context lengths (64 input
frames), including LLaVA-Video-7B/72B (Zhang
et al., 2024b) and Qwen2-VL-7B (Wang et al.,
2024a); III) Open-source long-context VideoLLMs,
represented by Aria-25B (Li et al., 2025) with
256-frame input capacity.

For MLVU and LongVideoBench, we construct
a more challenging Vision-Centric subset (also fil-
tering out short videos) based on two observations:
1) several questions in the original datasets can be
answered through pure language reasoning without
visual context; 2) visual content in short videos
can be adequately captured through uniform frame
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Blind LLMs
GPT-4 22.7 29.6 24.2 21.9 15.2 20.6 15.8 14.9 21.4 22.2 23.6 19.3 14.7 14.5 18.7 21.2 15.8 18.8 19.6
Socratic Models
LLaVA-34B-DPO 34.0 35.5 35.8 30.3 19.3 12.7 34.5 18.3 15.3 26.7 21.3 17.9 23.5 20.9 21.3 22.4 20.8 22.4 22.3
GPT-4 40.5 41.5 43.2 33.1 20.0 20.2 36.7 18.5 21.7 37.8 25.3 22.9 27.1 24.1 24.7 26.5 20.0 26.6 25.7
Multimodal Models
Aria (256 frm.) 58.2 53.9 55.8 44.7 33.8 28.1 41.9 26.8 36.9 28.9 42.3 34.9 50.0 54.8 31.3 23.8 15.0 25.0 38.7
Aria w/ GenS (226 frm.) 56.3 54.6 50.5 44.5 34.7 26.6 45.3 26.8 38.3 26.7 42.7 36.0 50.8 56.8 33.3 29.1 15.8 22.9 39.2
Gemini1.5-Pro (0.5fps) 56.4 59.5 46.7 41.8 33.6 19.7 35.7 27.4 38.2 21.4 37.2 35.4 46.8 46.3 41.0 38.7 19.2 33.9 37.3
Gemini1.5-Pro w/ GenS 57.6 57.9 53.7 45.3 34.7 26.2 45.8 31.7 39.2 15.6 39.8 40.8 48.9 49.4 48.7 37.1 29.2 34.9 40.7
(344 frm.) +1.2 -1.6 +7.0 +3.5 +1.1 +6.5 +10.1 +4.3 +1.0 -5.8 +2.6 +5.4 +2.1 +3.1 +7.7 -1.6 +10.0 +1.0 +3.4

Table 3: Results on HourVideo (Chandrasegaran et al., 2024) benchmark, an extremely challenging video dataset
with an average duration of 45.7 minutes, containing 113 videos longer than 60 minutes. Blind LLMs perform
reasoning without video inputs. Socratic models first segment videos into one-minute intervals, generate captions
for each segment using LLaVA-34B-DPO or GPT-4, then use GPT-4 to answer questions based on the aggregated
captions. Multimodal Models directly process video inputs for inference.

sampling. Details are provided in Appendix A.3.
LongVideoBench. As shown in Table 2, GenS
demonstrates consistent improvements across dif-
ferent VideoQA models and sizes. For standard-
context models (64 frames), GenS enhances LLaVA-
Video-7B and Qwen2-VL-7B by 4.4 and 2.7 points,
respectively, on the full validation set. Notably,
even for long-context models like Aria-25B (256
frames), GenS still brings a significant 3.4-point
improvement, highlighting the importance of effi-
cient frame sampling beyond model context length
scaling. When equipped with GenS, LLaVA-Video-
72B achieves 66.8% accuracy on LongVideoBench,
establishing a new state-of-the-art. These gains
become more pronounced on the Vision-Centric
subset, where GenS improves LLaVA-Video-72B
by 7.3 points and Aria-25B by 4.9 points, demon-
strating its particular effectiveness on questions that
demand stronger visual understanding capabilities.
Figure 1 (b) indicates that GenS also significantly
improves the performance of GPT-4o, achieving a
13.6% accuracy gain with 40 input frames.
MLVU. On the MLVU benchmark, GenS con-
sistently enhances the performance of various
VideoQA models. LLaVA-Video-7B’s accuracy
improves by 3.0 points (from 70.4% to 73.4%),
Qwen2-VL-7B shows a 2.2-point increase (from
64.7% to 66.9%), and Aria demonstrates a 3.1-
point gain (from 69.5% to 72.6%). Most notably,

LLaVA-Video-72B integrated with GenS achieves
state-of-the-art performance with 77.0% accuracy.
HourVideo. We further evaluate GenS on
HourVideo (Table 3), a particularly challenging
benchmark featuring videos with an average du-
ration of 45.7 minutes, including 113 videos that
exceed one hour in length. Prior to our work,
only Gemini-1.5-Pro could process such extensive
videos end-to-end, achieving 37.3% accuracy. With
the integration of GenS, both Aria-25B and Gemini-
1.5-Pro surpass previous results, reaching 39.2%
and 40.7% accuracy respectively, thereby estab-
lishing new state-of-the-art performance. These
improvements demonstrate GenS’s capability to
effectively process extremely long videos through
its dynamic frame identification.

3.3 Comparison with Sampling Baselines
We evaluate GenS against various frame sampling
approaches in Table 4. Specifically, we compare
against uniform sampling baseline to assess the
effectiveness of these methods.

Image-language matching methods like CLIP-
L-224px (Radford et al., 2021) and SigLIP-
384px (Zhai et al., 2023) demonstrate significant
improvements over uniform sampling only with
sparse frame inputs (e.g., 16 frames), as shown
in Figure 1 (b). However, when processing 256
frames, they achieve only slight gains (0.7/1.1
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LongVideoBenchval
(V-Centric Subset)

Aria-25B as VideoQA Model (<=256 frames)
+Uniform Sampling 54.4
Image-Language Matching
+CLIP-L-224px Sampler 55.5
+SigLIP-384px Sampler 55.1
+InternVL-14B-224px Sampler 55.9
Proprietary LMMs
+GPT-4o Sampler 55.7
Open-source VideoLLMs
+GenS (ours) 60.5

MLVUM-avg

VILA-v1.5-40B as VideoQA Model (<=14 frames)
+Uniform Sampling 57.8
Specialized VideoLLMs for Event Localization
+TimeChat Sampler[CVPR 2024] 59.4
Specialized VideoLLMs for Frame Sampling
+FRAME-VOYAGER Sampler[ICLR 2025] 61.1
+GenS (ours) 63.5

Table 4: Comparison with different frame sampling
methods.

points) over uniform sampling, due to their lim-
itations in complex language reasoning and tem-
poral relationship modeling. As Table 4 shows,
InternVL-14B-224px (Wang et al., 2024b) outper-
form CLIP-based approaches, benefiting from their
enhanced language understanding capabilities.

Advanced Proprietary LMMs like GPT-4o unex-
pectedly yield only a 1.3-point improvement over
256-frame uniform sampling. Our empirical obser-
vations reveal that GPT-4o struggles with precise
frame selection when processing large candidate
frame sets, particularly in identifying correct frame
indices. While multi-round refinement or step-
by-step reasoning could potentially address these
limitations, it would be prohibitively expensive.

VideoLLM-based Methods like FRAME-
VOYAGER (Yu et al., 2024) specialize in sampling
sparse frames from a candidate pool (e.g., 8 from
128 frames). Following their experimental settings,
GenS also shows effectiveness for enhancing short-
context VideoQA models such as VILA-1.5-40B
(14 frames) (Lin et al., 2023), surpassing FRAME-
VOYAGER by 2.4 points and uniform sampling
by 5.7 points. Event localization methods such
as TimeChat (Ren et al., 2024) can identify event
timestamps based on textual descriptions, but show
only marginal improvements over uniform sam-
pling when used for frame sampling, likely due to
the coarse and sparse nature of event localization
annotations.

3.4 Results on Temporal Grounding Tasks

Table 5 demonstrates that GenS achieves competi-
tive video grounding performance, surpassing GPT-
4o and approaching specialized VideoLLMs like

Grounding Model Charades-STA
R1@0.3 R1@0.5 R1@0.7 mIoU

Temporal Grounding VideoLLMs (7B size)
VTimeLLM 51.0 27.5 11.4 31.2
HawkEye 50.6 31.4 14.5 33.7
TimeChat[CVPR 2024] - 32.2 13.4 30.6
TimeSuite[ICLR 2025] 69.9 48.7 24.0 -
General VideoLLMs
GPT-4o 55.0 32.0 11.5 35.4
VideoChat2-7B 9.6 3.4 1.4 -
Qwen2-VL-7B 8.7 5.4 2.4 7.9
LongVA-7B-DPO 22.6 10.1 2.2 14.6
LLaVA-OneVison-7B 31.2 13.5 5.2 -
Aria 39.0 18.6 6.6 26.7

GenS 62.9 38.7 15.2 38.0
GenS w/o E.T.Instruct-41Kagg. 51.1 28.2 10.4 33.2

Table 5: Results on the Charades-STA (Gao et al., 2017)
temporal grounding benchmark.

TimeSuite (Zeng et al., 2024). This highlights its
excellence in both long-form video understanding
and fine-grained temporal localization. Notably,
our model achieves these results without training
on any Charades-STA data. Even when excluding
E.T.Instruct-41Kagg. that contains temporal ground-
ing data from DiDeMo (8.4K samples), Queryd
(661 samples), and TACoS (61 samples) (Anne Hen-
dricks et al., 2017; Oncescu et al., 2021; Regneri
et al., 2013), our model’s performance remains
comparable to GPT-4o.

3.5 Analysis
Effectiveness of GenS-Video-150K Dataset. Ta-
ble 7 presents that adding our GenS-Video-150K
brings remarkable improvements over the uniform
sampling baseline across two VideoQA models.
For GPT-4o with 32 frames input, adding VC-
RAG-150K improves accuracy by 10.4 points (from
53.4 to 63.8). For Aria with 256 frames in-
put, the improvement is 3.3 points (from 54.4
to 57.7). We further evaluate the combination
of our GenS-Video-150K with temporal ground-
ing data DiDeMo (Anne Hendricks et al., 2017)
and time-sensitive video dataset E.T.Instruct (Liu
et al.). Experiments reveal that directly combining
these datasets degrades GPT-4o’s performance due
to cross-task inconsistencies. However, applying
query aggregation post-processing (described in
Section 3.1) leads to improved overall performance.
We also compare two prompting strategies: using a
single unified prompt as frame-sampling tasks ver-
sus using task-specific prompts. Our results show
that task-specific prompts perform better, since
they allow the model to learn specialized behaviors
for each task type while still benefiting from the
combined training data.
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Holistic Multi Detail Single Detail M-Avg
Topic Reason Anomaly Recognition Action Order Action Count Needle QA Ego Reason PlotQA

Uniform 87.1 69.5 63.7 44.2 77.8 66.2 71.8 69.9
GenS 84.7 (-2.4) 72.0 (+2.5) 73.3 (+9.6) 41.3 (-2.9) 85.4 (+7.6) 66.8 (+0.6) 76.4 (+4.6) 73.2 (+3.3)

Table 6: Breakdown performance analysis on MLVU (val) using Aria as the VideoQA model with 256 input frames.

VideoQA Models GPT-4o Aria
(<=32 frm.) (<=256 frm.)

Uniform Sampling 53.4 54.4

Frame Sampler
+ GenS-Video-150K 63.8 57.7
Directly Mixing Dataset
+ GenS-Video-150K + DiDeMo-40K 61.5 57.7
+ GenS-Video-150K + E.T.Instruct-75K 62.7 59.5
With Query Aggregation
+ GenS-Video-150K + E.T.Instruct-41Kagg. 63.8 60.9
(unified task prompts)
+ GenS-Video-150K + E.T.Instruct-41Kagg. 64.2 60.5
(distinct task prompts)

Table 7: Ablation study on different training datasets
and combination strategies. Results are accuracy (%)
on LongVideoBenchval (V-Centric Subset).

Input and Output Indexing Format. For out-
put formats, we evaluate two key aspects: (1) use
discrete index numbers versus integrate successive
frames into continuous spans, and (2) order frames
chronologically or by relevance. Figure 2 depicts
that continuous spans with confidence scores or-
dered by relevance achieve the best performance
(56.1). For input formats, we compare two strate-
gies: (1) textual indexing alone that prepending
each frame with a textual number [N] and (2)
combining textual and visual indexing which addi-
tionally overlays visual numerical indices directly
onto each frame at the pixel level (Wu et al., 2024c).
Our results show that textual indexing alone per-
forms marginally better than combining textual and
visual indexing, indicating that GenS can effectively
process interleaved visual-textual sequences.

Breakdown results on different question types.
Table 6 shows that GenS achieves significant im-
provements on question types that require precise
temporal understanding and localization. Specif-
ically, GenS brings notable gains on Needle QA
(+7.6) and Action Order (+9.6) tasks, where identi-
fying specific moments or temporal relationships
between actions is crucial. However, for Topic Rea-
son tasks that require holistic video understanding,
uniform sampling provides better coverage of the
overall video content.

4 Extension Applications
Coarse-to-Fine Hybrid Sampling. We propose
a coarse-to-fine hybrid approach that combines a

Performance
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Discrete Numbers (Relevance order)
55.7

Continuous Spans (Relevance order)
56.1

Continuous Spans (Temporal order)
53.2

Text Labels
57.7

Text Labels + Visual Labels
57.5

Output Format
Input Format

Figure 2: Ablation study on different input and output
frame indexing formats.

lightweight CLIP (Radford et al., 2021) sampler
with our GenS to improve sampling efficiency for
extremely long videos. Specifically, we first adopt
CLIP to densely sample frames from the 1 fps can-
didate pool and return top 256 most relevant frames,
then apply GenS to re-sample the most informative
frames within a single 256-frame temporal window.

Table 8 demonstrates that this hybrid approach
consistently outperforms both uniform sampling
and standalone CLIP sampling across various frame
count constraints. We also provide the GenS sam-
pled at 1fps as an upper bound for the frame sam-
pling efficiency-performance tradeoff. This demon-
strates that a simple hybrid approach can effec-
tively improve the efficiency of the GenS sampler
while maintaining competitive performance, which
provides a more practical solution for real-world
applications.
GenS Implementation on Qwen2.5VL-3B. Our
design of generative frame sampling is not limited
to a specific VideoLLM (e.g., Aria) as the base
model. To verify the generalizability of our ap-
proach, we implemented GenS on Qwen2.5VL-3B
using low-resolution inputs (112×112 pixels) for
frame sampling.

Results in Table 9 demonstrate that GenS based
on Qwen2.5VL-3B achieves remarkable perfor-
mance compared to both uniform sampling and
CLIP-based samplers. The model shows consistent
improvements across all frame count configura-
tions, with gains of up to 7.51 points when using
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#Sampled Frames ≤10 frm ≤20 frm ≤30 frm ≤40 frm ≤50 frm
Uniform 47.04 50.00 53.75 51.98 53.95
CLIP-L-224px 46.44 50.00 53.16 54.55 54.74
CLIP-L-224px + GenS 53.16 (+6.12) 56.13 (+6.13) 60.47 (+6.72) 61.26 (+6.71) 60.86 (+6.12)

GenS (Upper Bound) 56.32 58.89 65.61 65.61 64.82

Table 8: Performance of a hybrid sampling approach on LongVideoBenchval (V-Centric Subset) using GPT-4o as
VideoQA model. The hybrid approach first retrieves the top 256 relevant frames from a 1 FPS candidate pool using
CLIP-L-224px, then applies GenS to select the most informative frames within a single 256-frame temporal window.

#Sampled Frames ≤10 frm ≤20 frm ≤30 frm ≤40 frm ≤50 frm
Uniform 47.04 50.00 53.75 51.98 53.95
InternVL-14B-224px 47.23 49.01 50.99 54.35 54.55
CLIP-L-224px 46.44 50.00 53.16 54.55 54.74
GenSQwen2.5VL-3B 54.74 (+7.51) 55.93 (+5.93) 57.11 (+3.36) 59.68 (+5.13) 58.69 (+3.95)

Table 9: Performance of GenS with Qwen2.5VL-3B as the base VideoLLM using low-resolution input (112×112
pixels) on LongVideoBenchval (V-Centric Subset), with GPT-4o as the VideoQA model.

just 10 frames. The successful adaptation of GenS
to the distinctly different Qwen2.5VL-3B archi-
tecture validates the broad generalizability of our
approach. Our method can be integrated with
various advanced VideoLLMs without requiring
architectural modifications, enabling it to leverage
ongoing advancements in the field.

5 Related Work

5.1 Long-form Video Understanding

Current video assistants (Li et al., 2023b; Zhang
et al., 2024b; Lin et al., 2023; Wang et al., 2024a;
Chen et al., 2024b; Li et al., 2024a) have demon-
strated impressive capabilities in video-language
understanding. However, processing hours-long
videos (e.g., 3600 frames per hour at 1 fps) for
comprehensive visual coverage remains computa-
tionally prohibitive. Recent approaches address
this limitation through either: 1) extending model
context length to accommodate more frames (e.g.,
256-512) (Zhang et al., 2024a; Liu et al., 2024b; Fei
et al., 2024; Wang et al., 2024d, 2025; Xue et al.,
2024), or 2) performing visual token compression
within the model (Li et al., 2024d; Yao et al., 2024;
Zhang et al., 2025; Li et al., 2024c). In contrast,
we propose a more efficient paradigm - incorpo-
rating a frame sampler prior to model input, thus
eliminating redundant visual processing inside the
large-scale video assistants.

5.2 VideoLLMs with Retrieval-Augmented
Generation

To enhance video-language interaction, recent
works have equipped VideoLLM assistants with
Retrieval-Augmented Generation (RAG). Unlike
text-based retrieval methods, i.e., Video-RAG (Luo
et al., 2024), Q-ViD (Romero and Solorio, 2024),
and R2A (Pan et al., 2023), we propose a visual-
centric approach that directly retrieves relevant
frames. Compared to CLIP-based retrieval (Wang
et al., 2024b; Arefeen et al., 2024; Wang et al.,
2024c; Xu et al., 2024), our method built on a
VideoLLM excels at capturing long-range temporal
perception and complex language understanding.
While similar frame samplers (Yu et al., 2024; Sun
et al., 2025) are limited to sparse sampling (e.g., 8
from 128 frames), our approach can efficiently re-
trieve thousands of frames with adaptive sampling
rates, substantially enhancing long-context video
assistants on hours-long video perception.

6 Conclusion

This paper presents GenS, a novel generative frame
sampling method and a high-quality video instruc-
tion dataset GenS-Video-150K. Our extensive exper-
iments show that GenS brings consistent improve-
ments across different VideoQA models’ architec-
tures and sizes and achieve new state-of-the-art
results on LongVideoBench (66.9), MLVU (77.0),
and HourVideo (40.7). It suggests that efficient
frame sampling is a promising direction for advanc-
ing long-form video understanding.
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Limitations
Leveraging GenS for key frame retrieval in long-
form videos incurs additional computational over-
head compared to naive uniform sampling. Specifi-
cally, while uniform sampling processes N frames
(where N is the context length of the video question-
answering model), our approach needs to analyze
M frames (M=256) within each retrieval window.
However, this computational cost can be mitigated
through parallel processing of multiple segment
windows, making the overall inference time prac-
tically manageable. Meanwhile, for large-scale
advanced VideoQA Assistants like LLaVA-Video-
72B, sampling few relevant frames via GenS (3.9B
activated parameters) is more efficient than sub-
stantially extending the model context length of a
72B VideoQA Assistant. The performance of GenS
could be further enhanced through multi-round re-
trieval iterations and integration with Video Agent
systems for refined frame selection.
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A Appendix

A.1 Additional Results and Analysis
Leveraging Video Subtitles for Frame Sampling.
As shown in Table 10, incorporating video subti-
tle information during frame sampling improves
the quality of selected frames and enhances down-
stream VideoQA model performance. Specifically,
across different input scales ranging from 16 to 256
frames, adding subtitle information yields consis-
tent improvements of 0.6-2.77 points. This demon-
strates GenS’s ability to effectively integrate visual
and textual cues while maintaining efficient frame
sampling. Notably, GenS achieves this perfor-
mance without explicit training on frame-subtitle
sequences. This zero-shot capability stems from
GenS’s base VideoLLM architecture, which inher-
ently supports processing interleaved vision-text
inputs.

Sampling Max Input Frames
≤ 16 ≤ 32 ≤ 64 ≤ 128 ≤ 256

w/o subtitle 54.74 54.74 55.34 55.53 54.74
w/ subtitle 55.34 54.74 55.34 56.72 57.51

+0.60 +0.00 +0.00 +1.19 +2.77

Table 10: Impact of incorporating video subtitles dur-
ing frame sampling, evaluated on LongVideoBench
(V-Centric) using Aria as the VideoQA model. The
subtitles are only used by the frame sampler GenS, not
by the VideoQA model. Results show accuracy (%) for
different maximum frame budgets.

Frame Sampling Parameters during Inference.
We investigate two key parameters in our frame
sampling approach: sampling ratio and temporal
window size. The sampling ratio determines how
densely we sample candidate frames from the orig-
inal video (measured in frames per second), while
the temporal window size (temp_win_size) controls
how many consecutive frames are considered simul-
taneously during sampling. As shown in Table 11,
increasing the sampling ratio from 0.2 to 1.0 fps
with temp_win_size=128 significantly improves
performance from 52.37 to 55.13, as denser sam-
pling provides more comprehensive video coverage.
With the sampling ratio fixed at 1.0 fps, expanding
the temporal window from 128 to 256 frames yields
a further improvement to 56.13, demonstrating the
benefit of longer-range temporal perception. No-
tably, during training, we use an average sampling
ratio of 0.2 fps and temp_win_size of 129 frames.

The superior performance achieved with different
parameters during inference suggests that GenS
generalizes well beyond its training configuration
rather than overfitting to the training settings.

Sampling Configuration Accuracy
sample_ratio=0.2, temp_win_size=128 52.37
sample_ratio=1.0, temp_win_size=128 55.13
sample_ratio=1.0, temp_win_size=256 56.13

Table 11: Impact of sampling ratio and temporal window
size on LongVideoBench (V-Centric). Higher sampling
ratio enables denser frame coverage, while larger tem-
poral window allows longer-range temporal perception.

A.2 GenS-Video-150K Dataset Details
Prompts for GenS-Video-150K Annotation.
We provide detailed prompts for each stage of the
GenS-Video-150K annotation process via GPT-4o.
Table 14 depicts the prompts for Stage 2 Construct
Grounded Video QAs, while Table 15 shows the
prompts for Stage 4 Score Frame Relevance.

When constructing Video QAs with grounded
frames (Stage 2), we define 12 specific question
types to comprehensively cover different aspects of
video understanding capabilities:

• Reasoning Tasks: Object, Action, Spatial,
and Temporal Reasoning questions test the
model’s ability to make logical inferences
about relationships and changes in the video.

• Perception Tasks: Object, Action, Attribute,
and Spatial Perception questions focus on basic
visual understanding of scenes, actions, and
object properties.

• Specialized Tasks: Video Detail Referring re-
quires fine-grained visual attention, Counting
tests quantitative understanding, OCR evalu-
ates text recognition, and Temporal Perception
assesses understanding of event sequences.

A.3 Training Hyper-parameters and
Evaluation Details

We provide training hyper-parameters in Table 12.

Video-Centric Subset. We use GPT-4o to filter
questions that can be answered by purely textual
reasoning on LongVideoBench (LVB) and MLVU.
The filtered dataset contains 506 samples for LVB
(excluding 159 non-vision-centric questions and
672 videos shorter than 10 minutes) and 879 sam-
ples for MLVU (excluding 200 non-vision-centric
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Hyper-parameter Value
Visual Encoder

Frame Sampling Rate Varied FPS (0.2-1.0)
Input Resolution 490
Visual Tokens per Image 128
Max Image per Sequence 256
Patch Size 14x14

Large Language Model (MOE)

Number of Layers 28
Hidden Size 2560
FFN Hidden Size 13568
MOE FFN Dimension 1664
Number of Attention Heads 20
Number of KV Heads 20
Number of Experts 64
Top-k Experts 6
Number of Shared Experts 2

Model Training

Max Context Length 32768
Batch Size 256
Learning Rate 1e-5
Min Learning Rate 1e-8
Warmup Ratio 0.0
Training Iterations 300
Z Loss 1e-5
EP ST Load Balancing Loss 1e-3
LR Scheduler Type Cosine

Table 12: Training hyper-parameters for GenS.

questions and 1,095 videos shorter than 8 minutes).
All remaining questions in this subset explicitly re-
quire long-range visual understanding capabilities.

A.4 Frame Sampling Baseline
Implementation

CLIP / SigLIP / InternVL. For image-language
models like CLIP, SigLIP and InternVL, we im-
plement frame sampling through similarity-based
retrieval. We first densely sample frames from the
original video at 1 FPS and extract visual features
for each frame. We then encode the input question
into text features and compute cosine similarity
scores between each frame and the question em-
bedding. Finally, we select the top-K frames with
highest similarity scores as key frames, where K is
determined by the maximum input frame capacity
of the VideoQA model.

TimeChat. For event localization VideoLLMs
like TimeChat, we use the question as a textual
query to identify relevant event timestamps in the
video. We then uniformly sample K frames from
these identified temporal segments as key frames
for downstream processing.

Prompt as a Frame Retrieval Assistant:
You are an advanced AI visual assistant tasked with
assessing frame relevance for question answering.
Please retrieve the video frames relevant to the ques-
tion (maybe with options) to answer it correctly, out-
put the frame timestamp, exactly in format [XX:XX],
[XX:XX, XX:XX], or [XX:XX, XX:XX, XX:XX],
etc. If no matching frames are found, output [None].
Video Frames:
[00:00] <image_placeholder>
[00:05] <image_placeholder>
[00:10] <image_placeholder>
...

Question:
<question_placeholder>

Output Relevance Frames:
[17:07, 17:26, 18:24]

Table 13: The prompt used by GPT-4o to retrieve relevant
video frames for question answering.

00:00 - 12:24

“They are having 
a picnic.”

Uniform Sampling

Generative Sampler (Ours)

Question: What are the young mother 
and her son doing outdoors in the video?

“They are decorating 
a Christmas tree.”

VILA-v1.5 40B

Sample Frames from the Long Video

VILA-v1.5 40B

Figure 3: Visualization of GenS integrated with VILA-
v1.5-40B (<=14frames) on MLVU dataset.

GPT-4o. We leverage GPT-4o’s vision capabili-
ties to score frame relevance based on the prompt
template in Table 13. Since GPT-4o has limita-
tions in processing massive frames at once, we first
sample frames at 1 FPS from the original video
and divide them into windows of 50 frames each.
GPT-4o then processes each window independently
to identify relevant frames. The relevant frames
from all windows are aggregated to obtain K can-
didate frames. If K exceeds the VideoQA model’s
maximum input capacity N, we randomly sample
N frames from the candidate set to form the final
input.

A.5 Visualization Cases
We visualize a case in Figure 3.
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Videos:   lVNV1qXnGb0.mp4

Questions:  What event occurs immediately before the scene transitions to the outdoor environment 
with the cave entrance?

Answer: A detailed view of an individual examining a substance through a microscope in the 
laboratory.

Relevant Frames with Fine-grained Scores: {“30s-35s”: score 5, “25s”: score 4, “40s”: score 4, “265s-
270s”: score 3, “305s-310s”: score 3, “285s”: score 2, “330s”: score 2, ……, “720s”: score 1}

Visualization of Annotated Relevant Frames (Partial) in Raw Video

Video Timeline in seconds

• Frames with relevant score = 4 ~ 5  (High Relevant)

• Frames with relevant score = 3 (Middle Relevant)

25s (score=4) 30s (score=5) 35s (score=5) 40s (score=4)

265s (score=3) 270s (score=3) 305s (score=3) 310s (score=3)

score=5 score=4 score=3 score=2

Figure 4: Visualization of annotated data sample from GenS-Video-150K.
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GPT-4 Prompt for Grounded Video Question Generation (Stage 2):
You are a teacher designing challenging questions for a "Long-term Video Understanding" class. Your task is to create
questions that test students’ ability to comprehend and analyze long video content. I will provide video frame narrations
with timestamps, and you should generate questions following the criteria below:

Question Types:

• Specific requirements for a question type:

<Question Type Placeholder>

• Multiple Choice: Create questions with five options (A-E), where only one is correct. All options should be
closely related to the video content but clearly distinguishable.

• Open-ended: Create questions requiring concise, specific answers that can be directly supported by the video
content.

Key Requirements:

1. Video-Centric: Questions must be answerable solely through careful analysis of the video content. Avoid
requiring external knowledge.

2. Temporal Reasoning: Questions should require understanding relationships between events across different
timestamps.

3. Clear Answers: Ensure answers are concise, accurate, and directly supported by video evidence.

4. Difficulty: Make questions challenging by requiring careful analysis of multiple video segments.

5. Format: Do not reference scene indices or specific timestamps in questions.

Input Format:
[Timestamp] Description of video frame
[04:30] Person walks into room
[04:35] Person picks up book
...

Output Format:
For Multiple Choice Questions:
{

"question": "...",
"options": {

"A": "...", "B": "...", "C": "...", "D": "...", "E": "..."
},
"correct_option": "A/B/C/D/E",
"rationale_timestamps": ["04:30", "04:35", ...]

}

For Open-ended Questions:
{

"question": "...",
"answer": "...",
"rationale_timestamps": ["04:30", "04:35", ...]

}

Additional Guidelines:

• Make wrong options slightly longer than correct ones

• Distribute correct answers evenly across options A-E

• Include only timestamps directly relevant to the question

• Ensure answers compress information from multiple timestamps

Table 14: The prompt template used for Stage 2 - Construct Grounded Video QAs of GenS-Video-150K.
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GPT-4o Prompt for Scoring Relevance (Stage 4):
You are a helpful and precise assistant designed to evaluate the relevance of each video frame to a given textual question.
I will provide video frames (or their narrations) along with their timestamps as input. Your task is to assign an overall
relevance score on a scale from 1 to 5 for each video frame, where higher scores indicate better alignment with the
question. Use the criteria below to guide your scoring:

Scoring Criteria:

• 5 (Highly Relevant): The video frame contains unique visual cues critical to accurately answering the question.
Without this frame, it would be challenging to reason or provide an accurate answer.

• 4 (Directly Relevant): The video frame is directly related to the question, but its visual cues can be partially
replaced or supplemented by other important frames.

• 3 (Moderately Relevant): The video frame is important for addressing the question, helping identify related
scenes, activities, actions, individuals, or other elements, or aiding in ruling out incorrect options.

• 2 (Somewhat Relevant): The video frame indirectly relates to the question, providing supporting context that
aids in reasoning or finding the correct answer.

• 1 (Minimally Relevant): The video frame has minimal relevance to the question. While it may involve the same
person, activity, or action as the question, it does not contribute meaningfully to answering it.

• 0 (Irrelevant): The video frame has no relevance to the question.

Additional Notes:

1. Some textual questions may require multi-hop reasoning, necessitating the combination of visual cues from
multiple frames to arrive at the correct answer.

2. Some questions may ask about the global information of the video, such as identifying its main focus or
summarizing the content. In these cases, assign higher scores to frames with unique and non-redundant visual
information to ensure the selected frames collectively provide a comprehensive summary of the video while
minimizing redundancy.

3. Most input video frames will have some relevance to the question, so prioritize scoring between 1 and 5. Use a
score of 0 only for entirely irrelevant frames.

4. If the question is: (1) Ambiguous, such that none of the input frames can provide an answer, or (2) Contains
logical issues (e.g., contradictions or nonsensical reasoning), then the question should be flagged as low quality,
and the output should be "the question has low quality".

Input Frames:
[04:40] <image_placeholder>
[04:45] <image_placeholder>
[04:50] <image_placeholder>
...

Question:
<question_placeholder>

Hint:
Frames at timestamps
<timestamp_placeholder>

Output Format:
Provide an explanation for the assigned scores to justify your reasoning. Return the results in the following JSON format:
{

"[04:40]": score 0-5,
"[04:45]": score 0-5,
...

}
``Explain why each score was assigned, detailing the relevance of the frames to the question...''

Table 15: The prompt template used for Stage 4 - Score Frame Relevance of GenS-Video-150K.
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