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Abstract

Data visualizations, such as bar charts and his-
tograms, are essential for analyzing and explor-
ing data, enabling the effective communica-
tion of insights. While existing methods have
been proposed to translate natural language de-
scriptions into visualization queries, they focus
solely on spoken languages, overlooking sign
languages, which comprise about 200 variants
used by 70 million Deaf and Hard-of-Hearing
(DHH) individuals. To fill this gap, this pa-
per proposes SIGN2VIS, a sign language in-
terface that enables the DHH community to
engage more fully with data analysis. We first
construct a paired dataset that includes sign
language pose videos and their corresponding
visualization queries. Using this dataset, we
evaluate a variety of models, including both
pipeline-based and end-to-end approaches. Ex-
tensive experiments, along with a user study
involving 15 participants, demonstrate the ef-
fectiveness of SIGN2VIS. Finally, we share
key insights from our evaluation and highlight
the need for more accessible and user-centered
tools to support the DHH community in inter-
active data analytics.1

1 Introduction

Data visualizations, such as bar charts, scatter plots,
and histograms, effectively represent, analyze, and
explore data while facilitating the discovery and
communication of insights (Marriott et al., 2021).
Despite the availability of numerous tools (e.g.,
Tableau’s Ask Data (Setlur et al., 2019) and Ama-
zon’s QuickSight (qui, 2024)) and programming
languages (e.g., Vega-Lite (Satyanarayan et al.,
2016) and ggplot2 (Villanueva and Chen, 2019)),

* Also with National Engineering Research Center for
Big Data Technology and System, Services Computing Tech-
nology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Wuhan, China.

1The dataset and source code are hosted at the project
homepage: https://sign2vis.github.io/.
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Figure 1: An overview of SIGN2VIS, with two types of
approaches: pipeline-based and end-to-end.

creating effective visualizations remains challeng-
ing, especially for users with little or no prior expe-
rience. This highlights a growing need for intuitive
visualization interfaces that lower the barrier for
broader audiences to engage with data.

To make data analysis more accessible, grow-
ing interest has emerged in automating visual-
ization generation from natural language—a task
known as TEXT2VIS (Luo et al., 2021b,a). Exist-
ing TEXT2VIS approaches typically rely on rule-
based methods (Gao et al., 2015; Setlur et al., 2016;
Hoque et al., 2017) or deep learning (Luo et al.,
2018, 2021b,a,c). However, these advancements
largely overlook the needs of the 70 million Deaf
and Hard-of-Hearing (DHH) individuals2 who use
over 200 distinct sign languages.

One might query: Why not encourage the DHH
individuals to submit their queries in textual for-
mat? This overlooks a critical issue: language
deprivation. Research (Johnson et al., 1989; Lid-
dell, 2003) has shown that many DHH individuals
primarily rely on sign language for daily commu-
nication and often exhibit limited proficiency in
written English. This is largely due to the lack of
auditory exposure to spoken English during cru-
cial language-acquisition years in childhood (Holt,
1993). For example, studies indicate that many
DHH high school graduates in the U.S. read at a
fourth-grade level, equivalent to that of a 10-year-
old (Holt, 1993). As a result, while text-based
systems may work for hearing users or those flu-

2Source: The World Federation of the Deaf (https://
wfdeaf.org).
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ent in written English, we argue that supporting
queries in native sign language input is essential
for ensuring equitable access to data visualization
for the DHH community.

The Problem: SIGN2VIS. To address this gap,
this paper introduces SIGN2VIS, a sign language
interface that enables DHH individuals to create
data visualizations. SIGN2VIS automatically gen-
erates visual queries from sign language specifi-
cations over tabular data, complementing existing
interaction modalities like mouse, keyboard, and
natural language (Huenerfauth and Hanson, 2009;
Frishberg et al., 1993; Shah et al., 2020).

Figure 1 provides an overview of the task of
SIGN2VIS. One possible approach is to first
translate sign language into spoken or written lan-
guage, and then applying existing methods for
TEXT2VIS (Luo et al., 2021b,a). However, this
indirect pipeline-based approach has several limi-
tations: it increases the risk of error propagation,
requires additional training datasets, and incurs
higher computational and synthesis costs. Alter-
natively, SIGN2VIS can directly translate sign lan-
guage descriptions into visualization queries in an
end-to-end manner, avoiding these drawbacks.

Our Work. The development of the SIGN2VIS

system presents two challenges: the absence of a la-
beled dataset linking sign language to visualization
queries, and the inherent complexity of interpret-
ing sign languages. To address these, we create a
paired dataset of sign language expressions (pose
videos) and corresponding visualization queries.
We also design SIGN2VISNET, a Transformer-
based (Vaswani et al., 2017) neural network that
encodes the semantics of sign language inputs, ta-
ble schemas, and chart templates. Our technical
evaluation shows that the system achieves 76.08%
execution accuracy and is 4.7× more efficient than
pipeline-based approaches.

We also conduct a user study with 15 DHH indi-
viduals to evaluate the effectiveness of SIGN2VIS

for data visualization tasks. Results show that 12
participants found sign language input to be more
natural and user-friendly than GUI- or text-based
tools. Post-study discussions revealed additional
challenges and design opportunities that could in-
form future research.

In summary, the key contributions of this pa-
per are: (1) We are the first to identify and for-
mulate the novel problem of generating visual-
ization queries directly from sign language, aim-

Your Address What

Raw Video

Pose Video

Written Notations

ASL Gloss

Figure 2: An example to illustrate different modalities
of American Sign Language (ASL), including the video
stream, pose stream, written notations, and glosses. The
English translation is “What is your address?”.

ing to inspire further research on tools for im-
proved human-computer interaction, especially for
individuals with hearing disabilities. (2) We in-
troduce a new paired dataset of sign language
and visualization queries to support model ex-
ploration and training within relevant research
communities. (3) We propose and benchmark
SIGN2VIS with a novel Transformer-based archi-
tecture (SIGN2VISNET), and compare its perfor-
mance against several pipeline-based baselines. (4)
A user study shows that 12 out of 15 participants
found SIGN2VIS to offer a more natural and user-
friendly interface for data visualization. Addi-
tionally, we provide a demonstration of our work,
which can be found in Appendix A.

2 Background

2.1 Sign Language
Sign languages differ from spoken languages as
they are represented in various modalities, includ-
ing videos, poses, written notations, and glosses
(Figure 2). We discuss each representation below.

Raw Video Stream. Sign language communica-
tion relies on visual-gestural modalities, making
video recording a natural way to capture content.
However, videos often include unnecessary infor-
mation for modeling, posing challenges in storage,
transmission, and analysis. A lower-dimensional
representation is thus preferred.

Pose Video Stream. Poses simplify video con-
tent into skeleton-like wireframes or meshes
representing joint positions, offering a lower-
dimensional alternative. These can be obtained
through motion capture or pose estimation algo-
rithms applied to video inputs. While motion cap-
ture provides high-quality results, pose estimation
from videos is more common and less intrusive.

Written Notations. Sign language can be ab-
stracted into discrete visual features using notation

17840



systems. Universal systems like SignWriting (Sut-
ton, 2022) and HamNoSys (Prillwitz and Zienert,
1990) exist alongside language-specific ones, such
as Stokoe and si5s for American Sign Language
and SWL for Swedish Sign Language. However, no
single system is universally adopted.

Glosses. Glosses transcribe signs into sequences
of natural-language words, preserving semantics
but omitting simultaneous cues like body posture,
eye gaze, or spatial relations.

Why Pose? In this paper, we formulate
SIGN2VIS as translating pose videos into visualiza-
tion queries. The task of sign language recognition,
which converts raw videos into pose videos, is de-
ferred to the computer vision community, where
techniques for this problem have reached a mature
stage (Cao et al., 2017).

2.2 Visualization Query Language
In data visualization, Vega-Lite (Satyanarayan
et al., 2016) is a widely used grammar that uses a
concise, declarative JSON syntax to create expres-
sive visualizations for data analysis and presenta-
tion. However, training sequence-to-sequence mod-
els to generate hierarchical outputs like JSON Vega-
Lite specifications is challenging, whereas generat-
ing sequential outputs is more feasible. To address
this, Luo et al. (2021b) introduced Vega-Zero, a
simplified grammar designed for TEXT2VIS. Vega-
Zero converts Vega-Lite’s hierarchical structure
into a sequence-based format, making it compati-
ble with sequence-to-sequence models. Formally,
a unit specification in Vega-Zero is represented
as a four-tuple: (mark, data, encoding,
transform). Each component has a distinct
role: “mark” specifies the chart type (e.g., bar,
line, point, or arc for a pie chart), “data” defines
the source table, “encoding” maps columns to
visual properties (e.g., x/y-axis, aggregate func-
tions, or color), and “transform” applies data
transformations like filter, bin, group, sort, or top-k.

2.3 Chart Templates
To reduce the scope of potential search results, Luo
et al. (2021c) provided a curated collection of chart
templates. Each chart template defines parameters
such as the chart type (e.g., Bar or Line), the x/y-
axis settings, and optional order parameters (e.g.,
Descending or Ascending). It is noteworthy that
the introduction of these options will not contribute
to the user’s operational complexity, as they can be

set as defaults. Figure 9 shows a chart template and
a Vega-Zero template as examples.

3 SIGN2VIS : Task Formulation

The SIGN2VIS is formulated as a task of sequence-
to-sequence learning, where the source sequence
is the sign-language pose stream and the target
sequence is the VQL query. Suppose that we have
a sign-language corpus of N instances, i.e., D =
{(V1, Q1, S1), (V2, Q2, S2), . . . , (VN , QN , SN )},
where each instance is a triplet of sign-language
pose video, VQL query, and table schema. We
denote each sign-language video V as a sequence
of frames {f1, f2, . . . , fL}, and denote the corre-
sponding VQL query Q as a sequence of tokens
{q1, q2, . . . , qU}. We denote the table schema S
as a collection of column names {c1, c2, . . . , cM}.
The SIGN2VIS problem can be formulated as
follows: given a pair of sign-language pose video
V , as well the table schema S, the goal is to learn
a model f that can map the input {V, S} into a
VQL query Q, i.e., Q = f(V, S).

4 SIGN2VIS: The Dataset

To the best of our knowledge, the study of trans-
lation between sign language and visualization
queries remains unexplored, and currently, no
paired dataset of signs and visualization queries
is available. Therefore, it is imperative for us to
construct a SIGN2VIS dataset to facilitate further
research in this domain.

4.1 From TEXT2VIS to SIGN2VIS

Creating a paired dataset of signs and visualiza-
tion queries is a challenging task. One potential
solution involves inviting experts in both sign lan-
guage and data visualization to annotate the dataset
from the ground up. Nevertheless, this approach is
labor-intensive and comes with substantial human
resource expenses. Instead, we translate spoken-
language texts into visualization queries. A com-
monly used dataset for TEXT2VIS is nvBench (Luo
et al., 2021a), containing 25,750 pairs of spoken-
language texts and visualization queries in Vega-
Zero. Inspired by TEXT2POSE techniques from
computer vision, we leverage the public nvBench
dataset to create a new SIGN2VIS dataset by us-
ing a pre-trained model to convert texts into pose
videos (Moryossef, 2024).

Text Refinement. Before translating spoken-
language text into pose videos, we analyze the text
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Figure 3: Overview of the distribution of SIGN2VIS.

and identify two key issues: (1) Rare words: Un-
common terms like “histogram” are often spelled
out in sign language, unlike simpler alternatives
such as “bar chart”, impacting translation quality.
(2) Verbosity: Original sentences in nvBench are
typically verbose, making them difficult to translate
into sign language. To address these challenges,
we use GPT-3.5 (text-davinci-003 (Brown
et al., 2020)) to refine the spoken-language text
with the help of the corresponding Vega-Zero tem-
plate. Figure 10 illustrates this process: the green
box demonstrates in-context learning with GPT-
3.5, where the input query combines the spoken-
language text and the Vega-Zero template. The
output is a refined version of the text, which is
then transformed into sign-language pose videos as
described earlier.

4.2 Data Statistics

Finally, we obtain a dataset consisting of 4,007
instances comprising paired pose videos and visu-
alization queries. In line with the nvBench configu-
ration, our dataset is divided into three sets: 2,804
instances for training, 601 for validation, and the
remaining 602 for testing. We also conduct a sta-
tistical analysis of the created SIGN2VIS dataset.
Figure 3 presents an overview of the distribution
of the SIGN2VIS dataset, including the distribu-
tion of (a) pose video frames, and (b) visualization
queries, and (c) table columns. In Figure 3a, it is ev-
ident that a significant portion of pose video frames
falls within the 500 to 900 range, emphasizing the
complexity of capturing long-range dependencies
among them. Turning to Figure 3b, we can find
that the length of visualization queries predomi-
nantly clusters around 10. Finally, as depicted in
Figure 3c, the majority of table columns fall within
the 2 to 6 range.

4.3 Data Quality Assessment

We conduct a human study via an online question-
naire to evaluate the dataset we have constructed.
We invite five master’s students, each with five
years of software development experience, to pro-
vide expert evaluations. To ensure their proficiency,
all students committe to learning American Sign
Language through online resources, such as video
tutorials, for at least 10 hours. For the evalua-
tion, we randomly select 100 sign-language pose
videos paired with their corresponding visualiza-
tion queries. The quality of the videos is assessed
on two key metrics: consistency, which measures
alignment with the queries, and fluency, which eval-
uates the overall quality of the synthesized poses.
A five-point scale is used, where 5 indicates excel-
lence and 1 indicates poor quality. The average
score is 4.3, demonstrating the high quality of our
carefully curated dataset.

5 SIGN2VISNET: A Reference Approach

Figure 4 gives an overview of our proposed
SIGN2VISNET, which is mainly based on the
Transformer network (Vaswani et al., 2017).

5.1 Input Representation

We use frames from a sign-language pose video
and the table schema as input data, along with a
partially populated Vega-Zero template guided by
chart templates (Figure 9c). Inspired by the Vision
Transformer (Dosovitskiy et al., 2020), which re-
shapes images into sequences of flattened patches,
we treat the pose video as a sequence of frames.
Each frame fi is processed through pre-trained
Convolutional Neural Networks (CNNs) (Camgoz
et al., 2020b), and a Transformer encoder is then ap-
plied to generate the embedding Efi . To represent
the table schema, we convert it into a sequential list
of column names, with each token converted into
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Figure 4: An illustration of the workflow of SIGN2VISNET.

a vector embedding via a word embedding layer,
where the i-th column embedding is denoted as
Eci . Similarly, we represent the Vega-Zero tem-
plate with the embedding of the i-th token as Eti .

Special tokens <N> (or </N>) signify the start
(or end) of video frame embeddings, while <C> (or
</C>) and <T> (or </T>) mark the start (or end)
of column and template embeddings. Finally, these
sequences are concatenated as follows:

<N>,Ef1 , . . . ,EfL ,</N>,<C>,Ec1 , . . . ,EcM </C>,

<T>,Et1 , . . . ,EtN </T>.
(1)

After obtaining the initial embeddings for video
frames and column tokens, we enhance the rep-
resentation with a modality embedding Em, indi-
cating the source (e.g., video frames or column
tokens), and a positional embedding Ep, encoding
their spatial arrangement in the sequence.

Using the input embedding sequence
[E0

1, . . . ,E
0
n], we process it through a Trans-

former encoder network (Vaswani et al., 2017),
producing the following output:

Oe = TransformerEncoder(E0
1, . . . ,E

0
n) . (2)

5.2 Visualization Query Generation
Following ncNet (Luo et al., 2021c), this paper
employs a constrained decoder network that lever-
ages visualization knowledge and chat templates
to ensure the accuracy of the generated Vega-Zero
specification. Given the final representation of the
fused input pose video, the table columns, and table
templates, denoted as Oe, we formulate the process
of the decoder network as follows:

Od = TransformerDecoder(ctx,Oe) , (3)

where ctx denotes the embedding of previously
generated tokens, and Od denotes the output of
Transformer decoder (Vaswani et al., 2017).

Based on the decoder output, we pass it through
a linear layer followed by softmax to estimate word
probabilities across the vocabulary (Devlin et al.,
2019), as follows:

p(q|Od) = softmax(WOd + b) , (4)

where W and b are the learnable parameters.

5.3 Model Learning and Inference
To train the SIGN2VISNET, we adopt the cross-
entropy loss function, which aims to maximize the
log-likelihood of predicting the next word. We
use the Adam optimizer (Kingma and Ba, 2015) to
iteratively update the model parameters. We inte-
grate an enhanced beam search (Spero and Braatz,
2019) to leverage prior knowledge of visualization
throughout the decoding process at each iteration.

5.4 Language-Aware Rending
The generated Vega-Zero queries can be seamlessly
translated into executable visualization program-
ming languages, such as Vega-Lite. The adaptation
of the code from Vega-Zero to Vega-Lite is based
on the pioneering work of ncNet (Luo et al., 2021c),
and we have made necessary modifications to align
it with the current Vega-Lite version.

6 Experimental Evaluation

6.1 Baselines and Implementations
In our experiments, we carefully design sev-
eral baselines for comparison, including the
pipeline-based approaches and several variants of
SIGN2VISNET.
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w/o Template w/ Template
BLEU-4 ROUGE-L EMR Ex. Acc. BLEU-4 ROUGE-L EMR Ex. Acc.

Pipeline-based
SIGN2TEXT+Transformer 92.20 96.26 69.78 72.92 92.32 96.36 70.10 73.25
SIGN2TEXT+ncNet 93.28 96.67 71.93 75.08 94.06 97.15 77.08 78.24
SIGN2TEXT+GPT-3 92.01 96.45 66.61 69.44 92.60 96.78 70.60 71.93
End-to-End
GPT-4o 20.73 52.44 0.00 0.00 39.14 66.15 0.00 0.00
Transformer 90.41 96.27 71.43 73.75 90.17 96.11 70.43 73.09
SIGNVISNET (Ours) 90.99 96.53 73.75 76.08 89.90 96.64 76.08 77.41

Table 1: The performance of different models on the testing dataset, for the task of SIGN2VIS. (Best scores are in
bold font.)

▷ Pipeline-Based Approaches. We inves-
tigate three pipeline-based approaches.
SIGN2TEXT+Transformer uses a Transformer
encoder to embed sign-language videos, followed
by a Transformer decoder to generate spoken-
language text. This text is then translated into visu-
alization queries using another Transformer model,
serving as a widely adopted baseline in TEXT2VIS.
Similarly, SIGN2TEXT+ncNet replaces the
baseline with the advanced ncNet model (Luo
et al., 2021c). Finally, SIGN2TEXT+GPT-3
employs text-davinci-003 (Brown et al.,
2020) as the TEXT2VIS model, utilizing in-context
learning (Dong et al., 2022) to leverage the strong
generative capabilities of large language models.
▷ End-to-End Approaches. One of the end-
to-end baselines is Transformer, a variant
of SIGN2VISNET, which encodes input sign-
language pose videos using a Transformer encoder
and decodes them into visualization queries with
a Transformer decoder. Inspired by the success
of multimodal LLMs like GPT-4o (gpt, 2024), we
evaluate GPT-4o’s performance in SIGN2VIS by
providing tabular data, sign language video, and a
prompt via an API call.

The implemtations details of the baselins and
our approach are referred to the Appendix B.1.

6.2 Evaluation Metrics

We follow the evaluation metrics that have
been widely adopted in the evaluation of
TEXT2SQL (Yu et al., 2018). We evaluate the
quality of generated VQL in textual appearance
by using the BLEU (Papineni et al., 2002) and
ROUGE-L (Lin, 2004) scores, which have been
widely adopted in evaluating text generation. To
encourage generating VQL queries with novel syn-
tax structure, the Execution Accuracy measures the
quality of generated VQL queries based on the out-
put of executing VQL queries. More details about

Exe. Acc. (%) Latency (s) Speedup
SIGN2TEXT+ncNet 78.24 4.154 1×
SIGN2VISNET 77.41 0.877 4.7×

Table 2: The comparison of average inference latency.

the evaluation are referred to the Appendix B.2.

6.3 Performance Evaluation

Overall Performance. We present the perfor-
mance of all investigated models across various
evaluation metrics with and without chart templates.
As shown in Table 1, the proposed SIGN2VISNET

achieves results comparable to SIGN2TEXT+ncNet
across all metrics and outperforms it in the key met-
rics of Exact Match Rate (73.75%) and Execution
Accuracy (76.08%) without chart templates. Over-
all, visualization query generation with chart tem-
plates consistently outperforms results without tem-
plates, demonstrating their effectiveness. However,
GPT-3, even with the Vega-Zero template, performs
poorly due to frequent syntax errors, highlighting
the need for improved prompt design to fully lever-
age large language models. Both SIGN2VISNET

and SIGN2TEXT+ncNet achieve approximately
78% Execution Accuracy when paired with chart
templates. Interestingly, GPT-o underperforms in
SIGN2VIS , suggesting the need for further fine-
tuning to adapt to this new domain. These findings
underscore the notable precision and quality of
visualization queries generated by our proposed
approach.

Efficiency Speedup. To evaluate the efficiency
of the end-to-end SIGN2VISNET, we mea-
sure the average inference latency for gener-
ating visualization queries. As shown in Ta-
ble 2, SIGN2VISNET significantly outperforms the
pipeline-based SIGN2TEXT+ncNet, achieving a
4.7× speedup in real-world efficiency. Importantly,
this acceleration is achieved without sacrificing per-
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Figure 5: Comparison results when varying the com-
plexity of visualization queries.

formance, maintaining comparable effectiveness to
SIGN2TEXT+ncNet.

Performance on Various Complexity of Visu-
alization Queries. We analyze model perfor-
mance across varying visualization query complex-
ities, predefined in the SIGN2VIS dataset. This
dataset includes four complexity levels: Easy,
Medium, Hard, and Extra Hard, as marked
in nvBench. Figure 5 compares SIGN2VISNET

and SIGN2TEXT+ncNet with chart templates un-
der these complexities. The results show consis-
tently high performance (BLEU-4 and Execution
Accuracy) across all complexity levels. Notably,
SIGN2TEXT+ncNet outperforms SIGN2VISNET

at Medium and Hard levels, likely due to these lev-
els being more sensitive to error propagation in the
pipeline-based approach, where sign language is
first translated into intermediate text.

Performance on Each Chart Type. To evalu-
ate the efficacy of SIGN2VISNET, we further an-
alyze its performance in predicting various visu-
alization types, focusing on individual chart cate-
gories. Figure 6 details the Execution Accuracy of
SIGN2VISNET on the testing dataset for four chart
types: Bar, Pie, Line, and Scatter. Both
SIGN2VISNET and SIGN2TEXT+ncNet show com-
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Figure 6: Execution Accuracy (%) of SIGN2VISNET
on predicting each chart type of visualizations.

parable performance across the chart types, with
excellent predictive accuracy for Bar, Pie, and
Line charts, suggesting these are easier to predict.
However, SIGN2VISNET struggles with Scatter
charts due to the difficulty of predicting column
names containing multiple words and underscores
from pose videos, compounded by the limited rep-
resentation of Scatter charts in the dataset. This
issue significantly impacts the Execution Accuracy
of SIGN2VISNET. To further illustrate this chal-
lenge, we present a bad case in Sec. 6.4.

6.4 Case Study and Error Analysis

To better evaluate the performance of our proposed
end-to-end SIGN2VISNET and compare it with
pipeline-based approaches on SIGN2VIS, we con-
duct a comprehensive case study and error analysis
using four real-world instances from our dataset, as
shown in Figure 7. For each case, given the input
pose video of sign language, we present the gener-
ated Vega-Zero outputs from SIGN2VISNET and
SIGN2TEXT+ncNet, alongside the ground-truth
Vega-Zero. Case A demonstrates a successful sce-
nario where both SIGN2VISNET and the pipeline-
based SIGN2TEXT+ncNet correctly predict the vi-
sualization query, highlighting the effectiveness of
both approaches.

Error Case Analysis. We also analyze two er-
ror cases to provide insights for improvement.
In Case B and Case C, one approach makes
the correct prediction while the other does not.
In Case B, SIGN2TEXT+ncNet incorrectly pre-
dicts x-axis and y-axis as city, due to er-
ror propagation in the pipeline approach, where
the word classroom is mistranslated as city
during sign language translation. Conversely, in
Case C, SIGN2VISNET mispredicts x-axis as
meter_300, while SIGN2TEXT+ncNet is correct.
This advantage arises from SIGN2TEXT+ncNet
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preprocessing input during the TEXT2VIS process
to focus on relevant table columns, improving accu-
racy when key information is translated correctly.

6.5 User Study

We also conduct a user study with 15 DHH par-
ticipants to assess the effectiveness of SIGN2VIS

in data visualization. Further details of the study
can be found in Appendix C. The results indicate
that 12 participants preferred sign language as a
more natural and user-friendly alternative to GUI-
and text-based tools. Additionally, the study high-
lighted challenges such as lack of transparency that
could inform future research directions.

7 Related Work

Automated Data Visualization. Existing ap-
proaches to automated data visualization can be
broadly categorized into two main groups: rule-
based and deep-learning-based methods. The rule-
based methods, exemplified by DataTone (Gao
et al., 2015), Eviza (Setlur et al., 2016), and
Evizeon (Hoque et al., 2017), rely on predefined
rules and patterns to parse text and extract rele-
vant information, which is then converted into vi-
sualizations using pre-defined mapping rules. In
contrast, deep learning-based approaches, such as
DeepEye (Luo et al., 2018), SEQ2VIS (Luo et al.,
2021b), ncNet (Luo et al., 2021c), RGVisNet (Song
et al., 2022) and HAIChart (Xie et al., 2024) aim to
develop neural networks, such as Recurrent Neural
Networks (RNNs) (Chen and Zhuge, 2018) and
Transformers (Vaswani et al., 2017), to translate
natural language input into data visualizations in an
end-to-end manner. Recently, various work (Mad-
digan and Susnjak, 2023; Dibia, 2023; Cheng et al.,
2023; Wu et al., 2024; Tian et al., 2024; Ouyang
et al., 2025) resorts to prompting LLMs for auto-
mated data visualizations.

Sign Language Processing. Sign Language Pro-
cessing (SLP) is an emerging field of artificial in-
telligence for the automatic processing of sign lan-
guages, requiring both NLP and computer vision
techniques. Analogous to image/audio detection,
identification and segmentation that are fundamen-
tal problems in computer vision, it is also impor-
tant to study detection (Borg and Camilleri, 2019;
Moryossef et al., 2020), identification (Gebre et al.,
2013; Monteiro et al., 2016; McKee and Kennedy,
2000), and segmentation (Santemiz et al., 2009;
Bull et al., 2020) for sign languages. Another in-

teresting line of work is on the sign language trans-
lation from pose estimations (Ko et al., 2019; Lu-
ong et al., 2015), glosses (Yin and Read, 2020a,b),
or sign articulators from videos (Ko et al., 2019;
Camgoz et al., 2020a), and sign language produc-
tion (Saunders et al., 2020a,b; Zelinka and Kanis,
2020). Our work focuses on translating sign lan-
guage from visualization queries, thereby serving
as a pioneering interface for data visualization.

Keyboardless Programming. Keyboardless pro-
gramming, which aims to provide alternative inter-
faces for programming, has always been a promis-
ing research direction for human-computer inter-
action. Typically, there are two means to achieve
this goal, i.e., gestured-guided programming and
voice-guided programming. Programming by ges-
tures has been widely used in controlling various
IoT devices, including mobile phones (Li, 2010),
robots (Waldherr et al., 2000), VR devices (Yang
et al., 2019), and smart home systems (Kühnel
et al., 2011). For example, Takayama et al. (2021)
developed a mid-air hand gesture-based interface
to manipulate spreadsheet software, such as Mi-
crosoft Excel and Google Sheets. Currently many
tools, such as VoiceGrip (Desilets, 2001), Voice-
Code (Désilets et al., 2006), HyperCode (Maloku
and Pllana, 2016), VocalIDE (Rosenblatt et al.,
2018), and Talon Voice (tal, 2023), have been de-
veloped for voiced-guided programming. In these
works, the input voice is translated into commands
to interact with the IDEs.

Software Accessibility. Our work also relates
to software accessibility, aiming to improve ac-
cess for disadvantaged communities. For exam-
ple, screen readers like TalkBack on Android (Tal,
2019) and VoiceOver on iOS (Voi, 2019) assist
visually impaired users in interacting with mo-
bile devices. Chen et al. (2020) proposed a deep
learning encoder-decoder network to predict labels
for image-based buttons lacking descriptions. Re-
cently, sign language has emerged as a new inter-
face enabling DHH individuals to access informa-
tion (Mahajan et al., 2022b,a; Tang et al., 2023;
Mahajan, 2024; Chen et al., 2024). Cao et al.
(2024) analyzed how DHH creators use sign lan-
guage and other modalities on TikTok, highlighting
their practices and challenges. Potluri et al. (2022)
introduced CodeWalk, an extension to Microsoft’s
LiveShare for supporting collaborative software
engineering activities like code reviews and refac-
toring. Zhou et al. (2023) developed SignQuery,
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a sign-language interface using wearable sensors
to help DHH individuals perform search tasks. To
our knowledge, our work is the first to design a
new interface specifically for DHH individuals to
perform data visualization using sign languages.

8 Discussion

In this paper, we formulate and investigate a new
but important problem of SIGN2VIS. It opens a
new direction to synthesize visualization queries
from sign language, as a complementary interface
for interacting with the database. Our work aims
to design a novel human-centered interface for a
large number of DHH individuals to perform data
visualization. In addition to the impact on the
NLP community, our work also has impacts on
other related communities, including the communi-
ties of human-computer interaction, visualization,
database, computer vision, and programming lan-
guages. To the communities of human-computer
interaction, visualization and database, our work
can inspire researchers from these communities to
design better human-centered interfaces to cater to
more people who are physically disabled. To the
communities of computer vision, and programming
languages, the created dataset and built benchmark
can facilitate researchers from these communities
to design better encoder networks to understand

sign language and design better generators to syn-
thesize visualization queries with higher quality.

9 Conclusion

In this paper, we have identified a new research
problem of SIGN2VIS to aid DHH individuals in
data visualization, opening a path for synthesiz-
ing VQL queries from sign language as a comple-
mentary interface. We present a parallel dataset
of sign language pose videos and VQL queries to
support model development, along with a bench-
mark system featuring an end-to-end model and
pipeline-based baselines for SIGN2VIS. Our work
lays the groundwork for improving the accessi-
bility of interactive data analytics for individuals
with hearing impairments. We believe that our
work will have a broader impact on communities
of database, human-computer interaction, and pro-
gramming languages. We also expect that our ex-
ploratory study on SIGN2VIS would inspire further
research on this topic.
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Limitations

One limitation of this work lies in our created
dataset. In this paper, we only consider one stan-
dard of sign language, i.e., American Sign Lan-
guage (ASL). However, there are many other sign
languages widely used in different communities
or countries, such as Chinese sign language and
Swedish sign language. We argue that our pro-
posed approach can be easily extended to other
sign languages as long as the paired dataset of sign
language and VQL queries are created. We leave
the extension of SIGN2VIS dataset to other sign
languages, and the further improvement of data
quality as our future work.

Another limitation lies in the pose video repre-
sentation which has been commonly used to repre-
sent the sign language in this paper and prior work.
We believe that the raw video representations can
be transformed into an effective pose video repre-
sentation, which is considered an orthogonal but
interesting research direction. We invite more re-
search from the communities of computer vision to
advance this work.
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A The SIGN2VIS System

In this section, we first describe the user interface
design and implementation, followed by a usage
scenario. SIGN2VIS is a cross-platform web appli-
cation built with React for the front-end interface
and Python for the back-end server.

A.1 User Interface Design
Figure 8 shows the Web UI of SIGN2VIS, demon-
strating the scatter chart generation process. Users
can start the SIGN2VIS service by clicking the
“Run” button with default chart settings. Excel ta-
bles and sign-language videos are then uploaded
to the cloud server. After the data upload, the
model processes the selected chart properties and
displays the generated visual charts on the right
side of the page. The demo is available at https:
//sign2vis.github.io/.

Tabular Data Upload A . We have created a
UI widget that lets users upload and preview Excel
spreadsheets directly on the frontend. When a user
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Figure 8: The Web UI of SIGN2VIS.

uploads a spreadsheet with a sign language video
and clicks “Run”, the frontend converts the Excel
data into JSON format.

Chart Template Setting B . To generate visual
charts, we offer three adjustable attributes via drop-
down menus: chart type, axis, and content ordering.
Chart types include Auto, Bar, Line, Pie, and Scat-
ter. The axis can be set to Auto, By Dimension
(x-axis), or By Measure (y-axis), allowing users
to control data plotting. Content ordering can be
set to Auto, Descending, or Ascending, providing
flexibility in organizing data.

Sign-Language Input Capturing C . We use the
navigator.mediaDevices.getUserMedia
API in HTML5 to capture real-time video from
the webcam. The video stream is assigned to
a <video> element and recorded with the
MediaRecorder API, saving it as an MP4 Blob.
After recording, the video file is stored locally as
input for the SIGN2VIS system.

Visual Chart Generation D . We en-
code chart properties using a JSON specifica-
tion. For example, to change the x-axis title,
simply modify spec.encoding.x.title =
"axis title" without altering other chart as-
pects. We use Vega-Lite specifications (Satya-
narayan et al., 2016) due to their concise, declara-
tive format, which maintains expressiveness. Ad-
ditionally, Vega-Lite’s robust rendering engine is
compatible with all major web frameworks.

A.2 User Interface Implementation
We have developed a user-friendly Graphical User
Interface (GUI) that enables easy access and explo-
ration of the results obtained from our SIGN2VIS

model through a standard Web browser. The GUI
is hosted on a Nginx server and employs flexible
APIs provided by the Flask engine.

A.3 Usage Scenario
Automatically synthesizing visualization queries
from sign language offers an intuitive interface for
DHH individuals, enabling them to analyze and
visualize data. This approach helps users uncover
key data characteristics—such as size, time, and
quantity—and identify patterns. In practice, this
technology could be integrated into Tableau3, a
popular platform for interactive data visualization.
Currently, Tableau’s Ask Data feature allows users
to input queries via mouse clicks or natural lan-
guage, powered by NLP techniques. Extending
this interface to support sign language would en-
able DHH users to interact with data in a language
they are comfortable with, making SIGN2VIS a
promising application scenario.

B More Experimental Details

B.1 Implementation Details
We implement SIGN2VISNET and all the baseline
approaches using the PyTorch library (pyt, 2019),
and run all experiments on a Linux server, with
128GB memory, and a single 32GB Tesla V100

3https://www.tableau.com
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encoding   x [X] y aggregate [AGG] [Y] color [C]
transform  filter [F] group x sort x desc bin [B] topk [K]

(b) A partially filled vega-zero template

Type:  Line Axis: X-axis   Order: Descending

(a) Three chart templates for users to select from

Bar
Line
...

X-axis
Y-axis

Descending
Ascending

Figure 9: The chart templates and Vega-Zero tem-
plate (Luo et al., 2021c).

Sentence:  For those employees whose first name does not containing 
the letter m, display their total salary by binning the hire date 
into month interval for visualizing a bar chart, and display in 
descending by the y-axis.
Template: Bar chart showing [N] in descending order of [C] and 
binning by [B].
Result: Bar chart showing salaries for employees whose first name 
does not contain "m" by hire date in descending order of y-axis and 
binning by month.
Sentence:  Show me distance by name in a histogram, and order names 
from low to high order please.
Template: Bar chart showing [N] in ascending order of [C].
Result: ?

:   Bar chart showing distances by name in ascending order of name.

[T] chart showing [N] in [S] order of [C] (with the top [K]) 
and binning by [B], grouped by [G].

(a) Template for text refinement 

(b) A real example of Text Refinement using GPT
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Figure 10: Natural-language queries refinement via
GPT-3.5.

GPU. To encode each frame of pose videos, a 6-
layer CNN is employed with one input channel and
128 output channels. For embedding the tokens of
each table column and chart template, the word em-
bedding layer is configured with a size of 256. The
Transformer encoder network comprises three lay-
ers, with each layer constructed using 256 hidden
units and 8 heads. Throughout the training process,
a batch size of 4 is utilized. The learning rate is
set to 0.0005. All the models have been validated
in the validation dataset, and evaluated in the test
dataset to avoid overfitting.

B.2 Evaluation Metrics

▷ BLEU (Papineni et al., 2002). It is a classical
evaluation metric that was first designed to evalu-
ate the quality of translated sentences in machine
translation. It measures the average n-gram preci-
sion on a set of reference sentences, with a penalty
for short sentences. In this paper, we report the
BLEU-4.
▷ ROUGE (Lin, 2004). It is an evaluation metric
based on the n-gram precision and recall. Formally,
the ROUGE-N is defined as ROUGE-N = 2PnRn

Rn+Pn
,

where Pn and Rn represent the n-gram preci-
sion and recall, respectively. Like ROUGE-N,

ROUGE-L is also predicated on the concept of the
longest common subsequence between the gener-
ated sentence and reference sentences, as opposed
to relying on n-gram statistics. In this paper, we
report the ROUGE-L.
▷ Exact Match Rate (Luo et al., 2021c). It quan-
tifies the percentage of generated visualization
queries that precisely align with their correspond-
ing ground truth, serving as a metric to gauge the
correctness of the generated results.
▷ Execution Accuracy (Zhong et al., 2017). To en-
courage generating visualization queries with novel
syntax structure, we employ Execution Accuracy, a
metric that measures the quality of generated visu-
alization queries based on the output of executing
these queries. Even if the predicted string does not
exactly match the ground truth, it is possible to get
the correct visualization result.

C User Study

We report on a user study with 15 Deaf and
Hard-of-Hearing (DHH) participants to understand
how DHH individuals perceive the usefulness of
SIGN2VIS.

C.1 Participants

We recruited 15 participants from a local DHH
community using snowball sampling, starting with
3 individuals recruited via a third-party social me-
dia account linked to a regional disability organi-
zation. Eligible participants had experience with
traditional GUI-based tools like Excel and were
fluent in the local DHH sign language. Table 3
shows their demographic background, including
age, gender, education level, and occupation.

C.2 Study Protocol

The study is conducted via an online platform
we developed. Participants first answer attention
check questions, then watch two videos demon-
strating data visualization tasks: one using the
SIGN2VIS system and the other using a baseline
system, TEXT2VIS. The video order is counterbal-
anced to reduce bias. Afterward, participants com-
plete a post-task survey to provide feedback. We
chose recorded videos over direct tool interaction
for practical reasons. Since the local DHH commu-
nity uses a different sign language from standard
ASL, and no dataset exists for automatic transla-
tion, we consulted a sign language expert to trans-
late ASL recordings into the local sign language,
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ID Gender Age Education Occupation
P1 M 30 3 Government Employee
P2 M 38 4 Freelance Worker
P3 F 43 4 Freelance Worker
P4 M 47 3 Freelance Worker
P5 F 47 2 Transit Staff
P6 M 47 3 Teacher
P7 M 49 2 Community Worker
P8 F 49 1 Unemployed
P9 M 51 3 Community Worker
P10 M 52 1 Unemployed
P11 M 53 1 Chef
P12 F 54 1 Retired
P13 F 54 3 Retired
P14 F 56 3 Retired
P15 M 63 1 Retired

Table 3: Summary of participants. The table shows key
demographic information for 15 participants, including
gender, age, education level, and occupation. Education
levels are categorized as: 1 = High School/Technical, 2
= Associate Degree, 3 = Bachelor’s Degree, 4 = Gradu-
ate Degree.

simulating SIGN2VIS usage. Each session lasts 15
minutes, with participants compensated 80 CNY
(about 14 dollars). The study was approved by the
university’s Institutional Review Board (IRB).

C.3 Data Analysis
In the post-task questionnaire, we gathered re-
sponses to Likert-scale questions. Additionally, we
collected qualitative feedback through open-ended
questions. These covered participants’ perceptions
of how they compare the TEXT2VIS system with
the SIGN2VIS system, as well as their thoughts on
GUI interfaces such as Excel. Two members of the
research team collaboratively developed a coding
list and conducted the thematic analysis to identify
emerging themes.

C.4 Results
We describe the results from the semi-structured
interview and post-task questionnaire, focusing on
participants’ perceptions of the traditional GUI-
based visualization tools like Excel, text-based vi-
sualization tool, and the sign language visualization
tool.

C.4.1 Perceptions of Participants
We analyze participants’ perceptions when using
sign language-based, text-based, and GUI-based
visualization approaches.
Perceptions of the Traditional GUI-based Visu-
alization Tool. When participants were asked
to imagine using traditional GUI-based visualiza-
tion tools like Excel, 12 rated it as difficult or very

difficult, with only 2 finding it very easy. Most par-
ticipants reported challenges with Excel for data vi-
sualization tasks. Nine participants struggled with
selecting the right formulas, while 7 found Excel’s
interface difficult to navigate due to its steep learn-
ing curve. Six participants were unsure about the
drag-and-drop functionality for data manipulation
and visualization, and another 6 described the pro-
cess as time-consuming and the UI as unfriendly.

These findings suggest that Excel, despite its
capabilities, may not be well-suited for the DHH
community without significant improvements in
usability and accessibility.

Perceptions of the Text-Based Visualization Tool.
When evaluating the text-based visualization tool,
participants showed mixed experiences. While it
was somewhat more favorable than traditional GUI-
based tools, challenges remain. Two participants
found it "very easy" to use, but most did not, high-
lighting usability issues. Specifically, 10 partici-
pants struggled with the syntax and structure of text
queries, making it difficult to express their desired
visualizations. Additionally, 10 participants found
typing queries tedious and error-prone, and 8 found
the process time-consuming. Although the inter-
face was slightly better received than Excel, 4 par-
ticipants still found it lacking in user-friendliness.

These findings emphasize the need for improve-
ments in text-based visualization tools, particularly
to make them more intuitive and accessible for
DHH individuals. While such tools have potential,
they currently fall short in usability for this user
group.

Perceptions of the Sign Language-Based Visual-
ization Tool. We collected feedback from DHH
participants on the use of the SIGN2VIS tool com-
pared to traditional GUI-based tools and the exist-
ing TEXT2VIS tool. Only 4 participants struggled
with gestural communication, compared to more
with typing. A strong majority (12 participants)
found sign language a more natural and efficient
way to obtain visualizations and aid data analysis.
Additionally, 11 participants reported less difficulty
with gesture-based input than typing, showing a
clear preference for sign language as a more acces-
sible interaction method.

C.4.2 Why Sign Language-Based Approach?

We further explore the reasons why participants
prefer a sign language-based approach for data vi-
sualization.
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Natural and Intuitive. The reasons participants
favored sign language varied, with some highlight-
ing its natural and intuitive nature. Participant P2
emphasized the natural and intuitive nature of sign
language, noting its ability to render visual data
more immediately comprehensible. The immedi-
acy of sign language in conveying complex infor-
mation was also highlighted by P8, who appre-
ciated the convenience and speed of using sign
language for automatic data visualization. P10
expressed a preference for sign language due to
limitations in cultural understanding, suggesting
that for some DHH individuals, sign language may
serve as a more accessible and familiar medium for
communication and data interpretation.

Accessibility and Flexibility. Sign language was
preferred by participants such as P10 and P11 for its
accessibility, particularly in daily use and as an al-
ternative to typing. P11’s reliance on sign language
for daily communication underscored the practical
challenges faced by those who are not adept at typ-
ing, particularly when using mobile devices. This
participant’s preference for sign language reflects
a broader need for tools that accommodate diverse
communication styles and abilities. Similarly, P14
found sign language to be more convenient, indicat-
ing a general trend among participants who value
the ease of use that sign language offers in data
visualization tasks.

Hybrid Approach. Interestingly, P7’s suggestion
to use a writing board for typing highlights a poten-
tial hybrid approach, where sign language could be
complemented by written input when necessary.

C.4.3 Challenges of Using Sign Languages
We also discuss the challenges participants might
encountered when using the sign language-based
approach for data visualization.

AI Precision. Participants expressed mixed feel-
ings about the accuracy of AI-generated visualiza-
tions based on sign language input. While some
believed that AI could easily generate correct vi-
sualizations, the majority were either neutral or
skeptical, suggesting a need for improvement in
AI’s ability to interpret sign language accurately.
This skepticism was particularly evident among
participants who had significant experience with
traditional tools like Excel, who preferred manual
methods due to concerns over AI precision.

Diverse Sign Languages. We also asked partici-
pants to picture what could cause errors if sign lan-

guage were used to generate visualizations. Com-
pared to text-based visualization generation, where
input errors are significantly reduced by 40%, users
now face the challenge of leveraging their under-
standing of the data to explore and articulate more
sophisticated visualizations. The cognitive process
of transforming data comprehension into a visual
representation demands that users not only grasp
the intricacies of the dataset but also effectively
conceptualize and express their visualization goals.
This challenge is raised by the diversity of sign
language, as noted by Participant P9, who pointed
out that sign language varies regionally and cultur-
ally and is influenced by age-related factors. This
diversity necessitates a tool that is adaptable and
inclusive, capable of recognizing and accommo-
dating the wide array of sign language expressions
used by DHH individuals across different regions
and communities.

A representative from the Chinese Federation
for Disabled Persons also highlighted the challenge
of promoting standard sign language across China,
noting that many DHH individuals learn sign lan-
guage informally. This emphasizes the importance
of making the tool accessible and adaptable to di-
verse sign language users, aligning with the broader
goals of inclusive education. In line with these chal-
lenges, the nation is actively advancing inclusive
education by integrating sign language education
with compulsory education, thereby enabling indi-
viduals with hearing impairments to receive edu-
cation in a manner that mirrors the experiences of
their hearing peers. This initiative is designed to
promote social equity by providing equitable edu-
cational opportunities. Our tool aligns with these
efforts by supporting individuals with hearing im-
pairments in seamlessly transitioning between sign
language learning and broader cultural education,
thereby enhancing their ability to engage with and
benefit from these educational processes.

C.4.4 Suggestions
The feedback from participants has been instrumen-
tal in identifying areas for improvement within the
SIGN2VIS tool. A prominent suggestion was the
integration of sign language input with additional
complementary features, such as explanatory cap-
tions and subtitles, catering to those who might
benefit from textual support alongside visual cues.
Moreover, maintaining typed input as a secondary
mode of interaction was highlighted as crucial, for
those who are in transition from learning sign lan-
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guage to incorporating it into their daily lives. In
addition, participants emphasized the need for the
tool to quickly and correctly interpret sign language
gestures, which is essential for reducing communi-
cation barriers and enhancing the efficiency of data
visualization tasks.

C.5 Limitations
The user study was constrained by the specific sign
language dialect used by the local DHH commu-
nity, requiring participants to observe pre-recorded
queries rather than forming their own queries for
actual tasks. This limitation affects the external
validity of our findings, as the results may not gen-
eralize to broader populations or real-world scenar-
ios. Future work could address this by including
ASL users and incoporating the pose recognition
module to allow for natural query formation.
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The Prompt for Text Refinement

Sentence: for those employees whose first name does not containing the letter m, display their total
salary by binning the hire date into month interval for visualizing a bar chart, and display in desce-
nding by the y-axis.
Template: Bar chart showing [N] in descending order of y-axis and binning by month.
Result: Bar chart showing salaries for employees whose first name does not contain m̈b̈y hire date
in descending order of y-axis and binning by month.
Sentence: [Sentence]
Template: [Template]
Result:

Figure 11: The prompt for text refinement.

The Prompt for Sign2Text+GPT-3

Sentence: "Bar chart showing the total number of wines whose price is greater than 100, grouped
by year."
Template: mark bar data employees encoding x [X] y aggregate [AggFunction] [Y] color [Z]
transform filter [F] group [G] sort [Y] desc topk [K] bin [B]
Result: mark bar data wine encoding x year y aggregate count year color grape transform filter
price > 100 group x sort x
Table: [Table]
Sentence: [Sentence]
Template: [Template]
Result:

Figure 12: The prompt for Sign2Text+GPT-3.

The Prompt for GPT-4o

These are frames from a video that I want to upload.
1. Translate the sign language in the frames into natural language.
2. Format your answer based on the structure shown in the following examples, but do not copy the
words from them. Use the format as a guide only:
- mark bar data customers_cards encoding x card_type_code y aggregate count card_type_code
transform group x
- mark line data hall_of_fame encoding x yearid y aggregate count yearid transform bin x by year
- mark arc data institution encoding x type y aggregate sum enrollment transform group x
- mark point data employees encoding x commission_pct y aggregate none manager_id transform
filter
first_name like ’3. Return only one translated result sentence in natural language, with no additional
explanations or examples.

Figure 13: The Prompt for GPT-4o
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