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Abstract

Large language models (LLMs) have demon-
strated impressive capabilities in coding tasks
like code generation and debugging. How-
ever, code from real-world users is often poorly
styled, containing various types of noise, such
as structural inconsistencies, stylistic devia-
tions and flawed test cases. To investigate this,
we first simulate poorly styled code using eight
types of code perturbations, and then demon-
strate that the debugging performance of exist-
ing LLM-based methods significantly declines
on such inputs. Furthermore, to address this,
we propose a novel debugging method called
Code-SPA, which aligns noisy code with the
well-structured style familiar to LLMs, miti-
gating the impact of stylistic inconsistencies.
Specifically, Code-SPA extracts the model’s
preferred coding style from a reference snip-
pet, then adjusts the input code by Concrete
Syntax Tree (CST)-based transformations and
LLM-assisted refinements before debugging.
By aligning the code style preference, Code-
SPA enhances the debugging performance of
both code-specific and general-purpose LLMs
on both poorly and well-styled code across the
HumanEval, MBPP and EvalPlus datasets.

1 Introduction

In recent years, large language models (LLMs)
have achieved great success in programming tasks,
such as Deepseek-Coder (Guo et al., 2024), CodeL-
lama (RoziÃĺre et al., 2024), and GPT (Brown et al.,
2020). These models have significantly accelerated
the productivity of software developers by automat-
ing complex coding tasks, such as code genera-
tion (Austin et al., 2021; Chen et al., 2021b; Lai
et al., 2022), debugging (Tian et al., 2024), and
translation (Yan et al., 2023). Despite their im-
pressive capabilities, LLMs still face significant
robustness challenges (Shirafuji et al., 2023; Lad
et al., 2024; Ma et al., 2024; Wang et al., 2024c;
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def isPalindrome(strs):
lowers= []
for char in strs:

lowers.append(char.lower())
new_str = ''.join(lowers)
return strs == new_str[::-1]

def isPalindrome(strs):
lowers= []
for char in strs:

lowers.append(char.lower())
new_str = ''.join(lowers)
return new_str == new_str[::-1]

def isp(a):
b= []
for c in a:
b.append(c.lower())
d = ''.join(b)
return a == d[::-1]

def isp(a):
b= []
for cpp in a:
b.append(cpp.lower())
d = ''.join(b)
return a != d[::-1]

Pass Fail

Hard to Debug

Good Code Style Bad Code Style

Given a string s, determine if it is a palindrome after
converting all uppercase letters into lowercase letters.

Input: “Racecar”
Output : True

Question Test Case

Easy to Debug

Figure 1: The impact of code style on LLM code under-
standing and debugging. Good code style (left) makes
it easier for LLMs to understand the code logic, thus
enabling more accurate and efficient error location and
fixing, while bad code style (right) hinders LLM’s com-
prehension, increasing debugging difficulty.

Singh et al., 2024). Meanwhile, recent studies on
code generation have shown that LLMs are sensi-
tive to variations in prompts (Zhang et al., 2024;
Chen et al., 2024; Yang et al., 2024). As code gen-
eration tasks typically rely on task descriptions as
the primary input, most of perturbations in recent
studies focus on natural language.

However, as debugging tasks involve more com-
plex inputs (Olausson et al., 2024; Gu et al., 2024),
typically consisting of the task description, buggy
code, and failing test cases, this added complexity
makes debugging tasks inherently different from
code generation and other natural language tasks.
Furthermore, current debugging methods (Chen
et al., 2023; Hu et al., 2024; Zhong et al., 2024;
Wang et al., 2024a) evaluate performance based on
the model’s initial output, which tends to be well-
structured. This assumption of ideal code does
not reflect the reality of programming. In prac-
tice, code is often written by different developers
with varying coding styles, leading to inconsisten-
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cies in naming conventions, indentation patterns,
and overall code structure. The variation in coding
style can lead to significant difficulties in code com-
prehension. Such challenges can directly impact
the performance of debugging tasks, with models
struggling to handle inconsistencies in code style,
as shown in Figure 1.

In this work, we analyze the impact of various
code perturbations on debugging performance, our
findings show that introducing such perturbations
consistently reduces debugging performance, high-
lighting the sensitivity of models to code noise.
Based on these insights, we propose the Code
Style Preference Alignment (Code-SPA), which
is designed to improve debugging performance by
aligning the style of the input code with the pre-
ferred style of an LLM. The process involves ex-
tracting the style features from a reference code
snippet, aligning the formatting through concrete
syntax tree (CST) transformations, and refining
deeper style features such as naming conventions
and docstrings using LLM-assisted alignment be-
fore inputting the aligned code for debugging. By
addressing the challenges posed by different cod-
ing styles, Code-SPA enhances the model’s ability
to better understand and debug code, even when
facing noisy or inconsistent inputs.

Our contributions are three-fold: 1) We inves-
tigate the impact of code style on the debugging
performance of LLMs, an area that has not been
largely explored. 2) We propose a novel method
called Code-SPA1 to improve the robustness of
LLM-based debugging through a style preference
alignment mechanism. 3) Extensive experiments
demonstrate that Code-SPA improves debugging
performance not only on poorly styled code but
also on well-styled code, highlighting its general
effectiveness and adaptability.

2 Preliminaries

2.1 Code Debugging

We formulate the input of the code debugging task
as a triplet (Q,Cerror, T ), where Q represents the
question, Cerror denotes the buggy code that fails
to solve the question, and T refers to the test case
that fails. A typical code debugging process by a
large language model (LLM) can be expressed as:

Ccorrect = LLM(Q,Cerror, T ) (1)

1Our code and data are publicly available at https://
github.com/IsshikiIr0ha/codespa.

In evaluation datasets, the code Cerror is typi-
cally clean and well-organized, making it easier for
the model to understand, as it is trained on high-
quality code. However, in real-world applications,
the code that requires debugging often contains var-
ious types of noise, such as inconsistent variable
naming, incorrect indentation, missing or exces-
sive comments, and issues with test cases. These
elements can complicate the debugging process,
requiring models to differentiate between actual er-
rors and extraneous noise for effective debugging.

2.2 Noise Simulation

Unlike previous works that focus on perturbations
in natural language (Yang et al., 2024; Zhang et al.,
2024), we introduce several types of perturbations
to the buggy code Cerror and test case T to simulate
real-world noise.

1) NOSEMS / PARTSEMS: variable naming
perturbations. NOSEMS removes semantic mean-
ing from variable names by mapping them to ar-
bitrary lowercase letters. PARTSEMS abbreviates
variable names, retaining partial semantic structure.

2) INDDISP / NONSTDIND: indentation per-
turbations. INDDISP alters indentation to modify
the hierarchical structure of the code. NONST-
DIND replaces standard indentation lengths with
non-standard.

3) CMTREM: code comment perturbation.
CMTREM removes all comments, including single-
line, multi-line comments, and docstrings.

4) REDSTMTS: redundancy perturbation.
REDSTMTS inserts redundant statements that do
not affect the functionality of the code.

5) NOGT / RANDGT: test case perturbations.
NOGT removes the ground truth for the test case
output, RANDGT randomizes the ground truth.

More perturbation details of each simulated code
noise, and examples of each type of code noise are
summarized in Appendix A.

2.3 Code Style

Code style constitutes a set of conventions govern-
ing source code to enhance readability and con-
sistency. Widely-recognized style guides include
language-specific style guides like Python’s PEP
8 (Guido van Rossum, 2001) and Go’s gofmt, as
well as organizational standards such as Java Code
Conventions and Google C++ Style Guide. No-
tably, large language models (LLMs) also tend
to develop distinctive coding styles (Wang et al.,
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Write a function to compute
the product of elements in
an array.

def s(a):
r,n=0,len(a)
for i in range(n):
r+=a[i]

print("r",r)
return r

Input	:	[1,	2,	4]
Expected	Output	:	8

def prod_sign(arr):
result = 0 # product 
for num in arr:

result *= num
return result

𝐹!"#$: Indentation Length: 4
Space Around operator: 1
𝐼: Function: prod_sign
Variables: [result, num , arr]
𝐷: Docstring: False

𝑁: snake_case: prod_sign
Other: [result, num arr] 

𝑅: Redundant Statement: None

𝐹!"%%$&': Comment Style: inline

𝐶!"#: Reference Code

𝐶!"##$!%

Transform!&%

def s(a):
r , n = 0 , len(a)
for i in range(n):

r += a[i]
print("r",r)
return r

𝐶'()*+$,∗𝐹$%&"

𝑆!'("𝑆$)*

(𝑆!'(", 𝐷)

def prod_sign(arr):
result , n = 0 , len(arr)
for i in range(n):

result += arr[i]
return result

Transform((.

𝐶'()*+$, (𝑄, 𝑇)

def prod_sign(arr):
result , n = 1 , len(arr)
for i in range(n):

result *= arr[i]
return result

1 𝐂𝐨𝐝𝐞	𝐒𝐭𝐲𝐥𝐞	𝐄𝐱𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧

𝐒𝐭𝐲𝐥𝐞	𝐏𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞	𝐀𝐥𝐢𝐠𝐧𝐦𝐞𝐧𝐭2 3 𝐂𝐨𝐝𝐞	𝐃𝐞𝐛𝐮𝐠𝐠𝐢𝐧𝐠

User	Input	for	Debugging

𝑄: Question  

𝐶"!!%!: Buggy Code

𝑇: Test Case

📐

CST

Rule

Reference Code Style

Correct Code Pass

Figure 2: The core workflow of Code-SPA consists of three key stages: 1) Code Style Extraction, where the
LLM’s preferred code style features are automatically extracted from a reference code snippet; 2) Style Preference
Alignment, where the user-input buggy code is aligned with the extracted style to normalize it according to the
LLM’s preferences; and 3) Code Debugging, where the style-aligned code is then used for debugging.

2024b), these stylistic variations may pose chal-
lenges in downstream tasks, as inconsistencies in
code style can hinder code comprehension and im-
pact task performance.

3 Method

3.1 Overview of Code-SPA

Variations in code style, whether among human
programmers, across different LLMs due to varia-
tions in training data and architectures, or between
humans and LLMs, pose significant challenges for
code-related tasks, including debugging. To ad-
dress this, we propose Code-SPA, a three-step ap-
proach designed to align the code style with the
LLM’s preferences. As illustrated in Figure 2, we
first generate a reference code snippet from the
LLM based on the given debugging task and auto-
matically extract its code style features. Then, we
align the style of the code to be debugged with the
extracted style, mitigating the interference caused
by stylistic discrepancies. Finally, the aligned code
is input into the LLM for debugging.

3.2 Code Style Extraction

To extract the coding style from an LLM, we turn
to summarize the code features from its generated
code, by adopting an approach that combines Con-
crete Syntax Tree (CST)2 analysis with rule-based

2https://github.com/Instagram/LibCST

pattern matching. Specifically, given a question Q,
we first generate a reference code snippet Cref :

Cref = LLM(Q) (2)

This code snippet Cref serves as the textbook for
style extraction and subsequent alignment. Using a
CST parser, we represent Cref as a concrete syntax
tree Tref that preserves all formatting details:

Tref = Parsercst(Cref) (3)

wherein the CST parser Parsercst analyzes the
code structure and generates Tref , from this rep-
resentation, we extract various style features:

Scst = Extract(Tref) = [Fcode, I,D] (4)

wherein Fcode represents formatting details, I is
the set of identifiers (variable and function names),
and D indicates the presence of a docstring.

After that, to complement the CST analysis, we
employ a rule-based component that applies regu-
lar expressions and predefined patterns to capture
additional style characteristics. Specifically, we
define a set of regular expressions RE that match
patterns in the code, allowing us to identify fea-
tures. The rule-based extraction process can be
formally represented as:

Srule = RE(Cref , I) = [N,R,Fcomment] (5)

wherein I and Cref are the inputs, I used to extract
the naming conventions N , R and Fcomment are
obtained through rule-baed matching from Cref .
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Reference Code Code Style Symbol Code Style Value

Question: Compute factorial - Style features from CST analysis: Scst

Code: Fcode: code formatting {"Indentation Length": 4, "Space Around Operator" : 1}
def compute_fact(n): I: identifiers {"Function": compute_fact, "Variables" : [n, i, res]}

res = 1 # factorial D: docstring presence Docstring : False

for i in range(1, n+1): - Style features from rule-based pattern matching: Srule

res *= i N : naming conventions {"snake_case": compute_fact, "Other": [n, i, res]}
return res R: redundant statements {"Redundant Statements" : None}

Fcomment: comment style {"Comment Style" : "inline"}

Table 1: An example of code style extracted in Code-SPA method.

Finally, the reference code style Sref is the com-
bination of the CST-derived style features Scst and
the rule-based style features Srule. As shown in
Table 1, we have illustrated these code style fea-
tures by an actual code. For example, "Indentation
Length" being 4 indicates the indentation length for
each level is set to 4, and "Space Around Operator"
being 1 means that one space are added around
operators, like res = 1, "Redundant Statements"
being None means that there are no functionally
irrelevant statements, such as print statement.

3.3 Style Preference Alignment
After extracting the code style features from the
LLM, we proceed to the style preference align-
ment phase, where the goal is to harmonize the
style of the code to be debugged with the extracted
style template Sref from the LLM. This alignment
process involves two steps: direct alignment and
LLM-assisted alignment.

Direct Alignment. The first part of the alignment
process focuses on deterministically adjustable for-
mat features Fcode, such as indentation length and
the number of whitespace around operator. We ap-
ply a CST transformation using the LibCST library
to adjust these formatting details of the code Cerror

being debugged, aligning them with the desired
code formatting Fcode:

Caligned = Transformcst(Cerror, Fcode) (6)

By performing direct modifications, the input
code is adjusted to a standard formatting style, en-
suring that structural inconsistencies are eliminated
before further debugging steps.

LLM-assisted Alignment. While CST transfor-
mation is a static method that focuses on syntactic
structure and cannot handle the semantic nuances
involved in naming conventions N , and redundant
statements R and comment style Fcomment in Srule,

and docstring presence D in Scst. To address these
challenges, we employ an LLM to assist in aligning
these deeper style features. Formally, the LLM-
assisted transformation refines the aligned code
Caligned in Eq. 6 based on semantical styles from
reference code:

C∗
aligned = Transformllm(Caligned, Srule +D)

(7)
This process ensures that, beyond mere struc-

tural formatting, the code is semantically aligned
with the desired style template, thereby facilitat-
ing more effective debugging by harmonizing both
syntactic and semantic style elements.

3.4 Code Debugging
After aligning the input buggy code Cerror with
the LLM’s preferred style and generating the style-
aligned code C∗

aligned, we proceed to the debugging
phase. The primary goal of this step is to enable the
LLM to debug the code with minimal distractions
from stylistic inconsistencies, allowing the model
to focus on identifying and correcting logical er-
rors. The core idea is that by aligning the code’s
style, we reduce the noise introduced by variations
in naming conventions, indentation, and comment
styles, which could otherwise hinder the model’s
ability to accurately detect and fix errors.

Specifically, we utilize the triplet formulation
(Q,Cerror, T ) introduced in Section 2.1 to repre-
sent the debugging task. The debugging process is
formalized by substituting the original buggy code
Cerror with its style-aligned counterpart C∗

aligned

as input to the LLM, as shown in the following
equation:

Ccorrect = LLM(Q,C∗
aligned, T ) (8)

wherein Ccorrect is the corrected code output by the
LLM. By providing the LLM with the style-aligned
code, we hypothesize that the model will be better
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Settings Code Noise Vanilla Self-Debug Self-Debug INTERVENOR Code-SPA
Debug (Simple.) (UT + Expl.) (Ours)

w/o Noise ORIGINAL 64.6 63.2 63.2 61.9 65.3

w/ Single Noise

NOSEMS 61.9 / -4.2% 62.2 / -1.6% 61.6 / -2.5% 60.6 / -2.1% 64.8 / -0.8%
PARTSEMS 61.9 / -4.2% 63.0 / -0.3% 61.9 / -2.1% 62.4 / +0.8% 64.8 / -0.8%
INDDISP 63.8 / -1.2% 62.7 / -0.8% 61.4 / -2.9% 60.6 / -2.1% 65.3 / -0.0%
NONSTDIND 63.5 / -1.7% 63.8 / +0.9% 61.4 / -2.9% 62.4 / +0.8% 64.8 / -0.8%
CMTREM 63.2 / -2.2% 61.9 / -2.1% 62.2 / -1.6% 59.5 / -3.9% 64.8 / -0.8%
REDSTMTS 61.9 / -4.2% 59.8 / -5.4% 59.5 / -5.9% 58.7 / -5.2% 64.8 / -0.8%
NOGT 64.8 / +0.3% 63.2 / 0.0% 61.9 / -2.1% 61.9 / 0.0% 64.6 / -1.1%
RANDGT 63.5 / -1.7% 63.2 / 0.0% 62.2 / -1.6% 62.2 / +0.5% 65.1 / -0.3%

w/ Mixed Noise

NOISE-1 62.7 / -1.9% 62.7 / -1.9% 62.7 / -1.9% 60.4 / -4.0% 65.3 / +0.7%
NOISE-2 62.2 / -2.4% 61.9 / -2.7% 60.6 / -4.0% 61.4 / -3.0% 64.8 / +0.2%
NOISE-3 61.6 / -3.0% 62.7 / -1.9% 62.7 / -1.9% 61.4 / -3.0% 64.8 / +0.2%
NOISE-4 62.2 / -2.4% 61.6 / -3.0% 62.7 / -1.9% 57.7 / -6.9% 63.8 / -0.8%
NOISE-5 61.1 / -3.5% 60.6 / -4.0% 61.1 / -3.5% 59.0 / -5.6% 63.8 / -0.8%
NOISE-6 60.3 / -4.3% 58.7 / -5.9% 60.3 / -4.3% 56.9 / -7.5% 63.5 / -1.1%

Table 2: Debugging performance of the DeepSeek-Coder-6.7B-Instruct model on the MBPP+ dataset under single-
and mixed-type noise. In this table, scores presented as a / b signify the Pass@1 (a) for a given noise condition and
its percentage change (b) relative to that method’s ORIGINAL (noise-free) score.

able to focus on logical errors rather than being
distracted by stylistic discrepancies. This approach
aims to enhance debugging performance by align-
ing the code with a consistent style, reducing noise,
and enabling the LLM to concentrate on resolving
the core errors in the code.

4 Experiments

4.1 Experimental Settings
Datasets We evaluate our approach on four
widely recognized datasets: HumanEval (Chen
et al., 2021b), MBPP (Austin et al., 2021) and
EvalPlus (Liu et al., 2023), which collectively pro-
vide a comprehensive benchmark for code gen-
eration and code repair. HumanEval consists of
hand-crafted coding problems designed to assess
functional correctness and the ability of models
to generate syntactically and semantically correct
programs. MBPP includes a collection of diverse
Python programming problems, focusing on tasks
of varying complexity that are suitable for evaluat-
ing general-purpose code understanding and gen-
eration. EvalPlus is an extension of the MBPP
and HumanEval datasets, incorporating additional
test cases to enhance robustness and challenge the
debugging models with a wider range of scenarios.

Initial Code to Debug Existing studies on code
debugging typically initiate the process with the
model’s first generated output. Since the debug-
ging input and the initial output are both generated

by the same model, they inherently share a con-
sistent style and task-relevant variable semantics.
However, this assumption oversimplifies real-world
scenarios, where code often originates from diverse
sources, leading to variations in style and poten-
tial semantic misalignments. In contrast, our de-
bugging process is initialized with pre-generated
code samples provided by the EvalPlus3 dataset,
which were originally produced by the CodeLlama-
7B-Instruct model. Notably, this model does not
participate in the debugging process itself. For
functions containing only pass statements, we re-
generate meaningful implementations to ensure a
valid starting point for debugging. This approach
better reflects real-world scenarios, where debug-
ging often starts with diverse and stylistically in-
consistent code rather than outputs from the same
model. Subsequent perturbation experiments are
also conducted on this set of pre-generated code.

Metrics To evaluate the performance of our ap-
proach, we use the widely adopted Pass@1 met-
ric (Chen et al., 2021b). Our experiments include
evaluating the impact of single noise sources as
well as combined noise scenarios to simulate real-
world complexities.

Baselines To evaluate the impact of noise on
debugging performance and the effectiveness of
our approach, we compare it against a range of

3https://github.com/evalplus/evalplus/
releases/tag/v0.2.0
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Base Model Method MBPP MBPP+ HumanEval HumanEval+

ORI. NOISE-3 ORI. NOISE-3 ORI. NOISE-3 ORI. NOISE-3

Vanilla-Debug 74.6 73.0 64.6 61.6 74.4 67.7 68.9 63.4

Deepseek-Coder
Self-Debug (Simple) 73.8 73.8 63.2 62.7 73.8 67.7 67.7 61.6

(6.7B-Instruct)
Self-Debug (UT+Expl.) 74.6 73.0 63.2 62.7 75.6 67.7 71.3 64.0
INTERVENOR 73.0 72.2 61.9 61.4 72.6 65.9 67.1 61.0
Code-SPA (Ours) 76.5 73.8 65.3 64.8 78.0 75.6 75.0 72.6

Vanilla-Debug 64.3 62.7 55.3 54.2 45.7 43.9 42.1 41.5

CodeLlama
Self-Debug (Simple) 63.8 64.3 55.3 52.9 45.7 45.7 45.7 43.9

(13B-Instruct)
Self-Debug (UT+Expl.) 66.9 66.4 55.8 55.3 48.8 45.7 46.3 44.5
INTERVENOR 65.3 65.3 56.3 51.9 48.2 45.7 45.1 43.3
Code-SPA (Ours) 67.5 67.5 57.4 57.4 53.0 50.6 47.6 46.3

Vanilla-Debug 72.5 70.1 65.3 58.7 65.9 62.8 63.4 57.9

Llama3
Self-Debug (Simple) 71.4 68.8 63.0 59.0 65.2 62.2 61.6 57.9

(8B-Instruct)
Self-Debug (UT+Expl.) 73.5 71.4 64.6 61.6 62.8 61.0 62.2 56.7
INTERVENOR 74.9 73.5 64.6 62.4 68.3 65.2 61.6 59.1
Code-SPA (Ours) 74.9 74.3 65.3 64.8 69.5 68.3 62.8 60.4

Vanilla-Debug 75.9 72.8 67.7 65.3 77.4 73.2 72.6 67.1

Qwen2.5
Self-Debug (Simple) 75.1 74.3 66.4 64.6 76.8 74.4 68.9 65.9

(7B-Instruct)
Self-Debug (UT+Expl.) 78.0 74.1 66.9 64.8 77.4 74.4 74.4 67.7
INTERVENOR 75.4 74.9 63.5 63.2 70.7 71.3 67.7 64.6
Code-SPA (Ours) 80.7 80.4 69.0 68.8 80.5 79.9 75.6 75.0

Table 3: Pass@1 scores achieved by Code-SPA and baseline methods on the original code (i.e. ORI.) and code
injected with three types of noise (i.e. NOISE-3) across the MBPP, MBPP+, HumanEval and HumanEval+ datasets.

established baseline methods. The Vanilla De-
bug baseline represents the simplest setup, where
the debugging model directly takes the input tu-
ple (Q,Cerror, T ). We also assess three debugging
methods: Self-Debug (Simple.) (Chen et al., 2023)
uses a straightforward prompt informing the model
that the provided code contains errors. Self-Debug
(UT + Expl.) (Chen et al., 2023) enhances the
debugging process by including a failed test case
in the input and prompting the model to perform
a line-by-line explanation of the code before at-
tempting to fix it. INTERVENOR (Wang et al.,
2024a) utilizes a teacher-student framework where
the teacher provides a modification method based
on error messages, and the student applies the sug-
gested modifications to correct the code.

4.2 Results

To evaluate the impacts of code noise on debugging
performance, and demonstrate the effectiveness of
our proposed debugging method Code-SPA, we
carry out a series of experiments, as summarized
in Tables 2 & 3. From these results, we can obtain
the following conclusions:

The impact of single noise types varies, with
variable name perturbations having the most
significant effect. Our evaluation of individual
noise types on debugging performance (Table 2)

reveals three key patterns: 1) Perturbations affect-
ing test case outputs, such as NoGT and RandGT,
have minimal impact on Pass@1. 2) Noises that
alter code semantics, like Total Semantic Removal
(NoSems) and Redundant Statements (RedStmts),
lead to the largest performance declines. 3) Noise
types affecting code structure or non-semantic ele-
ments, such as Partial Semantic Preservation (Part-
Sems), Comment Removal (CmtRem), and Inden-
tation Variations (IndDisp, NonStdInd), result in
smaller performance variations. Compared to base-
line methods, Code-SPA consistently outperforms
all noise types, showcasing its resilience to both
semantic and structural noise.

Increasing the number of mixed noise types
leads to greater degradation in debugging per-
formance. We evaluate the impact of multiple
simultaneous perturbations on LLM debugging per-
formance, as shown in Table 2. We randomly com-
bine single perturbations, observing a general trend
of decreasing performance as the number of per-
turbations increases. However, this decrease is
not strictly monotonic, suggesting potential inter-
actions and non-linear effects between different
perturbation types. Furthermore, under multiple
perturbations, Code-SPA maintains higher Pass@1
scores across all noise levels, demonstrating its
robustness to combined perturbations.
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Method MBPP MBPP+

Code-SPA 80.4 68.8

Resampling 79.4 67.5
w/o reference code 74.1 63.2
w/o code style class 77.2 66.7
w/o CST 78.0 66.4
w/ internal alignment 72.8 63.2
w/o alignment 73.0 63.2

Table 4: Ablation study results of Code-SPA method on
both MBPP and MBPP+ datasets using Qwen-2.5-7B-
Instruct model.

Code-SPA outperforms other baselines in de-
bugging noisy code across different datasets and
base models. We present a comprehensive evalua-
tion of Code-SPA’s performance across various per-
turbation scenarios and base models, demonstrat-
ing its robustness and effectiveness in enhancing
LLM debugging capabilities. Moreover, evalua-
tions under the three mixed settings across four dif-
ferent models on the MBPP, MBPP+, HumanEval,
and HumanEval+ datasets as shown in Table 3
demonstrate Code-SPA consistently outperforms or
matches the best baseline method across all models
and datasets, clearly showcasing Code-SPA’s broad
applicability.

Code-SPA also enhances performance on orig-
inal noise-free code. As seen in Table 3, Code-
SPA delivers consistent performance gains even on
noise-free source code. This improvement arises
from the mismatch in coding style between the
code generation and debugging models. Since
the debugging model differs from CodeLlama-7B
which generates the initial error code to debug, their
inherent stylistic differences persist even without
explicit noise. Code-SPA effectively bridges this
gap, leading to performance gains.

4.3 Analysis

Ablation Study To better understand the effec-
tiveness of the Code-SPA framework, we conduct
a series of ablation experiments on the MBPP and
MBPP+ datasets. The results of these experiments
are presented in Table 4. We define the following
ablation settings: a) Resampling: The reference
code is directly treated as the final solution; b) w/o
reference code: The model generates the code
style based on its own understanding of the "code
style" class, without leveraging the reference code
for guidance; c) w/o code style class: The refer-
ence code is provided to the model, but the model
aligns its generation to the reference without in-

Model Method MBPP+ HumanEval+

Deepseek-Coder
NOISE-3 61.6 63.4

(6.7B-Instruct)
w/ PEP8 61.6 64.0
w/ Code-SPA 64.8 72.6

CodeLlama
NOISE-3 54.2 41.5

(13B-Instruct)
w/ PEP8 56.3 45.7
w/ Code-SPA 57.4 46.3

Llama 3
NOISE-3 58.7 57.9

(8B-Instruct)
w/ PEP8 60.1 56.7
w/ Code-SPA 64.8 60.4

Qwen2.5
NOISE-3 65.3 67.1

(7B-Instruct)
w/ PEP8 65.3 69.5
w/ Code-SPA 68.8 75.0

Table 5: Comparisons of debugging results (Pass@1) on
the NOISE-3 code, and code formatted by PEP8 guide
or our Code-SPA alignment, across different LLMs on
MBPP+ and HumanEval+ datasets.

corporating the "code style" class for structured
style alignment. d) w/ internal alignment: The
model aligns the code style without relying on ref-
erence code or any predefined "code style" class;
e) w/o CST: The model is given extracted code
style information but without CST-based structured
processing; f) w/o alignment: The reference code
and extracted code style are provided as guidance,
but the buggy code is not aligned to these sources,
leaving its original structure unchanged. Based on
above ablation study, we can derive the following
conclusions:

Reference code is crucial for debugging per-
formance. The results clearly show that using the
reference code achieves the highest performance.
Moreover, even ablation settings that retain the
reference code, such as w/o code style and w/o
CST, maintain relatively strong performance, rein-
forcing its crucial role in guiding the debugging
process. The reference code provides essential
guidance, this aligns with prior work (Gu et al.,
2024) on code repair, which found that resampling
often outperforms targeted methods by bypassing
the complexities of code understanding.

Lack of explicit style alignment reduces de-
bugging performance. Our experiments show that
both self-alignment and no alignment significantly
hinder performance. In the self-alignment setting,
the model relies solely on its internal mechanisms
to standardize its generated style, often resulting
in inconsistent style. Similarly, without alignment,
the buggy code retains its original, unstandardized
style, making it harder for the model to focus on
the underlying logic. These findings highlight the
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Method HumanEval HumanEval+

Deepseek-Coder-6.7B-Instruct

Initial Code to Debug 76.2 70.1
Vanilla-Debug 77.4 72.0
Self-Debug(UT+Expl.) 78.7 73.8
Code-SPA 79.3 74.4

CodeLlama-13B-Instruct

Vanilla-Debug 73.2 67.7
Self-Debug(UT+Expl.) 73.2 68.9
Code-SPA 75.0 70.7

Table 6: Pass@1 results for the same-model and cross-
model debugging performance on the NOISE-3 code
across the HumanEval and HumanEval+ datasets.

Model Method HumanEvalPack-Fix

Deepseek-Coder Self-Debug (UT+Expl.) 67.7
(6.7B-Instruct) Code-SPA 72.6

CodeLlama Self-Debug (UT+Expl.) 46.3
(13B-Instruct) Code-SPA 50.6

Llama 3 Self-Debug (UT+Expl.) 64.6
(8B-Instruct) Code-SPA 67.7

Qwen2.5 Self-Debug (UT+Expl.) 76.8
(7B-Instruct) Code-SPA 77.4

Table 7: Debugging performance (Pass@1) of Code-
SPA compared to the Self-Debug (UT+Expl.) baseline
on the HumanEvalPack-Fix dataset across various large
language models.

importance of explicit style alignment in improving
debugging accuracy.

Comparisons with PEP8 We further evaluate a
standard code style normalization approach based
on PEP8 under three mixed settings, and present
the result in Table 5. We applied autopep8 toolkit4

to format the code before presenting it to the LLMs.
It’s crucial to emphasize that PEP8 focuses solely
on stylistic conventions, such as indentation and
spacing, it improves code readability for humans
by enforcing consistent style, it does not address
the semantic ambiguities or logical flaws that can
hinder LLM understanding. Therefore, Code-SPA
focus on style alignment, which goes beyond su-
perficial formatting, is crucial for enhancing LLM
debugging capabilities.

Impact of Style Consistency We examine how
style consistency affects debugging performance
by comparing two scenarios: (1) Deepseek-Coder-
6.7B-Instruct debugging its own code (same-
model) and (2) CodeLlama-13B-Instruct debug-
ging Deepseek-Coder-6.7B-Instruct’s code (cross-

4https://pypi.org/project/autopep8/

Model Method HumanEval-X-C++

Deepseek-Coder Self-Debug (UT+Expl.) 59.7
(6.7B-Instruct) Code-SPA 61.6

CodeLlama Self-Debug (UT+Expl.) 38.6
(13B-Instruct) Code-SPA 42.7

Llama 3 Self-Debug (UT+Expl.) 40.2
(8B-Instruct) Code-SPA 40.4

Table 8: Debugging performance (Pass@1) of Code-
SPA compared to the Self-Debug (UT+Expl.) baseline
on the HumanEval-X-C++ dataset.

model). As shown in Table 6, the baseline method
performs well in the same-model setting, likely due
to the inherent style consistency between the gen-
erated and debugged code. However, in the cross-
model scenario, where style discrepancies arise,
Code-SPA provides a more substantial improve-
ment, demonstrating its effectiveness in handling
stylistic misalignment.

Effectiveness on Real-World Human-Authored
Bugs To evaluate Code-SPA’s effectiveness on
real-world debugging tasks, we analyzed its per-
formance on human-authored errors from the
HumanEvalPack-Fix dataset (Muennighoff et al.,
2024). The comparative results presented in Table 7
demonstrate Code-SPA’s consistent advantage over
the Self-Debug (UT+Expl.) baseline across a di-
verse set of large language models. These findings
across multiple models highlight Code-SPA’s ro-
bustness against human-authored bugs. Human
coding styles are diverse and can differ from an
LLM’s optimal processing patterns, potentially cre-
ating comprehension hurdles. Code-SPA’s improve-
ments indicate its style alignment effectively mit-
igates this stylistic mismatch, thereby enhancing
the LLM’s ability to parse, understand, and rectify
subtle human errors.

Generalization to Other Programming Lan-
guages To investigate Code-SPA’s generalizabil-
ity beyond Python, we evaluated it on C++ us-
ing the HumanEval-X-C++ dataset (Zheng et al.,
2024). For C++ code processing, we utilized
tree-sitter to apply rule-based stylistic pertur-
bations, analogous to our libcst-based Python
approach. The results in Table 8 demonstrate Code-
SPA’s effectiveness and applicability in the C++
context. This suggests that challenges from stylistic
inconsistencies, and the advantages of Code-SPA
in mitigating them, are not Python-specific, and
that our approach holds promise for LLM-based
debugging across more programming languages.
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5 Related Work

Code Large Language Models Early code large
language models, such as Codex (Chen et al.,
2021a) and CodeGen (Nijkamp et al., 2023), were
among the first to demonstrate the potential of
LLMs in code generation, some models also unify
code representation and generation (Wang et al.,
2021; Guo et al., 2022; Wang et al., 2023). Recent
advancements in LLMs have given rise to special-
ized models for code generation and understanding.
Models such as DeepSeek-Coder (Guo et al., 2024),
Qwen-Coder (Hui et al., 2024) and GPT-4 (Ope-
nAI et al., 2024c) have been explicitly designed
to handle coding-related tasks. Besides, reasoning
models like OpenAI-o1 (OpenAI et al., 2024b) and
DeepSeek-R1 (DeepSeek-AI et al., 2025), have
also demonstrated impressive coding performance
due to their long reasoning ability.

Debugging with LLMs Large Language Mod-
els have shown significant potential in enhanc-
ing debugging tasks by leveraging interpreter out-
puts (Chen et al., 2023; Hu et al., 2024), integrating
with external debugging tools (Zhong et al., 2024),
and decomposing complex debugging problems
into smaller, more manageable steps (Zhang et al.,
2023; Madaan et al., 2023; Shinn et al., 2023; Zhou
et al., 2023; Wang et al., 2024a). Beyond proposing
debugging methods, recent studies have also inves-
tigated the effectiveness and limitations of LLMs
in code repair (Tyen et al., 2024; Gu et al., 2024;
Kamoi et al., 2024; Olausson et al., 2024).

Robustness of LLMs While Large Language
Models have demonstrated impressive capabili-
ties across various tasks, they still suffer from ro-
bustness issues (Lad et al., 2024; Ma et al., 2024;
Wang et al., 2024c; Singh et al., 2024), including
in coding-related tasks (Zhang et al., 2024; Yang
et al., 2024; Chen et al., 2024). Beyond evaluation,
some works have explored techniques to enhance
robustness (Zhang et al., 2024; Zhao et al., 2024).
Different from most existing robustness evaluations
in coding-related tasks, which primarily emphasize
natural language, we focus specifically on the chal-
lenges posed by code perturbations.

6 Conclusion

In this work, we investigated the impact of stylistic
variations on LLM debugging performance, high-
lighting the challenges LLMs face when dealing

with diverse coding styles. Through a compre-
hensive set of perturbation experiments, including
single and multiple perturbations across various
base models and datasets, we demonstrated the
significant influence of stylistic factors on debug-
ging accuracy. To address these challenges, we
proposed Code-SPA, a novel approach designed
to enhance LLM robustness to stylistic variations.
Our experiments demonstrate that Code-SPA ef-
fectively mitigates the negative impact of pertur-
bations, achieving superior or comparable perfor-
mance to baselines across all evaluated scenarios.
This demonstrates the effectiveness of style align-
ment in enhancing LLM debugging capabilities.

Limitations

There are two primary limitations in our work due
to the lack of real-world code data and the con-
straints of computational resources. Firstly, our
experiments were conducted using synthetically
perturbed code with poor styling, which, while use-
ful for isolating specific issues, may not fully cap-
ture the complexity and diversity of real-world cod-
ing scenarios, where irregularities can stem from
a broader range of sources and patterns. Secondly,
although we utilized existing models in our exper-
iments, we did not explore the potential of larger
or more advanced models, such as GPT-4o (Ope-
nAI et al., 2024a) or DeepSeek-R1 (DeepSeek-AI
et al., 2025), which could offer improved perfor-
mance and robustness, especially in handling more
complex and diverse code-related tasks.
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A Noise Simulation Details

In this section, we provide a detailed explanation
of the noise simulation process used in our exper-
iments. To illustrate the implementation of each
perturbation, we apply them to example code snip-
pets from our dataset. These examples are drawn
from real-world scenarios, and both the original
and modified versions are shown to demonstrate
how each type of noise affects the code structure
and readability. This approach highlights the prac-
tical impact of noise in real-world programming
environments.

NoSems No semantic information in variable
names. We sequentially maps variables to low-
ercase letters, completely eliminating any semantic
information encoded in the original names. This
process ensures that all variables lose their orig-
inal descriptive meaning while maintaining code
functionality. This method effectively simulates
the impact of poor coding standards where devel-
opers, neglecting clear naming conventions, might
use overly simplistic or cryptic variable names. As
a result, the readability and interpretability of the
code are significantly reduced, making it harder to
infer its intended behavior. In the example code
below, max_index is truncated to m.

# Original Code
def can_arrange(arr):

max_index = -1
for i in range(1, len(arr)):

if arr[i] < arr[i-1]:
max_index = i

return max_index - 1
----------------------------------------
# NoSems 's Code
def can_arrange(a):

b = -1
for i in range(1, len(a)):

if a[i] < a[i-1]:
b = i

return b - 1

PARTSEMS Only partial semantic information
in the variable names. We abbreviate variable
names by extracting the first letter of each word
separated by underscores or capitalization; other-
wise, only the first letter is retained. For example,
both naturalLanguage and natural_language
become nl. This simulates scenarios where
variable names are abbreviated or use common
acronyms, retaining some structural and word-
boundary information. In the following example
code, count_dict becomes cd, and result be-
comes r.

# Original Code
def remove_duplicates(numbers):

count_dict = {}
result = []
for num in numbers:

if num not in count_dict:
count_dict[num] = 1
result.append(num)

else:
count_dict[num] += 1

return result
----------------------------------------
# PartSems 's Code
def remove_duplicates(n):

cd = {}
r = []
for m in n:

if m not in cd:
cd[m] = 1
r.append(m)

else:
cd[m] += 1

return r

REDSTMTS Redundant statements. We ran-
domly insert redundant statements, such as print
statements and logging statements, into the code.
The added redundancy does not affect the core func-
tionality, meaning that for any test case T , the out-
put of both the original and modified erroneous
code remains identical.

# Original Code
def can_arrange(arr):

max_index = -1
for i in range(1, len(arr)):

if arr[i] < arr[i-1]:
max_index = i

return max_index - 1
----------------------------------------
# RedStmts 's Code
def can_arrange(arr):

max_index = -1
for i in range(1, len(arr)):

print(f"Checking: {arr[i]}")
if arr[i] < arr[i-1]:

max_index = i
print("Final max_index:",max_index)
return max_index - 1

INDDISP Indentation displacement. We adjust
the indentation of code to modify its hierarchical
structure or alignment. This simulates lost or redun-
dant indentation caused by copy-pasting or editing.
This manipulation simulates common formatting
errors that programmers might introduce, such as
losing indentation when copy-pasting code blocks
or accidentally adding extra, unnecessary indenta-
tion during editing. While in some languages this
might only affect readability, in others where in-
dentation is syntactically significant (like Python),
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such displacement can lead to errors or change the
program’s logic.

# Original Code
def same_chars(s0: str , s1: str):

return sorted(s0) == sorted(s1)
----------------------------------------
# IndDisp 's Code
def same_chars(s0: str , s1: str):
return sorted(s0) == sorted(s1)

NONSTDIND Non-standard indentation lengths.
We replace the standard indentation like four-space
or tab convention to other non-standard indentation
length like two-space. These perturbations aim
to evaluate model robustness against non-standard
code formatting. In the following example, the
indentation length of each level is changed from
the standard 4 spaces to 1 space.

# Original Code
def iscube(a):

x = round(a ** (1. / 3))
return x ** 3 == a

----------------------------------------
# NonStdInd 's Code
def iscube(a):
x = round(a ** (1. / 3))
return x ** 3 == a

CMTREM Comment removal. To eliminate the
influence of comments on the model, we remove
all comments from the code, including single-line
comments, multi-line comments, and docstrings.
This simulates a scenario where comments are
omitted due to a lack of effort in writing them dur-
ing code development. We removed all comments
in the example, including docstring and line com-
ments.

# Original Code
def add(lst):

"""
Given a non -empty list
of integers lst.
Calculate the sum of
even elements at odd
indices.

Examples:
add([4, 2, 6, 7]) ==> 2
"""
# calculate the sum.
return sum(lst[i] for i in

range(1, len(lst), 2)
----------------------------------------
# CmtRem 's Code
def add(lst):

return sum(lst[i] for i in
range(1, len(lst), 2)

NOGT / RANDGT No or randomized ground
truth for the test case. To evaluate the impact of
test case T outputs on debugging performance, we
either remove the ground truth output entirely or
replace it with a random value. This simulates
scenarios where the ground truth is unavailable or
deliberately omitted, for instance, when the user ne-
glects to provide the correct output. In the example,
under the NOGT setting, we remove the ground
truth output of the test case. Under the RANDGT
setting, we replace the ground truth output -9 with
a random value, 100.

# Original Code
def prod_signs(arr):

if not arr:
return None

sum_magnitudes = 0
product_signs = 1
for num in arr:

sum_magnitudes += abs(num)
if num < 0:

product_signs *= -1
return (sum_magnitudes *

product_signs)
----------------------------------------
# Original Assertion
The code fails on this test case:
assert prod_signs([1, 2, 2, -4]) == -9
----------------------------------------
# NoGT
The code fails on this test case:

prod_signs([1, 2, 2, -4])
----------------------------------------
# RandGT
The code fails on this test case:
assert prod_signs([1, 2, 2, -4]) == -100

B Prompts

This subsection provides a detailed exposition of
the prompt templates crafted for these key func-
tionalities within Code-SPA. The structure and con-
tent of these prompts are crucial for providing the
necessary context as illustrated in Figure 3. The
{task} placeholder in Reference Code Generation
and Debug Prompts specifies the code’s objective.
Within the Rewrite Prompt, specific placeholders
are used to convey detailed stylistic preferences
to the model, aligning with style dimensions (e.g.,
naming conventions, comment style) illustrated by
the extracted features in Table 1. Within the De-
bug Prompt, {aligned buggy code} represents
buggy code that has undergone a style alignment
process but remains functionally incorrect. The
{test case} placeholder provides crucial context
by detailing the concrete failure scenario. This
includes the specific inputs, the expected correct
outputs.
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Reference Code Generation:

Task:
{task}

Please give me the correct code.

Rewrite Prompt:
Please rewrite the given Python code to significantly improve its readability and comprehensibility.
While adhering to the stylistic conventions below, focus on making the logic clear and explicit. The
rewritten code should be easy for another developer to pick up and understand quickly. Functional
equivalence with the original code must be maintained.

Code Style:
Naming Convention: {variable map},
Comment Style: {comment},
Docstring: {docstring},
Reduntant Statement: {statement}

Code to be modified:
{buggy code}

Debug Prompt:

Task:
{task}
The following code provided fails on the task.

[InCorrect Code]
{aligned buggy code}
[/InCorrect Code]

And fail on these cases:
[Case]
{test case}
[/Case]

Please give me correct code.

Figure 3: Prompts used for Code-SPA.
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