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Abstract

High-quality instruction data is crucial for de-
veloping large language models (LLMs), yet
existing approaches struggle to effectively con-
trol instruction complexity. We present TAG-
INSTRUCT, a novel framework that enhances
instruction complexity through structured se-
mantic compression and controlled difficulty
augmentation. Unlike previous prompt-based
methods operating on raw text, TAG-INSTRUCT
compresses instructions into a compact tag
space and systematically enhances complexity
through RL-guided tag expansion. Through
extensive experiments, we show that TAG-
INSTRUCT outperforms existing instruction
complexity augmentation approaches. Our
analysis reveals that operating in tag space
provides superior controllability and stability
across different instruction synthesis frame-
works.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable success across diverse tasks (OpenAl
et al., 2024; Grattafiori et al., 2024; Qwen et al.,
2024; DeepSeek-Al et al., 2024), from natural
language understanding (Abdin et al., 2024) to
complex reasoning (Guo et al., 2025; Yang et al.,
2024a). To fully realize their potential, these mod-
els require high-quality instruction-tuning data,
which plays a crucial role in model post-training
and reinforcement learning initialization (Zhou
et al., 2023; Ye et al., 2025; Rafailov et al., 2024).
This recognition has led to extensive research in in-
struction data synthesis (Wang et al., 2023; Chung
etal., 2022; Xu et al., 2024).

While recent work has made progress in syn-
thetic data generation (Zhu et al., 2024; Xu et al.,
2024), current instruction datasets still lack suffi-
cient complexity to fully develop model capabil-
ities (Xu et al., 2023). Studies show that model
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Figure 1: AlpacaEval 2 Length Control Win Rate. TAG-
INSTRUCT achieves the highest win rate among all compared
methods. Red bars represent official released models. For
other methods, all are fine-tuned on LLaMA3-8B base model,
where blue, orange, and gray bars represent methods us-
ing Qwen2.5-72B-Instruct as teacher model, methods using
Mistral-8B-Instruct as teacher model, and base model respec-
tively. Evaluated using GPT-40-Mini.

performance strongly correlates with instruction
difficulty (Zhao et al., 2023, 2024), yet existing
approaches struggle to effectively control and scale
instruction difficulty. Specifically, Xu et al. (2023)
and its follow-up works (Wang et al., 2024b; Zeng
et al., 2024) rely on models’ prior knowledge for
self-reflection on augmentation directions, typi-
cally using prompts to directly generate “harder”
instructions. However, this approach lacks precise
control over difficulty progression, as the concept
of “harder” remains ambiguous and unquantifiable,
making it challenging to systematically guide the
augmentation process. While Zhao et al. (2023)
attempts to address this by discretizing instructions
into semantic trees for manipulation, it still strug-
gles to identify which semantic components are
worth augmenting and how to effectively guide
the augmentation direction. We name these ap-
proaches as Prompt-based Augmentation, which
face two fundamental challenges: (1) difficulty in
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identifying which semantic components are worth
augmenting, and (2) lack of principled guidance
on which augmentation direction would lead to
meaningful complexity increases.

From a linguistic perspective, instructions con-
tain both essential semantic components with high
information density and auxiliary content that
merely contributes to fluency (Kemp et al., 2018).
This observation reveals why Prompt-based Aug-
mentation struggles - by operating directly on raw
instructions, it works in an unnecessarily complex
search space that includes both essential and aux-
iliary content. To address these challenges, we
propose Structure-based Augmentation, drawing
inspiration from representation learning in Varia-
tional Autoencoders (VAEs) (Kingma and Welling,
2013; An et al., 2024). Our key insight is that
by compressing instructions into a structured tag
space, we can (1) identify valuable semantic com-
ponents by focusing only on essential information,
and (2) guide augmentation direction by quantita-
tively measuring each tag’s contribution to instruc-
tion complexity. This transforms the augmentation
problem from unstructured token-level modifica-
tions to systematic concept-level operations (team
et al., 2024).

Building on this intuition, we propose TAG-
INSTRUCT, a novel Compress & Operation frame-
work for controlled difficulty augmentation. Our
framework operates through a three-stage iterative
pipeline: (1) semantic encoding that compresses in-
structions into a compact tag representation while
preserving task-relevant information, (2) RL-based
tag expansion that explores the tag space to dis-
cover new semantic tags that meaningfully increase
complexity. (3) instruction synthesis that generates
enhanced instructions by conditioning on both the
expanded tag set and original instruction. This itera-
tive process enables progressive difficulty increases
while maintaining semantic coherence.

Extensive experiments demonstrate the effec-
tiveness of TAG-INSTRUCT across diverse set-
tings. Using Alpaca-5k (Taori et al., 2023) as the
base dataset, our method enables LLaMA-3-8B to
achieve performance comparable to GPT-4-Turbo
on standard benchmarks, significantly outperform-
ing existing instruction augmentation approaches.
Through detailed ablation studies, we verified that
operating in tag space provides superior control-
lability and makes different instruction synthesis

frameworks more stable and effective.’

2 Related Work

Instruction Data Augmentation High-quality
instruction data is fundamental for model align-
ment and performance (Grattafiori et al., 2024;
Nvidia et al., 2024). For instruction synthesis from
scratch, Wang et al. (2023) proposed automatic gen-
eration through bootstrapping from human demon-
strations, though constrained by seed data. Xu et al.
(2024) advanced this by introducing pre-query tem-
plates for direct instruction construction, while Zhu
et al. (2024) improved data quality using tagging-
based prompts and UCB-based bootstrapping. Ge
et al. (2024) introduced a persona-driven approach
using 1 billion diverse personas from web data to
create synthetic instructions at scale. For instruc-
tion enhancement based on existing data, several
methods focus on difficulty progression: Xu et al.
(2023) and Zeng et al. (2024) explored evolutionary
approaches for iterative complexity increase, Zhao
et al. (2023) proposed semantic tree structures for
controlled augmentation, and Wang et al. (2024b)
leveraged encode-decode principles. However, ex-
isting enhancement methods still lack precise con-
trol (especially numerical parameterization) over
difficulty progression, motivating our structured
tag-based approach.

Information Compression in Hidden Space
Drawing inspiration from variational autoen-
coders (Kingma and Welling, 2022) which learn
disentangled latent representations, researchers
have investigated diverse approaches to compress
instructions into abstract spaces to enhance seman-
tic understanding. One prominent direction focuses
on morphological abstraction, where instructions
are systematically decomposed into skill-oriented
tags and hierarchical concepts (Lu et al., 2023; Di-
dolkar et al., 2024; Kaur et al., 2024; Wang et al.,
2024b; team et al., 2024). Another stream of re-
search explores functional compression by trans-
forming complex problem-solving procedures into
executable representations, such as programmatic
structures or formal planning schemas (Zheng et al.,
2024a; Wang et al., 2024a; Yu et al., 2024). Com-
plementing these approaches, researchers have also
investigated continuous latent space mappings of
symbolic instructions to capture underlying seman-
tic regularities and logical relationships (An et al.,

'Our code is publicly available at https://github.com/
sustech-nlp/Tag-Instruct.
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Figure 2: Overview of TAG-INSTRUCT framework. The framework operates in three stages: (1) Encode Phrase:
Semantic Encoding compresses instructions into tag representations, (2) Expansion: Controlled Tag Expansion
explores the tag space to increase complexity while maintaining semantic coherence through iterative difficulty
augmentation, and (3) Decode Phrase: Instruction Synthesis generates enhanced instructions from the expanded
tag set. The iterative process allows for progressive difficulty increases while preserving semantic validity.

2024; Hao et al., 2024). The demonstrated efficacy
of these compression-based abstraction techniques
motivates our work to leverage structured latent
representations for controlled instruction genera-
tion. Recent information compression works like
Kaur et al. (2024) and Didolkar et al. (2024) fo-
cus on instruction synthesis from scratch, which
is orthogonal to our controlled difficulty augmen-
tation approach. While prior work (Wang et al.,
2024b) directly decodes from compressed meta-
data after self-observation (Self-Rubrics and action
sampling), our approach uniquely operates in tag
space for tag complexity enhancement before in-
struction reconstruction, enabling more controlled
instruction generation.

Data Quality Investigation Recent works have
extensively explored what constitutes high-quality
instruction data for large language models. Early
approaches by Liu et al. (2023a) and Du et al.
(2023) utilize fine-tuned models and specialized
open-source LLMs for data quality assessment.
Following works by Cao et al. (2023) and Wettig
et al. (2024) propose automatic metrics to evaluate
data quality through natural language indicators.
Several studies by Zhao et al. (2024) reveal a sur-

prisingly simple yet effective finding that longer
responses often contain more learnable informa-
tion. Other approaches by Xia et al. (2024) and
Li et al. (2024a) introduce optimizer-aware selec-
tion and instruction difficulty metrics to identify
high-quality samples. Recent work by Yang et al.
(2024b) further emphasizes the importance of dis-
tribution alignment between fine-tuning data and
the model’s original capabilities. These studies
collectively indicate that high-quality instruction
data should be difficult, human-preference-aligned,
and close to the pre-trained model’s distribution —
properties that often manifest in longer responses.
This observation inspires our measurement of in-
struction utility.

3 Method

3.1 Motivation and Overview

The quality of synthesized data correlates to cor-
rectness, diversity and complexity (Liu et al.,
2023b; Zhu et al., 2024). While recent works
(Wang et al., 2023; Kaur et al., 2025) primarily fo-
cus on enhancing instruction diversity, we systemat-
ically address instruction complexity enhancement,
aligning with previous approaches (Xu et al., 2023;
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Zhao et al., 2023). Following the standard assump-
tion in data synthesis works of having access to a
capable instruction-following teacher model, we
propose TAG-INSTRUCT for controlled complexity
augmentation.

Existing prompt-based augmentation methods
(Xu et al., 2023; Zhao et al., 2023) operate directly
in token space, lacking quantitative control mecha-
nisms and principled guidance for complexity en-
hancement. To overcome these limitations, TAG-
INSTRUCT operates through an Encode — Expan-
sion — Decode paradigm that fundamentally dif-
fers from existing token-space methods by com-
pressing instructions into a structured tag space for
systematic concept-level operations. For each in-
put instruction z, our framework operates through
three stages: Stage (1) Encode: compresses in-
struction x into semantic tags zpase (Section 3.2);
Stage (2) Expansion: expands the tag set using
RL-guided selection to identify high-utility tags
Znew, TOTMING 2,0’ = Znew U Zbase (Section 3.3)
guided by Shapley value estimation (Section 3.4);
Stage (3) Decode: reconstructs an enhanced in-
struction =’ from the expanded tags and original
instruction {z{,.., z} — @’ (Section 3.5). This ap-
proach is orthogonal to diversity-focused methods
and can be integrated with existing synthesis frame-
works. Please refer to Figure 2 for the framework
overview.

3.2 Semantic Compression

Inspired by the ideas of variational representa-
tion learning and information bottleneck principle
(Kingma and Welling, 2013; An et al., 2024), TAG-
INSTRUCT optimizes the data complexity in the
compressed discrete tag space. The tag space ex-
hibits reduced search complexity while preserving
task-relevant information. Thereby this semantic
compression helps to filter out extraneous elements
from the instructions and facilitates the tag expan-
sion, resulting in more effective complexity en-
hancement.

Given an instruction = from existing synthe-
sized data, the teacher LLM is prompted (see
the instruction-to-tag prompt in Appendix E.1) to
generate relevant tags zpase Of the input instruc-
tion. The crafted prompt is expected to explic-
itly guide the model to extract tags that preserve
core semantic meanings with the input. Among
these tags, those related to action-oriented con-
cepts and task objectives are emphasized and with
higher priority as they are indicative of the input

intension. For example, the instruction Create
an HTML page that displays a list of books and
their authors is compressed into {book_listing, au-
thor_info, web_develop}. We discuss and compare
different prompt guidelines for semantic compres-
sion in Section 5.1.

3.3 Tag Complexity Expansion

The compressed tags zp,¢e are further expanded for
complexity optimization. The potential invited tags
Znew are determined based on the following crite-
ria. (1) Tag Utility (Ruiity (2new)): Measures how
much a new tag contributes to the instruction com-
plexity. For example, adding responsive_design to
our HTML example introduces meaningful com-
plexity by requiring additional technical consider-
ations, while simple_styling adds little value. (2)
Semantic Alignment (Rqjign(Znew Zbase)): Ensures
compatibility between new and existing tags. For
instance, data_analysis might be a valuable tag
but conflicts with our web development context,
whereas user_authentication aligns naturally with
the existing web application tags. (3) Global Co-
herence (Rcoherence (Znew U 2base, £)): Verifies that
the expanded tag set can generate executable in-
structions. Tags like database_integration and
web_develop can naturally combine into coherent
tasks, while quantum_computing and web_develop
might create unrealistic requirements.

While prompt-based methods can reasonably
assess semantic alignment and global coherence
through conceptual compatibility and feasibility
checks that suit LLM strengths, tag utility quan-
tification requires more sophisticated approaches.
Although one could directly prompt the LLM to
evaluate tag utility (Zheng et al., 2023), this method
inadequately models complex tag interactions and
provides no principled evaluation framework. TAG-
INSTRUCT is proposed to incorporate a policy
model trained with preference data on tag expan-
sion task to generate augmented tags with high
utility. The preference data are collected by tag
utility quantification with Shapley value estimation
(Shapley, 1953; Goldshmidt and Horovicz, 2024)
(detailed in Section 3.4). The tags with high utility
are selected as positive while the opposite are set as
rejected samples. Initialized from the teacher LLM,
the policy model is then optimized and adapted to
the tag expansion task with alignment tuning meth-
ods like DPO (Rafailov et al., 2024). During the
tag complexity extension stage, the expanded tags
are generated by prompting the optimized policy
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model with the detailed requirements of semantic
alignment and global coherence criteria.

3.4 Utility Estimation through Shapley Values

As discussed in Section 3.3, quantification of tag
utility presents a unique challenge that requires a
more principled approach. Inspired by coopera-
tive game theory (Shapley, 1953; Goldshmidt and
Horovicz, 2024), we propose to estimate the tag
utility by measuring their marginal contributions in
instruction construction with Shapley value (Shap-
ley, 1953; Goldshmidt and Horovicz, 2024).

We frame instruction complexity enhancement
as a cooperative game where semantic tags z; € Z
are players collaborating to construct effective in-
structions. Each tag z; participates in multiple in-
struction construction games by combining with
different tag subsets S C Z. The core insight is
that a tag’s true utility ¢; can be measured through
its marginal contribution v(S U {z}) — v(95) to
instruction quality across all possible collabora-
tions .S, capturing complex interaction effects in
the compressed representation space Z. Formally,
we calculate each tag’s Shapley value as qZ;l =
X S w(S; U {zi}) — v(S;)], where N is the
number of instruction construction games. How-
ever, the computation is intractable due to the vast
number of potential tag subsets S.

We simplify the computation process and es-
timate the Shapley value based on an existing
instruction-response dataset D' = (z;, ;)| such
as Alpaca-Cleaned (Taori et al., 2023) and Tulu-
mixture (Lambert et al., 2025). This dataset is dif-
ferent from the instruction data which is to be opti-
mized for better complexity with TAG-INSTRUCT.
The tags are extracted from the instructions fol-
lowing the practice in Section 3.2. Following the
suggestions in Zhao et al. (2024) and Shen (2024),
we use response length as a proxy for instruction
quality v, as it effectively captures both complexity
and information density. To address the computa-
tional complexity of Shapley value calculation, we
approximate the tag utility as the average response
length of instructions containing that tag:

ZjeDf |yj

(1

where D! denotes instructions containing tag ¢ and
ly;| is the token length of response j. With the
dataset D', the reward of each tag can be then com-
puted with Equation 1. Please refer to Appendix D

for more details about how to collect the prefer-
ence data for optimizing the policy model on the
tag expansion task.

3.5 Instruction Reconstruction

After determining the augmented tags, TAG-
INSTRUCT then reconstruct the instruction based
on the original instruction, base tags as well as
augmented tags by prompting the teacher LLM.

The augmented instruction is optimized itera-
tively, where the output instruction of the (i — 1)}
iteration is the input of the i*" iteration with TAG-
INSTRUCT. Through this iterative process, each
subsequent iteration introduces additional complex-
ity and challenges, as new tags and requirements
are incorporated to progressively increase the diffi-
culty level of the instruction.

4 Experiments

4.1 Setup

Data and Model Settings We conducted exper-
iments using Alpaca-Clean dataset (Taori et al.,
2023), from which we randomly sampled 5K in-
structions to create Alpaca-5k as our initial instruc-
tion set. And we use LLaMA-3-8B and LLaMA-
3.2-3B as our base models, and Ministral-Instruct-
8b (Jiang et al., 2023) as the teacher model. For
data pool construction 3.4, we extract tags from
instructions following Lu et al. (2023) and utilize
instructions from Xu et al. (2024) to estimate tag re-
wards and train our policy model for tag expansion.
Detailed specifications of the datasets, models, and
training procedures are provided in Appendix B.

Evaluation Benchmarks We compared TAG-
INSTRUCT with baselines on the following bench-
marks: (1) AlpacaEval 2.0 (Li et al., 2023; Dubois
et al., 2024) is an automated evaluation framework
based on a annotation model(GPT-4). By com-
paring responses generated by two different mod-
els for the same set of 805 prompts, AlpacaEval
computes the pairwise win rate, automating the
evaluation process. (2) MT-Bench (Zheng et al.,
2024b) is aimed at assessing the conversational
and instruction-following abilities of LLMs. A
one-shot chat template is used to test all mod-
els in our experiments. (3) ArenaHard-Auto (Li
et al., 2024b) is an automatic evaluation tool for
instruction-tuned LLMs. It includes 500 challeng-
ing queries sourced from Chatbot Arena, evaluated
against a baseline model (GPT-4-0314). For all
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AlpacaEval 2.0 Arena-Hard MT-Bench

Setup #Convs

LC (%) WR (%) SD Score (95% CI) Score
Base Model: LLaMA3-8b / Teacher Model: Ministral-Instruct-8b
Alpaca-5k (baseline) 5K 9.33 5.09 0.74 3.1(-0.7,0.7) 5.20
+ Evol-Instruct 5K 12.29 (+2.96) 9.90 (+4.81) 099 16.8(-1.7,1.6) (+13.7) 5.68 (+0.48)
+ Auto-Instruct-Evol 5K 11.49 (+2.16) 10.19 (+5.10)  1.01 16.8 (-1.8,1.4) (+13.7) 5.89 (+0.69)
+ Tree-Instruct 5K 10.89 (+1.56) 1047 (+5.38) 1.01 16.6 (-1.6, 1.5) (+13.5) 5.94 (+0.74)
+ CodecLM 5K 14.73 (+5.40) 1271 (+7.62) 1.10 19.2(-1.4,1.5) (+16.1) 6.00 (+0.80)
Alpaca-Clean 52K 7.73 (-1.60) 521 (+0.12) 0.74  3.0(-0.4,0.5) (-0.1) 4.89 (-0.31)
WizardLM-data 192K 11.68 (+2.35) 5.69 (+0.60)  0.75 4.5(-0.8,1.1) (+1.4)  5.36 (+0.16)
TAG-INSTRUCT 5K 19.50 (+10.17) 19.21 (+14.12) 1.30 22.1(-2.1,1.9) (+19.0) 6.15 (+0.95)
Base Model: LLaMAZ3.2-3b / Teacher Model: Ministral-Instruct-8b
Alpaca-5k (baseline) 5K 8.52 4.73 0.71 2.6 (-0.5,0.7) 4.21
+ Evol-Instruct 5K 9.06 (+0.54) 7.48 (+2.75)  0.85 127 (-1.5,1.4) (+10.1) 4.95 (+0.74)
+ Auto-Instruct-Evol 5K 8.79 (+0.27) 8.79 (+4.06) 095 10.8(-1.2,1.2) (+8.2) 5.18 (+0.97)
+ Tree-Instruct 5K 10.01 (+1.49) 8.50 (+3.77) 091 104 (-1.2,1.4) (+7.8) 5.18 (+0.97)
+ CodecLM 5K 11.24 (+2.72) 11.19 (+6.46) 1.03 12.7(-1.1,1.2) (+10.1) 4.79 (+0.58)
Alpaca-Clean 52K 8.06 (-0.46) 412 (-0.61)  0.67 2.8(-0.6,0.8) (+0.2)  4.74 (+0.53)
WizardLM-data 192K 6.74 (-1.78) 4.46 (-0.27)  0.68 3.7(-0.6,0.9) (+1.1)  4.94 (+0.73)
TAG-INSTRUCT 5K 14.28 (+5.76) 14.81 (+10.08) 1.19 129 (-1.2,1.1) (+10.3) 5.21 (+1.00)

Table 1: Performance comparison of instruction-tuned models on LLaMA3-8b and LLaMA3.2-3b base models. We
report Length Control (LC) and Win Rate (WR) from AlpacaEval 2.0, Standard Deviation (SD) of model outputs,
and Arena-Hard scores with 95% Confidence Intervals (CI). Bold numbers indicate best performance across all
metrics, while rows with blue background highlight our TAG-INSTRUCT approach.

evaluations, we used GPT-40-mini as the judge
model given our limited budget.

Baselines We evaluated our method against
several state-of-the-art instruction augmentation
methods and popular instruction-tuning datasets.
The methodological baselines included Self-
Instruct (Wang et al., 2023), Evol-Instruct (Xu
et al., 2023), Tree-Instruct (Zhao et al., 2023),
Auto-Instruct-Evol (Zeng et al., 2024), and Code-
cLM (Wang et al., 2024b). For data baselines, we
compared against Alpaca-Clean (Taori et al., 2023)
and WizardLM-data (Xu et al., 2023). Detailed
descriptions of each baseline can be found in Ap-
pendix C.

4.2 Results

We present experimental results in Table 1, demon-
strating the superior performance of our TAG-
INSTRUCT approach across model scales and eval-
uation metrics. On the LLaMA3-8b model, TAG-
INSTRUCT shows significant improvements over
the Alpaca-5k baseline: +10.17% in Length Con-
trol and +14.12% in Win Rate on AlpacaEval 2.0,
+19.0 points on Arena-Hard, and +0.95 points on
MT-Bench. Notably, TAG-INSTRUCT achieves

this using only 5K conversations, outperforming
larger datasets like WizardLM (192K conversa-
tions) which shows only 2.35% Length Control and
0.60% Win Rate improvements. On LLaMA3.2-3b,
our method shows strong performance with +5.76%
Length Control and +10.08% Win Rate improve-
ments over baseline, exceeding CodecLM (+2.72%
and +6.46%). Larger datasets like Alpaca-Clean
(52K) and WizardLM (192K) show decreased per-
formance on the 3b model, highlighting our ap-
proach’s value for smaller architectures. Across
all metrics, TAG-INSTRUCT outperforms existing
methods including CodecLM. On the 8b model,
we achieve +4.77% Length Control and +6.50%
Win Rate improvements, while on the 3b model,
we show +3.04% Length Control and +3.62% Win
Rate gains. These improvements demonstrate the
effectiveness of our tag-based approach.

4.3 Ablation Study

Impact of Reward Model Guidance. As dis-
cussed in Section 3.3, we compare different ap-
proaches to expand new tags given the input in-
struction and base tags. The vanilla prompt-based
method directly generates new tags with crafted
prompt (see in Appendix 7). The RL-based ap-
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Strategy #Inst #Resp AE2.0 AH
Base (Alpaca-5k) 21.0 1595 8.78 3.1
Prompt-based 287.3 1006.7 15.43 19.1
RL-based 285.8 1037.0 19.50 22.1

Table 2: Performance comparison of different tag ex-
pansion strategies. #Inst represents instruction length,
#Resp represents response length, AE2.0 represents Al-
pacaEval2.0 length-controlled win rate, AH represents
ArenaHard win rate.

proach is incorporated in TAG-INSTRUCT which
uses optimized policy model for generation of tags
with high utility. The results in Table 2 show
that RL-based sampling outperformed random sam-
pling in the tag expansion task. With comparable
instruction lengths (285.8 vs 287.3 tokens), the
RL-guided approach generated longer responses
(1037.0 vs 1006.7 tokens) and achieved better per-
formance on Alpaca-Eval 2.0 (19.50% vs 15.43%)
and ArenaHard (22.1% vs 19.1%). This improve-
ment demonstrates that our policy model effec-
tively encourages the generation of high-quality
tags which can improve the data complexity.

Evaluation of Iterative Optimization. To assess
the effectiveness of our iterative framework, we
analyzed the progression across five iterations, as
shown in Figure 3. We compared three approaches:
Evol-Instruct (baseline), TAG-INSTRUCT (using
prompt-based tag expansion), and TAG-INSTRUCT-
Reward (using RL-trained tag generator). Follow-
ing established frameworks(Xu et al., 2024), we
used the average of Arena-Hard and Alpaca-Eval
2.0 scores for quality assessment, and Instagger(Lu
et al., 2023) tag counts for complexity measure-
ment. As shown in Figure 3a, TAG-INSTRUCT-
Reward consistently achieves higher complexity
scores across iterations compared to both TAG-
INSTRUCT and Evol baselines. The quality met-
rics in Figure 3b demonstrate a similar pattern,
with TAG-INSTRUCT-Reward showing steeper im-
provement and reaching higher final performance.
Analysis of response lengths (Figure 3c) further
validates the effectiveness of our approach, with
TAG-INSTRUCT variants generating substantially
longer responses than Evol. The superior perfor-
mance of TAG-INSTRUCT-Reward over prompt-
based TAG-INSTRUCT confirms that our RL-based
tag generator enables more controlled and effec-
tive instruction enhancement through structured

tag-space operations.

5 Analyses

5.1 Different Crafted Prompts for Semantic
Compression

A critical challenge in instruction augmentation
is achieving meaningful complexity enhancement
while preventing semantic drift from the original in-
struction. To address this, we compare four prompt
strategies for semantic compression, each designed
with different priorities. We selected 1,000 instruc-
tions from Alpaca-5k and conducted five iterations
of complexity enhancement to evaluate four en-
coding strategies: Basic (simple template), En-
hanced (joint intention and semantic compression),
Evolved (intention-focused encoding), and Model-
based (pure intention encoding) (Lu et al., 2023).
Detailed prompts for each strategy are provided in
Appendix E.1.

We assessed their performance along two key di-
mensions: (1) semantic preservation, measured by
semantic similarity and ROUGE-L scores between
original and reconstructed instructions, and (2) in-
tent extraction capability, which evaluates whether
the prompt explicitly requires extracting task inten-
tion from instructions.

As shown in Table 3, a clear pattern emerges:
methods with intent extraction capability (Intent
Tag = True) consistently outperform the basic ap-
proach, with performance gains inversely corre-
lated with semantic similarity. This reveals a funda-
mental insight—task-aware compression that prior-
itizes functional understanding over surface-level
similarity yields superior complexity enhancement.
The model-based approach achieves the highest
AlpacaEval score (14.3498) despite the lowest sim-
ilarity (0.3600), demonstrating that aggressive se-
mantic abstraction can be beneficial. However, to
maintain instruction coherence and prevent exces-
sive semantic drift during iterative augmentation,
we adopt the Evolved strategy, which achieves the
best ArenaHard performance (18.0) while preserv-
ing moderate semantic alignment (0.5373). This
strategic trade-off ensures our framework generates
complex yet semantically grounded instructions
throughout the iterative enhancement process.

5.2 Tag Utility Analysis

To better understand the differences between tags
with varying utility values, we categorized the tags
into quartiles (Q1-Q4) based on their utility values
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Figure 3: Iterative analysis of instruction generation. Comparison between Evol-Instruct (baseline), TAG-
INSTRUCT (prompt-based), and TAG-INSTRUCT (RL-based) across: (a) Instruction complexity via Instagger tags;
(b) Quality score (average of Arena-Hard and Alpaca-Eval 2.0); (c) Response length.

Method ‘ AlpacaEval2.0 LC  ArenaHard ‘ Similarity ROUGE-L | Intent Tag
Basic 12.9182 16.1 (-1.7, 1.5) 0.6536 0.3113 False
Enhanced 13.1831 16.7 (-1.2, 1.6) 0.6023 0.2778 True
Evolved 14.1889 18.0 (-1.8,1.4) 0.5373 0.1992 True
Model-based(Lu et al., 2023) ‘ 14.3498 17.6 (-1.8,2.1) ‘ 0.3600 0.1667 True

Table 3: Analysis of prompt evolution steps and their impact on reconstruction quality and downstream performance.

in ascending order. We then analyzed the number
of derived meanings for the tags within each quar-
tile. The derived meanings measure captures how
many distinct semantic interpretations a tag can
reasonably support across different contexts. For
instance, while database_backup typically refers to
a single concept of data preservation, security can
encompass authentication mechanisms, encryption
protocols, access control systems, and threat de-
tection frameworks. We employed the prompting
detailed in Appendix E.2, which is designed ac-
cording to research on semantic information mea-
surement (Kuhn et al., 2023). This prompt sys-
tematically probes for multiple meanings before
merging similar concepts to form distinct semantic
categories.

Meaning Count Distribution Across Tag Percentiles

o 2 4 6 8 10 12 14
Count

Figure 4: Number of derived meanings across tag utility
quartiles (Q1-Q4). Higher utility tags (Q4) exhibited
more derived meanings compared to lower utility tags
(Q1), suggesting richer semantic content enabled more
effective instruction generation. The red number indi-
cates the mean value.

As shown in Figure 4, tags with higher utility

values exhibited consistently more derived mean-
ings, indicating they encoded richer semantic in-
formation that could be interpreted in more diverse
ways. Tags in Q4 (75-100%) demonstrated the
highest semantic complexity with broader meaning
distributions, while Q1 tags (0-25%) showed more
constrained semantic interpretations. This seman-
tic richness enabled diverse instruction generation
pathways. A comprehensive analysis of additional
representative examples and their semantic inter-
pretations is provided in Appendix F. This finding
suggested that the effectiveness of high-utility tags
in generating complex and diverse instructions may
be attributed to their inherently richer semantic
content.

5.3 Quantitative Control Through
High-Utility Tags

We investigate whether our utility-based tag se-
lection provides quantitative control beyond ex-
pansion operations. Tag combination, which
merges distinct semantic concepts to create di-
verse instructions, is fundamental to recent syn-
thesis methods (Kaur et al., 2024; Didolkar et al.,
2024), yet existing approaches lack principled guid-
ance for selection. Our framework transforms this
from heuristic sampling to quantitative optimiza-
tion through Shapley-based utility scores.

To validate this quantitative advantage, we con-
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Strategy #Inst #Resp AE2.0 AH
Low-utility 85.02 524.87 11.02 15.8
Random 99.09 861.38 14.85 20.9
High-utility 94.21 967.52 20.21 24.6

Table 4: Quantitative impact of tag utility on synthe-
sis quality. High-utility tags consistently outperform
random selection across metrics, validating our Shapley-
based scoring mechanism.

structed three tag pools of 1000 tags each from
Section 3.4 using different selection criteria: High-
utility (selecting tags with highest Shapley values),
Low-utility (selecting tags with lowest Shapley val-
ues), and Random (uniformly sampling tags). For
each pool, we randomly sampled two tags to com-
bine and decoded them into instructions using the
prompting template in Appendix E.3, generating
5,000 instructions per pool. We then fine-tuned
models using these instruction sets under identical
configurations to ensure fair comparison.

Table 4 demonstrates the impact of quantitative
tag selection. High-utility tags yield 12.3% longer
responses (967.52 vs 861.38 tokens) and achieve
36.1% relative improvement on AlpacaEval 2.0
(20.21% vs 14.85%) compared to random selec-
tion—despite generating more concise instructions
(94.21 vs 99.09 tokens). This efficiency gain (bet-
ter performance with shorter prompts) validates
that our utility scores capture intrinsic semantic
value rather than superficial verbosity. Further-
more, the monotonic relationship between tag util-
ity and downstream performance (Low: 11.02% —
Random: 14.85% — High: 20.21% on AlpacaEval)
establishes that our framework provides quantita-
tive control over instruction quality—a capability
absent in existing prompt-based methods. Ulti-
mately, this demonstrates that structured tag-space
operations with utility guidance offer principled
mechanisms for instruction synthesis, enabling pre-
cise optimization rather than stochastic exploration.

5.4 The Impact of Different Teacher Model

In this section, we explore the performance of TAG-
INSTRUCT with different teacher models. Using
the same experimental setup as our main experi-
ments, we compare our approach with baselines
by finetuning LLama3-8B using Qwen2.5-72B-
instruct (Qwen et al., 2024) as the teacher model.
As shown in Table 5, TAG-INSTRUCT consistently
outperforms the baselines, achieving the highest

Method AE2.0 LC ArenaHard
Alpaca-5k (baseline) 19.50 22.1(-2.1,1.9)
Evol-Instruct 36.34 38.7(-2.8,2.1)
Codeclm 30.64 37.1(-2.2,2.4)
Auto-Instruct-Evol 31.65 35.6(-2.0,2.0)
Tree-Instruct 3271 33.6(-2.3,1.9)
TAG-INSTRUCT 42.76 41.2 (-2.3,2.1)

Table 5: Performance comparison with different instruc-
tion methods using Qwen2.5-72B-instruct as teacher
model. AE2.0 LC represents AlpacaEval2.0 length-
controlled win rate.

scores on both AlpacaEval2.0 length-controlled
tasks (42.76%) and ArenaHard evaluation (41.2%).
These results underscore the broad applicability of
our method, surpassing the baseline models across
different teacher models. When compared to us-
ing Ministral-Instruct-8b as the teacher, Qwen2.5-
72B-instruct enhances performance by 23.26 on
AlpacaEval2.0 and 19.1 on ArenaHard. This sig-
nificant improvement can be attributed to two key
factors: First, stronger models typically exhibit su-
perior instruction-following capabilities, resulting
in higher-quality instruction generation with fewer
inconsistencies or unsolvable problems. Second,
more capable teacher models possess superior rea-
soning abilities, allowing them to generate higher-
quality responses with more sophisticated analyti-
cal thinking and deeper insights. This suggests that
leveraging more advanced teacher models can sub-
stantially enhance both the complexity and quality
of the generated instruction dataset.

6 Conclusion

In this paper, we propose TAG-INSTRUCT, a novel
framework for enhancing instruction complexity
through structured semantic compression and con-
trolled difficulty augmentation. By operating in
a compressed tag space rather than raw text, our
approach enables more precise and controllable
instruction enhancement. Empirical results on Al-
pacaEval 2 demonstrate that TAG-INSTRUCT out-
performs existing instruction augmentation meth-
ods. Our analysis shows that structured semantic
manipulation enables controlled progression of in-
struction difficulty while maintaining coherence
across different synthesis frameworks. The effec-
tiveness of our approach suggests that structured
semantic manipulation is a promising direction for
instruction optimization in language models.
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Limitations

Despite the effectiveness of our approach, we iden-
tify several limitations. First, our semantic com-
pression process may lose some nuanced infor-
mation during the discretization of continuous se-
mantic spaces into discrete tags. Second, using
response length as a proxy for instruction quality
in tag utility estimation might not fully capture
all aspects of instruction complexity. Third, our
framework may introduce some noise during the
tag expansion process, as we do not incorporate
explicit filtering mechanisms to validate the seman-
tic coherence of newly generated tags. Finally, the
generalizability of our approach may be limited as
our current evaluation focuses primarily on general-
domain instructions; future work should explore
the effectiveness of TAG-INSTRUCT in specialized
domains such as code generation and mathematical
reasoning tasks.
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A TAG-INSTRUCT Prompt Template Demonstration

A.1 Encode/Decode Prompts for I2T and T2I

This section presents the prompt templates used for instruction-to-tag (12T) encoding and tag-to-instruction
(T2I) decoding. The I2T prompt extracts semantic tags from instructions, while the T2I prompt generates
enhanced instructions based on tags and original questions.

B Experimental Setup Details
B.1 Dataset Specifications

We utilized Alpaca-Clean (Taori et al., 2023), which contains high-quality instruction-response pairs
generated by GPT-4 and manually filtered by human annotators. From this dataset, we randomly sampled
5K instructions to create Alpaca-5k as our initial instruction set.

B.2 Model Architecture and Training Protocol

Our implementation uses the following specifications:

Base Models We employed LLaMA-3-8B and LLLaMA-3.2-3B as base models, with Ministral-Instruct-
8b (Jiang et al., 2023) serving as the teacher model.

Training Configuration The training protocol followed these parameters: Training Duration of 3
epochs, Learning Rate starting at 2 x 10~> with cosine schedule, utilizing 8 GPUs with 80GB memory
each, global Batch Size of 128, and maximum Sequence Length of 2048 tokens.

Instruction Processing For instruction processing, we used the Alpaca template for single-turn settings,
performed tag extraction following methodology from Lu et al. (2023), conducted tag reward estimation
using instructions from Xu et al. (2024), and implemented policy model training for the tag expansion
task. For additional implementation details, refer to Appendix D.

C Detailed Description of Baselines

C.1 Methodological Baselines

We compared our approach against the following methodological baselines:

* Self-Instruct (Wang et al., 2023): This method generates synthetic instruction-following examples
automatically to enhance model alignment with human instructions.

* Evol-Instruct (Xu et al., 2023): An iterative instruction evolution framework that progressively
increases instruction complexity while maintaining quality, enabling large-scale generation of high-
complexity instruction data for LLM training.

* Tree-Instruct (Zhao et al., 2023): This approach systematically enhances instruction complexity by
adding nodes to semantic trees, allowing controlled difficulty levels.

* Auto-Instruct-Evol (Zeng et al., 2024): An end-to-end framework that evolves instruction datasets
using LL.Ms without human effort, automatically analyzing and optimizing evolutionary strategies.

* CodecLM (Wang et al., 2024b): This method employs encode-decode principles with LLMs as
Codecs, using metadata to capture target instruction distributions and create tailored instructions.

C.2 Data Baselines

We also compared against the following datasets:

* Alpaca-Clean (Taori et al., 2023): A high-quality instruction-following dataset generated by GPT-4
and manually filtered by human annotators.

* WizardLM-data (Xu et al., 2023): A large-scale instruction-following dataset created through
evolved instructions using proprietary LLMs.
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Semantic Tag Extraction Prompt Template for I2T Encoding

You are a semantic analysis expert. Your task is to extract exactly three essential tags that capture the core semantic
concepts of the given instruction or question. The tags should be:

- Concise (1-2 words each)

- Hierarchically ordered by importance

- Generalizable across similar tasks

### Guidelines:

1. Focus on action-oriented concepts

2. Avoid redundant or overlapping tags

3. Use standard terminology when possible

### Examples:

[Input]

Describe a situation where team collaboration improved the outcome of a project.
[Tags]

teamwork_experience, project_outcomes, success_factors

[Input]

What strategies can be used to improve time management in a busy work environment?
[Tags]

productivity_methods, workload_optimization, efficiency_tactics

[Input]

Outline the steps required to create a successful marketing campaign for a new product launch.
[Tags]

campaign_planning, market_strategy, launch_execution

[Input]

In the context of climate change adaptation, analyze how urban planning strategies can be modified to create resilient
cities that can withstand extreme weather events while maintaining economic growth and social equity for their residents
over the next 50 years.

[Tags]

urban resilience, climate adaptation, sustainable development

[Input]

Design a comprehensive employee training program for a multinational corporation that addresses cultural sensitivity,
remote work effectiveness, and digital tool proficiency while ensuring consistent skill development across different time
zones and accounting for various learning styles and language barriers.

[Tags]

corporate training, global workforce, skill development

[Input]

Develop a detailed analysis of how artificial intelligence implementations in healthcare systems can improve patient
outcomes while considering privacy concerns, medical ethics, and the integration challenges with existing hospital
infrastructure and staff training requirements.

[Tags]

healthcare Al, medical ethics, system integration

##H# Task:
Given the following instruction, provide exactly three semantic tags following the above format and guidelines:

[Input]
{instruction}

[Output Format]
tagl, tag2, tag3

[Tags]

Figure 5: Prompt template for extracting semantic tags from instructions, with examples demonstrating tag extraction
across diverse domains
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Tag-to-Instruction Prompt Template for T2I Decoding

Using the provided tags and original question, generate a new version of the question that is more complex and
thought-provoking.

### Requirements:

1. Tag Selection: Choose a subset of the tags that best enhance the depth of the question.

2. New Question Complexity: The new question should be more challenging than the original, requiring deeper
thought, but it should be solvable. Avoid simply adding length; instead, focus on making the question more insightful
and intellectually engaging.

3. Solvability: Ensure the new question remains clear and achievable.

### Output Format:
[Tags]
Here are the existing tags.

[Original Question]
Here is the original question.

Output:
[New Question]
Provide the new, more complex question.

### Your Task:
[Tags]
{tags}

[Original Question]
{question}

Output:
[New Question]

Figure 6: Template for generating enhanced instructions from semantic tags while maintaining clarity and solvability

Tag Expansion and Complexity Enhancement Prompt Template

Please generate only one new tag based on the existing tags and the given task or question. Then, using all the tags,
create a new, more challenging version of the task or question.

### Important:
The new tag should differ from the previous tags and relate to the context of the question.

### Format:

[Tags]: Here are the existing tags.

[Original Question]: Here is the original question.
Output:

[New Tagl: Here is the new tag.

[New Question]: Here is the new question.

### Your Task:

[Tags]: {tags}

[Original Question]: {question}
Output:

Figure 7: Template for expanding tag set and enhancing question complexity through contextual tag addition
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Response Generation Prompt Template

Below is an instruction that describes a task, write a response that appropriately completes the request.

### Instruction:
{instruction }

### Response:

Figure 8: Simple template for generating responses to task instructions

D Tag Expansion Implementation Details

This section provides implementation details for our tag expansion approach using reinforcement learning
to optimize the policy model for high-utility tag generation.

D.1 Tag Pool Construction
We construct a comprehensive tag pool using Magpie-500k (Xu et al., 2024) as seed data:

Tag Extraction and Utility Estimation For each instruction in Magpie-500k, we extract semantic tags
using the teacher LLM following Section 3.2. We then compute the utility score for each unique tag using
Equation 1:
@i _ ZjeDi ‘yj’
|Di

where D; denotes instructions containing tag 2.

Tag Pool Formation Based on utility scores, we rank all extracted tags and form the tag pool T =
{t1,t2,...,tn} ordered by decreasing utility. We define 7go0q as the top 10,000 highest-utility tags and
Thad as the bottom 10,000 lowest-utility tags.

D.2 Best-of-N Tag Expansion and Scoring

Candidate Generation For each base tag set zp,s, we follow the prompt template in Figure 7 to
generate N = 20 candidate expansion tags using the teacher LLM:

Z[(l’é)w NP(Z|Zbase,l'), 1= 1,2,...,20
()

Embedding-based Scoring We score each candidate tag zniw using embedding similarity with the
pre-constructed tag pools. Let emb(-) denote the embedding function, we compute:

i 1 i
scoreéo)od = Z cos(emb(z,(le) ),emb(t)) )
‘ITgood‘ tETgood
scoret(f‘;i)d _ Z cos(emb(zr(li)w),emb(t)) 3)
‘Rad| € Traa

The final score for candidate 7 is:

(i) — @ (4)
score™” = score, 4 — scorey,

The insight is that high-quality tags should be semantically closer to high-utility tags and farther from
low-utility tags.
D.3 Preference Pair Construction

Based on the computed scores, we construct preference pairs for DPO training. For the chosen tag, we
select zeposen = arg max; score(”) which represents the highest-scoring candidate. For the rejected tag,

we randomly sample Zrejected from the remaining candidates {zrﬂz& . j # arg max; score(®) }.
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D.4 Policy Model Training

DPO Training The policy model is optimized using Direct Preference Optimization on the collected
preference pairs:

Lppro = —E(z, 2) [logg (5 log M — Blog W)}
ﬂ-ref(zw |Zbase7 I’) Wref(Zl |Zbase7 i‘)

where z,, and z; denote chosen and rejected tags respectively, mf is the reference model (teacher LLM),
and §3 controls the KL penalty strength. We trained the model using a learning rate of 5 x 10~° with batch
size of 128 preference pairs over 1 epochs. The KL penalty coefficient (3) was set to 0.1, and we used the
sentence-transformers/all-MinilM-L6-v2 model for generating embeddings.

While the above process can also be implemented using Proximal Policy Optimization (PPO) with the
reward function:

R(Znew) = 5COI€g00d — SCOTEhad

and the PPO objective:
Lppo = Eq [min (rt(ﬁ)flt, clip(r¢(0),1 — ¢, 1+ e)flt)}

where 7(6) = %

stability in practice.

and A, is the advantage estimate, we choose DPO for its superior efficiency and

E Analysis Experiment Setup

E.1 Tag Extraction Experiment

We selected 1,000 instructions from alpaca-clean (Taori et al., 2023) and conducted five iterations of tag
expansion to obtain a total of 5k instructions. We then followed the same supervised fine-tuning process
as in the previous section. Our aim was to evaluate the performance of different encoding strategies in
generating tags from instructions. To systematically evaluate different encoding approaches, we designed
four template variants that explore different aspects of instruction encoding:

* Basic: A minimal template focused on simple tag extraction without additional guidance

* Enhanced: A comprehensive template that jointly captures task intent and semantic meaning through
explicit guidelines and hierarchical organization

* Evolved: An intent-focused template that emphasizes action-oriented concepts and task objectives
while maintaining semantic coherence

* Model-based: The instagger model (Lu et al., 2023), A template that prioritizes pure intent extraction
by focusing on core task objectives and desired outcomes,

Each template was carefully designed to test specific hypotheses about effective instruction encod-
ing, with variations in guidance specificity, semantic preservation requirements, and intent extraction
mechanisms (detailed templates in Appendix E.1).

We assessed their performance along two key dimensions:

Semantic preservation We measured reconstruction quality using CrossEncoder (Reimers and
Gurevych, 2019), specifically the cross-encoder/stsb-roberta-base model, to compute semantic sim-
ilarity between original and reconstructed instructions. We also used ROUGE-L scores as a surface-level
textual alignment metric.
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Intent extraction capability We evaluated whether the prompt explicitly requires extracting task
intent from instructions, such as identifying action verbs or task objectives. For example, the Enhanced
template includes specific guidance like "Focus on action-oriented concepts" and "Hierarchically order by
importance."

The reconstruction process used a standardized template (shown in Appendix 9) that provides examples
and clear formatting guidelines to ensure consistent instruction regeneration from tags.

We present three different template designs for tag generation and analyze their performance, with the
Evolved template being our 12T prompt shown in Figure 5:

Basic Tag Generation Prompt Template (Reconstructed Rate: 0.6536 Arena Hard: 0.3113)

Extract exactly three representative tags that capture the core concepts of the following instruction or question. These
tags should allow the reconstruction of the original instruction or question while retaining its meaning and intent.
Ensure the tags are concise and distinct.

[Input]
{instruction}

[Tags]

Enhanced Tag Generation Prompt Template (Reconstructed Rate: 0.5373 Arena Hard: 0.1992)

You are a semantic analysis expert. Your task is to extract exactly three essential tags that capture the core semantic
concepts of the given instruction or question. The tags should be: - Concise (1-2 words each)

- Hierarchically ordered by importance

- Generalizable across similar tasks

### Guidelines: 1. Focus on action-oriented concepts
2. Avoid redundant or overlapping tags
3. Use standard terminology when possible

### Examples: [Input]
In the context of climate change adaptation, analyze how urban planning strategies can be modified to create resilient

cities.

[Tags]
urban resilience, climate adaptation, sustainable development

[Input]
Design a comprehensive employee training program for a multinational corporation addressing cultural sensitivity.

[Tags]
corporate training, global workforce, skill development

### Task: Given the following instruction, provide exactly three semantic tags following the above format and guidelines:

[Input]
{instruction }

[Output Format]
tagl, tag2, tag3

[Tags]

E.2 Derived Meaning Prompt

Below is the complete prompt template used for tag semantic analysis. This template is designed to
systematically explore and analyze the semantic dimensions of instruction tags by encouraging divergent
thinking followed by convergent analysis. The template guides the model through a structured process
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Model-based Tag Annotation Prompt Template (Reconstructed Rate: 0.36 Arena Hard: 0.1667)

You are a helpful assistant. Please identify tags of user intentions in the following user query and provide an explanation
for each tag. Please respond in the JSON format:

{

"tag": "str",

non

"explanation": "str

}

"

Query: {instruction}

Assistant:

Decode Prompt Reconstruction Template

Given the following tags, reconstruct the original instruction as closely as possible.
### Example 1: [Tags]
teamwork, collaboration, project management

[Instruction]
Describe a situation where team collaboration improved the outcome of a project.

### Example 2: [Tags]
time management, productivity, work-life balance

[Instruction]
What strategies can be used to improve time management in a busy work environment?

### Example 3: [Tags]
marketing, strategy, product launch

[Instruction]
Outline the steps required to create a successful marketing campaign for a new product launch.

### Your Task: [Tags]
{tags}

[Instruction]

Figure 9: Decode Prompt Reconstruction Template
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of first generating multiple potential interpretations, then carefully consolidating related concepts, and
finally distilling the key distinct meanings. This approach helps reveal the semantic richness and utility of
different tags in instruction generation:

Tag Analysis Prompt Template

For the tag "{tag}", follow these steps:

1. Think Different Step: List as many meanings as possible across different domains.

2. Merge Step: Reflect on the meanings and combine similar ones into a single, broader concept.

3. Final Answer: Provide as few meanings as possible, only listing the most essential and distinct ones.
### Examples:

[Input]

"video_share"

[Think Different Step]

1. A feature to distribute video content

2. A social media feature to repost videos

3. A platform for users to collaborate on video creation
4. A tool for sharing personal video files

[Merge Stepl]
- "Distribute video content" and "repost videos" are closely related — merge them into one
- "Collaborate on video creation" and "share personal video files" are related but distinct

[Final Answer]
1. A feature to share videos online
That’s all

[Input]
"cloud computing"

[Think Different Step]

1. A method of delivering computing services over the internet

2. A platform for storing and processing data remotely

3. A framework for providing software as a service (SaaS) via the internet

4. A way for businesses to scale infrastructure without owning physical hardware

[Merge Step]

- "Delivering computing services" and "storing and processing data remotely" are related — merge into one
- "Providing software as a service (SaaS)" is distinct from infrastructure and storage

- "Scaling infrastructure without owning hardware" is also distinct

[Final Answer]

1. A method of delivering computing services and storing data remotely over the internet
2. A framework for providing software as a service (SaaS)

3. A way for businesses to scale infrastructure without owning physical hardware

That’s all

For the tag "{tag}", apply this process and provide the final answer:

Figure 10: Template for analyzing tag semantics through divergent thinking and convergent analysis.

E.3 Tag Combination

Building on our quantitative control framework through high-utility tags, we introduce tag combination as
a principled approach to instruction synthesis. Tag combination merges multiple semantic concepts to
create richer, more complex instructions. While prior work has explored combining concepts heuristically,
our utility-based selection provides a systematic way to identify and combine high-value tags for optimal
instruction generation. The following template (see Figure 11) demonstrates our approach to combining
tags into coherent instructions.

17727



Tag Combination Prompt Template

Create a comprehensive and challenging task that incorporates these concepts: {tags}.
Do not explain or provide any additional information. Only return the task/instruction.

### Response:

Figure 11: Template for combining tags into a task that incorporates their semantic concepts.

F Case Study: Tag Examples

To further illustrate the relationship between tag value and semantic richness, we present a detailed
breakdown of tags across different quartiles (Q1-Q4) based on their Shapley values. Table 6 provides
the tag name, occurrence count, average Shapley value, and the number of derived meanings, along with
example interpretations for each tag.

Quartile Tag Count Avg. Shap- | Derived Meanings
ley
Q4 data accuracy 17 321.48 Ensuring correctness; precision; reliability; integrity;
completeness
pytorch 125 321.69 Deep learning framework; training neural networks; Al
research; NLP tool
payment processing 48 321.72 Financial transactions; credit card management; mobile
payments; cryptocurrency; subscriptions
food inquiry 52 321.88 Ingredients and nutrition; restaurant recommendations;
availability; allergens; dietary advice
graph database 7 321.89 Graph data storage; network analysis; knowledge graphs;
recommendation systems
Q3 tableau 5 240.90 Data visualization tool; dashboard platform
satire 7 240.90 Comedy genre; literary exaggeration
event attendance 19 240.95 Registration; attendee count; attendee list; event man-
agement
comparative religion 57 240.99 Religion comparison; texts; rituals; history; ethics; sym-
bols
personality  develop- | 3 241.00 Self-improvement; emotional intelligence; confidence
ment building; personal growth
Q2 recipe write 7 176.92 Meal preparation steps; cuisine collection; digital meal
planning
grammar check 216 176.99 Grammar correctness; punctuation verification; spelling
check
punctuation check 3 177.00 Punctuation accuracy; error correction; adherence to
grammar rules
physical interaction 3 177.00 Touch interaction; manual labor; industrial operations;
sports activities
work 26 177.13 Job; task; workplace; labor
Q1 math expression eval 3 20.13 Expression evaluation; algebraic solution; simplification
code execution env 3 24.38 Code testing; automation scripts; distributed execution
repayment 3 27.25 Loan repayment; refunding; restoration
basic operation 10 28.39 System operations; core tasks
number relationship 3 28.52 Mathematical relations; sequences; dataset correlation

Table 6: Tag Analysis across Quartiles (Q1-Q4). Higher quartiles indicate higher Shapley values, corresponding to
increased semantic richness.

G Case Study: Progressive Enhancement of Web Development Requirements

This case study demonstrates the progressive enhancement of web development requirements, showing
how a simple book listing page evolves into a comprehensive, accessible, and feature-rich web application.
The following table presents five iterations of requirements, each building upon the previous version.
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Version

Requirements

Tags

Iterl

Develop an HTML page that dynamically displays a list of books and their
authors using CSS for styling. The page should include a search functionality
that filters the book list based on the author’s name. Additionally, implement a
hover effect that reveals a brief description of each book when the user hovers
over a book title. Ensure the page is responsive and visually appealing.

web_development,
book_listing,
author_info,
css_styling

Iter2

Develop an HTML page that dynamically displays a list of books and their
authors using CSS for styling. The page should include a search functionality
that filters the book list based on the author’s name, as well as a pagination
system to handle a large number of books. Additionally, implement a hover
effect that reveals a brief description of each book when the user hovers over a
book title. Ensure the page is responsive and visually appealing, and optimize
the user experience by incorporating smooth transitions and animations for the
hover effect and pagination.

web_development,
user_interface,
responsive_design,
user_experience

Iter3

Develop an HTML page that dynamically displays a list of books and their
authors using CSS for styling. The page should include a search functionality
that filters the book list based on the author’s name, as well as a pagination
system to handle a large number of books. Additionally, implement a hover
effect that reveals a brief description of each book when the user hovers over a
book title. Ensure the page is responsive and visually appealing, and optimize
the user experience by incorporating smooth transitions and animations for the
hover effect and pagination. Furthermore, enhance the accessibility of the page
by ensuring that all interactive elements are keyboard navigable and that the
page is compatible with screen readers. Consider the use of ARIA roles and
properties to improve the accessibility of the search functionality and pagination
system.

web_development,
user_interface,
responsive_design,
accessibility

Iterd

Develop an HTML page that dynamically displays a list of books and their
authors using CSS for styling. The page should include a search functionality
that filters the book list based on the author’s name, as well as a pagination
system to handle a large number of books. Additionally, implement a hover
effect that reveals a brief description of each book when the user hovers over a
book title. Ensure the page is responsive and visually appealing, and optimize
the user experience by incorporating smooth transitions and animations for the
hover effect and pagination. Furthermore, enhance the accessibility of the page
by ensuring that all interactive elements are keyboard navigable and that the
page is compatible with screen readers. Consider the use of ARIA roles and
properties to improve the accessibility of the search functionality and pagination
system. Additionally, implement a feature that allows users to sort the book
list by title, author, or publication year. Ensure that the sorting functionality is
accessible and provides clear visual feedback to users. Finally, optimize the
page’s performance by implementing lazy loading for images and minimizing
the use of heavy CSS animations to ensure a smooth user experience on devices
with limited processing power.

web_development,
user_experience,
accessibility, perfor-
mance_optimization

Table 7: Case Study of Progressive Enhancement of Web Development Requirements
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