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Abstract

In psycholinguistic modeling, surprisal from
larger pre-trained language models has been
shown to be a poorer predictor of naturalistic
human reading times. However, it has been
speculated that this may be due to data leak-
age that caused language models to see the text
stimuli during training. This paper presents
two studies to address this concern at scale.
The first study reveals relatively little leakage
of five naturalistic reading time corpora in two
pre-training datasets in terms of length and fre-
quency of token n-gram overlap. The second
study replicates the negative relationship be-
tween language model size and the fit of sur-
prisal to reading times using models trained
on ‘leakage-free’ data that overlaps only min-
imally with the reading time corpora. Taken
together, this suggests that previous results us-
ing language models trained on these corpora
are not driven by the effects of data leakage.

1 Introduction

Language models (LMs) based on neural networks,
which are trained to predict upcoming words, have
been shown to flexibly capture many linguistic reg-
ularities from raw text (Linzen and Baroni, 2021;
Mahowald et al., 2024). This has sparked research
at the intersection between language modeling and
psycholinguistics that relates LM probabilities to
human behavior. One line of such research focuses
on evaluating LM surprisal (negative log proba-
bilities; Shannon, 1948) against measures of pro-
cessing difficulty such as word-by-word reading
times, under an ‘expectation-based’ theoretical link
that posits predictability as a key determinant of
processing difficulty (Hale, 2001; Levy, 2008).

However, the source stimuli of the reading time
datasets (e.g. Futrell et al., 2021; Luke and Chris-
tianson, 2018) used in such studies are often nat-
uralistic text that are available online (e.g. news
articles), which raises the concern that those texts

may occur in the LMs’ pre-training corpora. If the
degree of such data leakage is severe, the LMs may
assign artificially lower surprisal to the text in read-
ing time datasets as a result of having ‘memorized’
it during training. As a consequence, this could
bring into question the validity of previous results
as well as the general practice of using pre-trained
LMs in psycholinguistic modeling. For example, it
has been speculated that the negative relationship
between the size of an LM and the fit of its surprisal
to human reading times observed on English data
(e.g. Oh and Schuler, 2023b; Shain et al., 2024)
may be due to such leakage (Wilcox et al., 2023a).

This work presents two studies to address this
concern at scale. The first study assesses the leak-
age of five naturalistic reading time corpora in two
pre-training datasets that were each used to train
Pythia and GPT-2 LMs (Biderman et al., 2023; Rad-
ford et al., 2019) by identifying the longest overlap-
ping token sequence and its frequency. The second
study then uses the same methodology to curate
training data that overlaps minimally with the read-
ing time corpora, and trains LMs on it to examine
whether the negative relationship between model
size and the fit of LM surprisal is observed with
‘leakage-free’ training data. Additionally, data leak-
age is artificially introduced through fine-tuning
to study how LM surprisal’s fit to reading times
would change in the face of severe leakage.

The results indicate that commonly used read-
ing time corpora suffer little from data leakage,
with most passages sharing only relatively short
overlaps among the billions of tokens in the two
pre-training corpora. Moreover, LMs trained on
leakage-free data robustly replicate the negative
relationship between model size and surprisal’s fit
to reading times, further indicating that this phe-
nomenon is not simply due to leakage. However,
results also show that actual severe leakage is likely
to result in an overestimation of this negative rela-
tionship, which still warrants caution against the
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leakage of reading time corpora. Taken together,
these results suggest that previous findings based
on LMs trained on these corpora are not due to the
effects of data leakage.

2 Study 1: Overlap Between Reading
Time and Pre-Training Corpora

The first study assesses the leakage of naturalistic
reading time corpora in LM pre-training datasets.
To this end, Compacted Directed Acyclic Word
Graphs (CDAWGs; Crochemore and Vérin, 1997;
Inenaga et al., 2005) were built on two pre-training
corpora, which allows the reading time corpora to
be queried efficiently to identify the longest over-
lapping token sequence and its frequency.

2.1 Methods
Pre-Training Corpora. The two English pre-
training corpora that were analyzed in this study
are the subset of the Pile (Gao et al., 2020) that
was used to train the Pythia LMs (Biderman et al.,
2023), and the OpenWebText Corpus (Gokaslan
and Cohen, 2019), which is an open-source repli-
cation of the GPT-2 LMs’ (Radford et al., 2019)
training data. The training data of the Pythia LMs
is provided as pre-tokenized examples of length
2,049, which are sequences sampled from a con-
catenated version of the Pile. A total of 143,000
batches that each contain 1,024 training examples
were used to train the Pythia LMs, which amounts
to a total of ∼300B tokens. The OpenWebText
Corpus consists of 8,013,769 documents, which is
equivalent to ∼8.7B tokens when tokenized with
Pythia LM’s subword tokenizer.

Reading Time Corpora. The five English read-
ing time corpora that served as queries are:

1. Dundee (Kennedy et al., 2003): 67 newspaper
editorials from The Independent.

2. Brown (Smith and Levy, 2013): 13 passages
from the Brown Corpus (Kučera and Francis,
1967).

3. GECO (Cop et al., 2017): 13 chapters from the
novel The Mysterious Affair at Styles (Christie,
1920).

4. Provo (Luke and Christianson, 2018): 55 pas-
sages of news articles, science magazine ex-
cerpts, and fictional work.

5. Natural Stories (Futrell et al., 2021): 10 pas-
sages of narrative and expository text.

With the exception of the Dundee Corpus, most
of the source text in these corpora are available
online, which makes them susceptible to leakage in
pre-training corpora. Additionally, while Natural
Stories has been manually edited to include chal-
lenging syntactic constructions, there is still likely
to be substantial overlap if the pre-training corpora
contain the original source text.

CDAWG Construction and Querying. A
CDAWG is a finite-state machine that is special-
ized for indexing sequences, which allows the
length of the longest occurring suffix of a query
to be returned efficiently. We use Merrill et al.’s
(2024) implementation1 to build CDAWGs on the
two pre-training corpora after normalizing their
line breaks and whitespaces and tokenizing them
with Pythia LM’s subword tokenizer. Training
examples from the Pile were additionally split at
<|endoftext|> tokens in order to treat text from
different documents as separate sequences.

Subsequently, each passage of the five reading
time corpora was tokenized using the same tok-
enizer and queried against the two CDAWGs. The
length of the longest occurring suffix was then cal-
culated at every token position to retrieve the glob-
ally longest overlapping token sequence between
each passage and the pre-training corpora.2 The
frequency of this sequence in the pre-training cor-
pora was also retrieved to further gauge the severity
of this overlap. Additionally, the joint probability
of this sequence was calculated using a 5-gram LM
with backoff using the KenLM toolkit (Heafield
et al., 2013) with parameters estimated on the Gi-
gaword 4 corpus (Parker et al., 2009). This allows
us to identify sequences that are likely to appear in
a corpus of a given size at roughly chance level.3

While our method of detecting data leakage
based on token sequence overlap is not robust
against minor variations in surface form (e.g. para-
phrases), using a ‘softer’ match criterion such as
the similarity between sequence-level embeddings
is computationally infeasible at the scale of the pre-

1https://github.com/viking-sudo-rm/rusty-dawg
2Borrowing the example of Merrill et al. (2024), querying

l l o y d against the reference h e l l o w o r l d returns
the lengths <1, 2, 3, 0, 1> at each token position, which allows
the longest overlapping sequence l l o to be identified at
token position 3.

3The probability of the sequence appearing at least once
was estimated as 1 − (1 − p)n, where p is the probability of
the sequence and n is the number of whitespace words in each
corpus. The p that sets the probability of this event to some
threshold can then be calculated for each pre-training corpus.
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(a) The length of each passage in the reading time corpora, and the length of its longest overlapping sequence with the Pile (top)
and the OpenWebText Corpus (bottom), both measured in the number of subword tokens. The orange line denotes the y = x line
that indicates complete overlap.

(b) The length and frequency of the longest overlapping sequence between each passage of the reading time corpora and the Pile
(top) and the OpenWebText Corpus (bottom). When there are multiple overlaps with the same maximum length, the highest
frequency is reported.

Figure 1: Overlap between the five reading time corpora and the two pre-training corpora. Each ‘+’ represents one
passage, and the red ‘+’s denote longest overlapping sequences that have a probability lower than 0.05 to appear at
least once in each corpus by chance (i.e. sequences with 5-gram log probabilities lower than −28.87 and −25.33 for
the Pile and OpenWebText respectively).

training datasets we study, and may yield unreliable
results depending on the quality of the embeddings.
Additionally, our method allows complete over-
laps to be detected reliably, which similarity-based
methods usually cannot allow when the lengths of
the two sequences are different.

2.2 Results
Figure 1a shows that except for the Provo Corpus,
no passage in the reading time corpora is observed
entirely in both pre-training datasets. That is, the
length of each passage’s longest overlapping se-
quence is relatively short compared to the full pas-
sage length. While the Provo passages that are
observed in their entirety or the longer overlap-
ping sequences in the Pile that exceed 100 tokens
may especially be concerning, Figure 1b shows

that such instances are very infrequent. Most of
the highly overlapping Provo passages each occur
under 10 times in both pre-training corpora, and
the longer overlapping sequences exceeding 100
tokens occur at most twice. Therefore, we inter-
pret these results as indicating that the reading time
corpora suffer little from data leakage.4

3 Study 2: The Influence of Leakage on
Fit to Reading Times

The previous study shows that most passages of
the reading time corpora have not been leaked in
the two pre-training corpora, which suggests that

4We publicly release the longest overlapping sequences
and their frequencies at https://github.com/byungdoh/
rt-leakage.
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Model #L #H dmodel #Parameters

Small 3 4 256 28,125,440
Medium 6 8 512 70,426,624
Large 12 12 768 162,322,944

Table 1: Hyperparameters of LMs that were trained
in this study. #L: number of layers; #H: number of
attention heads per layer; dmodel: embedding size.

leakage is unlikely to be a possible explanation for
the adverse effect of model size on LM surprisal’s
fit to reading times (Oh and Schuler, 2023b; Shain
et al., 2024). The second study causally verifies
this by training LMs of different sizes on training
examples that overlap minimally with the reading
time corpora. Additionally, to examine how sur-
prisal’s fit to reading times would change in the
face of severe leakage, these LMs are fine-tuned on
examples created from the reading time corpora.

3.1 Methods

LM Training on Leakage-Free Data. We used
the methodology of the previous study to identify
training examples from the Pile that overlap mini-
mally with the reading time corpora. Specifically,
CDAWGs were built separately on 143 chunks of
1,000 training batches. A total of 18 chunks were
found to have no more than 11 continuous tokens
of overlap with any passage in the five reading time
corpora, which filters out all overlaps improbable
enough to meet our threshold in Figure 1a. Among
these, we sampled 10 chunks (i.e. 10,000 training
batches of 1,024 examples; ∼20.9B tokens) as the
training data. One epoch of this ‘leakage-free’ data
was used to train Pythia-like Transformer LMs of
three different sizes (Table 1) using the GPT-NeoX
library (Andonian et al., 2021).5

LM Fine-Tuning on Reading Time Data. After
the LMs were trained, leakage was artificially in-
troduced by fine-tuning them on examples created
from the reading time corpora. The construction
procedure of the fine-tuning examples closely fol-
lowed that of the Pythia training data. First, the
passages of the five reading time corpora were shuf-
fled and concatenated with <|endoftext|> tokens
inserted at passage boundaries to create one long se-
quence consisting of 165,643 tokens. Subsequently,
this sequence was split into contiguous sequences
of length 2,048 to create one fine-tuning batch of 80

5See Appendix A for additional training details.

Corpus/Measure Fit Exploratory

Brown SPR 59,292 29,671
Natural Stories SPR 384,984 192,826

Dundee FP 98,115 48,598
GECO FP 144,850 72,468
Provo FP 52,959 26,539

Table 2: Number of data points in the fit and exploratory
partitions of each reading time dataset.

examples. This procedure was repeated to generate
additional batches, each containing the five read-
ing time corpora, albeit in different order. These
batches were used to fine-tune each LM using the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a constant learning rate of 0.0001. Results are
reported after 5 and 10 fine-tuning steps.6

Surprisal Calculation and Reading Time Model-
ing. The three LMs were used to calculate word-
by-word surprisal on the five reading time cor-
pora, after both initial training and subsequent fine-
tuning. When a passage did not fit into a context
window of 2,048 tokens, the second half of the pre-
vious context window was used to condition the
surprisal of the remaining tokens. As the Pythia
LM’s subword tokens contain leading whitespaces,
word probabilities were calculated with trailing
whitespaces to ensure their consistency (Oh and
Schuler, 2024; Pimentel and Meister, 2024).7

Subsequently, for each LM, linear mixed-effects
(LME; Bates et al., 2015) models that contain LM
surprisal and standard baseline predictors were fit
to about 50% of the data points in each reading time
dataset (fit partition; Table 2).8 The goodness-of-
fit of each regression model was then evaluated by
calculating the log-likelihood on about 25% of held-
out data points (exploratory partition). This was
compared against the log-likelihood of the baseline
regression model that does not contain LM sur-
prisal to evaluate the contribution of LM surprisal
(∆LogLik). All LME models incorporate maximal

6We expect each fine-tuning step to serve as an upper
bound for the effect of data leakage due to observing the same
data during pre-training, given the recent and repeated nature
of exposure during fine-tuning.

7For example, without this correction, if both P(␣car |
I ␣sold ␣the) and P(pet | I ␣sold ␣the ␣car) are very
high, the combined probabilities of “␣car” and “␣car pet”
given the context “I ␣sold ␣the” can exceed one.

8Self-paced reading times for Brown and Natural Stories,
and first-pass durations for Dundee, GECO, and Provo. See
Appendix B for the full LME modeling details.
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Figure 2: ∆LogLik due to surprisal on held-out data and corpus-level perplexity from LMs trained leakage-free
(orange) and after 5 and 10 fine-tuning (FT) steps on reading time data (green and purple respectively).

by-subject random effects (Barr et al., 2013) and
assume a linear relationship between surprisal and
reading times (Wilcox et al., 2023b; Xu et al., 2023;
Shain et al., 2024) and a lingering influence of sur-
prisal from the previous word (Rayner et al., 1983).
The LMs’ perplexity on each reading time corpus
is also reported.

3.2 Results
Figure 2 shows that LMs trained on leakage-free
data filtered according to this very strict criterion
still demonstrate a negative relationship between
model size and fit to reading times on all five
datasets. Together with the results of the previ-
ous study, this indicates that similar previous find-
ings using Pythia and GPT-2 LMs (Oh and Schuler,
2023a; Shain et al., 2024) are not simply due to
leakage. The results from the LMs fine-tuned on
reading time data in Figure 2 also show that if se-
vere leakage were to exist, this would result in an
overestimation of the strength of this negative re-
lationship. When examples from the reading time
corpora are added to training, larger models seem
to be able to predict certain words more accurately
given the same number of fine-tuning updates, re-
sulting in larger decreases in both perplexity and
∆LogLik. This suggests that smaller LMs are gen-
erally less susceptible to the influence of leakage,
and that model-centered methods for diagnosing
memorization (e.g. evaluating an LM’s generated
text given the prefix; Carlini et al., 2023) may be
effective for assessing leakage in very large LMs.

4 Conclusion

This study examines whether commonly used natu-
ralistic reading time corpora have leaked into large-
scale datasets on which LMs are trained. In terms
of sequence overlap, the leakage of most naturalis-
tic reading time passages is found to be benign in

two pre-training corpora. While setting a criterion
for what constitutes severe data leakage is difficult
and requires some judgment, we hope that the over-
lapping sequences between commonly used read-
ing time corpora and pre-training corpora identified
in this work provide a resource for those that wish
to be more careful with psycholinguistic modeling.

The subsequent regression experiment replicates
the negative relationship between model size and
surprisal’s fit to reading times using LMs trained
on leakage-free data. Taken together, these re-
sults suggest that previously reported findings us-
ing LMs trained on these corpora are not driven by
the effects of data leakage. In contrast to Wilcox
et al. (2023a), who analyzed the potential influence
of data leakage using smaller LMs trained from
scratch, these results provide more direct evidence
that generalizes to trends observed from larger pre-
trained LMs like Pythia and GPT-2.

Previous studies have shown that more accu-
rate predictions of named entities and other low-
frequency words primarily drive this inverse scal-
ing trend of pre-trained LM surprisal (Oh and
Schuler, 2023b; Oh et al., 2024). This study addi-
tionally suggests that the ability of larger models
to predict such words more accurately is not due
to ‘memorizing’ exact sequences, but rather due to
more complex word-to-word associations learned
during training.
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Limitations

In this work, the potential leakage of naturalistic
text stimuli is evaluated through studies using En-
glish corpora, language models trained on English
text, and reading time data from native speakers of
English. Therefore, replication studies are neces-
sary to further assess the leakage of text stimuli in
other languages. Additionally, data leakage in this
work is diagnosed mainly through token n-gram
overlaps, which is insensitive to minor variations
in form. Moreover, as the OpenWebText Corpus
is an open-source effort to replicate GPT-2’s undis-
closed training data, the corpus statistics of the
actual training data may differ. Finally, this work
is concerned with the use of language models as
cognitive models of human sentence processing,
and therefore does not relate to their use in natural
language processing applications.

Ethics Statement
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(Gokaslan and Cohen, 2019; Gao et al., 2020) and
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Luke and Christianson, 2018). Readers are referred
to the respective publications for more information
about the data collection and validation procedures.
As this work studies the connection between lan-
guage models and human sentence processing, its
potential negative impacts on society appear to be
minimal.
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A LM Training Details

The LMs in Study 2 were trained closely follow-
ing the training procedures of the Pythia LMs.
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Datasets LME Formula

Brown
Natural Stories

RT ∼ LMsurp + LMsurp_prev + Unisurp + length + index +
(LMsurp + LMsurp_prev + length + index + 1 | subject)

Dundee
GECO
Provo

RT ∼ LMsurp + LMsurp_prev + Unisurp + length + index + pfix +
(LMsurp + index + 1 | subject)

Table 3: Formulae of LME models fit in Study 2. LMsurp: LM surprisal, LMsurp_prev: LM surprisal of previous
word, Unisurp: unigram surprisal, length: word length, index: position of the word within the sentence, pfix:
whether the previous word was fixated. The baseline regression models were fit with these formulae without the
LMsurp and LMsurp_prev predictors. All predictors were z-transformed.

Like many other Transformer LMs, Pythia LMs
are based on decoder-only layers, but they paral-
lelize the computations of the attention mechanism
and those of the feedforward neural network, and
do not use tied parameters for the input embed-
ding and final projection matrices. The three LMs
were trained using the Zero Redundancy Optimizer
(ZeRO; Rajbhandari et al., 2020) implementation
of Adam (Kingma and Ba, 2015) with a maxi-
mum learning rate of 0.001. This learning rate was
warmed up linearly over the first 1% of training
steps (i.e. 100 steps) and was subsequently lowered
to a minimum of 0.0001 following a cosine an-
nealing schedule over the remainder of the 10,000
training steps. Gradients were clipped to a maxi-
mum norm of 1 prior to each update to stabilize
training. All training took place in half-precision
on 48GB Nvidia RTX 8000 GPUs.

B LME Modeling Details

Data Preprocessing and Partitioning. For the
Brown and Natural Stories datasets, reading times
of words at sentence boundaries and those shorter
than 100 ms or longer than 3,000 ms were excluded.
Data from subjects who answered four or fewer
comprehension questions correctly were also re-
moved from the Natural Stories data. The Dundee,
GECO, and Provo datasets were filtered to exclude
reading times of unfixated words, words follow-
ing saccades longer than four words, and words
at sentence and document boundaries. Reading
times of words at line and screen boundaries were
also removed from the Dundee data that provides
annotations of line/screen locations.

After data preprocessing, each dataset was parti-
tioned into fit and exploratory partitions that com-
prise roughly of 50% and 25% of the data respec-
tively (Table 2). This partitioning was based on the

sum of the subject ID and the sentence ID, which
keeps all data from a particular subject-sentence
combination intact in one partition. Each fit parti-
tion was used to fit the regression models, and the
exploratory partition was used to calculate regres-
sion model likelihood. The remaining ∼25% of the
data is reserved for statistical significance testing
and was not used in this work.

LME Model Specifications. The baseline pre-
dictors included in all LME models are word length
in characters, index of word position within the sen-
tence, unigram surprisal (all datasets), and whether
the previous word was fixated (Dundee, GECO,
Provo only). Unigram surprisal was calculated us-
ing the KenLM toolkit (Heafield et al., 2013) with
probabilities estimated on the OpenWebText Cor-
pus (Gokaslan and Cohen, 2019). The by-subject
random effects structures of the LME models were
determined by starting with maximal random ef-
fects and removing the least predictive random ef-
fect until all LME models converged. The resulting
LME formulae are outlined in Table 3.
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