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Abstract

Online medical literature has made health infor-
mation more available than ever, however, the
barrier of complex medical jargon prevents the
general public from understanding it. Though
parallel and comparable corpora for Biomedi-
cal Text Simplification have been introduced,
these conflate the many syntactic and lexical
operations involved in simplification. To en-
able more targeted development and evalua-
tion, we present a fine-grained lexical simplifi-
cation task and dataset, Jargon Explanations for
Biomedical Simplification (JEBS). The JEBS
task involves identifying complex terms, clas-
sifying how to replace them, and generating
replacement text. The JEBS dataset contains
21,595 replacements for 10,314 terms across
400 biomedical abstracts and their manually
simplified versions. Additionally, we provide
baseline results for a variety of rule-based and
transformer-based systems for the three sub-
tasks. The JEBS task, data, and baseline results
pave the way for development and rigorous
evaluation of systems for replacing or explain-
ing complex biomedical terms.

1 Introduction

Understanding medical concepts is critical when
making informed healthcare decisions (Kindig
et al., 2004). Patients that lack this understanding
are at a disadvantage when making health-related
choices, which can negatively affect health out-
comes (King, 2010; Berkman et al., 2011). Web-
sites such as PubMed (Wheeler et al., 2007) make
the latest biomedical knowledge available to ev-
eryone. However, because this information is not
written for a general audience, attempting to read
it without the relevant expertise may cause more
harm than good (White and Horvitz, 2009).
Manually curated resources, such as Medline-
Plus (Miller et al., 2000) or UpToDate Patient Ed-
ucation (Fox and Moawad, 2003), aim to rewrite

biomedical knowledge for the public, thus provid-
ing a consumer-friendly alternative to resources
such as PubMed. However, these resources require
massive cost and effort to keep updated with the
latest research and are limited in the scope of their
topics. For example, UpToDate has more than ten
times as many articles written for healthcare practi-
tioners than it has in its Patient Education section.
Advances in artificial intelligence could help solve
this bottleneck by automatically ‘translating’ the
latest medical research into simpler language or by
providing real-time explanations as a reading aid.
Given the high stakes of the biomedical domain,
however, rigorous evaluation of such systems is
crucial.

Existing datasets proposed for training and
evaluating Biomedical Text Simplification sys-
tems take the form of parallel or comparable cor-
pora (Van den Bercken et al., 2019; Cao et al., 2020;
Devaraj et al., 2021; Guo et al., 2022; Attal et al.,
2023). By not explicitly providing term replace-
ments, these datasets restrict the development to
end-to-end text simplification systems. The lack
of explicit term replacements also restricts auto-
matic evaluation to coarse n-gram or similarity-
based metrics, which conflate the many distinct
types of word- and sentence-level operations in-
volved in text simplification and can thus lead to
misleading results (Alva-Manchego et al., 2021).

In this work, we take a step toward more tar-
geted training and evaluation of biomedical text
simplification by introducing a manually annotated,
fine-grained dataset of multiple lexical simplifica-
tion operations. We first break the task of lexical
simplification into three sub-tasks: (1) identifica-
tion of complex terms, (2) classification of how
best to replace the terms in context, and (3) genera-
tion of replacements. Further, for the classification
sub-task, we review the literature on lexical simpli-
fication to create a taxonomy of five term replace-
ment types: substitution, explanation, generaliza-
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Synonym
Source (PMID 35511781)

Purpose: To find predictive markers for the visu\dl
potential in optical coherence tomography (OCT)
one month after surgical repair of macula-
involving rhegmatogenous retinal detachment
(miRD) with and without internal limiting
membrane (ILM) peeling.

Methods: This retrospective single-center, single-
surgeon cohort study included 74 patients who
underwent pars plana vitrectomy (PPV) for
primary miRD between January 2013 and August
2020 with follow-up examinations for at least 6
months.

Patients developing recurrent detachments,
, or with an axial length over 27 mm were
excluded from the analysis. /|

Omission

Explanation
Adaptation by Human Expert

This study aimed to find out if vision can be
predicted by diagnostic imaging one month after
surgery to repair common retinal detachment (the
damage to light-sensitive layer at the back of the
eye (retina) when it is pulled away from its normal
position). In some surgeries, the tissues next to
retina were pulled to repair the detachment.

This study looked at past cases at a single health
care center, and that had surgery done by a single

surgeon.
Generalization

Patients who had other retina detachments in the
past or media cities (such as ) were
not included,ify'the study. N\

Substitution Exemplification

Figure 1: Examples of the JEBS task. Expert terms identified in the source (left) are classified as substitutions,
explanations, generalizations, exemplifications, or omissions. For all types but omissions, the corresponding span in
the human expert adaptation is identified (right). Additionally, synonyms (left, red) are identified and linked to the

first mention of a term within a synonymous set.

tion, exemplification, and omission. We then manu-
ally annotate expert terms and their replacements
found in the PLABA parallel corpus (Attal et al.,
2023), which contains PubMed abstracts paired
with expert-written, sentence-by-sentence simpli-
fications. This results in a high-quality dataset of
10,314 in situ expert terms identified across 400
original abstracts, and a total of 21,595 replace-
ments for these terms found in simplified versions
of these abstracts, each labeled with a replacement
type. Examples of identified terms and replace-
ments are shown in Figure 1.

Finally, we demonstrate that the JEBS dataset
can be used to train and evaluate a variety of rule-
based and transformer-based systems to serve as
baselines for future development. Transformer
models explored included encoder-only models (in
both fine-tuning and feature extraction settings),
encoder-decoder models (in a fine-tuning setting),
and instruction-tuned decoder-only models (in one-
and three-shot, in-context learning settings). In
summary, our contributions are as follows:

* We define a new, fine-grained lexical simplifi-
cation task for the biomedical domain.

* We provide a manually annotated dataset of
21,595 term replacements with labeled re-
placement types.

* We report performance of a variety of rule-
based and transformer-based baseline systems
for each sub-task.

2 Background

Biomedical Simplification Corpora. Previous
datasets developed for biomedical text simplifica-
tion are mainly comparable (paragraph-level) cor-
pora (Phatak et al., 2022; Devaraj et al., 2021; Guo
et al., 2022) or parallel (sentence-level) corpora (At-
tal et al., 2023; Cao et al., 2020; Van den Bercken
et al., 2019). As specific edit operations are not
annotated in these datasets, they can only be used
to train and evaluate end-to-end sentence-level or
paragraph-level systems. While this approach has
its advantages, end-to-end neural systems have a
higher chance of losing important phrases or al-
tering the meaning of entire sentences during the
simplification process than term-focus lexical sim-
plification methods (Ondov et al., 2022). To max-
imize faithfulness to the original texts, we thus
focus on term-level text simplification, wherein in-
dividual expert terms are first identified in a text
before they are replaced or explained to make the
text more readable as a whole. Perhaps most simi-
lar to our work is the Med-EASi dataset (Basu et al.,
2023), which similarly annotates deletions, elabora-
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tions, and replacements in two parallel biomedical
corpora. JEBS improves on this in several ways.
First, our dataset is much larger, totaling 21,595 re-
placements, as opposed to 1,979. Second, our clas-
sification sub-task is finer-grained, distinguishing
‘elaborations’ by whether they are explanations or
exemplifications, and distinguishing ‘replacements’
by whether they are substitutions or generaliza-
tions. Third, our dataset comes from annotating
a high-quality, manually written parallel corpus,
as opposed to automatically extracted sentence or
short passage pairs from larger comparable corpora.
Finally, our term pairs are situated within the con-
text of entire parallel documents, providing crucial
context. This allows system development and eval-
uation to consider crucial surrounding information,
for example to disambiguate acronyms.

Lexical Simplification Methods. Previous
work in text simplification has explored various
methods of term-level simplification. A common
method involves the substitution of complex terms
with simpler language (Basu et al., 2023; Zeng
et al., 2005). We define two different types of sim-
plification based off of this approach: substitution,
where a close synonym is chosen as the replace-
ment, and generalization, where a more general
term is chosen instead.

Another common form of simplification takes
the form of explanations, where additional text is
added to the original text to explain complex terms
(Basu et al., 2023; Elhadad, 2006; Liu et al., 2021;
Srikanth and Li, 2020). While some previous meth-
ods generate explanations for terms in isolation,
our dataset provides explanations specific to the
context in which expert terms appear in biomedical
texts.

One final form of simplification seen in the liter-
ature is omission, where complex terms that are not
fully relevant to a text are removed entirely (Basu
et al., 2023; Dong et al., 2019). A drawback of
previous methods is that their training data for the
omission task included simplifications that used
different forms of simplification, including adding
words and replacing chunks of the original text. By
constructing our dataset for simplification at the
term level, we hope to isolate omission simplifica-
tions for more focused training.

Language Models. The simplest approaches to
term-level simplification in the past involved rule-
based systems that rely on plain language thesauri
and knowledge bases such as the United Medical
Language System (UMLS) (Lindberg et al., 1993)

to substitute expert terms with lay language (Kan-
dula et al., 2010). While such systems demonstrate
promising results, they struggle to capture the nu-
ances of grammar, context, and ambiguity that hu-
man simplification is able to achieve (Attal et al.,
2023). For that reason, most recent work within
this domain utilizes deep learning methods, which
have seen an explosion of development both within
and beyond the realm of text simplification (Nisioi
et al., 2017). In this paper, we evaluate the per-
formance of both rules-based models and neural
approaches on our newly-defined biomedical text
simplification task, with the intention of exploring
the full breadth of text simplification methods to
establish definitive benchmarks for our task.

3 Task Definition

3.1 Task Overview

The JEBS task is broken into three sub-tasks:

1. Identification. As the first stage in the term
simplification process, this sub-task involves
labeling terms in a given text as expert terms.

2. Simplification Classification. Following the
identification step of our simplification task,
terms are classified by which method should
be used to simplify it.

3. Simplification Generation. Once the simpli-
fication type is identified, appropriate text can
be generated to replace or clarify the term.

3.2 Simplification Types

Below, we explain each type of simplification.

3.2.1 Substitution

Models performing the substitution task generate
a close synonym for the term of interest, which
replaces the original term in the sentence where
it is used. The goal is to simplify the text while
retaining its original meaning and brevity.

3.2.2 Explanation

Explanatory text (i.e. a definition) is enclosed by
parentheses and inserted into the original text im-
mediately following the explained term. A clear
definition allows the original term to be retained
for later use at the cost of brevity. This simplifi-
cation method is most useful when there isn’t an
exact substitution for a term, but there does exist a
concise definition for that term.
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3.2.3 Generalization

Similar to substitution, the original term is replaced.
This method differs from substitution by purposely
attempting to subtract unnecessary information
from the original term to make the full text more
readable to lay consumers.

The use of generalization is heavily context-
dependent. As seen in Figure 1, human annotators
may generalize to avoid long, distracting explana-
tions of terms that are not central to the abstract, in
this case deeming it only necessary to get across
that “pars plana vitrectomy (PPV)” was “surgery.”
However, if a study were comparing PPV to an-
other surgical technique, generalization would not
be appropriate.

3.2.4 Exemplification

For exemplification, models generate a short list of
examples of the provided expert term. These exam-
ples are then inserted into the original text after the
term of interest in the same way as in the explana-
tion method. Exemplification can be useful when
examples can convey a concept better than a syn-
onym (which may or may not exist) or an definition
(which may be long and/or complicated). However,
for expert terms that are too specific and therefore
lack useful examples, exemplification may not be
appropriate. Likewise, if the examples are too eso-
teric, the text may become more complex, e.g., if
the term “nitrosoureas” is exemplified with “car-
mustine, lomustine, and streptozotocin”.

3.2.5 Omission

The term of interest is removed from its sentence
and the original sentence is restructured to make
sense without it. For example, removing the entire
clause in which the original term occurred. Like
generalization, omission seeks to remove unnec-
essary information from the original text, ideally
reducing confusion for consumer readers. However,
it may cause passages to become more confusing
if too much information is removed or if terms are
omitted in ways that leave the sentence grammati-
cally incorrect.

4 Dataset Creation

The JEBS dataset is derived from 400 abstracts
and their associated adaptations, as found in the
PLABA dataset (Attal et al., 2023). Abstracts were
aligned at the sentence level with their correspond-
ing adaptations, then annotated by two authors us-

ing the brat rapid annotation tool' (Stenetorp et al.,
2012), which involved selecting expert terms and
linking them with their respective simplifications,
as found in the PLABA adaptations. In total, the
JEBS dataset contains 10,314 expert terms (25.79
terms per abstract) and 21,595 simplifications. Ta-
ble 1 displays counts of each simplification type.

11.47% of all expert terms in the data appeared
alongside acronyms or other names. In the JEBS
dataset, expert terms are linked to the simplifica-
tions associated with their synonyms. Appendix A
describes how this linking was performed.

The annotations exhibit a moderate inter-
annotator agreement for both the identification task
(0.5203 F1) and the classification task (0.4577 F1).
Figure 2 shows an example of the brat interface
during annotation.

While performing annotations, the annotators
confirmed that there was no information naming
or uniquely identifying individual persons in the
PLABA dataset, nor was there any offensive con-
tent. The JEBS dataset therefore does not include
any such information.

S Baseline Systems

Expert term identification, term classification, and
the five forms of simplification were divided into
separate sets of language models. All fine-tuned
transformer approaches used Hugging Face and
PyTorch for fine-tuning. Each of those models
underwent 3 epochs of fine-tuning. All fine-tuning
and evaluations of those models was performed on
a single NVIDIA A100 80GB GPU.

Prior to training our baseline models, the union
of both annotator’s annotations were preprocessed
into a JSON file, where each expert term in each ab-
stract was linked with its associated simplifications.
Each simplification takes the form of a tuple storing
both its type (substitution, explanation, generaliza-
tion, etc) and the contents of that simplification.

"http://brat.nlplab.org

Simplification Type Count Proportion
Substitutions 13,966 0.6467
Explanations 4,161 0.1927

Omissions 1,963 0.0909
Generalizations 1,368 0.0633
Exemplifications 137 0.0063

Table 1: Count and Proportion of Simplification Types
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[Sentence 3]

term

term

The visual acuit§ had decreased in many patients.

term

term
term

term

“SUBSTITUTES]

The clarity of many of the patients’ eyesight had gotten worse.

term

term

EXPLAINS

The visual acuity (aBmty to see small details in a standard visionEgt) had decreased in many patients.

Figure 2: An example annotation of the PLABA dataset, as seen on brat. Line 20 is the original sentence from an
abstract; Lines 22 and 23 are from two PLABA simplifications. In each simplification, a replacement span has been
identified, in one case being labeled as a substitution, and in the other being labeled as an explanation.

All data was split into train and evaluation sets ac-
cording to a 1:3 ratio. The split was performed
at the question-level. That is, data from abstracts
answering the same question within the PLABA
dataset were kept together in either the train or eval-
uation sets. Furthermore, neural models designed
for the non-identification sub-tasks require the con-
text in which terms were used to function. This
data was obtained by splitting PLABA abstracts
into individual sentences.

In the following subsections, we summarize the
baseline models for each sub-task, as well as the
data preprocessing requirements for each model.

5.1 Identification

The rule-based identifier model uses MetaMapLite
(Demner-Fushman et al., 2017), the Unified Med-
ical Language System (UMLS) (Lindberg et al.,
1993), and two term frequency datasets from
Kaggle—one derived from the Google Web Trillion
Word Corpus (Tatman, 2020) and the other derived
from BookCorpus and a 2019 dump of Wikipedia
(Cook, 2020)—to identify and filter expert terms.
After the rule-based model, we fine-tuned a set
of transformer-based identifier models using pre-
trained versions of BERT Large (340M parame-
ters) (Devlin et al., 2018), BioBERT Large (340M
parameters) (Lee et al., 2019), XLM RoBERTa
Large (550M parameters) (Conneau et al., 2019),
and DeBERTa Large (435M parameters) (He et al.,
2021). For these models, we framed the sub-task as
a named entity recognition (NER) problem (Bose
etal., 2021). Abstracts were therefore preprocessed
for the fine-tuned identifier models by labeling each
sentence according to a Beginning-Inside-Outside
labeling scheme. Because the goal of this sub-task

was purely to identify expert terms, labeling was
performed without consideration for the simplifica-
tion types that could be assigned to each term.

In addition, we evaluated Llama3 Instruct’s (8B
parameters) (Dubey et al., 2024) performance on
this task, instructing the LLM to perform the iden-
tification task on a single sentence. The sentence
to operate on was provided immediately after the
following instruction prompt was provided:

Prompt: “Identify all non-consumer
biomedical terms in the user’s sentence
using a comma-separated list. Generate
no other text besides the list.”

Four different metrics were used to evaluate the
identification models. The first was the average F1
score, which was computed for a given model by
finding its F1 score against both annotator’s individ-
ual annotations, then averaging the results. Union
and intersection F1 scores were taken according to
the union and intersection of the two annotators’
identified terms. Finally, models were evaluated
according to a Pyramid score (Nenkova and Pas-
sonneau, 2004), where points were given for each
expert term depending on how many annotators
identified it as an expert term, then normalized ac-
cording to the maximum score each model could
have attained.

Running the rule-based model on the JEBS test
data set for evaluation took 8 minutes and 34 sec-
onds to run on an Apple M1. Training the BERT-
based transformer models on the training data took
around 2 minutes and 58 seconds each. Running
those models for evaluation on the test data took
around 2 minutes and 26 seconds each. Finally,
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Llama3 took 28 minutes and 57 seconds for the
identification task on the JEBS test data.

5.2 Simplification Classification

For the classification task, we divided our
approaches into a frozen-weights transformer-
based method and a fine-tuned transformer-based
method.

In the former, we preprocessed abstract sen-
tences by indicating the expert terms within them
using custom tokens <ext> and </ext>. Pre-
processed sentences were embedded using BERT-
Large and DeBERTa-Large before being used to
train and evaluate two separate multi-label classi-
fier models. These classifiers were built using Py-
Torch neural networks. The BERT and DeBERTa
multi-label classifier models took 20 seconds and
24 seconds respectively to run on the test data.

In the second approach, we combined the iden-
tification and classification sub-tasks by framing
classification as a slightly more advanced NER
problem. The data for this approach took the form
of BIO-labeled sentences, where terms were la-
beled with the simplification method assigned to
them most often in the training data. Pretrained
versions of BERT-Large and DeBERTa-Large were
fine-tuned using the preprocessed data to distin-
guish between non-expert terms and terms that
should be simplified using one of each simplifica-
tion methods described in this paper. These models
therefore performed both the identification and clas-
sification sub-tasks at the same time. The BERT
and DeBERTa NER models took 36 seconds and
89 seconds respectively to run on the test data.

Outputs were evaluated according to two metrics:
average F1 score and union F1 score. These metrics
were computed according to the labels assigned to
expert terms by both annotators separately, and
the union of labels assigned to expert terms by
both annotators, respectively. Scores were macro-
averaged across the five simplification methods to
account for the class imbalance in our data.

5.3 Simplification Generation

We evaluated the performance of three off-the-shelf
language models on each simplification method:
Llama3-8B Instruct, GPT-40-mini (OpenAl, 2024),
and Llama4 Scout Instruct (Meta, 2025). For all
simplification methods, the input sequence took
the form of a sentence with a single expert term
highlighted via enclosing brackets. Sentences con-
taining multiple expert terms were duplicated in

our data with a different expert term selected. With
the exception of omission, output sequences for all
simplification methods were composed entirely of
the generated simplification.

In addition to the simplification instruction, we
provided each language model with either 1 or 3 ex-
ample simplifications to leverage in-context learn-
ing (Brown et al., 2020). Prompting is described in
greater detail in Appendix B.

Because our goal for these baselines was to
gauge out-of-the-box performance, rather than de-
velop the best possible models, we did not fine-tune
LLMs or perform rigorous hyperparameter tuning.
We therefore set the main hyperparameters within
common ranges:

* max_new_tokens =512
e do_sample = True

e temperature =0.6

e top_p=0.9

Running Llama3 on the JEBS test set took around
17 minutes for each simplification method.

Evaluations were performed manually on sub-
sets of 48 randomly chosen replacements for each
of the 5 simplification types and for 6 baselines,
along 4 axes (simplicity, accuracy, completeness,
and brevity), totaling 48 x 5 % 6 x 4 = 5, 760 total
judgments. Each axis was rated by authors (all
biomedical informatics experts) on a 5-point sym-
metric likert scale, which was interpolated to a 0-1
score for reporting. Below is an explanation of the
4 metrics used to evaluate model outputs for the
generation sub-task.

» Simplicity: The simplification is easy to un-
derstand.

* Accuracy: The simplification contains accu-
rate information.

* Completeness: The simplification minimizes
information lost from the original text.

* Brevity: The simplification is concise.

5.4 End-to-End System

We combined the DeBERTa identification base-
line, BERT NER classification baseline, and 3-shot
prompted Llama 3 generation baseline to create an
end-to-end text simplification system. By running
this system against our test data, we simulated the
real-world use case of our baselines and investi-
gated potential errors that may propagate through
our simplification pipeline.

17659



Because the BERT NER classification baseline
performs identification as well as classification, it
can classify terms not selected by the DeBERTa
identification baseline. Therefore, to reduce false
positives when identifying expert terms, we only
performed classification on terms identified by both
the identification and classification baselines. Be-
cause this was the only part of the end-to-end sys-
tem where the components did not work indepen-
dently of one another, our analysis was focused on
identification.

6 Results

6.1 Identification

The transformer-based models outperformed the
rule-based model in the identification sub-task,
with the DeBERTa-based model achieving the high-
est score in all four metrics. Interestingly, despite
being pretrained on domain knowledge, BioBERT
fails to outperform the BERT-based identification
model. It seems that in the identification sub-task,
domain knowledge doesn’t enhance LLLM perfor-
mance.

6.2 Simplification Classification

Among the frozen-weights transformer approaches,
the classifier trained on DeBERTa sentence embed-
dings performed better during evaluation, though
neither model was especially effective at classify-
ing expert terms.

The NER models outperformed the neural net-
works used for this task. However, their ability
to perform classification came at the cost of low-
ered overall term identification accuracy. Com-
pared to the identification models fine-tuned on the
same base models, the NER models fine-tuned for
this task under-performed when identifying expert
terms. The performance of the NER-based models
can be found in Table 3.

6.3 Simplification Generation

The new human evaluation results show that the
3-shot prompted GPT-40-mini baseline generally
outperformed the others. Additionally, the new
results show that our baselines are best at substi-
tution and generalization, while usually underper-
forming in explanation and omission. They reveal
a clear tradeoff between completeness and brevity,
where high performance in one metric typically
comes with lower performance in the other. Fur-
ther error analysis shows that a major source of low

‘accuracy’ ratings was in fact due to the models
explaining the wrong term in the input sentence.
This provides a clear future direction for prompt
engineering to further improve results.

Below, we further detail the performance of our
baseline models for each of the five simplification
methods.

6.3.1 Substitution

For the substitution task, our models consistently
generated helpful synonyms for expert terms in our
dataset. However, they tended to underperform in
terms of completeness, suggesting that informa-
tion is easily lost even when models successfully
generate accurate synonyms.

6.3.2 Explanation

The primary limitation of explanations is that the
generated definition can introduce new jargon that
complicates the text rather than clarifies it. This is
evident from our models performing worst on the
simplicity metric for the explanation task, suggest-
ing that the reading level of the generated text was
too high.

6.3.3 Generalization

As with the substitution sub-task, models perform-
ing generalization did worst on the completeness
metric, further showing that even synonyms tend to
lose information. However, they did so with a large
gain in simplicity, showing that using more general
language from the text improves readability.

6.3.4 Exemplification

In most cases, our models generated valid exam-
ples for terms tagged for this form of simplification.
However, much like with explanation, generated
examples often further complicated the text rather
than clarifying it, as seen in the low simplicity
scores for models attempting this task. This sug-
gests that exemplification should only be used on
terms with commonly-known examples.

6.3.5 Omission

Omission is a particularly challenging task, as it re-
quires the model to reshape the entire sentence (as
opposed to a single term) to make sense following
the omission of the term of interest. Our baselines
often rewrote the original sentence with the expert
term replaced with a synonym instead of removing
it entirely, thereby performing substitution instead
of omission.
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Input Model Identified Terms
Gold Standard Ring sutures, cataract
Rule-based sutures, cataract
“Ring sutures induced cataract BERT-L Ring sutures, cataract
more frequently than other BioBERT-L. Ring sutures, cataract
procedures.” XLM RoBERTa-L | Ring sutures, cataract
DeBERTa Ring, cataract
Llama3 sutures, cataract

Table 2: Example input sentence and terms identified by each identifier model.

Model AvgF1 UF1 NF1 Pyramid
Rule-based 0.2097 0.2487 0.1497  0.2916
BERT-L 0.3530 0.4260 0.2515 0.4891
BioBERT-L 0.3058 0.3898 0.2071  0.3938
XLM RoBERTa-L.  0.3745 0.4596 0.2578  0.5147
DeBERTa-L 0.4317 0.5255 0.2976  0.6014
Llama3 0.3678 0.4085 0.3095  0.4692
BERT-L 4 0.2785 0.3399 0.1955 0.3895
DeBERTa-L 0.3448 0.4009 0.2628 0.4564
End-to-end 0.3923 0.3918 0.4304  0.6207

Table 3: Performance of each identifier model, the NER classification models, and the end-to-end system.

Model AvgFl UF1
BERT Frozen 0.0337 0.0334
DeBERTa Frozen 0.1823 0.1856
BERT NER 0.3588 0.3413
DeBERTa NER  0.3300 0.3363

Table 4: Results on the simplification classification task.

6.4 End-to-End System

The combination of the DeBERTa identification
model and the BERT classification model yields
a strong baseline for the identification task, out-
performing all others on the intersection F1 and
Pyramid score metrics. The end-to-end system also
scores second-highest on the average F1 metric,
while performing below average on the union F1
metric.

These results indicate that cross-referencing
terms identified by two models improves precision
in the identification sub-task at the cost of recall.

7 Future Work

There remains ample space for improving perfor-
mance in all of the sub-tasks and methods defined
in this paper. For example, it remains to be seen
if decoder-only LLMs can effectively perform the
identification. While Llama3-8B was unable to out-

perform most of the encoder-based models, more
specific prompt engineering may unlock greater
levels of performance.

In the simplification classification sub-task, there
exist multiple unexplored directions from which
one could improve upon our baselines. For exam-
ple, this task could be framed as a sequence-to-
sequence problem for generative models to attempt.
The issue of class imbalance in the data for this task
(wherein the majority of expert terms can be sim-
plified using substitution) must also be addressed,
whether that be via class weights, oversampling, or
using generative Al to synthesize additional exam-
ple data.

While off-the-shelf language models performed
well on the substitution, explanation, generaliza-
tion, and exemplification simplification methods,
they do not make full use of the JEBS dataset. To
fully utilize our dataset, future approaches should
explore fine-tuning language models for each sim-
plification method to achieve stronger performance
on the generation sub-task.

Finally, the omission task presents a unique chal-
lenge in the form of grammar error correction,
which we have yet to fully explore. Effective gram-
mar correction with LLMs may be achieved with
prompt engineering or fine-tuning on dedicated
grammar correction datasets.
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Model SUB EXP GEN EXE OMI
Llama3, 1-shot 0.7878 0.4648 0.8398 0.7396 0.7005
Llama3, 3-shot 0.8529 0.4922 0.8045 0.7669 0.7474
Llama4, 1-shot 0.7643 0.8789 0.9271 0.5482 0.6966
Llama4, 3-shot 0.8008 0.9180 0.9063 0.5143 0.6953
GPT-40, 1-shot 0.8333 0.5143 0.9036 0.8008 0.7448
GPT-40, 3-shot  0.9219 0.5443 0.8551 0.8216 0.7539

Table 5: Aggregate evaluation results of each baseline model on each simplification method for the generation

sub-task. Appendix C shows results for each metric.

8 Conclusion

In this work, we introduced a new task of fine-
grained biomedical lexical simplification and a cor-
responding dataset called JEBS (Jargon Explana-
tions for Biomedical Simplification). The JEBS
task involves identifying expert terms, classifying
how best to replace them, and generating replace-
ment text. Unlike existing parallel or compara-
ble corpora for Biomedical Text Simplification,
JEBS allows targeted development and evaluation
of systems to directly provide replacement terms.
The JEBS dataset contains 21,595 replacements for
10,314 terms. These terms appear in the context of
400 biomedical abstracts and their corresponding
manually written plain language adaptations from
the PLABA dataset. We have introduced a suite
of baseline models for identifying expert terms in
biomedical texts, classifying them for simplifica-
tion, and generating consumer-friendly simplifica-
tions for those terms. Using an array of methods
built atop the JEBS dataset, we achieved promis-
ing results in all of our defined tasks. Finally, we
proposed avenues for future improvement of our
models. We imagine that our work will bridge the
gap between medical experts and patients, provid-
ing consumers with new tools to aid in healthcare
decision making.

9 Limitations

Within the JEBS dataset, there exists a class im-
balance between the five simplification types, with
substitutions making up a disproportionately large
percentage of the total simplifications. This imbal-
ance may limit the effectiveness of future models
fine-tuned for classifying terms as well as for gener-
ating text for the less common simplification types.
Exemplification is especially challenging to fine-
tune on, less than 1 percent of the simplifications
in the JEBS dataset are exemplifications.
Although our manual evaluations provide a more

accurate and nuanced measure of text simplifica-
tion than automated metrics, more rigorous meth-
ods could yield more reliable results. For example,
having multiple experts review each output could
reduce the subjectivity associated with evaluating
text simplification models. Additionally, perform-
ing manual evaluations of a larger subset of the data
could provide more accurate insights into overall
model performance.
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A Linking Synonym Terms

During the annotation of the PLABA dataset, the
annotators could select terms as synonyms of other
terms. We developed Algorithm 1 to merge the sim-
plifications of synonymous terms when processing
the annotations for the JEBS dataset.

The algorithm takes two dictionaries as input: D,
which maps terms to their simplifications, and S,
which maps expert terms to their synonyms. The
outputs of the algorithm is a new dictionary D’,
which maps expert terms to their simplifications
and the simplifications of their synonyms.

Algorithm 1 Associate Synonyms Algorithm

Input: Dictionary D mapping terms to simplifica-
tions, dictionary S mapping terms to synonyms
Output: Dictionary D’ with merged synonyms

1. D'+ 0

2: for all (¢, sns) € S do

3: for all sn € snsdo

4: if sn # ¢ then

5: for all sms € D[t] do

6: D'[sn] + D[sn] U sms
7: end for

8: end if

9: end for
10: end for

11: return D’

B Generation Sub-task Prompts

Llama3-8B Instruct, GPT-40-mini, and Llama 4
Scout were provided with unique prompts for each
simplification method used for the generation sub-
task. Each time a model was tasked with simpli-
fying a given sentence, the instruction prompt was
given first, directly followed by 1 to 3 examples
(for 1-shot or 3-shot prompting, respectively) and
the source text to operate on. The source text was
preprocessed such that the term of interest was en-
closed by brackets. Complete instruction prompts
are shown in Table 6.

C Generation Sub-task Full Results

Figures 7, 8, 9, 10 show the results for the gen-
eration sub-task baselines on each of the manual
evaluation metrics described in Section 5.3.
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Generation Prompt

Substitution “Provide a simpler term to replace the term in square brackets. The term should be
understandable by a general audience. Provide only the replacement term and not
the entire sentence.”

Explanation “Provide a concise, simple explanation of the term in square brackets. The expla-
nation should be understandable by a general audience and short enough to put in
parentheses after the term. Provide only the explanation and not the entire sentence.”

Generalization | “Provide a more general term to replace the term in square brackets. The new term
should be understandable by a general audience. Provide only the replacement term
and not the entire sentence.”

Exemplification | “Provide one to three brief example terms to help explain the term in square brackets.
The example(s) should be understandable by a general audience and short enough
to put in parentheses after the term. Provide only the example(s) and not the entire
sentence.”

Omission “Rewrite the sentence so it avoids using the term square brackets. The new sentence
should be understandable by a general audience. Generate no other text.”

Table 6: Prompts provided to Llama 3, GPT-40, and Llama 4 for the generation sub-task, by replacement type. Each
prompt was directly followed by either 1 or 3 examples and the preprocessed source text to operate on.

Model SUB EXP GEN EXE OMI
Llama3, 1-shot 0.8177 0.4167 0.7865 0.7448 0.4844
Llama3, 3-shot 0.8125 0.4375 0.9043 0.9063 0.6927
Llama4, 1-shot 0.8073 0.9063 0.9688 0.4688 0.5990
Llama4, 3-shot 0.8177 0.9271 0.9427 0.4948 0.7031
GPT-40, 1-shot 0.8177 0.4896 1.0000 0.9531 0.6719
GPT-4o0, 3-shot  0.8750 0.5208 0.9787 0.9479 0.7344

Table 7: Human evaluation results of simplicity for each baseline model on each simplification method for the
generation sub-task.

Model SUB EXP GEN EXE OMI
Llama3, 1-shot 0.8333 0.5260 0.8229 0.7604 1.0000
Llama3, 3-shot 0.9375 0.4063 0.7394 0.9427 0.9740
Llama4, 1-shot 0.8333 0.9323 0.9323 0.6146 0.9479
Llama4, 3-shot  0.8490 0.9844 0.9479 0.5781 0.9167
GPT-4o, 1-shot  0.9427 0.3698 0.8698 0.9844 0.9896
GPT-40, 3-shot  0.9479 0.5833 0.8191 0.8594 0.9740

Table 8: Human evaluation results for accuracy of each baseline model on each simplification method for the
generation sub-task.

Model SUB EXP GEN EXE OMI
Llama3, 1-shot 0.7448 0.5208 0.7969 0.8542 0.9740
Llama3, 3-shot 0.8281 0.5469 0.6330 0.9740 0.8854
Llama4, 1-shot 0.7031 0.8854 0.8490 0.5781 0.8698
Llama4, 3-shot 0.6875 0.9427 0.7656 0.5260 0.7344
GPT-4o0, 1-shot 0.8281 0.5313 0.7500 0.9427 0.9323
GPT-40, 3-shot  0.8854 0.5573 0.6489 0.8802 0.8698

Table 9: Human evaluation results for completeness of each baseline model on each simplification method for the
generation sub-task.
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Model SUB EXP GEN EXE OMI
Llama3, 1-shot 0.7552 0.3958 0.9531 0.5990 0.3438
Llama3, 3-shot 0.8333 0.5781 0.9415 0.2448 0.4375
Llama4, 1-shot 0.7135 0.7917 0.9583 0.5313 0.3698
Llama4, 3-shot 0.8489 0.8177 0.9688 0.4583 0.4271
GPT-40, 1-shot 0.7448 0.6667 0.9948 0.3229 0.3854
GPT-4o0, 3-shot 0.9792 0.5156 0.9734 0.5990 0.4375

Table 10: Human evaluation results for brevity of each baseline model on each simplification method for the
generation sub-task.
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