
Findings of the Association for Computational Linguistics: ACL 2025, pages 17398–17429
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Nested-Refinement Metamorphosis: Reflective Evolution for
Efficient Optimization of Networking Problems

Shuhan Guo1, Nan Yin2,*, James T. Kwok2, Quanming Yao1,3

1Department of Electronic Engineering, Tsinghua University
2Department of Computer Science and Engineering,
Hong Kong University of Science and Technology

3State Key Laboratory of Space Network and Communications, Tsinghua University
{guoshuhan, qyaoaa}@tsinghua.edu.cn, yinnan8911@gmail.com, jamesk@cse.ust.hk

Abstract

Large Language Models (LLMs) excel in net-
work algorithm design but suffer from ineffi-
cient iterative coding and high computational
costs. Drawing inspiration from butterfly meta-
morphosis—where structured developmental
phases (Phase I: larval nutrient accumulation
→ Phase II: pupal transformation) enable adap-
tive evolution—we propose Nested-Refinement
Metamorphosis (NeRM). Building on this prin-
ciple, we introduce Metamorphosis on Prompts
(MoP) to iteratively refine task descriptions (e.g.
latency / bandwidth constraints) and Metamor-
phosis on Algorithms (MoA) to generate more
effective solutions (e.g. appropriate network
processing architecture). Their nested refine-
ment ensures task-algorithm alignment, system-
atically improving both task descriptions and al-
gorithmic solutions for more efficient algorithm
design. To further enhance efficiency, we incor-
porate predictor-assisted code evaluation, mim-
icking natural selection by filtering out weak
candidates early and reducing computational
costs. Experimental results on TSP (routing),
MKP (resource allocation), and CVRP (service-
network coordination) demonstrate that NeRM
consistently outperforms state-of-the-art ap-
proaches in both performance and efficiency.

1 Introduction

Large Language Models (LLMs)(Wei et al., 2022;
Chen et al., 2023; Madaan et al., 2024) for al-
gorithm design have gained significant attention
across various domains. These models have proven
effective in tasks such as automated code genera-
tion(Chen et al., 2021; Ni et al., 2023; Liu et al.,
2023), program synthesis(Li et al., 2024; Barke
et al., 2024; Khan et al., 2024), and algorithm op-
timization (Huang et al., 2024; Romera-Paredes
et al., 2024; Ye et al., 2024; Liu et al., 2024a).
These applications demonstrate the ability of LLMs
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(a) Lifecycle of butterfly. (b) Nested-refinement metamorphosis.
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Figure 1: (a) The lifecycle of a butterfly. Phase I: initial
growth, Phase II: a profound transformation, and Phase
III: natural filtering. (b) NeRM consists of MoP (Phase
I), MoA (Phase II), and their interaction (Phase III).

to automate and optimize traditional processes, im-
proving development workflows and enabling in-
novative solutions across fields.

Currently, LLM-based automatic algorithm de-
sign (Romera-Paredes et al., 2024; Ye et al., 2024;
Liu et al., 2024a) primarily focuses on code evo-
lution, where models iteratively generate and re-
fine code through search-based strategies. These
approaches require generating a large pool of can-
didate solutions and individually evaluating each
one to identify high-quality algorithms. However,
without a mechanism to refine task descriptions,
evolved code often lacks alignment with problem
requirements, leading to inefficient search that pro-
duces redundant or suboptimal solutions (Pearce
et al., 2022). Moreover, the necessity of evaluat-
ing every candidate imposes significant computa-
tional costs, making the process impractical for
large-scale problems. These challenges highlight
the need for a more structured framework that inte-
grates both prompt refinement and algorithm evo-
lution, enabling more targeted exploration while
reducing evaluation overhead.

Inspired by biological metamorphosis1, we take
the butterfly lifecycle as an analogy (Figure 1a),
which unfolds of three key phases: Phase I: meta-

1https://en.wikipedia.org/wiki/Metamorphosis
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morphosis from larva to pupa, where the larva un-
dergoes growth and nutrient accumulation in prepa-
ration for transformation into a pupa; Phase II:
metamorphosis from pupa to butterfly, a structural
transition where the butterfly adapts to its environ-
ment and emerges as a fully developed adult; and
Phase III, where the butterfly’s adaptation shapes
the evolutionary trajectory of the next generation
of larvae. We identify the challenges of algorithm
design as Nested-Refinement Metamorphosis (Fig-
ure 1b), which mirrors the butterfly’s transforma-
tion by iteratively refining both prompts and algo-
rithms to enhance their effectiveness and efficiency.

Specifically, we propose a novel framework
named Nested-Refinement Metamorphosis: Re-
flection and Evolution of Prompts and Code for
Efficient Algorithm Design (NeRM), a novel frame-
work that enables the generation of effective algo-
rithms with high efficiency. NeRM introduces a
nested metamorphosis process that combines Meta-
morphosis on Prompts (MoP) and Metamorpho-
sis on Algorithms (MoA). MoP iteratively refines
task descriptions to improve guidance for solu-
tion generation, while MoA leverages these refined
prompts to evolve algorithms through reflection-
driven adaptation (Wang et al., 2024a) and evo-
lutionary optimization (Liu et al., 2024c), ensur-
ing better task alignment. The interaction between
MoP and MoA forms a self-improving feedback
loop, continuously enhancing algorithm perfor-
mance. To further improve efficiency, NeRM in-
corporates a predictor-assisted evaluation mecha-
nism, which mimics natural selection by filtering
out weak candidates early. This prioritization of
promising solutions reduces computational over-
head while maintaining solution quality.

Our contributions can be summarized as follows:

• We introduce the concept of biologically inspired
Nested-Refinement Metamorphosis, which cap-
tures the interdependent refinement of both task
descriptions and algorithmic solutions, ensuring
continuous adaptation and improvement.

• We propose NeRM, combining MoP for iterative
task refinement and MoA for adaptive algorithm
evolution, and accelerate the evolution using a
code predictor.

• We evaluate the proposed NeRM across a di-
verse range of complex optimization problems,
demonstrating that NeRM surpasses state-of-the-
art methods in efficiency and effectiveness.

2 Related Works

LLMs for Algorithm Design. LLMs have been
widely applied in different aspects of algorithm
design. Specifically, LLMs are used for automated
code generation (Chen et al., 2021; Ni et al., 2023;
Liu et al., 2023), program synthesis (Li et al., 2024;
Barke et al., 2024; Khan et al., 2024), and algorithm
optimization (Huang et al., 2024; Romera-Paredes
et al., 2024; Ye et al., 2024; Liu et al., 2024a).

The most related work to NeRM includes Fun-
Search (Romera-Paredes et al., 2024) and EoH (Liu
et al., 2024a), both of which leverage LLMs to
evolve code generation for function search. While
these methods have demonstrated promising re-
sults, often surpassing handcrafted algorithms in
specific tasks, they focus exclusively on code evo-
lution without refining task descriptions, which is
crucial for guiding the search toward more effective
solutions. Moreover, their reliance on exhaustive
candidate evaluation leads to high computational
costs, as every generated algorithm must be fully
executed and assessed, making the process ineffi-
cient for large-scale or complex problems.
Prompt Evolution with LLMs. Prompting has
emerged as a powerful technique for leveraging
LLMs in specialized tasks, with performance heav-
ily influenced by prompt selection. Recent ad-
vancements in automatic prompt optimization have
drawn significant attention, particularly in continu-
ous prompt tuning, where input token embeddings
are fine-tuned to improve model responses (Li
and Liang, 2021; Liu et al., 2021; Lester et al.,
2021). Despite its effectiveness, this approach re-
quires access to LLM parameters, often unavail-
able for black-box APIs, and soft prompts lack
interpretability, making them harder to analyze and
refine (Lester et al., 2021). In contrast, discrete
prompting, which involves predefined tokens or
task instructions (Schick and Schütze, 2020), offers
a more interpretable and human-friendly interface.
However, relying solely on prompt evolution for
code generation can introduce inconsistencies, as
prompts cannot directly modify or optimize the
logic of generated code (Marcus, 2020).

3 Methodology

This work introduces NeRM, comprising two com-
ponents: Nested Refinement Metamorphosis and
Predictor-Assisted Code Evaluation. Nested Re-
finement Metamorphosis integrates Metamorpho-
sis on Prompts (MoP), which simulates Phase I of
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Figure 2: Overview of NeRM, which integrates nested-refinement metamorphosis and predictor-assisted code
evaluation. The nested-refinement metamorphosis consists of the nests between Metamorphosis on Prompts (MoP)
and Metamorphosis on Code (MoA) to generate algorithms effectively. Additionally, NeRM incorporates predictor-
assisted code evaluation to efficiently filter high-quality solutions, reducing computational overhead.

biological metamorphosis by refining task descrip-
tions, and Metamorphosis on Algorithms (MoA),
which mimics Phase II by optimizing algorithms.
Their nested interaction simulates Phase III, driv-
ing continuous co-evolution for more effective so-
lutions. Predictor-Assisted Code Evaluation filters
out low-quality algorithms early, reducing compu-
tational costs while maintaining solution quality.
An overview of NeRM is shown in Figure 2.

3.1 Nested-Refinement Metamorphosis

Nested-refinement metamorphosis overcomes the
limitations of existing methods that iteratively gen-
erate code without refining task descriptions to bet-
ter guide the search process, leading to inefficient
exploration and high computational costs. Inspired
by biological evolution, which mimics the phases
of biological development, we propose (i) Meta-
morphosis on Prompts (MoP), which corresponds
to the growth and accumulation phase, where the
task description is iteratively refined to guide ex-
ploration more effectively; and (ii) Metamorphosis
on Algorithms (MoA), which mirrors the transfor-
mation phase, where the generated code undergoes
iterative refinement, continuously adapting to task
requirements and enhancing its quality.
MoP and MoA. Both MoP and MoA begin with
a diverse initial population, where MoP combines
manually crafted prompts to integrate human ex-

pertise with LLM-generated prompts for diversity,
while MoA generates an initial heuristic popula-
tion guided by MoP prompts and an LLM-based
generator. In the reflection phase, a reflector LLM
extracts insights from past refinements, synthesiz-
ing key takeaways, and suggesting improvements
to ensure continuous evolution based on previous
performance. During the evolution phase, MoP and
MoA apply crossover and mutation to generate new
candidates: MoP combines and modifies prompts,
while MoA generates new heuristics through LLM-
driven refinements. Finally, in the update phase,
both processes evaluate the candidates generated in
a development set, using a code predictor to retain
high-quality prompts and algorithms while filtering
out weaker ones. The details of the MoP and MoA
design are described in Table 1.
Nested-Refinement. NeRM achieves effective al-
gorithm generation through iterative refinement of
both MoP and MoA. The process begins with ini-
tialization, where a diverse set of prompts and al-
gorithms are generated. In the MoP phase, task
specifications are continuously refined based on
past performance to improve alignment and robust-
ness. The MoA phase then evolves heuristic so-
lutions using genetic-inspired operations, guided
by the refined prompts. Finally, through iterative
refinement, MoP and MoA update each other over
multiple cycles, ensuring both prompts and algo-
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Table 1: Details of the Metamorphosis on Prompts and Code

Module Metamorphosis on Prompts (MoP) Metamorphosis on Algorithms (MoA)

Initial population

In contrast to most automated prompt-based
methods that disregard human expertise, we
initialize the population with manually crafted
prompts to incorporate prior knowledge while
enhancing diversity with LLM-generated ones.

MoA creates a heuristic population using the
generator LLM, guided by MoP prompts and an
initial seed heuristic. This approach provides
examples that encourage valid heuristics and
search toward promising solutions.

Reflection

MoP refines heuristics through iterative reflec-
tions, where the reflector LLM generates sum-
maries and provides suggestions to improve de-
sign. These reflections can start from scratch or
incorporate predefined manual hints.

Similar to MoP, MoA systematically gathers
knowledge through historical iterative reflec-
tions. The reflector LLM synthesizes key in-
sights and offers strategic recommendations to
improve heuristic algorithm design.

Evolution

The prompt evolution process involves crossover
and mutation operations. Crossover combines
parent prompts to generate offspring, while mu-
tation introduces random changes to specific
components.

With the provided prompts and a pair of parent
heuristics, MoA guides LLMs to generate a new
offspring heuristic. It then applies a mutation
strategy, prompting the generator LLM to refine
heuristics for further improvement.

Update
We assess the generated candidate prompts/algorithms using a development set and keep those that
demonstrate strong performance. To further enhance efficiency, we leverage the code predictor to
filter high-quality candidates.

rithms co-evolve, progressively converging toward
a more effective algorithm. The details of the pro-
cess are illustrated in Algorithm 1.

3.2 Predictor-assisted Code Evaluation

Existing algorithm design methods suffer from in-
efficiency due to their reliance on exhaustive vali-
dation, where every generated candidate must be
fully evaluated to determine its quality. This pro-
cess leads to high computational costs, especially
as iterative refinement of MoP and MoA produces
large volumes of algorithms. Inspired by natural se-
lection in biological evolution, where weaker indi-
viduals are eliminated early to conserve resources
for stronger candidates, we introduce Predictor-
assisted Code Evaluation to prioritize high-quality
solutions without exhaustive testing.

Design of the Predictor. Traditional token-based
prediction methods (Papineni et al., 2002; Lin,
2004; Denkowski and Lavie, 2014) rely on textual
similarity, failing to capture functional correctness
and leading to inaccurate performance evaluation.
Additionally, LLM-based methods (Zhuo, 2024;
Tong and Zhang, 2024) introduce inconsistency
due to model stochasticity and incur high computa-
tional costs, making them inefficient for large-scale
heuristic ranking. To address these limitations, we
leverage LLM embeddings to map code and data
into a shared space, enabling execution-based per-
formance estimation. Unlike traditional embed-
dings that focus on syntax or token similarity, LLM
embeddings capture semantic and structural prop-

erties, leading to more accurate heuristic assess-
ment. Additionally, our pairwise ranking model
efficiently selects high-quality candidates, signifi-
cantly reducing computational overhead while en-
suring scalability and effectiveness.

Specifically, we first construct a training set for
predictor training (detailed in Appendix A.1) us-
ing pairwise algorithm comparisons (e.g., Dij =
(codei, datai, codej , dataj)), where the labels are:

label(Dij) =

{
1 if gapi > gapj ,
0 otherwise.

During training, we first utilize the text embed-
ding LLM to encode both the heuristic code and
associated problem data, which is formulated as:

Ei = Enc(codei),Dj = Enc(dataj),

where Ec, Ed are the embeddings of code and data,
Enc is the text embedding encoder. Then, for each
pair of heuristic code, we concate the embeddings
of codes and data and fed them into a Multi-Layer
Perceptron (MLP) for performance comparison:

pij = MLP
(
Ei||Di||Ej ||Dj

)
,

where pij is the probability that codei outperforms
codej . We optimize the predictor with the objec-
tive function: L =

∑
l
(
pij , label(Dij)

)
, where l

is Binary Cross Entropy (BCE) loss (Bishop and
Nasrabadi, 2006).
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Algorithm 1 Learning Process of NeRM.

Input: Problem description; initial algorithms;
LLM; interactive times t of MoP and MoA;
interactive times T of nested-refinement.
Output: Generated optimal algorithm.

1: // Nested-Refinement Metamorphosis
2: Initial population with a diverse set of prompts

and heuristics.
3: for k = 1, 2 · · · , T do
4: // Metamorphosis on Prompts (MoP)
5: for i = 1, 2, · · · , t do
6: Initial population;
7: Reflection & Evolution;
8: Update prompts with code predictor;
9: Update predictor parameters;

10: end for
11: // Metamorphosis on Algorithms (MoA)
12: for j = 1, 2, · · · , t do
13: Initial population;
14: Reflection & Evolution;
15: Update algorithms with code predictor;
16: Update predictor parameters;
17: end for
18: end for

Evolution of Predictor. During prediction, we
begin by randomly sampling K code instances as
initial candidates for validation, forming an algo-
rithm pool of size K. The remaining generated
codes are then evaluated against these K samples
using the predictor, which estimates their perfor-
mance. Higher-performing candidates are retained,
while weaker ones are discarded, ensuring that only
the most promising algorithms remain.

Once MoP or MoA prediction is complete, we
obtain the top K algorithms, which are then fully
validated to determine their actual performance.
The validation results are subsequently used to fine-
tune the predictor’s parameters, following the ap-
proach outlined in Section 3.2, enhancing its align-
ment with real-world performance. This adaptive
selection process significantly reduces computa-
tional overhead while ensuring the generation of
high-quality algorithms.

3.3 Comparison with Existing Works

FunSearch (Romera-Paredes et al., 2024),
EoH (Liu et al., 2024a), and ReEvo (Ye et al.,
2024) rely solely on code evolution, lacking
prompt reflection and evolution, making them

Table 2: Comparisons with existing works.

Method MoP MoA Predictor
Reflection Evolution

FunSearch

EoH

ReEvo

NeRM

highly dependent on initial prompts and limiting
adaptability. FunSearch mutates code without
refining task descriptions or incorporating solution
feedback, leading to inefficient exploration. EoH
evolves parent-generated heuristics without
optimizing prompt guidance, making it prone to
local optima and computationally expensive due
to exhaustive evaluation. ReEvo introduces code
reflection but lacks prompt refinement, requiring
full execution for candidate assessment, increasing
computational costs. In contrast, NeRM integrates
MoP and MoA, enabling the co-evolution of
prompts and algorithms, improving task alignment,
and leveraging predictor-assisted evaluation to
enhance efficiency while maintaining solution
quality. The comparison is shown in Table 2.

4 Experiments

4.1 Experimental Settings

Benchmarks. We conduct the proposed NeRM
on three different combinatorial optimization prob-
lems to evaluate its effectiveness and efficiency. (1)
Traveling Salesman Problem (TSP): Its target is
to find the shortest possible route for a salesman
to visit a set of cities exactly once and return to
the origin city. (2) Multiple Knapsack Problem
(MKP): This challenge involves selecting items,
each with a given weight and value, to maximize
the total value across multiple knapsacks, each with
a specified capacity constraint. We also report the
performance of the Capacitated Vehicle Routing
Problem (CVRP) in Appendix A.3.

Baselines. For TSP, we compare NeRM against
hand-crafted heuristics, including GLS (Voudouris
et al., 2010), KGLS (Arnold and Sörensen, 2019),
and EBGLS (Shi et al., 2018); prompt-based meth-
ods such as EEPE (Yu et al., 2023), CoAPT (Lee
et al., 2024), and APR (Liu et al., 2024b); and
evolution-based methods, including EoH (Liu et al.,
2024a) and ReEvo (Ye et al., 2024). For MKP, we
similarly compare NeRM with hand-crafted heuris-
tics, specifically VNS (Mladenović and Hansen,
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Figure 3: Evolution of NeRM for TSP. We outline the key prompts and best codes generated from NeRM. Moreover,
we present the best algorithm in the final iteration and compare it with the best-fit heuristic, EoH and EEPE.

1997), TS (Fred Glover, 1997), and ACO (Dorigo
and Di Caro, 1999), while keeping the compar-
isons with prompt and evolution-based methods
consistent with those used for TSP. Details of ex-
perimental settings are illustrated in Appendix A.2.

Table 3: Comparisons of different methods on TSP.
Bold results indicate the best performance.

Method TSP100 TSP200 TSP500 TSP1000

GLS 0.66±0.00 2.70±0.00 3.86±0.00 4.22±0.00

KGLS 0.01±0.00 0.28±0.00 0.92±0.00 1.55±0.00

EBGLS 0.44±0.00 1.36±0.00 2.65±0.00 4.09±0.00

EEPE 0.00±0.00 0.24±0.04 0.81±0.07 1.40±0.17

CoAPT 0.01±0.00 0.24±0.23 0.93±0.99 1.58±1.64

APR 0.01±0.00 0.24±0.24 0.80±0.78 1.46±1.39

EoH 0.04±0.01 0.36±0.05 1.48±0.13 2.26±0.09

ReEvo 0.00±0.00 0.23±0.24 0.85±0.87 1.42±1.44

NeRM 0.00±0.00 0.19±0.04 0.77±0.04 1.31±0.08

4.2 Implementation Details

All experiments are conducted using GPT-3.5
Turbo in a computational environment equipped
with an NVIDIA RTX 3070Ti GPU, an Intel i7-
11700K CPU, and 32GB of RAM. Each NeRM is
evaluated on 10 instances during training, generat-
ing 30 code candidates per iteration of MoP and
MoA. The code predictor is then used to retain the
top 3 candidates for the next generation. To assess
the performance and stability of different evolution
methods, each experiment is run three times, with
the mean and variance reported.

Table 4: Comparisons of different methods on MKP.
Bold results indicate the best performance.

Method MKP100 MKP300 MKP500

VNS 21.97±0.00 58.95±0.00 96.85±0.00

TS 21.91±0.00 50.84±0.00 76.28±0.00

ACO 22.86±0.00 58.99±0.00 97.03±0.00

EEPE 22.85±0.30 59.56±1.46 98.46±2.55

CoAPT 22.66±0.14 58.99±0.52 97.49±0.83

APR 22.95±0.26 60.27±1.35 99.78±2.46

EoH 22.93±0.14 59.39±0.88 98.10±1.57

ReEvo 22.91±0.26 59.64±1.07 98.57±2.12

NeRM 23.03±0.08 61.13±0.37 101.56±0.79

4.3 Performance Comparison

Effective of NeRM. Table 3 and 4 present per-
formance comparisons for TSP and MKP, respec-
tively. In both TSP and MKP, the prompt-based
(e.g., EEPE, CoAPT, APR) and evolution-based
methods (e.g., EoH, ReEvo) outperform traditional
hand-crafted heuristics, demonstrating the poten-
tial of LLMs to generate effective heuristic solu-
tions. Additionally, prompt-based methods achieve
better performance than evolution-based methods,
highlighting the importance of prompt refinement
in guiding the generation of more effective algo-
rithms. Lastly, NeRM consistently outperforms
both prompt-based and evolution-based methods,
demonstrating that the nested interaction between
MoP and MoA effectively balances exploration and
optimization, leading to more efficient and high-
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Table 5: Performance of different prediction methods on
the TSP200. Bold results indicate the best performance.

Type Method Accuracy

Token-based

BLEU 0.40
chrF 0.41
ROUGE-L 0.43
CodeBLEU 0.39
METEOR 0.31
RUBY 0.42

LLM-based
VANILLA 0.45
ICE-Score 0.53
CodeJudge 0.60

Ours NeRM 0.78

quality algorithm generation.
Additionally, we visualize the evolution of

NeRM for TSP in Figure 3, illustrating key steps
along with the generated prompts and algorithms.
The fitness value (gap) gradually decreases from
0.28 to 0.19, demonstrating progressive improve-
ment. Compared to the best-fit heuristic, as well
as the algorithms generated by the code evolution
method (EoH) and the prompt evolution method
(EEPE), NeRM generates prompts that more pre-
cisely capture problem requirements and algo-
rithms with a hybrid function composed of multi-
ple components, enabling more comprehensive and
adaptable solutions. Additional generated prompts
and algorithms are provided in Appendix A.5.
Efficiency of NeRM. To demonstrate the efficiency
of NeRM, we compare its time consumption and
convergence speed against EoH and ReEvo in Fig-
ure 4. EoH represents a heuristic-based evolu-
tionary approach, while ReEvo leverages LLMs
as hyper-heuristics for adaptive algorithm search.
These methods serve as strong baselines, as they
both explore algorithm evolution but differ in refine-
ment strategies. As shown in Figure 4a, the evalu-
ation time for EoH and ReEvo increases exponen-
tially with problem size, while NeRM maintains
a linear growth trend. This efficiency gain can be
attributed to the code predictor, which estimates al-
gorithm performance without exhaustive evaluation
of every candidate. Additionally, as shown in Fig-
ures 4b and 4c, NeRM achieves faster convergence
and higher-quality code in TSP200 and MKP100.
This improvement is largely due to the code predic-
tor, which filters out low-quality candidates early in
the evolution process, reducing unnecessary evalua-
tions and accelerating convergence while ensuring
that only promising solutions are refined. More
results are shown in Appendix A.3.
Effect of Code Predictor. To assess the im-

pact of the code predictor, we compare our
approach with two alternative predictor types:
token-based predictors, including BLEU (Papineni
et al., 2002), chrF (Popović, 2015), ROUGE-
L (Lin, 2004), CodeBLEU (Ren et al., 2020), ME-
TEOR (Denkowski and Lavie, 2014), RUBY (Tran
et al., 2019), which estimate code quality based
on textual similarity metrics; and LLM-based pre-
dictors, such as VANILLA (which directly queries
LLMs to compare codes), ICE-Score (Zhuo, 2024),
and CodeJudge (Tong and Zhang, 2024), which
leverage pre-trained models to assess the effective-
ness of generated algorithms. These predictor types
represent fundamentally different evaluation strate-
gies, enabling a comprehensive comparison of how
different prediction mechanisms influence both ef-
ficiency and solution quality. Details of the imple-
mentations are provided in Appendix A.2.

The results are reported in Table 5. We find
that LLM-based methods outperform token-based
predictors, demonstrating that leveraging contex-
tual understanding and semantic reasoning enables
more accurate and reliable performance evalua-
tion of generated algorithms. Additionally, the
predictor-assisted approach significantly outper-
forms token-based and LLM-based methods in per-
formance prediction. We attribute this to its ability
to leverage execution-based evaluation and iterative
refinement, enabling more accurate, efficient, and
scalable identification of high-quality solutions.

4.4 Ablation Study
Effect of Sub-module. We conduct the effect of
each sub-module to examine the contribution of
each component in NeRM: (1) w/o predictor: It
removes the module of predictor-assisted code eval-
uation; (2) w/o reflection: It removes the reflection
step in both MoP and MoA; (3) w/o evolution: It
removes the revolution step in MoP and MoA; (4)
w/o MoP: It removes the module of MoP and sim-
ply utilize MoA for code generation; (5) w/o MoA:
It utilize MoP for code generation.

Table 6: The results of ablation studies on TSP200.
Bold results indicate the best performance.

Method Gap (%) Time (s)

w/o predictor 0.18±0.02 104
w/o reflection 0.22±0.01 63
w/o revolution 0.24±0.04 62
w/o MoP 0.34±0.16 80
w/o MoA 0.23±0.04 72

NeRM 0.19±0.04 83
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Figure 4: Performance comparison of different methods. (a) shows the time consumption for each method across
different TSP sizes. (b) (c) illustrate the fitness trends of different methods on MKP100 and TSP200 over time.

Table 7: Performance comparison using different LLMs
as the backbone of NeRM. Bold values indicate the
best performance, while underlined values represent the
second-best performance.

Method TSP200 TSP300 TSP400 TSP500

GPT-3.5-Turbo 0.21 0.63 0.90 1.10
GPT-4-Turbo 0.18 0.40 0.55 0.72
Llama-3 70B 0.22 0.29 0.54 0.72
Gemini-1.5-Pro 0.22 0.33 0.57 0.77
DeepSeek-V3 0.20 0.42 0.52 0.69
GLM-4-Flash 0.19 0.35 0.57 0.75

Experimental results are shown in Table 6. From
the table, we find that: (1) w/o predictor sig-
nificantly increases computational costs without
yielding an increase in solution quality, indicating
that the predictor efficiently filters out low-quality
heuristics before evaluation, reducing the need for
exhaustive testing and accelerating the evolutionary
process. (2) w/o reflection and w/o revolution lead
to a noticeable performance decline. Reflection
enables iterative refinement by leveraging histor-
ical outputs, while revolution, through mutation
and crossover, ensures diverse solution exploration.
Without these mechanisms, heuristic evolution re-
lies more on random variations, hindering efficient
convergence to optimal solutions. (3) w/o MoP and
w/o MoA significantly degrade performance, but in
different ways. Without MoP, the framework loses
its ability to refine task specifications dynamically,
which is crucial for guiding LLM-generated heuris-
tics. This results in suboptimal code generation, as
the model lacks effective guidance in exploring the
search space. On the other hand, removing MoA
prevents continuous heuristic refinement through
structured code evolution, leading to stagnation in
heuristic improvement after the initial generation.

Effect of Different LLMs. Table 7 presents the
performance of different LLMs as the backbone of

NeRM across TSP200-TSP500, highlighting varia-
tions in effectiveness across different problem sizes.
From the table, we find that, GPT-4-Turbo deliv-
ers the best performance for TSP200 and remains
highly competitive for larger instances, securing
the second-best score for TSP500. DeepSeek-V3
excels in handling larger problems, achieving the
best performance for TSP400 and TSP500, show-
casing its strength in scaling to more complex prob-
lem sizes. Llama-3 70B demonstrates strong per-
formance in TSP300 but shows a slight decline in
larger instances, indicating that while it is effec-
tive for medium-sized problems, it may struggle
with the scalability of larger datasets. Meanwhile,
GLM-4 Flash maintains stable and consistent per-
formance across all problem sizes, securing the
second-best result in TSP200 and remaining com-
petitive in TSP300 and TSP500, highlighting its
robustness in various settings. This variation in
performance across different LLMs underscores
the importance of model selection in optimizing
algorithm performance for specific problem sizes.

5 Conclusion

In this work, we introduced Nested-Refinement
Metamorphosis (NeRM), a framework that iter-
atively refines prompts and evolves heuristic al-
gorithms through reflection and optimization. In-
spired by biological metamorphosis, NeRM inte-
grates Metamorphosis on Prompts (MoP) to re-
fine task descriptions and Metamorphosis on Al-
gorithms (MoA) to enhance solutions. The nested
refinement between MoP and MoA balances ex-
ploration and optimization, enabling adaptive algo-
rithm design. To improve efficiency, we added a
predictor-assisted evaluation mechanism, filtering
out low-quality heuristics early and reducing com-
putational overhead. Experiments on TSP, MKP,
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and CVRP show that NeRM outperforms state-of-
the-art prompt-based and evolution-based methods
in both quality and efficiency. In future work, we
plan to expand NeRM to broader domains, enhance
predictor models for better assessment, and im-
prove scalability for large-scale algorithm design.

Limitation

While NeRM demonstrates strong performance in
algorithm design, several limitations remain. Its
effectiveness is influenced by the underlying LLM,
leading to performance variability depending on
model capabilities and computational costs. Al-
though the predictor-assisted evaluation reduces
computational overhead, iterative refinement of
both prompts and code still poses scalability chal-
lenges for extremely large problem instances or
real-time applications. Additionally, while NeRM
effectively explores and optimizes heuristic solu-
tions, its search space is constrained by predefined
prompt structures and evolutionary operations, po-
tentially limiting further diversity in exploration.
The framework has been primarily evaluated on
combinatorial optimization tasks, and its gener-
alization to fundamentally different problem do-
mains, such as continuous optimization or sym-
bolic reasoning, remains an open question. Further-
more, the predictor approximates performance in-
stead of executing all candidates, which, while im-
proving efficiency, may lead to occasional misclas-
sification of promising solutions. Addressing these
limitations could further enhance NeRM’s adapt-
ability, scalability, and effectiveness in broader al-
gorithm design applications.
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A Appendix

A.1 Dataset Construction for Code Predictor
We first construct a training set for predictor training. This dataset is generated by leveraging LLMs to
produce heuristic code for various problems. Each generated heuristic is then executed to evaluate its
performance (e.g., (code, data, performance)). For instance, in the Traveling Salesman Problem (TSP),
we generate heuristic solutions for problem sizes of 50, 100, 150, and 200 nodes, with their optimal solution
gaps computed using the Concorde (Applegate et al., 2006). Given that smaller-scale TSP instances can
be solved efficiently and the predictor requires only a single training phase to generalize across different
problem instances, the computational overhead remains negligible. Once the dataset of code-gap pairs
is obtained, we randomly sample pairs of heuristic codes (e.g., Dij = (codei, datai, codej , dataj)) and
compare their performance gaps. If the first sample outperforms the second, it is assigned a label of 1;
otherwise, it is labeled as 0:

label(Dij) =

{
1 if gapi > gapj ,
0 if gapi ≤ gapj .

A.2 Details of Experimental Settings
Traveling Salesman Problems (TSP). The heuristic evolution is conducted on a set of 10 TSP200
instances, where TSP200 means that each TSP problem instance contains 200 cities. For the testing phase,
each problem size encompassed 64 problem instances, and the optimal paths were obtained using the
Concorde (Applegate et al., 2006) to obtain the average gap.

Methods in comparison includes:

• Hand-crafted heuristics: Two commonly used iterative solution methods, Guided Local Search
(GLS) (Voudouris et al., 2010) and Knowledge-Guided Local Search (KGLS) (Arnold and Sörensen,
2019), are selected here for comparison. An improved GLS method EBGLS (Shi et al., 2018)
is selected as the comparison algorithm. Their core improvement is to leverage domain-specific
knowledge to improve the efficiency and accuracy of solving optimal path finding tasks through
advanced language model techniques. For each problem instance, during the training phase, the
number of iterations is 1200 and the computation is limited to a maximum time of 20 seconds.
During the testing phase, the number of iterations for TSP50, TSP100, TSP200, TSP500, TSP1000
is 500, 1800, 800, 800, 800, and 800 respectively.

• Prompt engineering methods: Recent prompt engineering approaches optimize designs to enhance
LLMs’ adaptability and performance. EEPE (Yu et al., 2023) focuses on tailored prompts for
specific domains. CoAPT (Lee et al., 2024) uses context attribute words for accurate code generation.
APR (Liu et al., 2024b) introduces adaptive prompt routing for diverse text style transfer in code
generation.

• Evolution of heuristics approaches: Recently, these methods leverage LLMs to achieve significant
advancements in program search and algorithm design. EoH (Liu et al., 2024a) uses different
strategies to search for heuristic codes to achieve efficient automatic algorithm design; and ReEvo (Ye
et al., 2024) employs LLMs as hyper-heuristics with reflective evolution to enhance the adaptability
of heuristic codes.

Multiple Knapsack Problems (MKP). It refers to the optimization challenge of selecting items, each
with a given weight and value, to maximize the total value in multiple knapsacks, each with a specified
capacity constraint. The weights and values are both uniformly sampled from the interval [0,1], and the
capacity for each instance is uniformly sampled from (max

j
wij ,

∑
j
wij) following the settings in ReEvo.

Methods in comparison includes:

• Hand-crafted heuristics: Three commonly utilized solution algorithms, Variable Neighborhood
Search (VNS) (Mladenović and Hansen, 1997), Tabu Search (TS) (Fred Glover, 1997), and Ant
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Colony Optimization (ACO) (Dorigo and Di Caro, 1999), are employed for comparison. These
heuristics are designed to exploit problem-specific knowledge and patterns to efficiently explore the
solution space, aiming to identify high-quality solutions that balance the constraints and objectives
of the MKP.

• Prompt engineering methods and Evolution of heuristics approaches are the same as TSP.

Performance Predictor. The classification task of this module is to predict the performance of two
given pieces of code to identify the quality of the code and whether it needs to be evaluated during actual
execution. The datasets consists of around 5000 generated codes for each scenario during the execution of
the dual-branch framework and their evaluated fitness values. The label is a simple Boolean value that
represents whether the first code is better. Considering that the performance predictor needs to be trained,
for each problem, we randomly sampled 6000 pairs of codes for training; Then, 1000 code pairs were
randomly sampled from unused code to form a test set, and the prediction accuracy of all methods was
validated on this test set.

Methods in comparison includes:

• Token-based methods: Traditional methods used for assessing machine translation or text generation
have been adapted for evaluating code. BLEU (Papineni et al., 2002) measures modified n-gram preci-
sion and incorporates a penalty for brevity. ROUGE-L (Lin, 2004) evaluates sequence n-grams based
on the longest common sub-sequence. METEOR (Denkowski and Lavie, 2014) focuses on the recall
and precision of unigrams, taking into account the order of matched words. ChrF (Popović, 2015)
calculates character-level n-gram precision and recall. Additionally, CodeBLEU (Ren et al., 2020)
and RUBY (Tran et al., 2019) further extend these traditional token-based techniques specifically for
code evaluation.

• LLM-based methods: ICE-Score (Zhuo, 2024) and CodeJudge (Tong and Zhang, 2024) are two
baseline methods for evaluating code generation, with ICE-Score focusing on semantic matching
using LLMs, and CodeJudge emphasizing syntactic and logical correctness through automated
judging systems.

A.3 Additional Experiments

Table 8: Comparisons of different methods on CVRP metrics. Bold results indicate the best performance.

Method n=200 n=500 n=1000

POMO 11.62 34.78 292.46
POMO+DAR 11.48 35.07 289.33
POMO+ReEvo 11.66±0.19 36.85±1.76 155.40±49.54

POMO+NeRM 11.42±0.36 33.78±0.59 125.70±48.56

LEHD 4.30 3.83 5.59
LEHD+DAR 5.34 5.30 7.16
LEHD+ReEvo 3.79±0.23 3.03±0.14 5.49±0.14

LEHD+NeRM 3.07±0.33 2.98±0.16 5.25±0.02

Capacitated Vehicle Routing Problem (CVRP). Table 8 presents the performance of POMO-based and
LEHD-based algorithms on CVRP across different problem sizes. The results demonstrate that integrating
ReEvo and NeRM significantly enhances heuristic effectiveness, enabling POMO (Kwon et al., 2020)
and LEHD (Luo et al., 2023) to surpass the expert-designed attention-reshaping heuristic DAR (Wang
et al., 2024b). This improvement underscores the advantage of incorporating both evolutionary and
prompt-based methods in solving combinatorial optimization problems. Notably, POMO and LEHD
combined with NeRM achieve the best results across all tested instances, highlighting the effectiveness of
MoP in refining prompts and MoA in evolving heuristic code. The synergy between prompt refinement
and structured code evolution not only enhances heuristic adaptability but also optimizes overall efficiency.
These findings suggest that NeRM provides a more scalable and generalizable approach for solving
CVRP, demonstrating superior performance over conventional heuristic design methods. More details of
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the evolution process can be found in Figures 5a and 5b. They show the evolution processes on CVRP
200 with “POMO+NeRM” and “LEHD+NeRM”, respectively. The horizontal axis represents the time
required to reach the threshold, and the vertical axis represents the normalized performance between the
best fitness value and the worst one. It can be seen that the proposed method converges faster.

(a) Comparison of the POMO-based NeRM and ReEvo
on the variation of fitness over time on the CVRP200.

(b) Comparison of the LEHD-based NeRM and ReEvo on
the variation of fitness over time on the CVRP200.

Figure 5: Comparison of different problems of the variation of fitness over time on the CVRP200.

A.4 Additional Ablation Studies
Evolution Process on Different Problems. Figure 6a-6c shows the evolution processes on TSP 300,
400, 500, respectively.

(a) Comparison on the TSP300. (b) Comparison on the TSP400. (c) Comparison on the TSP500.

Figure 6: Comparison of different methods on the variation of fitness over time on problems of different sizes.
The x-axis represents the running time, and the y-axis represents the normalized objective, which is obtained by
normalizing the best and worst results through different methods.

In terms of efficiency of different heuristic evolution methods, we also visualize the running time
required for different methods to achieve the threshold (i.e. fitness value) on TSP problems of different
sizes. As shown in the Figure mentioned above, the horizontal axis represents different sizes of TSP
problems, and the vertical axis represents the time required to reach the threshold. For the TSP problem
of a specific problem size, ReEvo is initially run five times, with a maximum of 300 code generations per
run. The fitness of the best code produced during these runs is taken as the threshold for that problem
size. Subsequently, each method is rerun, and the runtime is recorded when the threshold fitness is
achieved. To ensure fairness in the comparison, during the runtime, a serial process is used for code
evaluation. Additionally, to mitigate the impact of network fluctuations, the time consumed by API
invokes is excluded.

Different Training set sizes. Figure 7 illustrates the variation in prediction accuracy of the pre-trained
code performance predictor as the number of training samples increases. For each training set size, we
imposed a maximum of 300 epochs and incorporated an early stopping mechanism to prevent overfitting.
The figure reveals that the prediction accuracy rises rapidly as the number of samples increases from 1000
to 3000. However, beyond 3000 samples, the marginal benefit of increasing the sample size gradually
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diminishes. Therefore, blindly expanding the training sample size to see as many sample pairs as possible
to improve prediction efficiency is unnecessary.

Figure 7: Accuracy of performance predictor varying with the number of training samples.

A.5 Generated Prompts and Heuristics
Best Prompt and Heuristic on Different Problems. This section presents the best prompts and
corresponding heuristics evolved by NeRM on different problems, as shown in Figure 8- 11.

Example Evolution Process. Typical processes of the proposed flow, such init process, MoP, MoC and
update process used in different problems, are shown in Table 9. EvoPrompt(?), LKH(?)

Table 9: Examples of the evolution Process on TSP, MKP, CVRP POMO, CVRP LEHD respectively.

Module Metamorphosis on Prompts (MoP) Metamorphosis on Algorithms (MoA)

Initial Population Shown in Figure 12, 18, 24, 30

Reflection Shown in Figure 15, 21, 26, 32 Shown in Figure 13, 19, 25, 31

Evolution Shown in Figure 16, 22, 28, 34 Shown in Figure 14, 20, 27, 33

Update Shown in Figure 17, 23, 29, 35
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Figure 8: The best NeRM-generated prompt and corresponding heuristic for TSP_GLS.
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Figure 9: The best NeRM-generated prompt and corresponding heuristic for MKP_ACO.
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Figure 10: The best NeRM-generated prompt and corresponding heuristic for CVRP_POMO.

17414



Figure 11: The best NeRM-generated prompt and corresponding heuristic for CVRP_LEHD.

Figure 12: Initialization of NeRM on TSP_GLS.
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Figure 13: MoA reflection of NeRM on TSP_GLS.

Figure 14: MoA revolution of NeRM on TSP_GLS.
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Figure 15: MoP reflection of NeRM on TSP_GLS.

Figure 16: MoP revolution of NeRM on TSP_GLS.
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Figure 17: Evolution udpate of NeRM on TSP_GLS.

Figure 18: Initialization of NeRM on MKP_ACO.

Figure 19: MoA reflection of NeRM on MKP_ACO.
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Figure 20: MoA revolution of NeRM on MKP_ACO.
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Figure 21: MoP reflection of NeRM on MKP_ACO.

Figure 22: MoP revolution of NeRM on MKP_ACO.
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Figure 23: Evolution udpate of NeRM on MKP_ACO.

Figure 24: Initialization of NeRM on CVRP_POMO.
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Figure 25: MoA reflection of NeRM on CVRP_POMO.

Figure 26: MoP reflection of NeRM on CVRP_POMO.
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Figure 27: MoA revolution of NeRM on CVRP_POMO.
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Figure 28: MoP revolution of NeRM on CVRP_POMO.
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Figure 29: Evolution udpate of NeRM on CVRP_POMO.

Figure 30: Initialization of NeRM on CVRP_LEHD.
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Figure 31: MoA reflection of NeRM on CVRP_LEHD.

Figure 32: MoP reflection of NeRM on CVRP_LEHD.
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Figure 33: MoA revolution of NeRM on CVRP_LEHD.
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Figure 34: MoP revolution of NeRM on CVRP_LEHD.
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Figure 35: Evolution udpate of NeRM on CVRP_LEHD.
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