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Abstract

Large Language Models (LLMs) are increas-
ingly used in tasks requiring interpretive and
inferential accuracy. In this paper, we introduce
ExpliCa, a new dataset for evaluating LLMs in
explicit causal reasoning. ExpliCa uniquely in-
tegrates both causal and temporal relations pre-
sented in different linguistic orders and explic-
itly expressed by linguistic connectives. The
dataset is enriched with crowdsourced human
acceptability ratings. We tested LLMs on Ex-
pliCa through prompting and perplexity-based
metrics. We assessed seven commercial and
open-source LLMs, revealing that even top
models struggle to reach 0.80 accuracy. In-
terestingly, models tend to confound temporal
relations with causal ones, and their perfor-
mance is also strongly influenced by the lin-
guistic order of the events. Finally, perplexity-
based scores and prompting performance are
differently affected by model size.

1 Introduction

Understanding cause-effect relationships is one of
the hallmarks of human cognition (Pearl, 2009).
The question of whether Large Language Mod-
els (LLMs) truly comprehend causal relationships
in natural language texts, or merely perform as
‘stochastic parrots’ (Bender et al., 2021) by repli-
cating statistical associations in their pretraining
data, remains a topic of debate (Zecevié et al., 2023;
Merrill et al., 2024). This question is crucial for the
application of LLMs in domains that demand inter-
pretive and inferential accuracy. The recent growth
in causal research and benchmarking highlights
the fundamental need for more reliable and inter-
pretable models (Chen et al., 2024). LLMs should
be able to interpret not only cause-effect relations
but also the relations between causal and tempo-
ral aspects (see Ning et al. (2018) as an example),
which are often connected and overlapping (e.g.,
typically an effect temporally follows its cause).

A common task for evaluating causal reasoning
skills is Pairwise Causal Discovery (PCD), which
focuses on determining the existence of a causal
relation between two events and, if so, establishing
which event serves as the cause and which one
as the effect (Gao et al., 2023; Wan et al., 2024).
However, this formulation does not directly take
into account the tight bound between the cause-
effect and the before-after relationships.

In this paper, we present ExpliCa, a dataset de-
signed to evaluate LLMs in commonsense causal
reasoning through PCD tasks. Our formulation of
the PCD task for ExpliCa allows us to take into
account also the entanglement of causal and tem-
poral relations between events. This is achieved by
considering sentence pairs and connective words
that overtly express these relationships. In ExpliCa,
each sentence describes an event (e.g. Martina
has less chance of getting the flu and Martina has
been vaccinated), and each connective word ex-
plicitly indicates either a causal relationship (i.e.,
so and because) or a temporal one (i.e., before and
after). We collected acceptability ratings for each
connective word with respect to each sentence pair,
to account for both causal and temporal relations.
To our knowledge, ExpliCa is the first dataset con-
taining both causal and temporal explicit relations
between events annotated by native speakers via
crowdsourcing, rather than expert annotators.

We conducted a nuanced evaluation of a group of
LLMs on ExpliCa. Its goal is to shed light on sev-
eral key aspects. First, we aim to estimate whether
and to what extent LLMs can model and distinguish
causal and temporal relations, similarly to humans.
Second, we want to assess potential differences be-
tween LLMs’ competence and performance in our
PCD task. Recent studies identified a discrepancy
between the log-probability models assign to word
sequences, which is referred to as their competence
since it directly relates to their language model-
ing training objective, and models’ performance,
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Figure 1: An overview of the contributions of this paper. On the left, the ExpliCa dataset, annotated with human
acceptability ratings. On the right, our evaluation framework which leverages LLMs through PPL and prompting.

which is given by the accuracy of their responses
elicited via prompting, when tasked to provide an
answer with instructions in natural language. This
line of research suggests that prompting tends to un-
derestimate the underlying linguistic knowledge of
the models (Hu and Levy, 2023; Kauf et al., 2024).
Therefore, we compare two metrics computed over
connected sentences pairs: accuracy in prompting
tasks, and perplexity. The latter is derived from the
model’s log-probability and is used here as a proxy
for the model’s acceptability decision, stemming
from its underlying linguistic competence. Finally,
we want to study these aspects across models of
varying scales.

Contributions. Our primary contributions are
shown in Fig. 1 and can be summarized as follows:
* we introduce the ExpliCa dataset (Sec. 3),
which is syntactically and semantically cu-
rated, ensuring high-quality data and lexically
balanced in terms of word frequency, making
it suitable for comprehensive analyses. Ex-
pliCa has also been extensively annotated by
human evaluators, providing a robust founda-
tion for testing various models;
* we offer a framework for analyzing LLMs’
ability to model causal and temporal relations.
Our approach systematically targets models’
competence (via perplexity) and performance
(via prompting), measured across different for-
mulations of the task (Sec. 4);
* we present a comprehensive evaluation of
seven LLMs in total, comprising both com-
mercial and open models (Sec. 5).!

"Data and code: github.com/Unipisa/explica

2 Related Work

The study of causality and its linguistic expressions
garnered renewed and intensified interest, partic-
ularly in the context of evaluating the reasoning
abilities of LLMs. Recent advancements led to the
development of several specialized datasets, aimed
at testing the causal reasoning of LLMs through hy-
pothetical scenarios. Some studies evaluate LLMs
on their ability to identify causal relations in struc-
tured data (Cai et al., 2023). Notable works on un-
structured data include CLadder (Jin et al., 2023),
which assesses causal reasoning using questions
based on formal rules; CausalBench (Wang, 2024),
used for tasks related to mathematics, coding, and
textual data; and CausalNet (Ashwani et al., 2024),
which covers both causal and counterfactual ques-
tions. The focus of our work is on the extraction of
causal events from unstructured textual data. Un-
like in ExpliCa, the above mentioned datasets focus
on implicit causal relations, which are not overtly
expressed in linguistic structures.

To evaluate LL.Ms, several datasets have also
been annotated with explicit causal relationships
between events in texts. These range from multi-
lingual educational content, as in MECI (Lai et al.,
2022), or financial news (Mariko et al., 2022),
to more diverse sources, such as CREST (Hos-
seini et al., 2021). Although these datasets do
not explore the temporal dimensions of causal-
ity, many causal annotation schemas are derived
from datasets that do annotate temporal relation-
ships between events (e.g., BECauSE, Dunietz et al.
2017) or vice-versa (e.g., Temporal and Causal
Reasoning, Ning et al. 2018), including those from
news sources (e.g., Causal Time Bank, Mirza et al.
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2014; Event StoryLine Corpus, Caselli and Vossen
2017), and from short commonsense narratives
(e.g., CaTeRS, Mostafazadeh et al. 2016). How-
ever, such datasets do not leverage crowdsourcing
annotation by native speakers for both causal and
temporal relations as in ExpliCa. In our dataset, the
ground truth is given by English native speakers’
annotation collected via crowdsourcing, with the
aim of addressing the complexity of distinguish-
ing truly causal from merely temporal relations be-
tween events. Furthermore, CLadder, CausalBench,
and CausalNet are question-answering datasets that
include scenarios involving causally related events.
Another dataset of this kind is CRAB (Romanou
et al., 2023), which contains events taken from
real-world situations together with their contex-
tual information (i.e., news articles). Similarly,
CausalProbe-2024 (Chi et al., 2024) builds its sce-
narios from texts published after the release of the
evaluated models, ensuring that the information
was not available during model training. A key
challenge in evaluating LLMs using datasets with
direct textual annotations of causal relations is, in
fact, the inherent ambiguity of their expression in
natural language. For instance, linguistic markers
such as and can signal either causality or temporal-
ity, depending on the context. This ambiguity can
limit the effectiveness of such datasets in assessing
causal reasoning.

To overcome this limitation, ExpliCa has chosen
a more controlled approach to causality evaluation
by conducting a pairwise analysis of events, each
expressed by a single sentence. The same strategy
has been adopted in the COPA dataset (Roemmele
etal., 2011), where causality detection is framed as
a task where the system must choose the most plau-
sible alternative between two options. Similarly,
e-CARE (Explainable Causal Reasoning, Du et al.
2022) includes over 21, 000 multiple-choice ques-
tions focused on causal reasoning, accompanied
by conceptual explanations that clarify the under-
lying causal logic of each question. While these
two datasets present instances of implicit causality,
the BIG-Bench (Beyond the Imitation Game, Sri-
vastava et al. 2022) initiative also models explicit
causal reasoning. In this framework, the system
must select the most plausible causal relationship
between A because B and B because A. Similarly,
in ExpliCa pairs of sentences from e-CARE and
BIG-bench are joined in both directions using
temporal and causal connectives. For example,
the dataset contains both A precedes/causes B and

B precedes/causes A. This allows us to carefully
analyze the models’ ability to discriminate between
the related and yet very different relations of tem-
poral precedence and causality. Furthermore, other
linguistic cues, such as anaphoric references, have
been removed. This design ensures that models are
unlikely to rely on surface features, preventing the
correct interpretation of causal markers from being
inferred simply from the syntactic context.

As in Kiciman et al. (2023) and Yu et al. (2025),
many research works have focused on evaluat-
ing LLMs’ causal reasoning by using existing re-
sources. In fact, some of the above datasets have be-
come part of a broader evaluation framework called
Causal evaluation of Language Models (CalLM,
Chen et al. 2024). CalLM serves as a compre-
hensive benchmark for assessing LLMs’ causal
reasoning capabilities. It comprises 126, 334 data
samples and provides a foundational taxonomy of
four modules: causal target, adaptation, metric,
and error analysis. In relation to causal discovery,
this framework addresses issues distinct from those
targeted by ExpliCa, and it focuses solely on the
analysis of LLM-generated responses. By contrast,
in our work, we evaluated both the model outputs
elicited via prompts, and the internal knowledge of
LLMs, assessed through perplexity measurements.
An overview of these datasets, along with a com-
parison with ExpliCa, is provided in Appendix A.

3 The ExpliCa Dataset

ExpliCa® is designed to evaluate LLMs on com-
monsense causal reasoning through PCD tasks. It
is composed of sentence pairs, where each sen-
tence describes an event. Sentence pairs were in
part adapted from sentences in existing datasets and
in part manually crafted. Approximately a third of
the sentence pairs were based on sentences from
DeScript (Wanzare et al., 2016), e-Care (Du et al.,
2022), and BIG-Bench (Srivastava et al., 2022).
ExpliCa includes 600 English sentence pairs,
selected to be equally divided into three subsets:
1.) CAUSAL subset, where the relationship is most
likely causal (and possibly also temporal); ii.) TEM-
PORAL subset where the relation is expected to be
only temporal; iii.) UNRELATED subset, including
sentences that are thematically related but neither
causally nor temporally.* Sentence pairs are linked

Release license details are in App. B.
3Cf. Sec. 2 for a brief description of these datasets.
*Note that the division was done by the authors during the
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through words that explicitly signal either a causal
or temporal relationship. These connectives act
as linguistic cues, enabling a causal or temporal
interpretation of events based on the compositional
meaning of the sentences. Other than the TYPE
of the relation between the events, the connectives
specify the ORDER of the events in the relations,
which can be ICONIC — where the effect follows
the cause and events are presented in their chrono-
logical order — or ANTI-ICONIC, where the order
is reversed. We join each sentence pair with each
connective, also considering the reverse order. In
this way, we obtained 4, 800 unique items (600
pairs x 4 connectives x 2 orders).

An English native speaker examined a dataset
sample to validate whether the connectives cor-
rectly express the nature of the relation and the
order between the events. We detail the connec-
tives below:

* then - indicates a temporal relation in an
iconic order: The first event precedes the sec-
ond event;

* gfter - indicates a temporal relation in an anti-
iconic order: The first event follows the sec-
ond event;

* so - indicates a causal relation in an iconic
order: The first event causes the second event;

* because - indicates a causal relation in an anti-
iconic order: The first event is a consequence
of the second event.

Crucially, the connectives serve as the only lin-
guistic cue for a causal or temporal interpretation of
events. Other potential cues, such as causal verbs
(e.g. cause, result, produce, affect etc.) were not
included. Moreover, to avoid biasing humans’ and
models’ decisions, anaphoric pronouns were not
used. For example, instead of The coffee was bitter,
The child spit it out, we overtly expressed the ob-
ject in the second sentence: The coffee was bitter,
The child spit the coffee out.

Then we applied a rigorous procedure to enrich,
validate, and refine the dataset. First, we validated
the dataset ensuring that the statistical association
between words in sentence pairs does not signif-
icantly differ across the three subsets (i.e., UN-
RELATED, TEMPORAL, CAUSAL). This validation
was performed using Mutual Information (Sec. 3.1).
Hence, we enriched each item with human accept-
ability ratings collected via crowdsourcing, and we
set a threshold to the ratings for unrelated ones

creation of the dataset, but the final annotations provided as
gold standard are based on the human ratings from the survey.

Table 1: The ground truth of ExpliCa according to
human acceptability ratings.

Rel. Type Rel. Order Connective # Sentences
Temporal Iconic Then 1,040
Temporal  Anti-iconic After 656
Causal Iconic So 820
Causal Anti-iconic Because 876
Unrelated - - 1,408

(Sec. 3.2). Finally, we checked for frequency bi-
ases in the dataset by analyzing the triplets {1st
sentence verb, connective, 2nd sentence verb} in
enTenTen (Jakubicek et al., 2013) (Sec. 3.3).

3.1 Lexical Association Bias

If unrelated sentence pairs presented very different
lexical elements compared to causally or tempo-
rally related ones, this might affect a LLM behav-
ior, and lead to biased results. In order to address
this aspect, we computed the statical association
strength between pairs of lexemes (nouns, verbs,
or adjectives),’ one belonging to the first sentence
and the other to the second sentence. To this aim,
we used Mutual Information (MI) to quantify the
strength of the relation between two linguistic units.
More specifically, we adopted two variants: Point-
wise Mutual Information (PMI) and Local Mutual
Information (LMI) (Church and Hanks, 1990; Ev-
ert, 2004). We averaged the MI scores of all the
possible pairs of lexemes from a single sentence
pair to obtain an item-level MI score, computed
on the UkWaC corpus (Ferraresi et al., 2008). We
applied the Wilcoxon test to check if there were
statistically significant differences in the item-level-
MI scores across the CAUSAL, TEMPORAL, and
UNRELATED groups. We found that the statistical
association of the sentence pairs in the three groups
was not significantly different, both for LMI (W:
41,576, p-value: 0.4312) and PMI (W: 38, 318, p-
value: 0.4009). Thus, we can conclude that our
dataset is free from lexical association biases.

3.2 Human Ratings

Each of the 4, 800 items in ExpliCa was annotated
via crowdsourcing by 15 native English speakers.®
We asked the participants to assess the acceptability
of each item by giving a rating from 1 to 10. The
ratings were then averaged for each item, obtaining
the average acceptability rating for each connective

SWe used Stanza (Qi et al., 2020) for PoS-tagging.
See App. C for details on the annotation procedure.
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Figure 2: Number of sentence pairs (categorized by
relation TYPE and ORDER) in each frequency bin.

in each sentence pair, in both event directions. We
assigned to each sentence pair a relation TYPE and
a relation ORDER label based on the connective
deemed more acceptable for humans. For exam-
ple, if then obtained the highest average rating for
a sentence pair (in a specific direction), this is la-
beled as TEMPORAL TYPE with an ICONIC ORDER.
Sentence pairs for which no connective had a rat-
ing higher than 6 and with mean rating below 5
are labeled UNRELATED. Tab. 1 summarizes the
cardinality of the different classes in the dataset.

3.3 Frequency Bias

The frequency of linguistic constructions affects
the performances of LLMs (McCoy et al., 2023).
For example, if the construction {/isten, after, turn
up} were more frequent than {listen, then, turn up},
a model might be biased towards the former.

To control for such frequency biases in ExpliCa,
we proceeded as follows. We used SpaCy,’ to lem-
matize the sentences and perform part-of-speech
(PoS) tagging, allowing us to identify the gram-
matical category of each linguistic unit. Then, we
extracted the verb from each sentence, and the con-
nective used to join them. For copulative verbs
(e.g., is beautiful), we also considered the noun or
the adjective following the copula. We retained
particles in phrasal verbs (e.g., turn up), and in
sentences containing multiple verbs (e.g., with em-
bedded clauses), we considered up to two verbs,
prioritizing those most salient to the sentence mean-
ing (e.g., Michele chose the pizza he wanted to eat
[want, eat]). Then, we used the SketchEngine
APIs® to query the enTenTen21 corpus to com-
pute the co-occurrence of the elements in the triplet
{ 1st sentence verb, connective, 2nd sentence verb}.
We divided the co-occurrences into frequency bins

"spacy. io, English model en_core_web_sm.
8https://www.sketchengine.eu/apidoc/

based on quartile ranges: RARE, UNCOMMON,
COMMON, and FREQUENT. Fig. 2 shows the num-
ber of sentence pairs for each bin. While there
are differences between classes, their distribution
on the frequency spectrum shows no significant
trends.® This suggests that our dataset is relatively
free from frequency biases.

4 Experiments

We evaluated models on ExpliCa using human
ratings as ground truth across four tasks: three
prompting tasks, and one perplexity evaluation.
Prompting experiments were conducted under var-
ious settings, including few-shot (i.e., the prompt
includes a few examples illustrating how to per-
form the task) and zero-shot (i.e., no examples are
provided in the prompt) setups, and employing ei-
ther greedy search!® or the Outlines framework
(Willard and Louf, 2023) as decoding strategy for
generating answers. Greedy search, or greedy de-
coding, selects the most probable next token at each
step, while Outlines is a decoding framework that
restricts model outputs to a predefined set of valid
completions. This approach has been adopted in
several recent studies and is now commonly used
in the literature to control outputs of generative
models (Kauf et al., 2024). We used accuracy as
evaluation metric. To study the effect of the model
parameter scale, we then compared several models
of the Qwen2.5 family on the acceptability rating
task and perplexity. Finally, we compared the dis-
tribution of model ratings in the acceptability task
and perplexity scores with human ratings, assess-
ing their correlation. By analyzing the relationship
between model ratings, perplexity, and human ac-
ceptability ratings, we aim to determine whether -
and to what extent - LLLMs can capture and dis-
tinguish causal and temporal relations in ways
that align with human understanding.

Experiments were ran on a single Nvidia A100
80GB GPU, for around 120 GPU hours. OpenAl
models were queried via the proprietary API for an
estimate of 7 GPU hours.

Prompting Evaluation. This aimed to assess
LLMs’ generation abilities and analyze how perfor-
mance varies based on task modeling. Specifically,
we defined three tasks:

i.) acceptability ratings - we adopted the same
design used in the survey with human participants

“Sentence count for each frequency bin in Tab. 4, App. D.
""More details on answer cleaning in App. E.
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(Sec. 3.2). Items for which the model failed to
provide a rating were assigned a score of —1;

ii.) cloze test - given a test item consisting of two
sentences linked by a connective, we masked the
connective and asked the model to choose the most
suitable one out of a list of candidates. An out-of-
list answer was considered a miss;

iii.) multiple-choice task - the model received a
sentence pair with the four connectives marked as
A, B, C, D, and tasked to return the letter corre-
sponding to the appropriate connective. Failure to
provide one of the options was considered a miss.

We collected data from a single prompt per task,
and each underwent a selection process. We drafted
a first prompt, and then used ChatGPT to obtain
four more variants of it.!! We averaged the per-
plexity of all the open models on each prompt and
chose the one with the lowest average perplexity.

We randomized the order of few-shot examples,
options to choose from, and correct answers during
inference. In the few-shot scenario, the models saw
one example for each connective.'?

Perplexity Evaluation. We computed the per-
plexity (PPL) of each item in the dataset, and
grouped those corresponding to the same sentence
pair. Then, we chose the connective from the item
with the lowest PPL. We derived from the con-
nective the TYPE and ORDER of the relation and
computed models’ accuracy by comparing these
results with the human ground truth obtained with
crowdsourcing annotation. We call this accuracy
as Accuracy Perplexity Score (APS).

4.1 Models

We selected 7 generative LLMs. Specifically, we
selected two open-weights models (Mistral-7B-
Instruct-v0.3 and falcon-7b-instruct), three par-
tially open models (Meta-Llama-3.1-8B-Instruct,
gemma-2-9b-it, and Qwen2.5-7B-Instruct), and
two commercial models, gpt4o and gpt4o-mini.
Perplexity evaluation was not performed on com-
mercial models as it is not permitted through the
API. We used Qwen2.5 instruct models of differ-
ent sizes (from 0.5B to 32B parameters) for analyz-
ing the impact of model scale.'?

Hhttps://chatgpt.com/, used November 2024.
12Selected prompts and perplexity scores are in App. F.
BMore details on models in App. G.

5 Results and Discussion

We present the results of our experiments by first
providing an overview of the core outcomes from
the prompting- and perplexity-based evaluations
(Sec. 5.1). Then, we provide an in-depth analysis
of the top-performing models, and a comparative
analysis of Qwen models across different sizes (in
Sec. 5.2). The fine-grained results, including per-
formances of each model, task, relation type, and
setting are reported in Appendix H.

5.1 Core Analysis Results

The core analysis of the models on the ExpliCa
benchmark primarily involves comparing their lin-
guistic performance through prompting and eval-
uating their competence in causal reasoning us-
ing perplexity. We also provide a comprehensive
overview of the results, organized by both task and
model, revealing substantial variability in perfor-
mance across the prompting tasks.

I Acceptability FEW
Acceptability ZERO

BN Cloze FEW
Cloze ZERO

MC FEW
MC ZERO

. APS

Model Performance with Greedy Search and APS

Model Performance with Outlines and APS

GPT4o0-mini  GPT4o0 Falcon Gemma Llama Mistral Qwen

Figure 3: Models’ results with APS scores (top, bottom),
Greedy Search (top), and Outlines (bottom).

Modeling PCD with Prompting. Fig. 3 shows
results for each model in each task in both greedy
search and Outlines settings. APS scores are re-
ported in both charts for comparison. GPT-40 is
the best-performing model in most tasks. Higher
results are obtained mostly by models in the ac-
ceptability rating task (zero or few-shot), with a
few exceptions, like Mistral. Moreover, the Out-
lines framework proved to be beneficial for all mod-
els on the multiple-choice task. Conversely, for
the cloze test and acceptability rating task, perfor-
mances either remain roughly the same or decrease
substantially for both open models and GPTs. No-
tably, GPT40-mini exhibits a much wider perfor-
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Table 2: Models’ accuracy and SD across prompting
tasks, reported for i.) all models, ii.) open models, and
iii.) GPT variants. The overall best average is in bold,
the top few/zero-shot result is underlined and bold,
and the best per task is underlined.

Task Greedy Search Outlines

All Open GPTs ‘ All Open GPTs

Few-shot
Acc.  0.46£0.2 0.35+£0.1 0.754+0.0 | 0.38+0.2 0.254+0.1 0.714+0.1
Cloze 0.4240.2 0.34£0.2 0.6240.1 | 0.43+0.2 0.354+0.1 0.6240.1
M.C. 0.2440.2 0.2240.2 0.2940.3 | 0.38+0.2 0.344+0.1 0.5040.2

Avg  0.37£0.2 0.30£0.2 0.55+0.3 ‘ 0.40+0.2 0.31+0.1 0.61+0.2

Zero-shot
Acc.  0.4940.2 0.43+0.2 0.66+0.0 0.40£0.2 0.3240.1 0.62+0.2
Cloze 0.384+0.1 0.32+0.1 0.5440.0 0.40+0.1 0.35+0.1 0.53+0.0
M.C. 0.214+0.2 0.18+0.2 0.2740.3 0.38+0.1 0.3440.1 0.46+0.2

Avg  0.361+0.2 0.31+0.2 0.4940.2 ‘ 0.394+0.2 0.3440.1 0.5440.2

mance range across both few-shot and zero-shot
settings. Moreover, each model performs best un-
der different settings, in particular GPT40, Gemma,
and Qwen. GPT4o seems to benefit from few-shot
learning in all tasks and decoding strategy, more
than the other models.

Modelling PCD with Perplexity. The APS re-
sults of the open models are shown in Fig. 3. The
scores obtained by relying solely on perplexity are
significantly higher (0.63 overall average) com-
pared to those achieved in the prompting tasks.'*
Although Falcon performs poorly in the latter, it
is the model with the best APS (0.66). By lever-
aging perplexity, the lowest APS too, reached by
Qwen with 0.59, surpasses the other open mod-
els in prompting tasks and GPT40-mini as well.
Although this result does not match GPT4o per-
formances, it seems to confirm that models’ com-
petence about causal relations encoded in their
probabilistic predictions is more accurate than their
prompting performances (Hu and Levy, 2023).

From these analyses we conclude that ExpliCa
is a highly challenging dataset for explicit causal
reasoning evaluation. State-of-the-art LLMs like
GPT4o are not able to fully solve the dataset, while
smaller variants perform worse, exhibiting high
variability depending on the prompt and generation
strategy. Notably, when evaluated via APS, small
open models can sometimes outperform larger
(commercial) models.

Overview. Tab. 2 shows results aggregated by
prompting task. On average, PCD performed best
when responses were framed using Outlines in a

“Perplexity values are in Tab. 9, App. H.

.. Models' Results: Average Accuracy across Tasks and APS
Greedy - Few APS

Greedy - Zero
“[

Outlines - Few
Outlines - Zero

Mean Score

Falcon Gemma Llama Mistral Qwen GPT4o-mini GPT4o

Figure 4: Average models’ accuracy (on prompting
tasks and perplexity) obtained from all the tasks on
causal and temporal related sentence pairs. The numbers
on top of each bar represent the standard deviation.

few-shot setting (0.40 overall, 0.61 for GPT mod-
els). However, the highest task-specific accuracy
was achieved in the acceptability rating task in a
zero-shot setting with greedy search (0.49). Stan-
dard deviation analysis (sd) indicates that task se-
lection significantly affects smaller models’ per-
formance, especially with greedy search (sd 0.2).
Strikingly, the top average accuracy of 0.61 still
reveals a strong gap with human data.

Core results by model are summarized in
Fig. 4,5 which shows the average accuracy across
all three prompting tasks for a specific model in a
specific setting (e.g., Outlines in zero-shot). Violet
bars represent the APS (a single numerical value)
for each open model.

We observe a substantial variability of perfor-
mances even among models of the same scale in
prompting tasks, especially for open models with
greedy search. Besides the high degree of varia-
tion, two trends can be observed: i.) GPT4o0 out-
performs all models, but its mini variant does not
follow this trend and is still far from human per-
formance; ii.) Prompting performance is systemat-
ically lower than competence-level APSs in open
models, which is stable across models.

5.2 In-depth Analysis Results

The ExpliCa design allows us to provide a more in
depth analysis of causal reasoning and LLMs.

Relations’ type and order. First, we focus on
the relation TYPE between the events expressed in
each dataset item, and their ORDER. We report
results on the acceptability rating prompting task,

BDetailed results are shown in Tab. 6, App. H.
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Models' results by Type and Direction
of Pair Sentences Relation
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Figure 5: Accuracy of models by relation TYPE and
ORDER. APS stands for Accuracy Perplexity score.

with zero-shot and greedy search (i.e., where the
models performed best overall).'® We specifically
focus on GPT40 and two open models, namely
Gemma and Falcon, with the latter achieving the
best APS. In Fig. 5, we see that models perform
best on the CAUSAL relations in ICONIC order, with
the exception of Falcon.!” Worse performances are
obtained for CAUSAL ANTI-ICONIC and TEMPO-
RAL ICONIC, with the latter often being mistaken
for CAUSAL ICONIC.

An interesting pattern emerges by comparing
APSs and Accuracy on acceptability ratings. APSs
for a model are always higher than the respective ac-
ceptability ratings’ accuracy, except for TEMPORAL
ANTI-ICONIC items.'® However, by observing the
models’ behavior,!® we saw that both Gemma and
Falcon tend to favor the TEMPORAL ANTI-ICONIC
connective despite showing lower perplexity for the
connective expressing a CAUSAL ICONIC relation
(i.e., so). GPT4o scores do not seem to suffer the
same biases toward specific cases. Nevertheless,
intra-cases differences are up to 26%.

Overall, results show that open models may be
rather inconsistent in how they address causal and
temporal relations and are highly influenced by
how the task is formulated (i.e., by using prompt-
ing or perplexity-based scores). Moreover, while
LLMs are quite good at identifying causally-related
events, they tend to confound temporal relations
with causal ones, and their performance is also
strongly influenced by the linguistic order of
presentations of the events. This suggests that,
compared to humans, they have a less general
and abstract knowledge of causal (and tempo-
ral) relations.

ISAll the models’ results, in all settings, are in App. H.
"Values are shown in Tab. 10, App. H.

18 A5 for most of the models (see Tab. 9, App. H).
See App. 1, Fig. 13 for the confusion matrices.

Models' and Humans' Acceptability Ratings
and Models' Perplexity Distributions Compared

[ Causal-Temporal [ Unrelated
o

| W
ZLL LII

Humans GPT-40 Zero Gr.

Value

Gemma Zero Gr.  Falcon Perplexity

Figure 6: Distribution of acceptability ratings for hu-
mans and GPT40 and Gemma, and Falcon’s normalized

perplexity.

Correlation and distribution variation. We
compared human ratings with model-generated
ones in terms of their distribution and correlation.
We show a comparison of models acceptability rat-
ings with humans’ for the causal-temporal and un-
related subsets in Fig. 6.°° We consider ratings of
GPT40 and Gemma,?' and the (normalized) per-
plexity scores for Falcon, as it obtained the best
APSs. A noticeable difference exists between hu-
man ratings of CAUSAL and TEMPORAL items Vvs.
UNRELATED and model scores. Human ratings
are characterized by a clear distinction between
the relation types, with CAUSAL-TEMPORAL judg-
ments mostly falling in the 4-8 range and UNRE-
LATED judgments never exceeding 6 (on a 1-10
scale). There is only a small overlap between the
two distributions in the human ratings. However,
this is not true for models: GPT40 judgments for
CAUSAL-TEMPORAL are more dispersed along the
whole scale, whereas UNRELATED pairs present
many outliers in the top end of the distribution; in
Gemma’s ratings there is a larger overlap between
CAUSAL-TEMPORAL and UNRELATED items; Fal-
con’s perplexity scores exhibit a similar overlap
between the two distribution, but are also more
compressed in the lower end of the distribution.
Fig. 7 shows Spearman correlation computed
among human ratings and models’ acceptability rat-
ings collected in zero-shot scenario.”> We observed
that even though GPT40, Gemma, and Qwen have
a strong correlation with human ratings, this greatly
varies according to the items’ condition. In particu-

2 Answers without a rating are not shown in the distribution.
2'Results for the zero-shot prompt with greedy search.

These are the models with the highest accuracy for this task.
ZIndividual results in Tab. 14, App. J.
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Correlations between Ratings. Humans vs Models
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Figure 7: Spearman correlation between humans’ rat-
ings and models’ results. Ratings from the zero-shot
task, both with greedy (_gr) and Outlines (_out).

lar, the model scores for TEMPORAL ANTI-ICONIC
and UNRELATED items have a much lower correla-
tion with human ratings.

Size Effect. We analyzed how the model size af-
fects performance on PCD. We selected the Qwen
model family, available in a wide range of sizes,
and used the acceptability rating and perplexity
tasks as a testbed.”® Fig. 8 shows that Qwen’s per-
formance and APS improve with model size, except
for a slight drop for the latter in the largest variant.
Nonetheless, the improvement rates are quite differ-
ent. Performances seem to linearly scale with size,
whereas the APS growth curve is flatter and even-
tually plateaus. The initial APS is markedly higher
(2x) than the respective accuracy; accuracy and
APS are nearly equal at the 14B mark; the accuracy
of the 32B keeps improving while the APS is stale.
A similar trend also holds for each relation?*, de-
spite showing greater variability. For example, the
0.5B variant is quite proficient with ANTI-ICONIC
relations but almost incapable of modelling ICONIC
ones. The model scale seems to correlate with
smaller performance differences across relations.
This might suggest that size mainly affects the
model’s performance on prompting tasks, rather
than their competence about causal and temporal
relations. These are likely to be already encoded
— though partially, as observed above — in smaller
models, although they lack the necessary scale to
properly use such competence in generation.

BFew-shot and greedy search setup, i.e. the best for Qwen.
#Results for each are shown in App. K.

1lDOveraII Accuracy of Qwen Models of Increasing Size

APS
Accuracy on Accept. Rat.

0.5B 1.5B 3B 7B 14B 32B
Models' size

Figure 8: Results on Accuracy for Acceptability Ratings
and APS for Qwen models of increasing size.

6 Conclusion and Future Work

In this paper, we introduced ExpliCa, a dataset
designed to evaluate LLMs on PCD tasks with the
aim to assess their reasoning abilities on explicitly
expressed relations. ExpliCa is the first dataset
to incorporate both causal and temporal relations
between events, with acceptability ratings provided
by native speakers via crowdsourcing.

Results indicate that ExpliCa is particularly chal-
lenging, even for commercial models like GPT4o-
mini, which is outperformed by open models when
leveraging probabilistic scores, and GPT4o0, which
struggles to reach 0.80 accuracy. We observed that
LLMs exhibit variable performance according to
both the evaluation setup and the relation TYPE
and ORDER. The models’ rating distribution do not
approximate the humans’ ratings, especially for cer-
tain types of relations and linguistic orders. More-
over, our results suggest that the competence on
causal relations measured with perplexity is signifi-
cantly more accurate than prompting performance
(especially in smaller models).

For future works, we aim to further explore the
effect of model size on different model families,
and we plan to adopt ExpliCa also to investigate
how models interpret implicit causality.

So far, the presented results reveal that, despite
their increasing size, the knowledge of causal re-
lations is still suboptimal in LL.Ms, which also
show a strong tendency to confound temporal rela-
tions with causal ones, compounded with a limited
abstraction from the surface linguistic presentation
order of the events. e can conclude that, although
LLMs have undoubtedly progressed along the ‘lad-
der of causation’ (Pearl, 2009), they have still sev-
eral steps to climb.
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7 Limitations

This study has several limitations that should be
acknowledged.

One limitation of our dataset design is the de-
liberate removal of certain linguistic cues — such
as anaphoric references and causal verbs — from
the sentence pairs. While this may reduce the nat-
uralness of the items (i.e., sentence pairs linked
by a connective), retaining such cues could have
allowed models to exploit shallow, surface-level
heuristics rather than engaging in genuine causal
reasoning, thereby introducing bias into the eval-
uation. Notably, the same sentence pairs (without
pronouns) were also presented to human annota-
tors. This design choice enabled a more controlled
comparison, focusing on how both models and hu-
mans infer causal and temporal relations based on
a deeper understanding of the events described.

The prompts used across different models were
not specifically optimized for each of them. How-
ever, this decision was necessary to maintain the
feasibility of our experiments and ensure a fair com-
parative evaluation among all models and tasks.
Computational constraints played a significant role
in shaping our methodology, influencing aspects
such as batch size, model capacity, and the overall
scope of the analysis. While we examined causal
reasoning through various tasks, the selection of
prompts and connectives represents only a subset
of all potential analytical strategies.

Additionally, the number of closed-source mod-
els included in the analysis was limited, and the
dataset size was relatively small, further constrain-
ing the generalizability of the findings. Experi-
ments on model scaling were confined to the Qwen
model, where we observed that larger models tend
to equalize performance on tasks and competence.
However, this observation requires further valida-
tion to confirm that it is not influenced by factors
such as the specific prompt or model used, which
would bolster the robustness of our claims.

Among the CAUSAL sentence pairs in ExpliCa,
50 are labeled as ‘socially challenging’, indicat-
ing content that touches on sensitive or potentially
offensive topics such as religion, abortion, immi-
gration, gender identity, drug abuse, and bribery.
We acknowledge that some sentences may be offen-
sive to certain groups, but these themes were added
to evaluate whether bias-mitigation strategies in
LLMs would impact PCD performance. Due to
space constraints, we plan to explore such aspects

more in depth in future works.

Finally, we acknowledge that we focused only
on LLMs and we did not include the so-called
Large Reasoning Models (LRM) like OpenAl ol
(OpenAl, 2024b) or the very recent DeepSeek-R1
(DeepSeek-Al, 2025), which may have an advan-
tage in such a task. This choice was mainly due to
financial constraints, but they will be explored in
future works.
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Appendix
A Related Work Overview

Table 3 summarizes the main features that distin-
guish ExpliCa from other datasets on causal reason-
ing. We excluded from the overview the datasets
based on structured data, benchmarks composed
of existing datasets evaluating different aspects of
causation, and the datasets included in ExpliCa.

B Dataset License

The dataset is made publicly available under the
Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)
license, which allows redistribution, adaptation,
and reuse for non-commercial purposes, provided
proper attribution is given and derivative works are
shared under the same terms. However, the dataset
cannot be used for training artificial intelligence
models or other machine learning systems.

C Human Annotation

We collected acceptability ratings from human an-
notators for each of the 4800 items in ExpiCa. We
used the crowdsourcing platform Prolific>>, which
ensures fair compensation for participants. For our
study, we recruited native English speakers born
and residing in the UK or USA. Each item was
examined by 15 participants. Prolific facilitated
the distribution of Google Forms, through which
participants provided formal consent to take part in
the study and received the following instructions:

Acceptable use of the connective

This survey aims to investigate the acceptability of sentences each describing
two events linked by the use of a temporal or causal connective among: “then”,
“after”, “because”, and “so”. You must rate on a scale from 1 to 10 how
acceptable the connective is to express the relation between the events in the
sentences. For example:
* Jude walked under the rain for an hour, so Jude got sick: Rating 10
(highly acceptable)
* Mary bought some flowers, because Jean went to the dentist: Rating 1
(not acceptable)
IMPORTANT: There are three check questions in the survey. You must answer
these check questions correctly to receive payment.
Read the following sentences, then rate each sentence by answering this ques-
tion: How ptable is the from 1 ( itabl ive) to 10
(suitable connective)?

\

D Frequency Analysis

Tab. 4 reports the number of sentences for each fre-
quency bin computed on the enTenTen21 corpus.
The Table highlights a slight difference in the distri-
bution of UNRELATED items across the frequency
spectrum compared to CAUSAL and TEMPORAL

Bhttps://www.prolific.com/

items in both ICONIC and ANTI-ICONIC orders.
This pattern was expected, as verbs in unrelated
sentences tend to be higher-frequency common En-
glish verbs. However, we account for their topical
relatedness by measuring PMI and LMI among the
lexemes in the sentence pairs.

E Models’ Output Cleaning

In order to maximize the models’ accuracy in
greedy search, we processed the models’ answers
with regular expressions, to clean the returned text
(e.g., from tags used to mark the end of the gener-
ated text, spaces, tabulations, symbols, punctuation,
and motivation of their choices).

F Prompt Engineering

The prompts used during our experiments were
selected by computing models’ perplexity over five
prompts per task, as described in Sec. 4. Tab. 5
shows the perplexity score given by the models
to each prompt variant in zero-shot setting. Then
the prompts with the lower average perplexity for
each task were selected. The selected prompts are
reported in the boxes below in the few-shot setting.

Acceptability Rating Prompt

Evaluate the acceptability of sentences that describe two events linked by
connectives: 'so’, ‘because’, "after’, and "then’.
Rate each sentence on a scale from 1 to 10 based on how well the connective
expresses the relationship between the events.
Examples:
« So (effect): “Jude walked under the rain for an hour, so Jude got sick.”
(Rating: 10)
« Because (cause): “Mary bought some flowers, because Jean went to
the dentist.” (Rating: 1)
* After (preceding event): “The girl finished her homework, after the
girl put her books in the backpack.” (Rating: 1)
¢ Then (following event): “James took the phone, then James called
Clara.” (Rating: 10)
Sentence: <Sentence>
Rating:

Cloze test Prompt

Select the word that best describes the relationship between the events in these
two sentences.
Use this template: event in sentence 1 <word> event in sentence 2.
Choose from: ['thus’, "then’, "because’, "after’].
Provide only one word, no explanation.
Examples:
« Sentence 1: “Jude walked under the rain for an hour.”
Sentence 2: “Jude got sick.”
Answer: “s0”
Sentence 1: “Mary bought some flowers.”
Sentence 2: “Mary wants to give a present to her mom.”
Answer: “because”
Sentence 1: “The girl put her books in the backpack.”
Sentence 2: “The girl finished her homework.”
Answer: “after”
Sentence 1: “James took the phone.”
Sentence 2: “James called Clara.”
Answer: “then”
Sentences:
* Sentence 1: “sentence_1"
* Sentence 2: “sentence_2”
Answer:
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Table 3: Overview of the feature belonging to existing datasets and ExpliCa.

Dataset References Frame Temporal Relation type No ling. cues Crowdsourced Domain
COPA Roemmele et al. 2011 Statements X Implicit X X Commonsense
Causal TimeBank Mirza et al. 2014 Text v Explicit X X News
CaTeRS Mostafazadeh et al. 2016 Text v Implicit/Explicit X X Commonsense
Event Story Line Caselli and Vossen 2017 Text v Implicit/Explicit X v News
BeCause Corpus Dunietz et al. 2017 Text v Explicit X X Mostly News
TCR Ning et al. 2018 Text v Implicit/Explicit X v News
FinCausal Mariko et al. 2022 Scenario X Implicit/Explicit X X Finance
MECI Lai et al. 2022 Text X Implicit/Explicit X v Wikipedia
CLadder Jin et al. 2023 Scenario X Implicit X X Common/Anti/Nonsense
CRAB Romanou et al. 2023 Scenario X Implicit/Explicit X v News
CausalNet Ashwani et al. 2024 Scenario X Implicit/Explicit X X Mix
CausalBench Wang 2024 Scenario X Implicit X X Mix
CausalProbe-2024 Chi et al. 2024 Scenario X Implicit X 4 News
ExpliCa Our Work Statements v Explicit v v Commonsense

Table 4: Sentences count for each frequency bin across

different item TYPES and ORDERS.

Table 5: Perplexity of the models on five prompt variants

for each task.

Category Bin C.Ie. C.ale. T.Ie. T.alc Unrel Task Prompt Mistral Falcon Qwen Llama Gemma Avg
Rare (0-4) 214 241 239 164 303 0 9.99 232 147 1374 1885 16.10
Uncommon (5-56.4) 244 244 295 174 282 1 12.23 2438 21.76 16.14 3239 21.38
Common (56.5-498) 173 205 272 169 380 Accept. Rat. F e e e U
Frequent (499-7TM) 189 186 234 149 443 4 1462 2986 1825 1781 3062 2223
0 334 3.66 3.58 434 439  3.86
1 4.06 4.6 5.87 6.6 7.57 5.74
Multiple-Choice 2 3.42 4.15 589 7.26 7.86 5.72
: : 3 3.99 6.09 1142 10.68 8.51 8.14
Multiple-choice Prompt 4 441 475 746 721 803 638
Task Description: 0 1341 1552 2041 142 21.38 16.98
You are given two sentences, Sentence A and Sentence B, and a list of words. i Tes % gg:; %%gé %22471 %2(3)3 %ggg i;i(l)
Your task is to select the most appropriate word to connect the two sentences oze lest 3 12‘ 7 13'91 21‘18 21'34 23'7,% 18‘58
:zilc;lly and coherently. The chosen word should fit grammatically and contex- 4 1352 1493 1765 1213 1495 1464
Instructions:

1. Read Sentence A and Sentence B carefully.
2. Review the list of words provided.
3. Select the word that best connects the two sentences.
Format:
1. Sentence A: [Insert Sentence A here]
2. Sentence B: [Insert Sentence B here]
3. Words:
¢ A. [Insert word A here]
¢ B. [Insert word B here]
¢ C. [Insert word C here]
¢ D. [Insert word D here]
4. Answer: [Provide the letter of the correct word]
Examples:
* 1. Sentence A: “Jude walked under the rain for an hour.”
. Sentence B: “Jude got sick.”
3. Words:
— A. then
— B.after
— C. because
- D.so
Answer: D
Sentence A: “Mary bought some flowers.”
Sentence B: “Mary wants to give a present to her mom.”
Words:
— A. because
— B.then
- C. after
- D.so
Answer: A
Sentence A: “The girl put her books in the backpack.”
Sentence B: “The girl finished her homework.”
Words:
— A because
— B. after
- C.so
— D. then
Answer: B
Sentence A: “James took the phone.”
Sentence B: “James called Clara.”
Words:
- A. after
— B. because
— C.then
- D.so
4. Answer: C
Sentence Connection Task:
1. Sentence A: “‘sentence_a”
2. Sentence B: “sentence_b”
3. Words:
“multiple_choices”
4. Answer:

L= Sl ~N

N
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G Models’ Specifications

Open and partially open models used for our exper-
iments are available via the Hugging Face model
library (https://huggingface.co/models); all
models are used as per their licenses. We used the
instruction-tuned version of the models as follows:

* Mistral (Jiang et al., 2023) leverages grouped-
query attention (GQA) for faster inference,
and sliding window attention (SWA) to ef-
fectively handle sequences of arbitrary length
with a reduced inference cost. We used the
0.3 version of 7B parameters, which is pro-
vided with a larger vocabulary compared to
the previous version. This model is available
at: https://huggingface.co/mistralai
/Mistral-7B-Instruct-v@.3.

* Falcon (Almazrouei et al., 2023) series of
models was developed by the Technology In-
novation Institute (TII). Pre-training data was
collected from dumps from CommonCrawl
after significant filtering (to remove machine-
generated text and adult content) and dedu-
plication. We used the 7B parameter model,
which is available at: https://huggingfac


https://huggingface.co/models
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/tiiuae/falcon-7b-instruct

e.co/tiiuae/falcon-7b-instruct.

Llama (Large Language Model Meta Al) is
a family of open-source LLMs developed by
Meta Al. The first version of LlamA was re-
leased in February 2023. We adopted the ver-
sion 3.1 of Llama (Dubey et al., 2024), which
counts 8B parameters. This model is available
at: https://huggingface.co/meta-1lama
/Llama-3.1-8B-Instruct.

* Qwen is a LLM family built by Alibaba
Cloud. We used the 2.5 version (Yang et al.,
2024) which underwent an optimization pro-
cess during both the pre-training and post-
training stages. This model is available at:
https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct. For experiments on size
effect, we used Qwen 2.5 instruction-tuned
models of increasing size, according to their
number of parameters: 0.5, 1.5, 3, 7, 14, and
32 billions.?

* Gemma is a model released by Google (Team
et al., 2024a) and it is built from the research
and technology used to create Gemini models.
We adopted version 2 of this model (Team
et al., 2024b), with a size of 9B parameters.
This is the biggest among the small open mod-
els we adopted for our experiments. This
model is available at: https://huggingf
ace.co/google/gemma-2-9b-it.

e The GPT (Generative Pre-trained Trans-
former) series of models (Brown et al., 2020)
was developed by OpenAL It is the commer-
cial model under the ChatGPT platform. For
our experiments, we used the state-of-the-
art model GPT4o0 (Hurst et al., 2024), and a
lighter version, GPT40-mini (OpenAl, 2024a).
The experiments were conducted between
November 2024 and January 2025, by means
of the APIs.”’

H Additional Models’ Results

Tab. 6 shows the results plotted in Fig. 4. Similar
to GPT40-mini, Gemma displays a high instability
with greedy search, although it is notably reduced

%The whole model family is available in this Hugging Face
collection: https://huggingface.co/collections/Qwen/
gwen25-66e81a666513e518adb90d9e

https://platform.openai.com/docs/overview

when using the Outlines framework. Llama fol-
lows a similar trend, whereas Falcon is quite stable
also when using greedy search in zero-shot set-
tings. In contrast, Mistral’s results remain nearly
the same across all scenarios, with a range similar
to GPT4o0. On the contrary, Qwen shows the oppo-
site pattern, with more stable performances using
greedy search.

Results on all tasks and setups with greedy
search are reported in Fig. 9 and Tab. 7. Results
with Outlines are reported in Fig. 10, Tab. 8.

Tab. 9 shows the overall APSs achieved by the
models and those achieved according to various re-
lations’ conditions. APS changes according to the
relation between the events contained in each item.
Gemma and Llama best detect events in ICONIC
ORDER, whereas Falcon, Mistral, and Qwen are
better in identifying CAUSAL relations. All the
models struggle at recognizing TEMPORAL ANTI-
ICONIC relations, achieving really low results for
this condition (0.19).

Tab. 10, shows the results plotted in Fig. 5,
Sec. 5.2. In the table are reported APS and results
on the acceptability rating task, with zero-shot and
greedy search, i.e. where the models performed
best overall. We specifically focus on GPT40 and
two open models, namely Gemma and Falcon, with
the latter achieving the best APS.

Post-hoc analyses were conducted on the ob-
tained results to see if they might be affected by the
frequency of the triplets { /st sentence verb, con-
nective, 2nd sentence verb} in each item. Fig. 11
(Tab. 11) shows that, on the items in each frequency
bin, models perform about the same way, i.e., tasks
results have, with slight differences, the same dis-
tribution.

We also tested the frequency effect in models
of increasing size. In Fig. 12 (Tab. 12), as in the
previous case, the distribution of Qwen’s results
reached by models of different sizes is about the
same.

I Error Analysis

Other than what is described in Sec. 5.2, from the
confusion matrixes in Fig. 13, we observed that
GPT tends to consider TEMPORAL RELATIONS as
CAUSAL ones more often. However, most of the
mistakes are within the same ORDER (i.e., ANTI-
ICONIC), whereas, open models tend to make more
mistakes under both TYPE and ORDER of the re-
lation. Gemma, in the acceptability rating task,
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Table 6: Models’ Greedy Search and Outlines accuracy results on all tasks (including APS when applicable) are
averaged in few and zero-shot scenarios.

Outlines Greedy
Model Few-shot Zero-shot Few-shot Zero-shot APS
Avg. SD Avg. SD Avg. SD Avg. SD
Falcon 0.25 0.01 0.27 0.01 0.21 0.02 0.15 0.10 0.66
Gemma 0.46 0.09 0.53 0.03 0.18 0.24 0.26 0.25 0.62
GPT4o0-mini 0.50 0.13 0.43 0.10 042 030 0.39 0.27 -
GPT40 0.72 0.05 0.65 0.09 0.69  0.08 0.60  0.07 -
Llama 0.25 0.01 0.27 0.01 0.23 0.17 030 0.22 0.65
Mistral 034  0.11 0.33 0.07 0.38 0.10 0.36 0.06 0.65
Qwen 0.27 0.03 0.29  0.01 0.51 0.04 0.47 0.07 0.59

Models' Accuracy on all tasks with greedy search
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Figure 9: Accuracy scores for all models in all prompting tasks in zero and few-shot scenarios with greedy search.

APSs are in blue as perpl.

Models' Accuracy on all tasks with Outlines
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Figure 10: Accuracy scores for all models in all prompting tasks in zero and few-shot scenarios with Outlines. APSs

are in blue as perpl.
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Table 7: Performance comparison across Acceptability, Cloze test, and Multiple-choice tasks for few and zero-shot
settings with greedy search.

GREEDY SEARCH

Acceptability Rating FEW ZERO

All Caus. Ic. Temp. Ic. Caus. a.lc. Temp. a.lc. All Caus. Ic. Temp. Ic. Caus. a.lc. Temp. alc.
GPT40-mini 0.71 0.81 0.82 0.73 0.37 0.63 0.63 0.58 0.63 0.73
GPT4o0 0.78 0.83 0.8 0.74 0.75 0.69 0.78 0.72 0.72 0.52
Falcon 0.2 0.01 0.0 0.03 0.99 0.19 0.03 0.0 0.05 0.88
Gemma 0.51 0.42 0.41 0.5 0.79 0.59 0.7 0.38 0.52 0.9
Llama 0.33 0.76 0.23 0.1 0.24 0.52 0.46 0.48 0.5 0.66
Mistral 0.25 0.13 0.02 0.1 0.95 0.29 0.12 0.01 0.27 0.95
Qwen 0.48 0.5 0.36 0.56 0.52 0.54 0.38 0.37 0.78 0.71
Cloze test FEW ZERO

All Caus. Ic. Temp. Ic. Caus. a.lc. Temp. alc. All Caus. Ic. Temp. Ic. Caus. a.lc. Temp. alc.
GPT40-mini 0.54 0.25 0.48 0.79 0.66 0.52 0.19 0.5 0.75 0.66
GPT4o0 0.69 0.44 0.77 0.8 0.74 0.55 0.16 0.49 0.83 0.76
Falcon 0.24 0.87 0.0 0.01 0.16 0.25 0.52 0.05 0.21 0.26
Gemma 0.02 0.02 0.02 0.02 0.0 0.2 0.45 0.1 0.21 0.01
Llama 0.38 0.06 0.38 0.57 0.51 0.39 0.01 0.43 0.83 0.21
Mistral 0.49 0.4 0.48 0.57 0.53 0.41 0.32 0.32 0.44 0.64
Qwen 0.56 0.37 0.78 0.65 0.35 0.37 0.1 0.86 0.08 0.32
Multiple-chioce FEW ZERO

All Caus. Ic. Temp. Ic. Caus. alc. Temp. alc. All Caus. Ic. Temp. Ic. Caus. alc. Temp. a.lc.
GPT40-mini 0.0 0.0 0.01 0.0 0.01 0.0 0.0 0.0 0.0 0.01
GPT4o0 0.59 0.47 0.68 0.77 0.33 0.54 0.42 0.62 0.72 0.36
Falcon 0.19 0.2 0.17 0.23 0.17 0.0 0.0 0.0 0.0 0.0
Gemma 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0
Mistral 0.4 0.2 0.58 0.57 0.12 0.39 0.18 0.55 0.44 0.34
Qwen 0.5 0.42 0.65 0.52 0.35 0.5 0.29 0.84 0.56 0.16

Results of Increasing size Qwen Models

Model Performance across Frequency Categories by Frequency Categories

acc_zero_gptdomini WS acc_zero_gemma  EEE acc_zero_qwen W perpl_llama acc_qwen0.5 B acc_qwen3 perpl_qwen0.5 W perpl_gwen3
acc_zero_gptdo W acc_zero_llama == perpl_falcon W perpl_mistral acc_qwen? B acc_qwenl4 perpl_qwen7 mE perpl_qwenld
08 acc_zero_falcon BN acc_zero_mistral WSS perpl_ gemma  EEE perpl_qwen 81" mmm acc qwenl5 EEE acc_qwen32 perpl_qwenl.5 EEE perpl qwen32
06 " 06
g E
]
b 04 " os
02
02
00
0.0+ Overall Rare Uncommon Common Frequent
Overall Rare Uncommon  Common Frequent

Figure 12: Accuracy scores grouped by frequency bin of
increasing size of Qwen Models. The results are shown
in red for acceptability ratings in few-shot scenario with
greedy search (i.e., the setting where Qwen-7B obtained
the best cumulative performance for all tasks); in green,
the APSs of such models (as perpl).

Figure 11: Accuracy scores grouped by frequency
bin. The results are shown in red for acceptability rat-
ings in zero-shot scenario with greedy search (i.e., the
task where models obtained the best cumulative perfor-
mance); in blue, the APSs of open models (as perpl).
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Table 8: Performance comparison across Acceptability, Cloze test, and Multiple-choice tasks for few and zero-shot

settings with Outlines.

OUTLINES
FEW ZER!

Acceptability Rating o

All Caus. Ic. Temp. Ic. Caus. alc. Temp. alc. All Caus. Ic. Temp. Ic. Caus. a.lc. Temp. alc.
GPT40-mini 0.64 0.81 0.63 0.68 0.36 0.47 0.4 0.22 0.63 0.71
GPT4o0 0.78 0.84 0.8 0.74 0.75 0.77 0.86 0.7 0.76 0.76
Falcon 0.26 0.25 0.2 0.29 0.32 0.26 0.2 0.22 0.35 0.31
Gemma 0.33 0.38 0.15 0.33 0.58 0.57 0.69 0.48 0.6 0.5
Llama 0.24 0.24 0.23 0.25 0.24 0.26 0.27 0.22 0.27 0.31
Mistral 0.19 0.05 0.03 0.22 0.55 0.22 0.18 0.11 0.15 0.56
Qwen 0.23 0.2 0.14 0.27 0.36 0.28 0.26 0.21 0.32 0.35

FEW ZERO

Cloze test

All Caus. Ic. Temp. Ic. Caus. a.lc. Temp. a.lc. All Caus. Ic. Temp. Ic. Caus. a.lc. Temp. a.lc.
GPT40-mini 0.54 0.23 0.46 0.78 0.71 0.53 0.19 0.5 0.76 0.67
GPT4o0 0.7 0.44 0.79 0.82 0.72 0.54 0.14 0.48 0.83 0.76
Falcon 0.24 0.28 0.33 0.14 0.17 0.29 0.38 0.36 0.15 0.23
Gemma 0.52 0.46 0.62 0.74 0.16 0.53 0.56 0.63 0.77 0.03
Llama 0.26 0.1 0.2 0.46 0.29 0.28 0.12 0.25 0.52 0.23
Mistral 0.43 0.05 0.47 0.65 0.55 0.36 0.18 0.25 0.45 0.63
Qwen 0.29 0.07 0.78 0.07 0.09 0.31 0.04 0.88 0.01 0.12
Multiple-chioce FEW ZERO

All Caus. Ic. Temp. Ic. Caus. a.lc. Temp. alc. All Caus. Ic. Temp. Ic. Caus. a.lc. Temp. alc.
GPT40-mini 0.32 0.31 0.3 0.45 0.21 0.29 0.29 0.22 0.4 0.27
GPT4o 0.67 0.49 0.82 0.89 0.36 0.63 0.51 0.77 0.81 0.3
Falcon 0.24 0.27 0.23 0.26 0.2 0.27 0.26 0.28 0.31 0.24
Gemma 0.51 0.2 0.67 0.83 0.2 0.5 0.23 0.72 0.77 0.1
Llama 0.26 0.25 0.23 0.28 0.29 0.26 0.29 0.27 0.25 0.21
Mistral 0.41 0.24 0.59 0.57 0.12 0.4 0.2 0.55 0.45 0.34
Qwen 0.28 0.32 0.25 0.3 0.25 0.28 0.28 0.31 0.29 0.23

Table 9: APS results for all the open models. The
table shows results by relation ORDER (ICONIC as Ic.
VS ANTI-ICONIC as a.lc) and TYPE (CAUSAL as C. vs
TEMPORAL as T.). In bold the best-averaged result,
the overall result of the best model is underlined.

Model Overall C.Ic T.Ie. C.alce. T alc
Falcon 0.66 0.85 0.66 0.80 0.23
Gemma 0.62 0.93 0.69 0.60 0.15
Llama 0.65 0.93 0.74 0.70 0.12
Mistral 0.65 0.89 0.68 0.75 0.15
Qwen 0.59 0.83 0.53 0.65 0.32
Avg. 0.63 0.89 0.66 0.70 0.19

interprets CAUSAL relations as TEMPORAL, but it
tends to confuse also the ORDER of the TEMPORAL
ones. Differently, Falcon is inclined to interpret
all the items as TEMPORAL in ANTI-ICONIC OR-
DER. We also can observe that Falcon and Gemma
errors in a different manner according to the way
the PCD task is modeled. These results further
underline a discrepancy between models’ internal
representation and prompted knowledge, not only
across different models but also referring to the
same one.

J Correlation & Distribution

In Fig. 6, Sec. 5.2, we see that for both humans
and models, the acceptability ratings are lower for
the unrelated sentence pairs, showing that mod-
els appear to understand this difference. For the
CAUSAL-TEMPORAL subset, in the case of normal-
ized perplexities for Falcon, all values are heav-
ily skewed toward the lower end of the spectrum.
On the contrary, ratings from Gemma are gener-
ally distributed towards higher values than the hu-
man ratings, whereas GPT4o0’s ratings tend to be
lower. GPT4o0 shows this behavior in zero-shot
with greedy search, but also in zero-shot with Out-
lines as shown in Fig. 14, even if the model’s rat-
ings strongly correlate with humans’ ones. Tab. 13
shows the correlation of open models’ perplexity
with results in acceptability ratings with greedy
search and Oulines. In none of the setups, the ac-
curacy of the internal representation of the models
and the prompting accuracy show some kind of
correlation.

Correlation scores for all the models (in zero-
shot setting) are reported in Tab. 14. We see that
GPT4o obtains a high correlation with humans only
when using Outlines (p = 0.77), while the zero-
shot greedy setting is markedly worse. We ob-
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Table 10: Performance metrics for the best models in the best settings and tasks for PCD: zero-shot with greedy
search on acceptability rating task and APS. Results are reported with an overview over items’ RELATION and

ORDER, i.e., direction of the relation.

Model Overall Causal Iconic Temporal Iconic Causal Anti-iconic | Temporal Anti-iconic
Acc. Rat.  APS | Acc.Rat.  APS | Acc.Rat. APS | Acc. Rat. APS Acc. Rat. APS
Falcon 0.19 0.66 0.03 0.85 0.00 0.66 0.05 0.80 0.88 0.23
GPT-40 0.69 - 0.78 - 0.72 - 0.72 - 0.52 -
Gemma 0.59 0.62 0.70 0.93 0.38 0.69 0.52 0.60 0.90 0.15

Table 11: LLMs’ accuracy on the acceptability rating task and APS across different frequency bins.

Overall Rare Uncommon Common Frequent

Model

Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS
GPT-40 Mini 0.63 - 0.62 - 0.62 - 0.64 - 0.67 -
GPT-40 0.69 - 0.69 - 0.69 - 0.70 - 0.70 -
Falcon 0.19 0.66 0.19 0.65 0.17 0.65 0.20 0.64 0.21 0.69
Gemma 0.59 0.62 0.56 0.59 0.61 0.64 0.57 0.61 0.63 0.64
Llama 0.52 0.65 0.50 0.66 0.52 0.64 0.55 0.63 0.48 0.70
Mistral 0.29 0.65 0.28 0.64 0.30 0.66 0.30 0.64 0.27 0.65
Qwen 0.54 0.59 0.51 0.55 0.58 0.67 0.54 0.58 0.54 0.56

Table 12: Performance of Qwen models with increasing size across different frequency bins. Accuracy for the

acceptability rating task and APSs are reported.

Model Overall Rare Uncommon Common Frequent

Acc. Rat. AP. S. Acc. Rat. AP. S. Acc. Rat. AP. S. Acc. Rat. AP. S. Acc. Rat. AP. S.
Qwen-0.5 0.27 0.46 0.28 0.47 0.23 0.46 0.27 0.46 0.30 0.44
Qwen-1.5 0.30 0.47 0.34 0.50 0.29 0.52 0.26 0.42 0.28 0.43
Qwen-3 0.35 0.54 0.34 0.51 0.37 0.56 0.36 0.54 0.35 0.53
Qwen-7 0.48 0.59 0.49 0.55 0.49 0.67 0.48 0.58 0.43 0.56
Qwen-14 0.60 0.61 0.60 0.63 0.59 0.63 0.60 0.57 0.60 0.62
Qwen-32 0.68 0.58 0.66 0.57 0.70 0.57 0.69 0.58 0.68 0.59

Table 13: Spearman correlation computed on models’ perplexity and acceptability ratings in a zero-shot scenario,
for greedy search and outlines. Results are on items of all conditions.

Model Greedy search Outlines
Falcon -0.030 (0.039) -0.062 (0)
Gemma -0.115 (0) -0.115 (0)
Llama -0.236 (0) -0.091 (0)
Mistral -0.150 (0) 0.082 (0)
Qwen -0.215 (0) 0.002 (0.904)

Table 14: Spearman correlation values between models’ results and human ratings on causal, temporal, and unrelated
sentence pairs (human ratings as ground truth). Models’ results are computed on the basis of acceptability ratings in
a zero-shot scenario, for greedy search and outlines, and perplexity.

Model Caus. Ic. Temp. Ic. Caus. a.lc. Temp. a.lc
Greedy Outlines Greedy Outlines Greedy Outlines Greedy Outlines
GPT40 0.60 (0.0) 0.82 (0.0) 0.57 (0.0) 0.80 (0.0) 0.53 (0.0) 0.76 (0.0) 0.29 (0.0) 0.69 (0.0)
GPTo-mini 0.65 (0.0) 0.41 (0.0) 0.71 (0.0) 0.41 (0.0) 0.60 (0.0) 0.49 (0.0) 0.48 (0.0) 0.30 (0.0)
Gemma 0.63 (0.0) 0.63 (0.0) 0.61 (0.0) 0.64 (0.0) 0.70 (0.0) 0.50 (0.0) 0.58 (0.0) 0.33 (0.0)
Qwen 0.44 (0.0) 0.07 (0.041) 0.55 (0.0) 0.04 (0.233) 0.69 (0.0) 0.06 (0.065) 0.57 (0.0) 0.03 (0.413)
Llama 0.48 (0.0) 0.04 (0.224) 0.62 (0.0) 0.06 (0.052) 0.43 (0.0) 0.01 (0.816) 0.24 (0.0) 0.05 (0.171)
Mistral 0.23 (0.0) -0.12 (0.001) 0.23 (0.0) -0.08 (0.013) 0.41 (0.0) -0.18 (0.0) 0.30 (0.0) -0.03 (0.425)
falcon 0.04 (0.2) -0.02 (0.497) -0.07 (0.035) -0.02 (0.594) 0.04 (0.215) -0.01 (0.691) 0.09 (0.023) 0.01 (0.784)
Model Unrel. All Perplexity
Greedy Outlines Greedy Outlines
GPT40 0.23 (0.0) 0.59 (0.0) 0.46 (0.0) 0.77 (0.0)
GPT40-mini 0.50 (0.0) 0.21 (0.0) 0.66 (0.0) 0.38 (0.0) -
Gemma 0.44 (0.0) 0.38 (0.0) 0.65 (0.0) 0.55 (0.0) -0.150 (0)
Qwen 0.41 (0.0) -0.03 (0.312) 0.59 (0.0) 0.04 (0.009) -0.282 (0)
Llama 0.32(0.0) 0.04 (0.141) 0.47 (0.0) 0.05 (0.002) -0.265 (0)
Mistral 0.35 (0.0) 0.09 (0.001) 0.42 (0.0) -0.12 (0.0 -0.273 (0)
falcon 0.05 (0.049) 0.06 (0.022) 0.05 (0.001) 0.00 (0.784) -0.251 (0)
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GPT4o0 in Acceptability Ratings, Greedy Search, Zero-shot
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Figure 13: Confusion matrices of the best performing models (GPT40 and Gemma) in prompting tasks, and the

best performing model with APS (Falcon). The matrices show the errors by relation type (C. as CAUSALITY, T. as
TEMPORAL) and relation order (Ic. as ICONIC, a.Ic. as ANTI-ICONIC).
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Table 15: Performance metrics for Qwen models of increasing size, measured in billions of parameters. Acc. Rat.
refers to the accuracy rating task, and APS refers to Accuracy Perplexity Score.

Model’s Siz Overall Caus. Icon. Temp. Icon. Caus. a.Icon. Temp. a.Icon.

odels size Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS Acc. Rat. APS
0.5 0.27 0.46 0.11 0.87 0.03 0.43 0.49 0.42 0.56 0.03
1.5 0.30 0.47 0.61 0.94 0.11 0.40 0.29 0.44 0.21 0.02
3 0.35 0.54 0.72 0.85 0.28 0.54 0.11 0.60 0.34 0.05
7 0.48 0.59 0.50 0.83 0.36 0.53 0.56 0.65 0.52 0.32
14 0.60 0.61 0.80 0.88 0.72 0.58 0.51 0.72 0.27 0.20
32 0.68 0.58 0.87 0.87 0.53 0.52 0.83 0.67 0.50 0.16

Models' and Humans' Acceptability Ratings K Size effect

and Models' Perplexity Distributions Compared

[ Unrelated

T
]

Gemma Zero Gr.

[ causal-Temporal

:

10 ©

8

Value

T
iR

Humans

T\
1L

GPT-40 Zero Out

Falcon Perplexity

Figure 14: Distribution of acceptability ratings for hu-
mans and Gpt4o and Gemma (obtained with Outlines in
zero-shot setting) and Falcon’s normalized perplexity.
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Figure 15: The accuracy of Qwen models of different
sizes on acceptability rating and APS is reported for
each relation type and relation order, as well as overall.

serve an opposite trend for GPT40-mini and open
models, which seem to be closer to human ratings
when prompted without using Outlines. The best-
performing open model is Gemma, on par with
GPT40-mini, followed by Qwen. All other mod-
els have a correlation lower than 0.5. Gemma is
also the only model that is relatively resistant to
the decoding method, i.e. greedy or with Outlines.
Tab. 14 also contains correlation values computed
on results obtained with prompting task according
to the different relation TYPE and ORDER of the
events in each dataset item.

Fig. 8 in Sec. 5.2 shows how Qwen models of dif-
ferent sizes perform according to two evaluation
settings, accuracy on acceptability rating and APS.
In Fig. 15 (Tab. 15 for the individual results), the
overall accuracy on the acceptability rating task is
divided into groups related to the relation condi-
tion of each item, according to the ground truth we
obtained by human ratings. We observed that the
same pattern as APS is also followed by TEMPO-
RAL ICONIC relations, the most frequent condition
in our dataset according to human ratings. TEM-
PORAL ICONIC relations are naturally the most
frequent if we consider the chronological order of
events in each narrative and the fact that a causal
relation between events (most of the times) im-
plies a temporal relation. Thus, the APS might rely
more on the frequency of observation of a certain
phenomenon in the dataset. On the contrary, the ac-
curacy in the detection of relations in ANTI-ICONIC
ORDER seems not to follow a clear pattern.
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