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Abstract

Low-rank adaptation (LoRA) is a widely used
parameter-efficient fine-tuning (PEFT) method
that learns weight updates AW = AB for pre-
trained weights W through low-rank adapters
A and B. While LoRA ensures hardware effi-
ciency, its low-rank weight updates limit adap-
tation performance. In this paper, we pro-
pose low-rank interconnected adaptation across
layers (Lily), a novel PEFT method that in-
troduces an interconnected framework with
locally shared A and globally shared B ex-
perts. This structure eliminates redundant per-
layer A B pairs, enabling higher-rank AW with
equal or fewer parameters. To enhance expres-
siveness, we use data-dependent routers to de-
termine A-B interconnections, preventing B
experts from converging to the same behavior
and improving representational power across
domains. Experiments across modalities, archi-
tectures, and model sizes demonstrate Lily’s
superior performance and efficiency. €) Github

1 Introduction

Fine-tuning foundation models like Transformers
(Vaswani et al., 2017) on downstream tasks is com-
mon but costly, especially for large models like
LLMs, which incur high computational and storage
demands and risk catastrophic forgetting (Bider-
man et al., 2024). Linear probing alleviates these
issues by fine-tuning only the final modules, but
suffers from performance loss due to frozen back-
bone weights. To address this, parameter-efficient
fine-tuning (PEFT) freezes the backbone and intro-
duces lightweight modules for task-specific learn-
ing. Among PEFT methods, Low-rank Adaptation
(LoRA (Hu et al., 2021)) is widely used, particu-
larly for LLMs. LoRA introduces low-rank pro-
jection matrices, A and B, to approximate weight
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Figure 1: Dynamics of LoRA and Lily. In this 6-layer
example with a fixed overall parameter budget, LORA
allocates the same parameter budget to each layer, re-
sulting in small rank updates for the weights. Lily over-
comes this by employing a small number of shared
adapters with a much larger rank, achieving higher-rank
updates while using the same or even a smaller parame-
ter budget. Considering the different characteristics, and
to make the adaptation more dynamic, the adapters are
mixed according to a data-dependent router, represented
by R.

updates AW, achieving significant savings in com-
putation and storage while outperforming linear
probing by updating the backbone weights.

However, LoRA and its subsequent improve-
ments (Miles et al., 2024; Zhang et al., 2023; Zhong
et al., 2024) face a limitation: the learned weight
updates AW are constrained to be low-rank, limit-
ing model performance. A key issue is that LoRA
allocates the same parameter budget to each layer,
regardless of their importance (Fig. 1). As a re-
sult, the rank of each adapter is constrained by the
fixed budget, raising the critical question: Can we
enable more dynamic, expressive adaptation with
high-rank weight updates under the same parame-
ter budget?

In this paper, we propose Low-rank
interconnected adaptation across layers (Lily),
a novel framework for more expressive and
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efficient PEFT. Specifically, we decouple A and
its corresponding upward B, eliminating their
tight coupling. Each A is connected to all Bs, and
vice versa, as illustrated in Fig. 1. This creates
a hierarchical structure where locally-shared As
perform downward projections at specific layers,
while globally-shared Bs perform upward projec-
tions across all layers. To enhance dynamism, we
selectively connect each A with Bs based on layer
features. A extracts features from the current layer,
and a selective mixture of Bs is performed based
on these features, enabled by routers (Shazeer
et al., 2017) that generate data-dependent weight
distributions for B experts.

The interconnected structure makes the adapta-
tion process more dynamic and flexible, with rich
interactions between adapters. By reducing the
number of adapters and increasing their rank, Lily
achieves higher-rank weight updates than LoRA
while using the same or fewer parameters. Ad-
ditionally, Lily enables comprehensive information
access and learning by allowing adapters at each
layer to collaborate, share knowledge, and model
dependencies across layers. Our key contributions
include:

* We propose Lily, a novel PEFT framework
that introduces interconnected adapters, effec-
tively overcoming the limitations of low-rank
weight updates in LoRA under the same pa-
rameter constraints.

* Lily utilizes routers to dynamically select and
connect an adapter A with multiple adapter B
experts, enabling richer information flow and
more expressive adaptation dynamics.

» Extensive experiments are conducted across
diverse modalities, architectures, and model
scales, demonstrating Lily’s superior perfor-
mance and efficiency in a wide range of sce-
narios.

2 Related Work

Parameter Efficient Fine-Tuning Foundation
models are typically pre-trained on large datasets
and fine-tuned on downstream tasks. Parameter-
efficient fine-tuning (PEFT) seeks to fine-tune mod-
els efficiently with minimal parameters while main-
taining performance and preserving learned knowl-
edge. It effectively addresses limitations of conven-
tional fine-tuning techniques, like full fine-tuning
or linear probing. Current PEFT approaches can

be divided into two categories: 1) adapter-based
methods (Hu et al., 2021; Chen et al., 2022; Pfeiffer
et al., 2020a; Jie and Deng, 2023; Houlsby et al.,
2019a; Zhong and Zhou, 2025) and 2) prompt-
based methods (Tu et al., 2023a,b). Adapter-based
methods insert lightweight adapters into the Multi-
Head Self-Attention (MHSA) or Feed-Forward
Network (FFN) blocks of the Transformer archi-
tecture, while prompt-based methods add trainable
tokens to the input sequence.

Among these, low-rank adaptation (LoRA (Hu
et al., 2021)) is a well-known technique. It in-
troduces projection matrices A and B for each
adaptation target W, where A projects input = to
a low-dimensional space and B restores it to the
original dimension. The product of these matrices
approximates the weight update AW in full fine-
tuning (FFT). However, this limits the update to a
low-rank subspace, which may affect performance.
Additionally, A and B are tightly coupled, restrict-
ing the adaptation process to information from the
current layer, which may hinder the modeling of
dependencies across layers.

Mixture of Experts Mixture of Experts (MoE)
is an active research area that has received sig-
nificant attention, especially in the field of large
language models (LLMs). Conditional compu-
tation, which activates different parts of the net-
work on a per-example basis, has been proposed
to enhance model capability without increasing
computation (Davis and Arel, 2013; Bengio et al.,
2013; Eigen et al., 2013; Almabhairi et al., 2016)
. The sparsely-gated MoE layer is introduced to
implement this idea, consisting of numerous sub-
networks (Shazeer et al., 2017). A trainable gating
network (router) determines the combination of ex-
perts for each example. There are already PEFT
methods like MoLORA (Zadouri et al., 2023) and
MOLA (Gao et al., 2024a) that apply the MoE
design concept to PEFT. However, these methods
simply treat the adapters A and B combined in
LoRA as a single expert. Concurrent research Wu
et al. (2024) utilizes A and B sub-spaces as the
experts but fails to overcome the limitation dis-
cussed in the previous section. Another concurrent
work, HydraLoRA Tian et al. (2024), explores an
asymmetric design for LoRA. Unlike our work, we
consider the interconnection across layers and de-
ploy a model-wide asymmetric design to enable
cross-layer connections. This enables the use of
adapters of higher rank than a typical LoRA setup
while using the same or fewer overall parameters.
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3 Methodology

3.1 Downward Projection and Selective
Weight Allocation

The process is illustrated in the right half of Fig.
1. Initially, we use an A to project the input
x € RV*Ch into its low-dimensional representa-
tion 2/ € RV*4 where N is the sequence length:

' =zA (1)

To enable more parameter efficiency, the num-
ber of As can be set to less than the number of
layers in the model by sharing the same A across
neighboring layers, as illustrated in Fig. 1 and
discussed in A. Inspired by the Mixture of Experts
(MoE) paradigm, we employ a router R € RVe*xd
to selectively assign weights to all B experts based
on their relationship to the current layer’s features
(z"), where N, represents the number of B experts.
A weight set S € R™Ve is obtained as:

N
S = softmax <Z(x’ RT)Z) ()

=1

The router selectively mixes the experts based on
this data-dependent weight distribution, enabling
information integration and expressive adaptation.

3.2 Weighted Mixture of Experts and Upward
Projection

Once we obtain the low-dimensional input 2/, we
combine information from all layers using the
model-wide shared B experts. One intuitive ap-
proach is to feed z’ into each B expert and com-
bine their outputs to obtain the additional knowl-
edge zo € RV*Cot. However, to address effi-
ciency concerns discussed in Appendix A.2, we
propose an alternative implementation that is math-
ematically equivalent but significantly reduces the
computational burden, described as follows:

Ne
A =2 <Z S; - BZ’) 3)
=1

where S is the set of weight scores for the B ex-
perts, obtained through selective weight allocation.
Since each S; is a scalar value, the calculation in
Eq. 3 is mathematically equivalent to the intuitive
method but with significantly improved efficiency.
Therefore, the complete computation flow, with in-
put z € RV*Cn and output y € RY*Cou_ for an
adaptation target module is:

y=axWpo+s-xa 4

where s is a scaling factor. By selectively allo-
cating weights and mixing B experts, Lily enables
access to all levels of information during adapta-
tion. Each layer’s target adaptation modules can
consider the status and knowledge from all other
layers, resulting in a more expressive and com-
prehensive adaptation. Meanwhile, thanks to its
interconnectivity, Lily can break the low-rank up-
date constraint of LoRA by simply employing a
smaller number of adapters with higher ranks.

4 Experiments

We validate the effectiveness of Lily across dif-
ferent domains, model sizes (from ViT to LLM),
and architectures (Transformers, Mamba), demon-
strating its generally strong adaptation capability.
Concurrently, we conduct a comprehensive anal-
ysis of Lily’s intrinsic mechanisms, providing a
thorough understanding of how it works. All ranks
for Lily are selected from 8, 16, 32, ensuring that
the total parameter count does not exceed that of
the baselines. All experiments are conducted on
a single RTX 4090 GPU. Additionally, multiple
analyses are provided in Appendix C, D, E, F, G,
H, I, and J.

4.1 Common Sense Reasoning

Implementation: We evaluate Lily on common-
sense reasoning with LLMs. For the implemen-
tation, we utilize LLaMA3-8B (Al@Meta, 2024)
and Falcon-Mamba-7B (Zuo et al., 2024) as back-
bones. LLaMA3 is a near-SOTA open-source
large language model, while Falcon-Mamba is an
open-sourced large language model based on the
Mamba architecture. Using these models allows
us to validate the effectiveness of Lily for fine-
tuning LLMs and assess whether this effective-
ness can be transferred to architectures beyond
Transformers (Mamba, in this case). We fine-tune
these models on Commonsensel70K (Hu et al.,
2023) and evaluate the adaptation results on eight
multiple-choice problem tasks, including BoolQ
(Clark et al., 2019), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2021), ARC-
e, ARC-c (Clark et al., 2018), and OBQA (Mi-
haylov et al., 2018). The compared methods are
LoRA for Falcon-Mamba and LoRA (Hu et al.,
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Table 1: Commonsense reasoning results for Falcon-Mamba-7B across eight tasks. Bold represents the highest
performance for each dataset utilizing PEFT methods. “A” and “in” refer to adaptations of Mamba’s delta_proj

and in_proj parameters, respectively.

Model PEFT Params BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
ChatGPT - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 748  71.0
LoRA 3. M 6.5 30.5 40.6 14.9 56.4 422 31.8 384 327

Falcon-Mamba-7B  Lily (A +in)  3.7M 449 66.8 65.0 10.5 57.1 78.7 64.6 682 570
Lily (in) 3.3M 60.2 61.0 67.3 12.9 61.5 80.0 67.5 658 595

Table 2: Commonsense reasoning results for LLaMA3-8B across eight tasks. T represents results taken from Liu
et al. (2024) and (Wang et al., 2024). Bold denotes the highest performance scores for each dataset among different

PEFT methods.
Model PEFT Params BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
ChatGPT - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 748 770
LoRAf 56M 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 808
PiSSAT 83.8M 67.1 81.1 77.2 83.6 78.9 71.7 63.2 746 754
LLaMA3-8B MiLoRAT  56.6M 68.8 86.7 77.2 92.9 85.6 86.8 75.5 81.8 81.9
Lily 1.2M 72.9 85.6 77.8 92.7 83.3 89.7 77.6 828 828

2021), PiSSA (Meng et al., 2024), and MiLoRA
(Wang et al., 2024) for LLaMA3. We only com-
pare LoRA for Falcon-Mamba because tailored
PEFT methods for Mamba-based LLMs have not
yet been proposed, which is beyond the scope of
this paper. Detailed hyper-parameter settings and
dataset information are reported in Appendix B.1.1
and Appendix B.2.1.

Results We report the accuracy in Tables 2 and 1.
Based on these results, it can be observed that Lily
outperforms the other compared PEFT methods
with a smaller parameters budget. Specifically, Lily
surpasses LoRA by a significant margin on Falcon-
Mamba and, on LLaMA3, outperforms both LoRA
and MiLoRA. This demonstrates Lily’s superior
adaptation capability and parameter efficiency in
handling commonsense reasoning tasks. Addition-
ally, although performance on Falcon-Mamba is no-
tably lower than that of the baseline and LLaMA3,
we believe this discrepancy stems from the inherent
limitations of the model rather than any deficiency
in Lily, as Lily still significantly outperforms LoRA
on Falcon-Mamba while demonstrating robust per-
formance on LLaMA3. These findings also high-
light that current state of Mamba-based LLMs gen-
erally exhibits inferior performance compared to
Transformer-based LLMs such as ChatGPT and
LLaMA on many tasks.

4.2 Natural Language Understanding

Implementation We evaluate Lily on natural lan-
guage understanding (NLU) tasks. For the im-
plementation, we use RoOBERTa Base (Liu et al.,
2019) and RoBERTa Large as the backbones and

fine-tune them on tasks from the GLUE bench-
mark (General Language Understanding Evalua-
tion (Wang et al., 2018)), which consists of multiple
NLU tasks, including single-sentence classification,
similarity and paraphrase, and natural language in-
ference tasks. We compare Lily against several
competitive PEFT methods, including BitFit (Za-
ken et al., 2021), Adapter-Tuning (Riicklé et al.,
2020; Houlsby et al., 2019b; Lin et al., 2020; Pfeif-
fer et al., 2020b), LoRA (Hu et al., 2021), DyLoRA
(Valipour et al., 2022), FLoRA (Hao et al., 2024),
and AdalLoRA (Zhang et al., 2023). Additionally,
we utilize full fine-tuning (FFT) as the baseline.
Specific hyperparameters and dataset information
are provided in Appendix B.1.2 and B.2.2.

Results The results are shown in Table 3. From
the table, we can clearly observe that Lily surpasses
all the compared PEFT methods by a significant
margin, demonstrating its ability to tackle NLU
tasks. Among the six tasks, Lily surpasses FFT
on four of them when using RoBERTa Base and
RoBERTa Large, showcasing its strong approxima-
tion ability and high parameter efficiency.

4.3 Subject-driven Image Generation

Implementation We conduct experiments on fine-
tuning text-to-image diffusion models for the
subject-driven generation task. As the backbone,
we use SDXL and fine-tune it using both LoRA
and Lily. First, we fine-tune the model on im-
ages paired with text prompts (e.g., “A photo of
a [v] duck toy™), each of which includes a unique
identifier. Afterward, text prompts containing the
identifier are used to generate customized images.
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Table 3: Various fine-tuning methods applied to RoOBERTa Base and RoBERTa Large are evaluated on six datasets
from the GLUE benchmark. We present the Matthews correlation coefficient (MCC) for CoLA, the Pearson
correlation coefficient (PCC) for STS-B, and accuracy (Acc.) for the remaining tasks. The highest performance for
each dataset is highlighted in bold, with all metrics favoring higher values across the six datasets.

# Trainable | SST-2 MRPC CoLA QNLI RTE STS-B
Model & Method | |, - eters | (Acc) (Acc) (MCC) (Acc) (Acc) (PCC) V&
RoBase(FFT) 125M | 948 902 636 928 787 912 852
RoBec(BitFit) 00M | 937 927 62 918 815 908 854
RoBipas (AdptP) 03M | 942 885 608 931 715 897 830
RoBpase(Adpt?) 09M | 947 884 626 930 759 903 842
RoBiase(LORA) 03M | 948 898 633 929 782 915 85.1
RoBhase(AdaLoRA) | 03M | 945 887 620 931 810 905 850
RoBjpase(DyLoRA) 03M | 943 895 611 922 787 911 845
RoBiase(FLORA) 03M | 912 858 654 923 650 876 812
RoBpase(Lily) 03M | 950 902 660 925 81.6 908 86.0
RoB oy e (FF) 356M | 964 909 68 947 866 924 882
RoBjarge(Adpt™) 08M | 963 877 663 947 729 915 849
RoBjarge(LORA) 08M | 962 902 682 948 852 923 878
RoBjarge(Lily) 05M | 956 909 684 948 884 919 884

Results The results are presented in Fig. 2 fol-
lowing the format in Gao et al. (2024b) and Wu
et al. (2024). From these results, we observe that
the images generated by Lily generally align better
with the text prompts. For instance, when asked
to generate an image of a duck toy floating on wa-
ter, Lily’s output accurately depicts the designated
environment, whereas LoRA’s does not. Addition-
ally, when asked to generate an image of a wolf
plushie in the snow, Lily precisely captures the
snow around the wolf, while LoRA fails to do so.
These observations demonstrate Lily’s excellent
performance in text-to-image generation with more
expressive adaptation. Additional generated results
are provided in Appendix I.

4.4 Visual Adaptation Benchmark

Implementation We assess Lily on the Visual Task
Adaptation Benchmark (VTAB-1K (Zhai et al.,
2019)), a suite of 19 visual tasks spanning diverse
domains and semantics, to test its general visual
adaptation capability. Tasks are categorized into
Natural, Specialized, and Structured, and are all for-
mulated as classification problems for consistent
model evaluation. We conduct two sets of exper-
iments: one focusing on adaptation effectiveness
on the Vision Transformer (ViT (Dosovitskiy et al.,
2020)) and the other on Vision Mamba (Vim (Zhu
et al., 2024)), demonstrating Lily’s architecture-
agnostic capabilities. For ViT, we use ViT-B pre-
trained on ImageNet-21K (Deng et al., 2009), and
for Vim, we use Vim-s pre-trained on ImageNet-
1K. To fairly compare ViT and Vim architectures,

we implement LoRA (Hu et al., 2021) and Adapt-
Former (Chen et al., 2022) on ViT-B pre-trained on
ImageNet-1K. In the ViT experiments, we compare
Lily with LoRA, AdaptFormer, FourierFT (Gao
et al., 2024b), and MoRA (Jiang et al., 2024); in
the Vim experiments, we focus on contrasting archi-
tectural differences and, therefore, use only LoRA
as the baseline. All experiments include full fine-
tuning (FFT) and linear probing as baselines. For
Vim, we implement two versions of Lily: Lily-S
(Small) and Lily-L (Large), with different hyper-
parameter settings to either reduce the parameter
count (Lily-S) or maximize performance (Lily-L).
For Lily on ViT, the reported results are obtained
from adapting both the self-attention and the M A
module in the Transformer. Regarding the per-
formance of the fine-tuned module, we conduct
additional experiments in Appendix D. Detailed
experimental settings and dataset information are
provided in Appendix B.1.3 and B.2.3.

Results The results are shown in Tables 4 and
5. For ViT, Lily significantly outperforms all com-
pared PEFT methods while also offering improved
parameter efficiency. In contrast, the performance
on the Vim backbone is generally lower than that
on ViT; for instance, LoRA on ViT performs bet-
ter than LoRA on Vim. We argue that this dif-
ference is due to variations in architecture design
and overall model size. However, Lily’s strong
adaptation performance allows it to match or ex-
ceed the performance of other PEFT methods on
ViT and to significantly outperform LoRA on Vim
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A [v] duck toy floating on top of water

Input images

in a crowded street

|:> A Iv] duck toy on top of the sidewalk

Input images

A [v] wolf plushie in the jungle

A [v] monster toy with
a city in the background
st

Figure 2: Qualitative results of subject-driven generation. Lily’s results align better with prompts, featuring more

accurate color, environment, and shape.

(with both Lily-S and Lily-L surpassing LoRA by
a significant margin). This demonstrates Lily’s
architecture-agnostic capability, highlighting its po-
tential across various model architectures. Overall,
Lily achieves excellent visual adaptation perfor-
mance while maintaining architecture-agnosticity
and high parameter efficiency.

4.5 Understanding Lily

4.5.1 Does It Have High-Rank Weight
Updates?

The interconnected and asymmetric structure of
Lily enables a flexible allocation of the parame-
ter budget, thereby allowing weight updates with
higher ranks across all layers. To validate this
claim, we provide an empirical analysis, as shown
in Fig. 3. Specifically, we run four tasks from
the NLU experiment and measure the rank of the
weight updates for the query transformation matrix
W, in the first three layers. We use a small number
of matrices A and B (2 or 3) with a rank of 32 to
match the parameter count of LoRA, which uses
adapters with a rank set to 8. Specific hyperparam-
eter settings can be found in Appendix B.1.2.
From the results, we observe that the rank of
the weight updates from Lily is generally notably
larger than that of LoRA when using a similar num-
ber of parameters. Meanwhile, the weight updates
from Lily still exhibit a higher rank compared to
those of LoRA even when using only 16.7% of

MRPC COLA
G = ) = N —
200 300
~ —5— LoRA (param 0.3M) ~ 500 —S— LoRA (param 0.3M)
S —&— Lily (param 0.3M) S —&— Lily (param 0.3M)
~ 100 —&— Lily (param 0.05M) = —&— Lily (param 0.05M)
100
Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3
STS-B SST-2
200 © 300
~ ~ —&— LoRA (param 0.3M)
% % 200 —&— Lily (param 0.3M)
=100 —5— LoRA (param 0.3M) = —&— Lily (param 0.05M)
— Lily (param 0.3M) 100
o —e— Lily (piram 0.05M) ® &

Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

Figure 3: Actual rank of the weight updates. The weight
updates are of shape 768 x 768. We run 20 epochs for
COLA, MRPC, and STS-B, and 3 epochs for SST-2. It
can be easily observed that the weight updates from Lily
have notably higher rank than those from LoRA. Note
that the reported rank is computed from accumulated
weight updates over multiple epochs.

LoRA’s parameters. This empirical analysis essen-
tially validates our claim that Lily achieves high-
rank updates with the same parameter budget. We
attribute this to the model-wide sharing and the
cross-layer asymmetric design, which facilitate a
flexible allocation of the parameter budget.

4.5.2 What’s the Influence of Adapter
Granularity?

The number of experts in the model-wide B mod-

ule can be freely set, and the number of As can

also be flexibly determined by sharing across the
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Table 4: Full results of Lily on ViT-B pre-trained on ImageNet-21K for the VTAB-1K benchmark, with averages

computed based on group-wise results. Bold indicates the best performance.

Params(M)

Average

Natural

Cifar100
Caltech101
DTD
Flowers102
Pets
SVHN
Sun397

Specialized

Camelyon
EuroSAT
Resisc45
Retinopathy

Structured

Clevr-Count
Clevr-Dist
DMLab
KITTI-Dist
dSpr-Loc
dSpr-Ori
sNORB-Ele

SNORB-Azim

Conventional Fine-Tuning

FFT
LP

86 68.9
57.6

0

68.9 87.7 64.3 97.2 86.9 87.4 38.8
64.4 85.0 63.2 97.0 86.3 36.6 51.0

79.795.784.273.9
78.5 87.5 68.5 74.0

56.358.641.7 65.5 57.546.725.729.1
34.330.633.255.412.520.0 9.6 19.2

PEFT methods

AdaptFormer
Bi-LoRA
LoRA
FourierFT
MoRA

Lily

0.588
1.180
1.180
0.936
1.058
0.318

76.8
76.7
76.4
72.7
75.4
77.3

74.092.271.799.3 91.7 88.9 56.4
72.191.771.299.191.490.2 55.8
72.591.571.999.191.4 89.6 56.0
69.1 88.871.999.091.0 79.0 55.6
72.190.0 71.7 99.2 91.1 90.1 56.0
73.9 93.0 72.9 99.3 91.6 89.0 56.6

87.295.185.775.9
87.095.485.575.5
87.695.384.075.0
84.993.083.274.9
87.194.885.175.4
87.995.284.975.7

84.262.253.081.087.1 53.635.342.3
83.164.152.281.386.453.536.744.4
83.6 64.3 51.6 80.9 86.0 51.8 36.8 42.3
70.7 61.145.274.878.0 53.0 24.8 30.8
76.7 62.349.778.3 83.1 53.0 34.5 34.5
83.9 65.4 53.4 81.6 88.2 54.5 37.0 45.4

Table 5: Full results of Lily on Vim-S pre-trained on ImageNet-1K for the VTAB-1K benchmark, with averages
calculated within each group. * denotes linear probing results from Tu et al. (2023a). For fair comparison, we also
use ViT-B pre-trained on ImageNet-1K. Bold indicates best performance among Vim-based PEFT methods.

Specialized
=

= = o 5
S <« < &
s ®v g =
s £ o

E = 8 £
5243
~

Structured

Clevr-Count
Clevr-Dist
DMLab
KITTI-Dist
dSpr-Loc
dSpr-Ori
sNORB-Azim
sNORB-Ele

84.593.9 81.074.5
85.993.685.474.3
79.0 87.6 65.0 73.6
79.791.571.7 65.5

67.552.947.378975353.933.329.4
54.755248.779.768.249.731.527.7
36.335.133.364.823.021.6 15.121.7
41.434.434.155.418.126.416.524.8

85.494.684.074.3
85.495.184.175.2

75.8 58.648.6 79.6 81.6 53.7 29.6 35.2
75.861.747.780.580.4 52.0 29.4 35.7

Natural
= oo = = -
g 2|2 2 a2 % g % A
g 5| B g = © 3 o
s 2|E€ 2 A g &~ 2 3
= < |5 = 2 ©n @
A~ &} =
Conventional Fine-Tuning
FFT-Vim 26 70.1|47.7 89.4 64.2 89.0 87.7 90.6 35.1
FFT-ViT 86 69.9(49.489.365.591.789.191.433.5
LP-Vim 0 55.3(40.9 83.357.366.3 86.3 38.4 34.6
LP-ViT 0  66.4(50.6 85.6 61.479.5 86.5 40.8 38.0
PEFT on ViT
AdaptFormer 0.147 72.4|56.2 89.6 67.291.291.1 85.9 42.1
LoRA 0.295 72.5(56.4 89.0 66.9 91.2 90.4 86.9 41.5
PEFT on Vim
LoRA 0.054 70.1|57.5 87.7 64.4 86.0 90.0 85.7 39.8
Lily-S 0.074 71.4|58.2 88.5 65.6 87.1 90.7 87.5 40.4
Lily-L 0.196 72.3(57.8 89.4 66.2 87.8 90.5 88.1 40.5

82.293.879.6 72.5
83.394.179.773.8
84.194.381.375.1

78.6 56.542.080.571.8 51.0 28.4 32.6
81.257.344.1 80.9 79.3 54.1 30.0 33.7
81.6 57.8 46.5 81.0 82.9 55.2 32.1 34.8

same level of layers, as introduced in Appendix
A.1. Therefore, we analyze the impact of these
choices on performance. We denote the number
of A experts and B experts as ne_1 and ne_2, re-
spectively. For simplicity, we set them equal in
the experiments and denote this common value as
ne. We refer to the number of layers each expert
attends to as adapter granularity. As the value of
ne increases, the adapter granularity becomes finer.
As shown in Fig. 5, the results from the VTAB-
1K benchmark indicate different patterns. For in-
stance, on the DTD dataset, the best performance
is achieved when ne is 4, while on SNORB-Azim,
performance increases as ne increases. Increas-
ing ne leads to more parameters and finer adapter
granularity; however, finer adapter granularity does

not necessarily translate to better overall perfor-
mance. For example, on Resisc45, DTD, Cifar100,
sNORB-Ele, dsPr-LoC, Flowers102, and EuroSAT,
the negative impact of increasingly finer adapter
granularity eventually outweighs the benefits of the
additional parameters, leading to a decrease in over-
all performance. In other tasks, different patterns
may occur because the positive effect of adapter
granularity on performance is consistently strong,
or its negative effect is insufficient to offset the ben-
efits of increased parameters, resulting in generally
improved performance with higher ne. This phe-
nomenon provides an important insight: for most
tasks, simply increasing the number of parameters
may not lead to better performance. Instead, only
when adapter granularity and the number of param-
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Figure 4: Visualization of accumulated assigned weight for B experts by a router across various layers. Example
here uses layer of index 2, 13 and 22 to represent shallow, middle and deep layers. The reported values are based on

the accumulated router outputs over multiple epochs.
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Figure 5: Impact of attention granularity (i.e., the choice of how many As and Bs) on the performance. We choose
12 out of 19 tasks from VTAB-1K for a comprehensive understanding.
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LoRA. We run 10 epochs for COLA. We report the
training time and memory consumption. It can be ob-
served that Lily generally performs on par with LoORA
in terms of hardware efficiency.

eters reach an optimal trade-off can we achieve the
best performance.

4.5.3 Does It Exhibit Selectivity?

Lily uses routers to assign varying weights to dif-
ferent B experts, thereby achieving selective infor-
mation combination. We illustrate this selectivity
in Fig. 4. We use a setup with three B experts
and select three layer levels (1, 13, 22) to calcu-

late the total weight assigned to each expert. The
results reveal clear selectivity: for different layers,
the router assigns significantly different weights
to the B experts. For instance, on Cifar100, the
middle layer is predominantly dominated by B 2,
whereas the deep layer is primarily dominated by
B 1 and B 2. In contrast, on Retinopathy, both
the middle and deep layers are dominated by B 3.
This selectivity ensures that, even when different
layers share information, the inherent differences
between layers are still taken into account, making
the adaptation more flexible and comprehensive.

4.5.4 What’s the Hardware Efficiency?

The dynamics of Lily obviously introduce com-
plexity to the design of LoRA. In this section, we
analyze how this affects the hardware efficiency of
Lily compared to LoRA. We use the COLA task
from the NLU experiments with RoOBERTa-Base
and run for 10 epochs. Additionally, we also report
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the runtime and GPU memory consumption in the
Falcon-Mamba experiment.

The results are shown in Fig. 6, from which we
can observe that the hardware efficiency of Lily
is comparable to LoRA. Specifically, Lily slightly
underperforms LoRA in the NLU experiment but
performs on par with LoRA in the LLM experiment.
In general, the introduced complexity of Lily does
not prevent it from being an more effective PEFT
method that is also hardware-friendly.

5 Conclusion

In this paper, we propose Low-Rank Interconnected
Adaptation (Lily), a novel framework for efficient
fine-tuning via the interconnectivity of adapters.
Lily enables each layer to access information from
others during adaptation through a hierarchical
structure. Additionally, it successfully overcomes
the low-rank update limitation of LoRA, enabling
high-rank updates and, therefore, better adapta-
tion capability under the same parameter budget.
Our approach consistently improves performance
across various modalities, model sizes, and archi-
tectures, surpassing existing methods while main-
taining enhanced efficiency. In summary, Lily’s
versatility and efficiency make it a promising ap-
proach for a wide range of applications.

6 Limitations

Although Lily has been experimentally evaluated
in a wide range of scenarios, we have not explored
all possible applications where PEFT could be used.
These potential areas are left as directions for future
work.

7 Ethics Statement

This work is an improvement upon LoRA. How-
ever, it could potentially be used for fine-tuning
diffusion models or large language models (LLMs)
for generating malicious content.
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Appendix
A More discussion about Lily

A.1 Model Structure and Design Intuition of
Lily

Within the overall framework of Lily, we delve into
specific implementation details and model design
insights. First, we establish the relationship be-
tween A and B: A is confined to specific levels
of layers, capturing features that enable the router
to selectively assign weights to the B experts. In
contrast, B is a model-wide module comprising
multiple experts, each of which contains informa-
tion from a particular level of layers.

We highlight several key aspects that are not
heavily discussed in the methodology section:

A.1.1 Number of As

Since A is limited to specific layers, the simplest
approach would be to place an A at each layer of
the module to be adapted (e.g., the query transfor-
mation in MHSA). However, this setup may not be
necessary, as the importance of each layer varies,
and many layers have significantly lower impor-
tance than others (Zhang et al., 2023).

To achieve greater parameter efficiency, we can
use fewer As, with each A focusing on a level of
layers rather than a single layer. For example, an
A can focus on shallow layers (e.g., layers 0, 1, 2,
etc.) or deep layers. To enable a single A to handle
multiple layers, we can share an A across multiple
layers. By doing so, we eliminate the redundancy
of placing an A at each layer, reduce the number
of parameters, and improve efficiency.

This is exactly the strategy adopted in most
of the experiments.

A.1.2 Number of B Experts

Regarding B, the number of experts can be set ar-
bitrarily, allowing for more flexible configurations.
In our experiments, for the sake of simplicity, we
set the number of B experts equal to the number of
As, thereby equating the granularity of A and B.

A.1.3 Routers Setup

There are multiple possible configurations for the
router. First, we can bind the router to B, resulting
in only one router per model. However, since the
number of parameters in the router is relatively
small, having only one router per model may not
provide significant selectivity. Therefore, we can

also bind the router to A, configuring a separate
router for each A.

Most of our experiments use the latter setup.
However, in the vision experiments on Vim, we
adopt the single-router and no-lp-sharing setup to
evaluate its effectiveness. The results indicate that
this setup also performs well.

As future work, we can further verify the ef-
fectiveness of the latter setup on Vim, which may
potentially lead to superior performance.

A.1.4 Hyperparameters

We detail the hyperparameters used in Lily. Specif-
ically, we use Lily_r to represent the hidden di-
mension of the projectors: As and Bs. It serves
the same function as r in LORA. We use Lily_s to
represent the scaling factor used by Lily, which is
primarily searched within the range {0.01, 0.1, 1.0,
10.0, 100.0}.

We use ne_1 to denote the number of As used
in the model. Since As can be shared, as discussed
in the previous section, ne_1 does not necessarily
equal the number of layers in the model. Similarly,
we use ne_2 to represent the number of B experts
in the model-wide B module.

In our experiments, we set ne_1 = ne_2 to en-
hance parameter efficiency and maintain simplicity.

A.1.5 Design Intuition

Lily employs a hierarchical structure to enable up-
dates with higher ranks than LoRA. However, sim-
ply connecting all Bs equally to As does not yield
the best performance. From the perspective of
feature and information utilization across layers,
merely aggregating all Bs for an A ignores the
distinctiveness of features from the current layers.
Meanwhile, this approach reduces the variability
in the combinations of gradient projection matrices
(since S; and C; ; become constants), making the
rank of the weight update higher than that of LoRA
(as multiple distinct random matrices are used),
but still not high enough for optimal performance
due to the lack of variability in the combination
process.

To address this, we introduce selectivity into the
interconnectivity, as discussed below, making the
combination of Bs data-dependent. This ensures
that each S; is unique across time steps, enabling
updates with even higher ranks. This approach is
similar to that of Hao et al. (2024), where a random
matrix is constantly resampled to maintain high-
rank updates. We further analyze this in Appendix
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A.2 Efficient Implementation for Weighted
Combination

A straightforward implementation of the weighted
combination in Lily is to pass the inputs through all
the experts and then sum the results. This approach
requires N, matrix multiplications, N, scalar mul-
tiplications, and N, matrix additions. Despite its
intuitive nature, the computational burden of this
method is quite substantial.

However, Eq. 3, which is adopted in Lily, re-
quires only N, scalar multiplications, N, matrix
additions, and a single matrix multiplication. This
optimization eliminates approximately /N, matrix
multiplications, which can significantly reduce
computational costs as the model size and the num-
ber of adaptation targets increase.

For an input 2’ of size R™V*? and a projection
matrix Py; € R?¥C, the floating-point operations
(FLOPs) of these two implementations are:

Ne Ne Ne
FLOPs = Y "(2NdC)+ ) (dC) + > (NC)
i=1 i=1 i=1
= N, X (2NdC +dC + NO),
Ne
FLOPs = 2 "(dC) + 2NdC
i=1
=2dC x (N + N,),
®)
From this, we can easily observe that the ap-
proach adopted by Lily requires fewer computa-
tions, thereby improving both speed and efficiency
during the fine-tuning process. Under the set-
ting of N = 1024,d = 16,C = 768, N, = 4,
the FLOPs for the intuitive approach amount to
0.104 GFLOPs, whereas for Lily, it is merely 0.025
GFLOPs, potentially leading to a 4 x speedup.

A.3 Actual Implementation of Lily

We present the actual implementation of Lily in
Fig. 7. In this example, we showcase its implemen-
tation for visual adaptation tasks, specifically in the
VTAB-1K benchmark. For large language mod-
els (LLMs), the implementation is slightly more
complex due to modifications to the Hugging Face
PEFT library (Mangrulkar et al., 2022), but the
fundamental adaptation process remains the same.

Specifically, given an input, we first use the
corresponding A of the current layer to project it

into a low-dimensional representation. This low-
dimensional representation is then used to selec-
tively assign weights to the B experts. Once the
weights for all experts are obtained, we proceed
to combine these B experts accordingly, as dis-
cussed in Appendix A.2. After the weighted com-
bination, the combined B is used to project the
low-dimensional representation back into a high-
dimensional space, thereby incorporating the addi-
tional knowledge gained through adaptation.

B Experimental Settings

B.1 Hyperparameters

A detailed description of the hyperparameters used
in Lily is provided in Appendix A.1.

B.1.1 Commonsense Reasoning

The hyperparameters used in commonsense rea-
soning experiments for MiLoRA and PiSSA are
provided in Tables 7 and 6. The settings for Lily
and LoRA using Falcon-Mamba as the backbone
are presented in Tables 9 and 8.

Notably, Lily achieves the best performance
by adapting only the multi-head self-attention
(MHSA) module in LLaMA3-8B, whereas other
compared methods adapt all modules, including
MA. Moreover, Lily utilizes the fewest parameters,
demonstrating its superior adaptation capability in
low-parameter-budget scenarios.

B.1.2 Natural Language Understanding

The specific hyperparameter settings for Lily on
the GLUE benchmark are provided in Table 10. We
fix the learning rate of both the backbone and the
head at 5 x 1072 and instead tune the scaling factor
Lily_s, where Lily_s € {0.01,0.1,1.0}. The rank
r is fixed at 32, and the random seed is set to 0.
The baseline results are taken from FourierFT (Gao
et al., 2024b).

B.1.3 Visual Task Adaptation Benchmark

We provide the hyperparameters for Lily on the
VTAB-1K benchmark in Table 11. Specifically,
we fix the learning rate at 1 x 10~3 with a weight
decay of 1 x 10~*. For ViT, we tune the scaling
factor Lily_s € {0.01,0.1,1.0,10.0} to maximize
performance, following Jie et al. (2023) and Jie
and Deng (2023). For Vim, we fix Lily_s to 1.0.
Additionally, we search for the hyperparameters
ne_1 and ne_2 within the range {2, 3, 4}, as these
numbers divide the number of layers in the ViT
model (12 in ViT-B).
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1 class lily_adapter(nn.Module) :

2 nun

3 Implementation of a Lily adapter for an adaptable target. For symplicity, we assume that the
— number of hp expert is equal to the number of LPs.

4

5 args:

6 hidden_dim: hidden dimension

7 ne: number of experts

8 1lp: low-dimensioanl projector

9 hps: high-dimensioanl projector experts

10 mlp: whether the adpatation target is located in MLP

11 nun

12 def __init__(self, hidden_dim, ne, lp, hps, mlp=False):

13 super () .__init__()

14 self.hps = hps

15 self.ne = ne

16 self.lp = 1p

17 self.router = nn.Linear(hidden_dim, ne, bias=False)

18 if mlp:

19 self.non_linear = nn.ReLU(Q)

20 else:

21 self.non_linear = nn.Identity()

22 def forward(self, x):

23 hidden = self.non_linear(self.lp(x))

24 router_logits = self.router(hidden)

25 router_probability = F.softmax(router_logits, dim=-1)

26 expert_probabilities = router_probability.mean(dim=(0, 1))

27 combined_hp = torch.einsum("e,eio->io", expert_probabilities, self.hps)

28 return torch.matmul (hidden, combined_hp)

Figure 7: Implementation of Lily in the VTAB-1K benchmark.

For Vim, we use the implementation discussed
in Section A.1, which does not share As across
layers. Therefore, ne_1 in this setting is fixed to
the number of layers in Vim (22 in this case), while
we search for ne_2 in {3, 6} and {5, 6, 17} sepa-
rately for Lily-S and Lily-L. Note that ne is only
set for the input projection in Vim. For the delta
transformation, we use only a single B expert to
reduce the parameter cost.

In the ViT experiments, the rank r is fixed at 16.
Meanwhile, in Vim’s setting, we tune the ranks r
for the delta transformation module and the input
projection module separately. We use (4,4) and
(4, 8) separately for Lily-S and Lily-L.

B.2 Datasets

B.2.1 Commonsense Reasoning

We provide a short description of each datasets
used in commonsense reasoning experiments in
Table 12.

B.2.2 Natural Language Understanding

We provide detailed information about datasets in
the GLUE benchmark in Table 13.

B.2.3 Visual Adaptation Benchmark

We provide detailed information about all the tasks
from VTAB-1K benchmark in Table 14.

C Does Sharing As Result in Inferior
Performance?

As mentioned earlier, we adopted a strategy of shar-
ing the A across most of our experiments, ensuring
that the number of As and B experts is consistent.
This approach offers two key benefits: simplicity
and enhanced parameter efficiency. By sharing the
A, we eliminate the need to set a separate A for
each layer, thereby reducing the overall parameter
count.

Our decision to share the A is based on the obser-
vation of overall redundancy among layers. Specif-
ically, different layers have varying levels of impor-
tance (Zhang et al., 2023), and some less important
layers do not require a dedicated A. By not setting
a separate A for these layers, we avoid introduc-
ing unnecessary parameter overhead while main-
taining negligible impact on performance. To test
whether sharing A results in inferior performance,
we conducted experiments without A sharing on
the VTAB-1K benchmark. The results, shown in
Table 15, indicate that the best overall performance
(77.3%) is the same as in the A-sharing setting.
This suggests that even when we employ one A
for each layer, the performance gain is negligible,
and many of the parameters are, in fact, redun-
dant. However, not sharing As leads to additional
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Table 6: Hyperparameter configuration from the MiLoRA paper.

MiLoRA hyperparameters

Rank r
« of LoRA
a of PiSSA
Dropout
Optimizer
LR
LR Scheduler
Batch Size
Warmup Steps
Epochs
Placement

32
64
32
0.05
AdamW
3e-4
Linear
16
100
3

query, key, value, MA up, MA down

Table 7: Hyperparameter configuration from the PiSSA paper.

PiSSA hyperparameters
o Same as rank r
Dropout 0.0
Optimizer AdamW
LR 2e-5
LR Scheduler cosine
Batch Size 128
Warmup Ratio 0.03
Epochs 1
Placement query, key, value, output, gate, MA up, MA down

Table 8: Hyperparameter configuration for LoRA using
Falcon-Mamba as backbone.

LoRA hyperparameters
Rank r 2
o 16
Dropout 0.05
Optimizer AdamW
LR 3e-4
LR Scheduler Linear
Batch Size 16
Epochs 1
Placement  input, delta

parameter overhead, which reduces the parameter
efficiency of Lily. Therefore, A-sharing is an ef-
fective strategy to eliminate redundancy among As
and enhance the parameter efficiency of Lily.

D Where to Apply Lily in Transformers?

E Performance Analysis on VTAB-1K
Benchmark with Lily on Transformer
Modules

PEFT methods have been predominantly explored
on the Transformer architecture, which consists
of multi-head self-attention (MHSA) and multi-
layer perceptron (MA) as its core modules. In
this section, we analyze the impact of fine-tuned
modules on performance using Lily. Specifically,
we compare Lily’s performance on the VTAB-1K
benchmark under four settings:

* Applying Lily solely to the query and value
transformation module in MHSA (denoted as
"qV").

* Applying Lily solely to the MA module (de-
noted as "mlp").

» Applying Lily to both the query and value
transformation module in MHSA and the MA
module (denoted as "qvmlp").
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Table 9: Best Hyperparameter configuration for Lily using Falcon-Mamba and LLaMA3 as backbones.

Falcon-Mamba LLaMA3
Rank r 40 16
ne_1 4 4
ne_2 4 4
Dropout 0 0

Optimizer AdamW AdamW

LR 3e-4 3e-4
LR Scheduler Linear Linear
Batch Size 16 16
Epochs 1 3
Placement input query, key, value

Table 10: Hyperparameter of Lily on GLUE benchmark.

Hyperparameter ‘ STS-B RTE MRPC CoLA SST-2 QNLI MNLI QQP
Optimizer AdamW
LR Schedule Linear
Learning Rate (Lily) 5e-3
Learning Rate (Head) 5e-3
Max Seq. Len 512 512 512 512 512 512 512 512
Lily_s 0.1 0.1 0.1 0.01 0.01 0.01 0 0
ne_1 2 3 2 4 2 2 0 0
ne_2 2 3 2 4 2 2 0 0
Batch Size 64 32 50 64 32 32 0 0

» Applying Lily to both the key and value trans-
formation module in MHSA and the M A mod-
ule (denoted as "kvmlp").

To ensure a fair comparison, we tune the hyper-
parameters to maintain a similar parameter count
across all settings. Additionally, to further investi-
gate whether sharing the low-rank projection (A)
affects performance, we do not share A in this ex-
periment.

The results are presented in Table 15. We ob-
serve that the "kvmlp" setting achieves the best per-
formance, with an average accuracy of 77.3%. In
contrast, adapting only the MHSA module ("qv")
yields the worst performance. Furthermore, we
note that adapting both the MHSA and M A mod-
ules (qvmlp and kvmlp) generally leads to superior
results compared to adapting only one specific mod-
ule (qv and mlp). This suggests that both M A and
MHSA play crucial roles in overall model perfor-
mance, and adapting both is essential for effective
adaptation.

Notably, even when applying Lily solely to the
MHSA module, which results in the worst perfor-

mance among the four settings (76.9%), it still out-
performs LoRA by a significant margin (0.5%).
This underscores the efficiency of Lily, as it uses
fewer parameters than LoRA, even without A shar-
ing.

F Where to Apply Lily in Mamba?

Nearly all previous PEFT method studies have fo-
cused on Transformers, while Mamba is a relatively
new architecture, and therefore, there has been lit-
tle research on PEFT methods for Mamba. In this
section, we briefly analyze the pros and cons of
adapting Mamba’s modules. A Mamba block con-
sists of regular linear projection layers and a core
component, the SSM module (Gu and Dao, 2023),
(Zhu et al., 2024). Specifically, in the SSM mod-
ule, Mamba utilizes parameters (A, A, B, C) to
transform an input sequence x(t) into an output
sequence y(t) using a hidden state h(¢). The dis-
cretization process converts A and B into A and
B, respectively, using the time step size parame-
ter A. Structured state space models, inspired by
continuous systems, can be computed similarly to
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Table 11: Hyperparameter configuration for Lily on VTAB-1K benchmark.

Vision Transformer Vision Mamba

Optimizer AdamW AdamW

Batch Size 64 64
Learning Rate 1E-3 1E-2
Weight Decay 1E-4 1E-3

# Epochs 100 100

LR Decay cosine cosine

Table 12: Details of the datasets used in our commonsense reasoning tasks.

Benchmark Description # Test Questions
ARC-c Multiple-choice science 2376
ARC-e Multiple-choice science 1172
OBQA Multi-step reasoning 500
SIQA Social implications 1954
WinoG Fill-in-a-blank 1267
PIQA Physical commonsense 1830
BoolQ Yes/no questions 3270
HellaS Commonsense NLI 10042

Table 13: Information about datasets in the GLUE benchmark, with STS-B being a regression task and all other
tasks falling into the categories of single-sentence or sentence-pair classification.

Corpus | Metrics Task # Train # Val # Test # Labels
Single-Sentence Tasks
CoLA Matthews Corr. Acceptability 8.55k 1.04k 1.06k 2
SST-2 Accuracy Sentiment 67.3k 872 1.82k 2
Similarity and Paraphrase Tasks
MRPC | Accuracy/F1 Paraphrase 3.67k 408 1.73k 2
STS-B | Pearson/Spearman Corr. Sentence similarity 5.75k 1.5k 1.38k 1
QQP Accuracy/F1 Paraphrase 364k 40.4k 391k 2
Inference Tasks
MNLI | Accuracy NLI 393k 19.65k 19.65k 3
QNLI Accuracy QA/NLI 105k 5.46k 5.46k 2
RTE Accuracy NLI 2.49k 277 3k 2

RNNs or in the form of global convolution due to
their linear time invariance (LTI) property. Mamba
introduces a selective property to the structured
state space model, tying parameters to the current
input. This breaks the LTI property and hinders par-
allel training. To address this, Mamba employs a
hardware-aware algorithm, enabling its SSM mod-
ule to possess the selective property while perform-
ing parallel training.

To be specific, the discretization process can be

expressed as:
A = exp(AA) ©
B = (AA)"Y(exp(AA) —I)-AB

After that, the calculation in Mamba can be ex-
pressed as:

ht = Aht_l + th

(7
yr = Chy

where h; is the hidden state at time ¢ and z; is
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Table 14: Detailed information about the datasets in VTAB-1K benchmark.

Dataset Train Val Test #Classes
CIFAR100 10,000 100
Caltech101 6,084 102
DTD 1,880 47
Oxford-Flowers102 6,149 102
Oxford-Pets 3,669 37
SVHN 26,032 10
Sun397 21,750 397
Patch Camelyon 32,768 2
EuroSAT 5,400 10
VTAB-1k Resisc45 800/1,000 200 6,300 45
Retinopathy 42,670 5
Clevr/count 15,000 8
Clevr/distance 15,000 6
DMLab 22,735 6
KITTI-Dist 711 4
dSprites/location 73,728 16
dSprites/orientation 73,728 16
SmalINORB/azimuth 12,150 18
SmallINORB/elevation 12,150 18

Table 15: Performance on VTAB-1K benchmark when applying Lily to various modules in Transformer. The
implementation here does not share A for simplicity (i.e., each layer has one A).

Natural Specialized Structured

= N o - 2 . - £ =

282 3 ,z5|2 5493224558883 ¢%

Sl § 2 58 £ Z 2T 2289 Lg%k 2

S|§ 282 ¢S EIE 2% 2| EZE L s R K

< |85 = I » 2|8 3 25|33 ARAE LS 0SS

&} = o 2 | O o = % 7]
qv 76.9(73.292.372.299.3 91.4 89.0 56.5|87.6 95.2 84.8 75.9/83.7 65.8 52.8 81.2 87.6 52.4 36.3 43.4
mlp 77.0{74.0 92.6 72.2 99.4 91.5 89.0 55.9|88.2 95.5 85.4 76.0(83.3 63.1 53.0 81.4 86.5 53.8 35.6 43.3
qvmlp 77.1173.993.272.7 99.4 91.6 89.7 56.5|87.9 95.3 85.0 76.1(84.6 65.2 53.0 82.1 86.7 53.0 36.0 42.8
kvmlp 77.3174.0 92.3 72.6 99.3 91.5 89.2 56.7|88.2 95.4 85.3 76.0(84.6 64.9 53.4 81.7 87.5 52.9 36.9 45.2

the corresponding input token. Delta projection
is a module in SSM that’s learnable and tasked
with transforming the parameter A. Since adapting
the delta projection alone can indirectly adapt the
entire SSM module (i.e., A and B are determined
by A), it is the most critical component of the SSM
module.

We investigate the performance of two adapta-
tion strategies: adapting only the input linear pro-
jection layer (denoted as "in") and adapting both
the input linear projection layer and the SSM (de-
noted as "A + in" since we only adapt the delta pro-
jection in the SSM module). Our results, as shown
in Table 1, indicate that applying Lily solely to
the input projection yields better performance than
applying it to both the input and delta projection
modules. This suggests that when adapting Mamba-

based models under the paradigm of low-rank adap-
tation, it is optimal to adapt only the input projec-
tion module outside the SSM module. These find-
ings highlight the need for further research into the
impact of fine-tuned modules in Mamba on overall
performance. Additionally, developing PEFT meth-
ods specifically tailored to Mamba-based models,
whether for vision or language foundation models,
is also a promising direction for future work.

G Performance with Different Learning
Rates

Since we only tuned the learning rate in the com-
monsense reasoning experiment, we provide the
performance of commonsense reasoning under dif-
ferent learning rates in Table 16.
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Table 16: Commonsense reasoning results of Lily under various leanring rates.

Model Lr BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
le-3  70.7 84.6 776 87.8 77.3 88.5 74.1 80.8  80.2
Se-4 718 86.5 77.9 82.8 83.1 88.6 76.8 814  8l1.1
LLaMA3-8B 3e-4 729 856 778 92.7 83.3 89.7 77.6 82.8 828

H Does Selectivity Help?

Lily introduced selective weight combination to
selectively incorporate information from other lay-
ers. To verify the effectiveness of this selectivity,
we remove the router from Lily and evaluate the
impact. The modified algorithm without the router
is presented in Fig. 8. We conduct experiments on
commonsense reasoning to investigate the effect of
removing selectivity from Lily.

As shown in Table 17, removing selectivity from
Lily results in generally poorer performance com-
pared to vanilla Lily. This is likely because the lack
of selectivity causes Lily to simply aggregate all
the B expert, leading to inferior performance. This
validates the design choice of using routers in Lily
to selectively allocate weights to B experts, rather
than simply summing them.

I How to Allocate Parameters?

Since Lily alters the traditional LoRA’s layer-
bound setup, increasing the parameters of Lily can
be achieved through two approaches: 1) increasing
ne, i.e., increasing the number of A and B experts,
and 2) increasing the rank, i.e., increasing the pa-
rameter size of each individual A or B expert. In
this section, we investigate which factor has the
greatest impact on performance. We conduct exper-
iments on the commonsense reasoning task. Specif-
ically, we maintain the same parameter count and
learning rate, and achieve the same parameter count
by setting different ranks and adjusting the corre-
sponding ne (e.g., =16, ne=4 versus r=8, ne=8).
The results are shown in Fig. 9, from which we
observe that more A and B experts with smaller
rank (i.e., bigger ne and smaller rank) generally
performs worse. We argue that this is because, al-
though increasing the attention granularity allows
for finer details, the resulting performance gain is
not as significant as the gain obtained by increasing
the rank, i.e., increasing the model’s capacity to
learn more information. This gives us an insight
that, in Lily, increasing ne to increase the param-
eters is less effective than directly increasing the
rank in terms of potential performance gain.

17023



class lily_adapter_monoscale (nn.Module) :

def

def

__init__(self, hidden_dim, ne, lp, hps, mlp=False):
super () .__init__()
self.hps = hps
self.ne = ne
self.lp = 1p
self.scale = 1 / ne
if mlp:
self.non_linear = nn.ReLU()
else:
self .non_linear = nn.Identity()
forward(self, x):
hidden = self.non_linear(self.lp(x))
combined_hp = torch.sum(self.hps, 0) * self.scale
return torch.matmul (hidden, combined_hp)

Figure 8: Implementation of Lily with no selectivity.

Table 17: Commonsense reasoning results of Lily without selectivity. We provide results using two learning rates.

Model Lr BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
3e-4 640 82.6 78.5 77.0 79.6 88.4 74.5 82.0 78.3
LLaMA3-8B 5e-4 71.3 85.5 78.1 84.3 79.6 86.4 76.1 79.0 79.8
BoolQ PIQA SIQA
HellarSwag WinoGrrande ARL-e

0.895

0.890
0.82
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0.880
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0.775
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0.760

0.755 0.78
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Figure 9: Results on commonsense reasoning tasks when applying different settings of rank. The hyperparameter
ne is specifically tuned to maintain the same amount of parameter count for a fair comparison.
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J More on Subject-driven Generation

We provide more results on subject-driven genera-
tion in Fig. 10 and Fig. 11.

K From a Feature Merging Perspective

Apart from having higher-rank weight updates than
LoRA, Lily also enables comprehensive informa-
tion access across layers. Lily enables access to
information or features from all other layers when
adapting a target module at a specific layer thanks
to the inter-connectivity of the adapters. We aim to
understand how Lily achieves this comprehensive
information access from the perspective of visual
tasks as shown in Fig. 12. We can observe that, in
Lily, the distinctness of the attention maps between
layers is not as pronounced as in LoRA. This vali-
dates Lily’s ability to enable all-level information
access, since adaptation at each layer takes into ac-
count features from other layers. Additionally, we
specifically visualize the actual feature differences
between different layers in Fig. 13. We observe that
Lily has more points with low feature differences
(blue color) than LoRA, indicating that the distinct-
ness of features between layers in Lily is generally
lower than in LoRA. This further demonstrates
Lily’s ability to enable comprehensive information
access. Although we enable all-level information
access, what prevents the features from becoming
completely identical is the selectivity introduced
by Lily, which we specify in the following section.

L. More on Attention Maps of Lily and
LoRA

We provide more visualization results of the atten-
tion map from both LoRA and Lily on Caltech101
dataset from VTAB-1K benchmark in Fig. 14.
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2
3
Prompts:
1. A [v] grey sloth plushie floating on top
of water 4
2. A [v] grey sloth plushie in the snow
3. A [v] grey sloth plushie on a cobblestone
street
5
4. A [v] grey sloth plushie on fop of a dirt
road
5. A [v] grey sloth plushie on top of a white
rug
6
6. A [v] grey sloth plushie on top of a wooden
floor
Input images (not all included)
1
2
3
Prompts:
1. A [v] bear plushie floating on top
of water 4
2. A [v] bear plushie in the snow
3. A [v] bear plushie on a cobblestone
street
5
4. A [v] bear plushie on top of a dirt
road
5. A [v] bear plushie on top of a white
rug 6

6. A [v] bear plushie on top of a wooden
floor

Figure 10: More subject-driven generation results for unreported subjects.
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Prompts:

1. A [v]{} on top of a dirt
road

2. A [v]{} on top of a white
rug

3. A [v] {} with a tree and
autumn leaves in the background

4. A[v]{}witha
wheat field in the background

5. A {} with the Eiffel
Tower in the background

—  subject = duck toy

— subject = wolf plushie

Figure 11: More subject-driven generation results for subjects that are reported in the experiment section.
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Input Layer 1 Layer 6 Layer 9

Figure 12: Attention maps of Lily and LoRA. The input images for the example here are taken from Caltech101
datasets from VTAB-1K benchmark. It can be observed that features from a certain layer have more similarity to
those in other layers in Lily than in LoRA.

Lily LoRA Lily LoRA
Layer 6 to 1 Layer6to 9

Figure 13: Feature difference measured in absolute distance for each element. We compare Lily and LoRA in terms
of the difference between features from different layers. In this example image taken from Caltech101, we visualize
the feature difference between layers 6 and 1, as well as between layers 6 and 9.
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Figure 14: More results of attention maps from LoRA and Lily. All images are taken from Caltech101 dataset.
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