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Abstract

Large Language Models (LLMs) suffer from
hallucinations and outdated knowledge due to
their reliance on static training data. Retrieval-
Augmented Generation (RAG) mitigates these
issues by integrating external dynamic infor-
mation for improved factual grounding. With
advances in multimodal learning, Multimodal
RAG extends this approach by incorporating
multiple modalities such as text, images, au-
dio, and video to enhance the generated outputs.
However, cross-modal alignment and reasoning
introduce unique challenges beyond those in
unimodal RAG. This survey offers a structured
and comprehensive analysis of Multimodal RAG
systems, covering datasets, benchmarks, metrics,
evaluation, methodologies, and innovations in
retrieval, fusion, augmentation, and generation.
We review training strategies, robustness en-
hancements, loss functions, and agent-based
approaches, while also exploring the diverse
Multimodal RAG scenarios. In addition, we
outline open challenges and future directions to
guide research in this evolving field. This survey
lays the foundation for developing more capable
and reliable Al systems that effectively leverage
multimodal dynamic external knowledge bases.
All resources are publicly available .

1 Introduction & Background

Recent advancements in transformer architectures
(Vaswani et al., 2017), coupled with increased com-
putational resources and the availability of large-
scale training datasets (Naveed et al., 2024), have
significantly accelerated progress in the development
of language models. The emergence of foundational
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Large Language Models (LLMs) (Ouyang et al.,
2022; Grattafiori et al., 2024; Touvron et al., 2023;
Qwen et al., 2025; Anil et al., 2023), has revolution-
ized natural language processing (NLP), excelling in
tasks such as instruction following (Qin et al., 2024),
reasoning (Wei et al., 2024b), in-context learning
(Brown et al., 2020), and multilingual translation
(Zhu et al., 2024a). Despite these achievements,
LLMs face challenges such as hallucinations, out-
dated knowledge, and a lack of verifiable reason-
ing (Huang et al., 2024; Xu et al., 2024b). Their
reliance on parametric memory limits access to up-
to-date information, reducing their effectiveness in
knowledge-intensive tasks.

Retrieval-Augmented Generation (RAG) RAG
(Lewis et al., 2020) addresses these limitations by
enabling LLMs to retrieve and incorporate exter-
nal knowledge, improving factual accuracy and
reducing hallucinations (Shuster et al., 2021; Ding
et al.,, 2024a). By dynamically accessing exter-
nal knowledge sources, RAG enhances knowledge-
intensive tasks while grounding responses in verifi-
able sources (Gao et al., 2023). In practice, RAG
systems follow a retriever-generator pipeline: the
retriever uses embedding models (Chen et al., 2024a;
Rau et al., 2024) to identify relevant passages from
external knowledge bases and may apply re-ranking
techniques to improve precision (Dong et al., 2024a).
The retrieved passages are then provided to the gen-
erator, which leverages this contextual information
to produce more informed and coherent responses.
Recent advancements in RAG frameworks, such as
planning-guided retrieval (Lee et al., 2024), agentic
RAG (An et al., 2024), and feedback-driven iterative
refinement (Liu et al., 2024c; Asai et al., 2023), have
further improved both the retrieval and generation
components of these systems.

Multimodal Learning In parallel with advances
in language modeling, multimodal learning has
emerged as a transformative area in artificial intelli-
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Figure 1: Overview of the multimodal RAG pipeline, illustrating key techniques and recent advancements.

gence, enabling systems to integrate and reason over
heterogeneous data sources for more comprehensive
representations. A pivotal breakthrough was the
introduction of CLIP model (Radford et al., 2021),
which aligned visual and textual modalities through
contrastive learning and inspired a wave of subse-
quent models (Alayrac et al., 2024; Wang et al.,
2023a; Pramanick et al., 2023). These developments
have catalyzed progress across diverse domains,
including sentiment analysis (Das and Singh, 2023)
and biomedical applications (Hemker et al., 2024),
highlighting the effectiveness of multimodal ap-
proaches. By facilitating the joint processing of
text, images, audio, and video, multimodal learning
is increasingly recognized as a critical enabler of
progress toward artificial general intelligence (AGI)
(Song et al., 2025).

Multimodal RAG The extension of large language
models to multimodal LLMs (MLLMs) has signifi-
cantly broadened their capabilities, enabling reason-
ing and generation across multiple data modalities
(Liu et al., 2023a; Team et al., 2024; Li et al., 2023b).
Notably, GPT-4 (OpenAl et al., 2024) demonstrates
human-level performance by jointly processing text
and images, marking a milestone in multimodal un-
derstanding. Building on this progress, multimodal
RAG incorporates diverse sources, such as images,
audio, and structured data, to enrich contextual
grounding and enhance generation quality (Hu et al.,
2023; Chen et al., 2022a). This approach improves
reasoning by leveraging cross-modal cues, but also
introduces challenges, including modality selection,
effective fusion, and managing cross-modal rele-
vance (Zhao et al., 2023a). Figure 1 illustrates the
general pipeline of these systems.

Multimodal RAG Formulation We present a math-
ematical formulation of multimodal RAG. These sys-
tems aim to generate a multimodal response 7 given
a multimodal query ¢. Let D = {d1,do,...,d,}

denote a multimodal corpus. For clarity, we assume
each document d; € D is associated with a single
modality My,. In practice, however, documents
often span multiple modalities—for example, a sci-
entific article containing both text and images. Such
cases are typically addressed by either decomposing
the document into modality-specific sub-documents
or employing universal encoders capable of jointly
processing multiple modalities.

Each document d; is encoded using its corre-
sponding modality-specific encoder, yielding z; =
Encyy, (d;). The collection of all encoded represen-
tations is denoted as Z = {z1,22,...,2n}. These
modality-specific encoders project diverse input
modalities into a shared semantic space, enabling
cross-modal alignment.

A retrieval model R computes a relevance score
s(eq, 2;) between the encoded query representation
eq4 (obtained by encoding ¢ using the appropriate
encoders) and each document representation z;. The
retrieval-augmented multimodal context X is con-
structed by selecting documents whose relevance
scores exceed a modality-specific threshold:

X ={d; € D|s(eq,2i) > TMdi},

where 7, is the relevance threshold for the modal-
ity My, and s is the scoring function that measures
semantic relevance. Finally, the generative model
G produces the response conditioned on the origi-
nal query ¢ and the retrieved context X, formally
defined as r = G(q, X).

Related Works Multimodal RAG is a rapidly
emerging field, yet a comprehensive survey dedi-
cated to its recent advancements remains lacking.
While over ten surveys discuss RAG-related topics
such as Agentic RAG (Singh et al., 2025), none
specifically focus on the multimodal setting. To
our knowledge, the only relevant work (Zhao et al.,
2023a) categorizes multimodal RAGs by applica-
tion and modality. In contrast, our survey adopts
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a more innovation-driven perspective, offering a
detailed taxonomy and addressing recent trends and
open challenges. We review over 100 recent papers,
primarily from the ACL Anthology, reflecting the
growing interest and progress in this domain.

Contributions In this work, (i) we present a com-
prehensive review of multimodal RAG, covering
task formulation, datasets, benchmarks, applica-
tions, and key innovations across retrieval, fusion,
augmentation, generation, training strategies, loss
functions, and agent frameworks. (ii) We propose
a structured taxonomy (Figure 2) that categorizes
state-of-the-art models by their core contributions,
highlighting methodological advances and emerging
trends. (iii) We provide open-access resources, in-
cluding datasets, benchmarks, and implementation
details, to facilitate future research. (iv) Finally, we
identify research gaps and offer insights to guide
future directions in this rapidly evolving field.

2 Datasets, Evaluation, and Applications

We review diverse datasets and benchmarks support-
ing tasks such as multimodal summarization, visual
QA, video understanding, and more. For full details,
see Appendix (§B) and Tables 1 and 2. Multimodal
RAG has been applied across various domains, in-
cluding healthcare, software engineering, fashion,
entertainment, and emerging fields. An overview of
tasks and applications are detailed in Appendix (§E)
and Figure 3. Evaluating these systems requires
multiple metrics, covering retrieval performance,
generation quality, and modality alignment. The
complete evaluation methods, metrics, and their
definitions and formulations are in Appendix (§C).
3 Key Innovations and Methodologies

3.1 Retrieval Strategy

Efficient Search and Similarity Retrieval Mod-
ern multimodal RAG systems encode diverse input
modalities into a unified embedding space to en-
able direct cross-modal retrieval. Early CLIP-based
(Radford et al., 2021) methods often struggled to
balance retrieval precision and computational cost.
BLIP-inspired (Li et al., 2022) approaches addressed
some of these trade-offs by integrating cross-modal
attention during training, yielding richer alignments
between visual and textual features. To reconcile
high accuracy with efficiency, contrastive retrieval
frameworks such as MARVEL (Zhou et al., 2024c¢)
and Uni-IR (Wei et al., 2024a) improved inter-modal
discrimination through hard-negative mining and bal-
anced sampling strategies (Zhang et al., 2024i; Lan

et al., 2025). Despite these representational gains,
direct search over millions of embeddings demands
fast similarity computation. Maximum inner product
search (MIPS) variants offer sublinear lookup by
approximating top-k inner products (Tiwari et al.,
2024; Wang et al., 2024c; Zhao et al., 2023b). How-
ever, coarse quantization can degrade recall. To
mitigate this, adaptive quantization methods (Zhang
et al., 2023a; Li et al., 2024a) dynamically allocate
bits where the embedding distribution is dense, re-
sulting in recall improvements over static schemes.
Hybrid sparse—dense retrieval (Nguyen et al., 2024;
Zhang et al., 2024a) further complements dense
embeddings with sparse lexical signals. Systems
such as MuRAG (Chen et al., 2022a) and RA-CM3
(Yasunaga et al., 2023) employ approximate MIPS
for efficient top-k candidate retrieval from large
collections of image—text embeddings. Large-scale
implementations leverage distributed MIPS tech-
niques, such as TPU-KNN (Chern et al., 2022),
for high-speed retrieval. Other efficient similar-
ity computation methods include ScaNN (Scalable
Nearest Neighbors) (Guo et al., 2020), MAXSIM
score (Chan and Ng, 2008; Cho et al., 2024), and
approximate KNN methods (Caffagni et al., 2024).
Emerging approaches explore learned index struc-
tures (Zhai et al., 2023; Basnet et al., 2024), which
embed the search tree itself in neural parameters,
aiming to adapt retrieval paths to the data distribu-
tion and reduce both latency and storage overhead.
Modality-Based Retrieval Modality-aware re-
trieval techniques optimize efficiency by leveraging
the unique characteristics of each modality. (i)
Text-centric retrieval remains foundational in mul-
timodal RAG systems, with both traditional meth-
ods like BM25 (Robertson and Zaragoza, 2009)
and dense retrievers such as MiniLM (Wang et al.,
2020a) and BGE-M3 (Chen et al., 2024b) domi-
nating text-based evidence retrieval (Chen et al.,
2022b; Suri et al., 2024; Nan et al., 2024b). Novel
approaches also address the need for fine-grained
semantic matching and domain specificity: For in-
stance, ColBERT (Khattab and Zaharia, 2020) and
PreFLMR (Lin et al., 2024b) employ token-level
interaction mechanisms that preserve nuanced tex-
tual details to improve precision for multimodal
queries, while RAFT (Zhang et al., 2024h) and
CRAG (Yan et al., 2024) enhance retrieval by ensur-
ing accurate citation of text spans. (ii) Vision-centric
retrieval leverages image representations for knowl-
edge extraction (Kumar and Marttinen, 2024; Yuan
et al., 2023). Systems such as EchoSight (Yan and
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Efficient-Search and

Similarity Retrieval

($3.1)

TPU-KNN (Chern et al., 2022), ScaNN (Guo et al., 2020), MAXSIM score (Chan and Ng, 2008), ADQ (Li et al., 2024a),
Zhang et al. (2023a), BanditMIPS (Tiwari et al., 2024), MUST (Wang et al., 2024c), FARGO (Zhao et al., 2023b),

MUuRAG (Chen et al., 2022a), RA-CM3 (Yasunaga et al., 2023), Nguyen et al. (2024), Graph-based ANNs (Zhang et al., 2024a),
Zhai et al. (2023), Deeperimpact (Basnet et al., 2024), RetrievalAttention (Liu et al., 2024a), FactMM-RAG (Sun et al., 2024b)

Maximum Inner

Product Search
(MIPS)

Multimodal
Encoders

CLIP (Radford et al., 2021), BLIP (Li et al., 2022), MARVEL (Zhou et al., 2024c), ALIGN (Jia et al., 2021), FLAVA (Singh

et al., 2022), UniVL-DR (Liu et al., 2023b), UnilR (Wei et al., 2024a), GME (Zhang et al., 2024i), VISTA (Zhou et al., 2024b),
ColPali (Faysse et al., 2024), InternVideo (Wang et al., 2022), Ovis (Lu et al., 2024), LLaVE (Lan et al., 2025) Mi-RAG (Adjali
et al., 2024)

Contriever (Izacard et al., 2022), GTE (Li et al., 2023c), Re-Imagen (Chen et al., 2022b), BM25 (Robertson and Zaragoza,
2009), MiniLM (Wang et al., 2020a), BGE-M3 (Chen et al., 2024b), CapRet (Shohan et al., 2024), OMG-QA (Nan et al.,
2024b), ColBERT (Khattab and Zaharia, 2020), PreFLMR (Lin et al., 2024b), RAFT (Zhang et al., 2024h), CRAG (Yan et al.,
2024), M2-RAG (Ma et al., 2024d)

Text-Centric

VQAA4CIR (Feng et al., 2023), Unifashion (Zhao et al., 2024), Jang et al. (Jang et al., 2024), Pic2word (Saito et al., 2023),
eClip (Kumar and Marttinen, 2024), RAMM (Yuan et al., 2023), Joshi et al. (Joshi et al., 2024), VISA (Ma et al., 2024b),
ImgRet (Shohan et al., 2024), EchoSight (Yan and Xie, 2024), Xue et al. (Xue et al., 2024b)

iRAG (Arefeen et al., 2024), VideoRAG (Ren et al., 2025), VideoRAG (Jeong et al., 2025), T-Mass (Wang et al., 2024b),

MV-Adapter (Jin et al., 2024), OmAgent (Zhang et al., 2024e), CM2 (Kim et al., 2024), Video-RAG (Luo et al., 2024b),
CTCH (Shen et al., 2024), RTime (Du et al., 2024), VideoMAE (Tong et al., 2022), DrVideo (Ma et al., 2024c)
CA-CLAP (Xue et al., 2024a), Recap (Ghosh et al., 2024), SpeechRAG (Min et al., 2025), WavRAG (Chen et al., 2025b).
SEAL (Sun et al., 2025), Audiobox TTA-RAG (Yang et al., 2024a), DRCap (Li et al., 2025¢), P2PCAP (Changin et al., 2024),

LA-RAG (Li et al., 2024b), Xiao et al. (2025)
Document
Retrieval

ColPali (Faysse et al., 2024), ColQwen2 (Wang et al., 2024d), M3DocVQA (Cho et al., 2024), ViTLP (Mao et al., 2024),
DocLLM (Wang et al., 2024a), CREAM (Zhang et al., 2024b), mPLUG-DocOwl 1.5 (Hu et al., 2024a), mPLUG-DocOwl 2 (Hu
et al., 2024b), VisDom (Suri et al., 2024), DSE (Ma et al., 2024a) , SV-RAG (Chen et al., 2025a)

Optimized
Example

MSIER (Luo et al., 2024a), Hybrid RAG (Su et al., 2024a), RULE (Xia et al., 2024b), RAMM (Yuan et al., 2023), }
Selection

Re-ranking
Strategies (§3.1)

j

RAG-Check (Mortaheb et al., 2025a,b), UniRaG (Zhi Lim et al., 2024), MR2AG (Zhang et al., 2024g), LDRE (Yang et al.,
2024b), BM25 (Robertson and Zaragoza, 2009), RAGTrans (Cheng et al., 2024), OMG-QA (Nan et al., 2024b), EchoSight (Yan
and Xie, 2024), Egolnstructor (Xu et al., 2024a), VR-RAG (Khan et al., 2025)

Evaluation

M2RAAP (Dong et al., 2024b)

Score Fusion
gnment (§3.2)

and

Attenti sed
Mechanisms (§3.2)

Filtering

Mechanisms RAFT (Zhang et al., 2024h)

{Re]evance Score

MAIN-RAG (Chang et al., 2024), MM-Embed (Lin et al., 2024a), GME (Zhang et al., 2024i), MuRAR (Zhu et al., 2025) }

M3 (Cai et al., 2025) Zhi Lim et al. (2024). Sharifymoghaddam et al. (2024), REVEAL (Hu et al., 2023), RAG-Driver (Yuan et al., 2024),
C3Net (Zhang et al., 2024c), LLM-RA (Jian et al., 2024), Riedler and Langer (2024), VISA (Ma et al., 2024b), MA-LMM (He et al., 2024), Xue
et al. (2024b), RA-BLIP (Ding et al., 2024b), Re-IMAGEN (Chen et al., 2022b), MegaPairs (Zhou et al., 2024a), Wiki-LLaVA (Caffagni et al., 2024),
VISRAG (Yu et al., 2024)

RAMM (Yuan et al., 2023). EMERGE (Zhu et al., 2024b), MORE (Cui et al., 2024), RAGTrans (Cheng et al., 2024), AlzheimerRAG (Lahiri and Hu,
2024), MV-Adapter (Jin et al., 2024), Xu et al. (2024a), Kim et al. (2024), M2-RAAP (Dong et al., 2024b), Mu-RAG (Chen et al., 2022a), Ou et
al. (Ou et al., 2025), CADMR (Khalafaoui et al., 2024)

Multimodal RAG

Unified Frameworks

Hybrid-RAG (Su et al., 2024a), Dense2Sparse (Nguyen et al., 2024), IRAMIG (Liu et al., 2024b), M3DocRAG (Cho et al., 2024), DQU-CIR (Wen

Context-
Enrichment (§3.3)

‘{and Projections (§3.2)

EMERGE (Zhu et al., 2024b), MiRAG (Adjali et al., 2024), Wiki-LLaVA (Caffagni et al., 2024), Video-RAG (Luo et al., 2024b), Img2Loc (Zhou
et al,, 2024e), Xue et al. (2024b)

et al,, 2024), PDF-MVQA (Ding et al., 2024d), SAM-RAG (Zhai, 2024), UFineBench (Zuo et al., 2024), Li et al. (2022)

ve and Iterative

3.3)

SKURG (Yang et al., 2023), IRAMIG (Liu et al., 2024b), OMG-QA (Nan et al., 2024b), SAM-RAG (Zhai, 2024), MMed-RAG (Xia et al., 2024a)
OmniSearch (Li et al., 2024d), mR?AG (Zhang et al., 2024f), RAGAR (Khaliq et al., 2024), UniversalRAG (Yeo et al., 2025), OMGM (Yang et al
2025)

{In-contcxl Learning

2024a), Raven (Rao et al., 2024)

]—[RAGAR (Khaliq et al., 2024), VisDoM (Suri et al., 2024), SAM-RAG (Zhai, 2024), LDRE (Yang et al., 2024b)

(§3.4)
—[Reasuning (§34)
@i Instruction Tuning
(§3.4)
(§34)

HRA—BLIP (Ding et al., 2024b), RAGPT (Lang et al., 2025), mR?AG (Zhang et al., 2024f), RagVL (Chen et al., 2024e), Jang et al. (2024), MMed-

RAG (Xia et al., 2024a), MegaPairs (Zhou et al., 2024a), Surf (Sun et al., 2024a), Rule (Xia et al., 2024b)

Source Attribution

(§34)

MuRAR (Zhu et al., 2025), VISA (Ma et al., 2024b), OMG-QA (Nan et al., 2024b)

Interaction (§3.4)

HM-RAG (Liu et al., 2025a), CogPlanner (Yu et al., 2025)

A{Agen[ic Generation and AppAgent v2 (Li et al.,, 2024c), USER-LLM R1 (Rahimi et al., 2025), MMAD (Jiang et al., 2025), Yi et al. (2025), CollEX (Schneider et al., 2025),

Alignment (§3.5)

Robustness (§D.1)

HRMR (Tan et al., 2024), Sharifymoghaddam et al. (2024), RA-CM3 (Yasunaga ct al., 2023), RAG-Driver (Yuan et al., 2024), MSIER (Luo et al., }

VISRAG (Yu et al., 2024), MegaPairs (Zhou et al., 2024a), SAM-RAG (Zhai, 2024), EchoSight (Yan and Xie, 2024), HACL (Jiang et al., 2024),
Zhi Lim et al. (2024), Kumar and Marttinen (2024), Dense2Sparse (Nguyen et al., 2024)

Buettner and Kovashka (2024), MORE (Cui et al., 2024), AlzheimerRAG (Lahiri and Hu, 2024), RAGTrans (Cheng et al., 2024), RA-BLIP (Ding
et al., 2024b), RagVL (Chen et al., 2024¢), RA-CM3 (Yasunaga et al., 2023)

Figure 2: Taxonomy of recent advances in Multimodal RAG. Refer to Appendix (§A) for further details.

Xie, 2024) and ImgRet (Shohan et al., 2024) re-
trieve visually similar content by using reference
images as queries. In addition, composed image
retrieval methods (Feng et al., 2023; Zhao et al.,
2024; Jang et al., 2024; Saito et al., 2023) inte-
grate multiple image features into unified query
representations, enabling zero-shot image retrieval.
(iii) Video-centric retrieval extends vision-based
techniques by incorporating temporal dynamics and
large video-language models. For instance, iRAG
(Arefeen et al., 2024) enables incremental retrieval
for sequential video understanding, addressing the
need for temporal coherence, while T-Mass (Wang
et al., 2024b) uses stochastic text embeddings to im-
prove robustness in text-video alignment. Tackling
long-context processing, Video-RAG (Luo et al.,
2024b) avoids reliance on proprietary models by
using auxiliary OCR/ASR texts, whereas VideoRAG

(Ren et al., 2025) employs dual-channel architec-
tures and graph-based knowledge grounding for
extreme-length videos. To capture temporal reason-
ing, CTCH (Shen et al., 2024) applies contrastive
transformer hashing for long-term dependencies,
which RTime (Du et al., 2024) further refines by
introducing reversed-video hard negatives for more
robust causality benchmarking. Finally, OmAgent
(Zhang et al., 2024e) addresses the challenge of
complex video understanding with a divide-and-
conquer framework, while DRVideo (Ma et al.,
2024e) takes a complementary document-centric
approach to enhance narrative preservation. (iv)
Audio-centric retrieval aims to bypass traditional
ASR pipelines while improving contextual align-
ment and real-time processing (Xue et al., 2024a;
Ghosh et al., 2024; Min et al., 2025). Pioneering
frameworks like WavRAG (Chen et al., 2025b) and
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SEAL (Sun et al., 2025) introduce unified embed-
ding architectures, directly mapping raw audio into
a shared latent space to enable retrieval from hy-
brid knowledge bases. Audiobox TTA-RAG (Yang
et al., 2024a) conditions text-to-audio synthesis
on retrieved acoustic samples, thereby enhancing
zero-shot performance by enriching prompts with un-
labeled audio context. For audio captioning, DRCap
(Li et al., 2025c) bridges the audio-text latent space
of CLAP (Wu et al., 2023) via text-only training for
domain-adaptable descriptions without paired data.
In parallel, P2PCAP (Changin et al., 2024) improves
retrieval precision by regenerating captions as dy-
namic queries. Further innovations address error
correction and efficiency. LA-RAG (Li et al., 2024b)
utilizes fine-grained speech-to-speech retrieval and
forced alignment to enhance ASR accuracy through
LLM in-context learning. Meanwhile, hybrid sys-
tems, such as Xiao et al. (2025), integrate LLMs to
correct errors in noisy environments using retrieved
text/audio context.

Document Retrieval and Layout Understanding
Recent research has moved beyond traditional uni-
modal retrieval, developing models that process
entire documents by integrating textual, visual, and
layout information. ColPali (Faysse et al., 2024)
pioneers end-to-end document image retrieval by
embedding page patches with a vision-language
backbone, bypassing OCR entirely. Models like
ColQwen?2 (Wang et al., 2024d; Faysse et al., 2024)
and M3DocVQA (Cho et al., 2024) extend this
paradigm with dynamic resolution handling and
holistic multi-page reasoning. Newer frameworks
refine efficiency and layout understanding: ViTLP
(Mao et al., 2024) and DocLLM (Wang et al., 2024a)
pre-train generative models to align spatial layouts
with text, while CREAM (Zhang et al., 2024b)
employs coarse-to-fine retrieval with multimodal
efficient tuning to balance accuracy and computa-
tional costs. Finally, mPLUG-DocOwl 1.5 (Hu et al.,
2024a) and 2 (Hu et al., 2024b) unify structure learn-
ing across formats (e.g., invoices, forms) without
OCR dependencies, while SV-RAG (Chen et al.,
2025a) leverages MLLMSs’ intrinsic retrieval capa-
bilities via dual LoRA adapters: one for evidence
page retrieval and the other for question answering.
Re-ranking and Selection Strategies Effective re-
trieval in multimodal RAG systems requires not only
identifying relevant information but also prioritizing
retrieved candidates. Re-ranking and selection strate-
gies improve retrieval quality through optimized
example selection, refined relevance scoring, and fil-

tering mechanisms. (i) Optimized example selection
techniques often employ multi-step retrieval, inte-
grating both supervised and unsupervised selection
approaches (Luo et al., 2024a; Yuan et al., 2023).
Supervised methods like Su et al. (2024a) enhance
multimodal inputs using probabilistic control key-
words, whereas RULE (Xia et al., 2024b) calibrates
retrieved context via statistical methods like the
Bonferroni correction (Haynes, 2013) to mitigate
factuality risks. Clustering-based key-frame selec-
tion ensures diversity in video-based retrieval (Dong
et al., 2024b). Advanced (ii) scoring mechanisms
are employed by several methods to improve re-
trieval relevance (Mortaheb et al., 2025b,a; Zhi Lim
et al., 2024). Multimodal similarity measures, in-
cluding structural similarity index measure (SSIM)
(Wang et al., 2020b), normalized cross-correlation
(NCC), and BERTScore (Zhang et al., 2020), aid in
re-ranking documents. Some frameworks combine
similarity scores derived from various modalities
for more robust re-ranking. For example, VR-RAG
(Khan et al., 2025) proposes a visual re-ranking
framework that combines cross-modal text-image
similarity with intra-modal visual similarity using
DINOV2 (Oquab et al., 2023), demonstrating sig-
nificant improvements in open-vocabulary recogni-
tion tasks. Hierarchical post-processing integrates
passage-level and answer confidence scores for im-
proved ranking (Zhang et al., 2024g; Yan and Xie,
2024; Xu et al., 2024a). LDRE (Yang et al., 2024b)
employs semantic ensemble methods to adaptively
weigh multiple caption features, while RAGTrans
(Cheng et al., 2024) and OMG-QA (Nan et al.,
2024b) incorporate traditional ranking functions
like BM25 (Robertson and Zaragoza, 2009). (iii)
Filtering methods ensure high-quality retrieval by
eliminating irrelevant data. Hard negative mining, as
used in GME (Zhang et al., 2024i) and MM-Embed
(Lin et al., 2024a), mitigates modality bias through
modality-aware sampling and synthesized negatives.
Similarly, consensus-based filtering, seen in Mu-
RAR (Zhu et al., 2025) and ColPali (Faysse et al.,
2024), employs source attribution and multi-vector
mapping to filter out low-similarity candidates. Dy-
namic modality filtering methods, such as RAFT
(Zhang et al., 2024h) and MAIN-RAG (Chang et al.,
2024), train retrievers to disregard confusing data,
improving multimodal retrieval robustness.

3.2 Fusion Mechanisms

Score Fusion and Alignment Models in this cate-
gory utilize distinct strategies to align multimodal
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representations. Zhi Lim et al. (2024) convert text,
tables, and images into a single textual format using
a cross-encoder trained for relevance scoring. Shari-
fymoghaddam et al. (2024) introduce interleaved
image—text pairs that vertically merge multiple few-
shot images (as in LLaVA (Liu et al., 2023a)), while
aligning modalities via CLIP score fusion (Hes-
sel et al., 2021) and BLIP feature fusion (Li et al.,
2022). Wiki-LLaVA (Caffagni et al., 2024), C3Net
(Zhang et al., 2024c), Riedler and Langer (2024),
and MegaPairs (Zhou et al., 2024a) embed images
and queries into a shared CLIP space. In particular,
MegaPairs (Zhou et al., 2024a) scales this approach
by integrating both CLIP-based and MLLM-based
retrieval, fusing their scores to leverage complemen-
tary strengths, but at the cost of increased inference
complexity. VISA (Ma et al., 2024b) employs the
Document Screenshot Embedding (DSE) model to
align textual queries with visual document represen-
tations by encoding both into a shared embedding
space. REVEAL (Hu et al., 2023) injects retrieval
scores into attention layers to minimize L2-norm
differences between query and knowledge embed-
dings, and MA-LMM (He et al., 2024) aligns video-
text embeddings via a BLIP-inspired Query Trans-
former (Li et al., 2022). LLM-RA (Jian et al., 2024)
concatenates text and visual embeddings into joint
queries to reduce retrieval noise, while RA-BLIP
(Ding et al., 2024b) employs a 3-layer BERT-based
adaptive fusion module to unify visual-textual se-
mantics. Xue et al. (2024b) use a prototype-based
embedding network (Zheng et al., 2023) to map
object-predicate pairs into a shared semantic space,
aligning visual features with textual prototypes. Re-
IMAGEN (Chen et al., 2022b) balances creativity
and entity fidelity in text-to-image synthesis via
interleaved classifier-free guidance during diffusion
sampling. To improve multimodal alignment, VIS-
RAG (Yu et al., 2024) applies position-weighted
mean pooling over VLM hidden states, giving higher
relevance to later tokens. In contrast, RAG-Driver
(Yuan et al., 2024) aligns visual and language em-
beddings through visual instruction tuning and an
MLP projector.

Attention-Based Mechanisms Attention-based
methods dynamically modulate cross-modal inter-
actions to enable fine-tuned reasoning across tasks,
balancing specificity and interpretability. Cross-
attention is frequently used to integrate hetero-
geneous modalities, as in EMERGE (Zhu et al.,
2024b), MORE (Cui et al., 2024), and Alzheimer-
RAG (Lahiri and Hu, 2024), though often requiring

task-specific attention heads. RAMM (Yuan et al.,
2023) employs a dual-stream co-attention trans-
former, combining self-attention and cross-attention
to fuse retrieved biomedical images/texts with in-
put data. RAGTrans (Cheng et al., 2024) applies
user-aware attention to social media features. MV-
Adapter (Jin et al., 2024) introduces Cross-Modality
Tying to align video-text embeddings by sharing
latent factors, improving robustness but reducing
granularity of modality-specific features. M2-RAAP
(Dong et al., 2024b) enhances fusion through an
auxiliary caption-guided strategy that re-weights
frames and text captions based on intra-modal simi-
larity, then uses a mutual-guided alignment head to
filter misaligned features via dot-product similarity
and frame-to-token attention; however, this method
is computationally intensive. Xu et al. (2024a) con-
dition text generation on visual features using gated
cross-attention, optimizing controllability but re-
quiring aligned supervision, and Mu-RAG (Chen
et al., 2022a) employs intermediate cross-attention
for open-domain QA. Kim et al. (2024) leverage
cross-modal memory retrieval with pre-trained CLIP
ViT-L/14 to map video-text pairs into a shared space,
enabling dense captioning through the attention-
based fusion of retrieved memories.

Unified Frameworks and Projections Unified
frameworks and projection methods consolidate mul-
timodal inputs into coherent representations. Su et al.
(2024a) employ hierarchical cross-chains and late
fusion for healthcare data, while IRAMIG (Liu et al.,
2024b) iteratively integrates multimodal results into
unified knowledge representations, enhancing con-
sistency but requiring multiple reasoning passes.
M3DocRAG (Cho et al., 2024) flattens multi-page
documents into a single embedding tensor, and PDF-
MVQA (Ding et al., 2024d) proposes a joint-grained
retriever that fuses coarse-grained semantic entity
representations with their fine-grained token-level
textual content, creating a richer, unified representa-
tion. DQU-CIR (Wen et al., 2024) unifies raw data
by converting images into text captions for complex
queries and overlaying text onto images for sim-
ple ones, then fusing embeddings via MLP-learned
weights. SAM-RAG (Zhai, 2024) aligns image-text
modalities by generating captions for images, con-
verting the multimodal input to unimodal text for
subsequent processing. UFineBench (Zuo et al.,
2024) uses a shared granularity decoder for ultra-fine
text—person retrieval. Nguyen et al. (2024) intro-
duce Dense2Sparse projection, converting dense
embeddings from models like BLIP/ALBEF (Li
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et al., 2022) into sparse lexical vectors using layer
normalization and probabilistic expansion control to
optimize storage and interpretability.

3.3 Augmentation Techniques

Basic RAG systems typically retrieve content in
a single step, directly passing it to generation, of-
ten leading to inefficiencies and suboptimal out-
puts. Augmentation techniques refine retrieved data
beforehand, improving multimodal interpretation,
structuring, and integration (Gao et al., 2023).
Context Enrichment This focuses on enhancing
the relevance of retrieved knowledge by refining
or expanding retrieved data. General approaches
incorporate additional contextual elements (e.g.,
text chunks, image tokens, structured data) to pro-
vide a richer grounding for generation (Caffagni
et al., 2024; Xue et al., 2024b). EMERGE (Zhu
et al., 2024b) enriches context by integrating entity
relationships and semantic descriptions. MiRAG
(Adjali et al., 2024) expands initial queries through
entity retrieval and reformulation, enhancing sub-
sequent stages for the visual question-answering.
Video-RAG (Luo et al., 2024b) enhances long-video
understanding through Query Decoupling, which
reformulates user queries into structured retrieval
requests to extract auxiliary multimodal context.
Img2Loc (Zhou et al., 2024e) boosts accuracy by in-
cluding both similar and dissimilar points in prompts,
helping rule out implausible locations.

Adaptive and Iterative Retrieval For more com-
plex queries, dynamic retrieval mechanisms have
proven effective. Adaptive retrieval approaches
optimize relevance by adjusting retrieval dynami-
cally. For instance, UniversalRAG (Yeo et al., 2025)
introduces a framework that adapts retrieval by dy-
namically routing queries to the most suitable corpus
based on both the required modality and granularity
(e.g., paragraph vs. document, clip vs. full video),
thereby addressing the specific knowledge type
and scope demanded by the query. SKURG (Yang
et al., 2023) determines the number of retrieval
hops based on query complexity. SAM-RAG (Zhai,
2024) and mR?AG (Zhang et al., 2024f) dynami-
cally assess the need for external knowledge and
filter irrelevant content using MLLMs to retain only
task-critical information. MMed-RAG (Xia et al.,
2024a) further improves retrieval precision by dis-
carding low-relevance results, while OmniSearch (Li
et al., 2024d) decomposes multimodal queries into
structured sub-questions, planning retrieval actions
in real time. Iterative approaches refine results over

multiple steps by incorporating feedback from prior
iterations. For example, OMGM (Yang et al., 2025)
orchestrates a multi-step, coarse-to-fine retrieval pro-
cess for knowledge-based visual question answering,
starting with a broad entity search and progressively
refining the selection through multimodal reranking
and fine-grained textual filtering to pinpoint the most
relevant knowledge, achieving superior retrieval per-
formance in comparison to prior methods. IRAMIG
(Liu et al., 2024b) improves multimodal retrieval
by dynamically updating queries based on retrieved
content. OMG-QA (Nan et al., 2024b) integrates
episodic memory to refine retrieval across multiple
rounds, ensuring continuity in reasoning. RAGAR
(Khaliq et al., 2024) further enhances contextual
consistency by iteratively adjusting retrieval based
on prior responses and multimodal analysis.

3.4 Generation Techniques

In-Context Learning (ICL) ICL with retrieval aug-
mentation enhances reasoning in multimodal RAGs
by leveraging retrieved content as few-shot examples
without requiring retraining. Models such as RMR
(Tan et al., 2024), Sharifymoghaddam et al. (2024),
and RA-CM3 (Yasunaga et al., 2023), extend this
paradigm to multimodal RAG settings. RAG-Driver
(Yuan et al., 2024) refines ICL by retrieving rele-
vant driving experiences from a memory database.
MSIER (Luo et al., 2024a) improves example se-
lection with a multimodal supervised in-context
examples retrieval framework, using an MLLM
scorer to assess textual and visual relevance. Raven
(Rao et al., 2024) introduces Fusion-in-Context
Learning, integrating diverse in-context examples
for superior performance over standard ICL.

Reasoning Reasoning methods, like chain of
thought (CoT), decompose complex reasoning into
sequential steps, improving coherence and robust-
ness in multimodal RAG. RAGAR (Khaliq et al.,
2024) refines fact-checking queries and explores
branching reasoning paths by introducing Chain of
RAG and Tree of RAG, while VisDoM (Suri et al.,
2024) and SAM-RAG (Zhai, 2024) integrate CoT
with evidence curation and multi-stage verification
to enhance accuracy and support. Notably, VisDoM
performs well in scenarios where key information is
distributed across modalities. LDRE (Yang et al.,
2024b) applies LLMs for divergent compositional
reasoning by refining captions using dense descrip-
tions and textual modifications, achieving superior
zero-shot composed image retrieval results.
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Instruction Tuning Several works have fine-tuned
or instruct-tuned generation components for spe-
cific applications. RA-BLIP (Ding et al., 2024b)
leverages the Q-Former architecture from Instruct-
BLIP (Dai et al., 2023) to extract visual features
based on question instructions, while RAGPT (Lang
et al., 2025) employs a context-aware prompter to
generate dynamic prompts from relevant instances.
MR2AG (Zhang et al., 2024f) and RagVL (Chen
et al., 2024e) train MLLMs to invoke retrieval adap-
tively, identify relevant evidence, and enhance rank-
ing capabilities for improved response accuracy.
Jang et al. (2024) focus on distinguishing image
differences to generate descriptive textual responses.
MMed-RAG (Xia et al., 2024a) applies preference
fine-tuning to help models balance retrieved knowl-
edge with internal reasoning. To improve generation
quality, MegaPairs (Zhou et al., 2024a) and Surf
(Sun et al., 2024a) construct multimodal instruction-
tuning datasets from prior LLM errors, while Rule
(Xia et al., 2024b) refines a medical large vision lan-
guage model through direct preference optimization
to mitigate overreliance on retrieved contexts.
Source Attribution and Evidence Transparency
Ensuring source attribution in multimodal RAG sys-
tems is a significant research focus. OMG-QA (Nan
et al., 2024b) prompts LLMs for explicit evidence
citation in generated responses. MuRAR (Zhu et al.,
2025) refines an LLM’s initial response by integrat-
ing multimodal information from a source-based
retriever to improve informativeness. However, its
recall is constrained, as the retriever may miss evi-
dence spanning different sections or web documents.
Similarly, VISA (Ma et al., 2024b) employs vision-
language models to generate answers with visual
source attribution by highlighting evidence in re-
trieved screenshots. Nevertheless, its attribution
accuracy degrades when evidence spans multiple
sections or requires cross-modal integration.
Agentic Generation and Interaction Agent-driven
multimodal RAG uses versatile autonomous/semi-
autonomous systems across diverse interaction
paradigms and specialized domains, often generat-
ing complex outputs. For user interaction, AppAgent
v2 (Li et al., 2024c¢) enables mobile GUI naviga-
tion while USER-LLM R1 (Rahimi et al., 2025)
creates personalized conversational agents via dy-
namic profiling, particularly for elderly users. In
specialized applications, MMAD (Jiang et al., 2025)
addresses industrial anomaly detection with training-
free enhancement strategies, Yi et al. (2025) improve
clinical report generation while reducing hallucina-

tion, and CollEX (Schneider et al., 2025) facilitates
scientific collection exploration for researchers and
learners. For complex reasoning, HM-RAG (Liu
et al., 2025a) coordinates hierarchical multi-agent
collaboration across multimodal data streams, while
CogPlanner (Yu et al., 2025) introduces a cognitively
inspired planning framework that iteratively refines
queries and selects retrieval strategies adaptively.

3.5 Training Strategies

Training multimodal RAG models follows a multi-
stage process to effectively capture cross-modal
interactions (Chen et al., 2022a). Pretraining on
large paired datasets establishes cross-modal rela-
tionships, while fine-tuning adapts models to task-
specific objectives by aligning outputs with task
requirements (Ye et al., 2019). For example, RE-
VEAL (Hu et al., 2023) integrates multiple training
objectives. Its pretraining phase optimizes Prefix
Language Modeling Loss (Lprefixtm), Where text
is predicted from a given prefix and an associated
image. Supporting losses include Contrastive Loss
(Lcontra) Which aligns queries with pseudo-ground-
truth knowledge, Disentangled Regularization Loss
(Lgecor) to enhance embedding expressiveness, and
Alignment Regularization Loss (Lajign) to refine
query-knowledge alignment. Fine-tuning employs a
cross-entropy objective for downstream tasks like
visual question answering or image captioning. De-
tails on robustness advancements and loss formula-
tions are in Appendix (§D).

Alignment Contrastive learning improves repre-
sentation quality by pulling positive pairs closer
and pushing negative pairs apart in the embedding
space. The InfoNCE loss (van den Oord et al., 2019)
is widely employed in multimodal RAG models,
including VISRAG (Yu et al., 2024), MegaPairs
(Zhou et al., 2024a), and SAM-RAG (Zhai, 2024),
to improve retrieval-augmented generation. Sev-
eral models introduce refinements to contrastive
training. EchoSight (Yan and Xie, 2024) enhances
retrieval accuracy by selecting visually similar yet
semantically distinct negatives, while HACL (Jiang
et al., 2024) mitigates hallucinations by incorporat-
ing adversarial captions as distractors. Similarly,
UniRaG (Zhi Lim et al., 2024) improves retrieval
robustness by leveraging hard negative documents
to help the model discriminate between relevant
and irrelevant contexts. The eCLIP loss (Kumar
and Marttinen, 2024) extends contrastive learning
by integrating expert-annotated data and an auxil-
iary MSE loss to refine embedding quality. Mixup
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strategies further improve generalization by generat-
ing synthetic positive pairs (Kumar and Marttinen,
2024). Dense2Sparse (Nguyen et al., 2024) employs
image-to-caption /(I — C') and caption-to-image
¢(C — I) losses, while enforcing sparsity through
£1 regularization, optimizing retrieval precision by
balancing dense and sparse representations.

4 Open Problems and Future Directions

Additional challenges and future directions about
long-context processing, scalability, efficiency, and
personalization are discussed in Appendix (§F).
Generalization, Explainability, and Robustness
Multimodal RAG systems often struggle with do-
main adaptation and exhibit modality biases, fre-
quently over-relying on text for both retrieval and
generation (Winterbottom et al., 2020). Explainabil-
ity remains a major challenge, as these systems often
attribute responses to broad sources, citing entire
documents or large visual regions instead of pinpoint-
ing exact contributing elements across modalities
(Ma et al., 2024b; Hu et al., 2023). Moreover, the
interplay between modalities affects the outcome
quality; for example, answers derived solely from
text sources may differ in quality compared to those
requiring a combination of text and image inputs
(Baltrusaitis et al., 2019). They are also vulnera-
ble to adversarial perturbations, such as misleading
images influencing textual outputs, and their per-
formance degrades when relying on low-quality
or outdated sources (Chen et al., 2022b). MM-
PoisonRAG (Ha et al., 2025) and Poisoned-MRAG
(Liu et al., 2025b) demonstrate that even a few adver-
sarial knowledge injections can hijack cross-modal
retrieval and derail generation, underscoring the
imperative for robust defense mechanisms against
knowledge poisoning in multimodal RAG systems.
While the trustworthiness of unimodal RAGs has
been studied (Zhou et al., 2024d), ensuring robust-
ness in multimodal RAGs remains an open challenge
and a crucial research direction.

Reasoning, Alignment, and Retrieval Enhance-
ment Multimodal RAGs struggle with compo-
sitional reasoning, requiring logical integration
of information across modalities for coherent,
context-rich outputs. While cross-modal techniques
like Multimodal-CoT (Zhang et al., 2023b) have
emerged, further advancements are needed to en-
hance coherence and contextual relevance. Improv-
ing modality alignment and entity-aware retrieval is
crucial. Moreover, despite the potential of knowl-
edge graphs to enrich cross-modal reasoning, they

remain underexplored in multimodal RAGs com-
pared to text-based RAGs (Zhang et al., 2024f;
Procko and Ochoa, 2024). Retrieval biases such
as position sensitivity (Hu et al., 2024c), redun-
dancy (Nan et al., 2024b), and biases from training
data or retrieved content (Zhai, 2024), pose signifi-
cant challenges. A promising direction is a unified
embedding space for all modalities, enabling di-
rect multimodal search without intermediary models
(e.g., ASRs). Despite progress, mapping multimodal
knowledge into a unified space remains an open
challenge with substantial potential.

Agent-Based and Self-Guided Systems Recent
trends indicate a shift towards agent-based multi-
modal RAGs that integrate retrieval, reasoning, and
generation across diverse domains. Unlike static
RAGs, future systems should incorporate interac-
tive feedback and self-guided decision-making to
iteratively refine outputs. Existing feedback mecha-
nisms often fail to determine whether errors stem
from retrieval, generation, or other stages (Dong
et al., 2024b). The incorporation of reinforcement
learning and end-to-end human-aligned feedback
remains largely overlooked but holds significant
potential for assessing whether retrieval is necessary,
evaluating the relevance of retrieved content, and
dynamically determining the most suitable modal-
ities for response generation. Robust support for
any-to-any modality is crucial for open-ended tasks
(Wu et al., 2024b). Future multimodal RAGs should
incorporate data from diverse real-world sources,
such as environmental sensors, alongside traditional
modalities to enhance situational awareness. This
progression aligns with the trend toward embodied
Al, where models integrate knowledge with physical
interaction, enabling applications in robotics, navi-
gation, and physics-informed reasoning. Bridging
retrieval-based reasoning with real-world agency
brings these systems closer to AGI.

5 Conclusion

This study provides a comprehensive review of mul-
timodal RAG, categorizing key advancements in
retrieval, multimodal fusion, augmentation, gen-
eration, training strategies, and agents. We also
examine task-specific applications, datasets, bench-
marks, and evaluation methods while highlighting
open challenges and promising future directions. We
hope this work inspires future research, particularly
in enhancing cross-modal reasoning and retrieval,
developing agent-based interactive systems, and
advancing unified multimodal embedding spaces.
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6 Limitations

This study offers a comprehensive examination of
multimodal RAG systems. Extended discussions,
details of datasets and benchmarks, and additional
relevant work are available in the Appendices. While
we have made our maximum effort; however, some
limits may persist. First, due to space constraints,
our descriptions of individual methodologies are nec-
essarily concise. Second, although we curate studies
from major venues (e.g., ACL, EMNLP, NeurIPS,
CVPR, ICLR, ICML, ACM Multimedia) and arXiv,
our selection may inadvertently overlook emerging
or domain-specific research, with a primary focus on
recent advancements. Additionally, this work does
not include a comparative performance evaluation
of the various models, as task definitions, evaluation
metrics, and implementation details vary signifi-
cantly across studies, and executing these models
requires substantial computational resources.

Furthermore, multimodal RAG is a rapidly evolving
field with many open questions, such as optimiz-
ing fusion strategies for diverse modalities and ad-
dressing scalability challenges. As new paradigms
emerge, our taxonomy and conclusions will in-
evitably evolve. To address these gaps, we plan
to continuously monitor developments and update
this survey and the corresponding repository to in-
corporate overlooked contributions and refine our
perspectives.

7 Ethical Statement

This survey provides a comprehensive review of
research on multimodal RAG systems, offering in-
sights that we believe will be valuable to researchers
in this evolving field. All the studies, datasets,
and benchmarks analyzed in this work are publicly
available, with only a very small number of pa-
pers requiring institutional access. Additionally,
this survey does not involve personal data or user
interactions, and we adhere to ethical guidelines
throughout.

Since this work is purely a survey of existing litera-
ture and does not introduce new models, datasets, or
experimental methodologies, it presents no potential
risks. However, we acknowledge that multimodal
RAG systems inherently raise ethical concerns, in-
cluding bias, misinformation, privacy, and intellec-
tual property issues. Bias can emerge from both
retrieval and generation processes, potentially lead-
ing to skewed or unfair outputs. Additionally, these
models may hallucinate or propagate misinforma-

tion, particularly when retrieval mechanisms fail or
rely on unreliable sources. The handling of sensi-
tive multimodal data also poses privacy risks, while
content generation raises concerns about proper
attribution and copyright compliance. Addressing
these challenges requires careful dataset curation,
bias mitigation strategies, and transparent evaluation
of retrieval and generation mechanisms.
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A Taxonomy

In this section, we provide more details regarding the
taxonomy of multimodal RAG systems, previously
mentioned in Figure 2. Additionally, we present
a classification of multimodal RAG application
domains in Figure 3.

Figure 2 provides an overview of recent advances
in multimodal RAG systems. The taxonomy is
organized into several key categories.

* Retrieval strategies cover efficient search and
similarity retrieval methods (including maxi-
mum inner product search (MIPS) variants and
different multimodal encoders) and modality-
centric techniques that distinguish between text-
, vision-, audio-, and video-centric as well as
document retrieval models. Re-ranking strate-
gies further refine these methods via optimized
example selection, relevance scoring, and fil-
tering.

* Fusion mechanisms cover score fusion and
alignment techniques, including CLIP score
fusion and prototype-based embeddings that
unify multimodal representations, attention-
based methods such as cross-attention and co-
attention transformers that dynamically weight
cross-modal interactions, and unified frame-
works and projections like hierarchical fusion
and dense-to-sparse projections that consoli-
date multimodal inputs.

* Augmentation techniques address context
enrichment as well as adaptive and iterative
retrieval.

* Generation methods include in-context learn-
ing, reasoning, instruction tuning, source attri-
bution, and agentic frameworks.

* training strategies are characterized by ap-
proaches to alignment and robustness.

Detailed discussions of these categories are provided
in the corresponding sections.

Figure 3 presents the taxonomy of application do-
mains for multimodal RAG systems. The identified
domains include healthcare and medicine, software
engineering, fashion and e-commerce, entertainment
and social computing, and emerging applications.
This classification offers a concise overview of the
diverse applications and serves as a framework for
the more detailed analyses that follow.
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B Dataset and Benchmark

Multimodal RAG research employs diverse datasets
and benchmarks to evaluate retrieval, integration,
and generation across heterogeneous sources. Im-
age—text tasks, including captioning and retrieval,
commonly use MS-COCO (Lin et al., 2014),
Flickr30K (Young et al., 2014), and LAION-400M
(Schuhmann et al., 2021), while visual question an-
swering (QA) with external knowledge is supported
by OK-VQA (Marino et al., 2019) and WebQA
(Chang et al., 2022). For complex multimodal
reasoning, MultimodalQA (Talmor et al., 2021) inte-
grates text, images, and tables, whereas video-text
tasks leverage ActivityNet (Caba Heilbron et al.,
2015) and YouCook2 (Zhou et al., 2018). In the med-
ical domain, MIMIC-CXR (Johnson et al., 2019)
and CheXpert (Irvin et al., 2019) facilitate tasks
such as medical report generation. It should be
noted that a number of these datasets are unimodal
(e.g., solely text-based or image-based). Unimodal
datasets are frequently employed to represent a spe-
cific modality and are subsequently integrated with
complementary datasets from other modalities. This
modular approach allows each dataset to contribute
its domain-specific strengths, thereby enhancing the
overall performance of the multimodal retrieval and
generation processes.

Benchmarks assess multimodal RAG systems on vi-
sual reasoning, external knowledge integration, and
dynamic retrieval. The M 2RAG (Ma et al., 2024d)
benchmark provides a unified evaluation framework
that combines fine-grained text-modal and multi-
modal metrics to jointly assess both the quality of
generated language and the effective integration
of visual elements. In addition, (Liu et al., 2025d)
introduce another specialized benchmark for multi-
modal RAG that evaluates performance across image
captioning, multi-modal question answering, fact
verification, and image reranking in an open-domain
retrieval setting. Vision-focused evaluations, includ-
ing MRAG-Bench (Hu et al., 2024¢), VQAv2 (Goyal
et al., 2017a) and VisDoMBench (Suri et al., 2024),
test models on complex visual tasks. Dyn-VQA
(Li et al., 2024d), MMBench (Liu et al., 2025¢),
and ScienceQA (Lu et al., 2022) evaluate dynamic
retrieval and multi-hop reasoning across textual, vi-
sual, and diagrammatic inputs. Knowledge-intensive
benchmarks, such as TriviaQA (Joshi et al., 2017)
and Natural Questions (Kwiatkowski et al., 2019),
together with document-oriented evaluations such
as OmniDocBench (Ouyang et al., 2024), measure

integration of unstructured and structured data. Ad-
vanced retrieval benchmarks such as RAG-Check
(Mortaheb et al., 2025a) evaluate retrieval relevance
and system reliability, while specialized assessments
like Counterfactual VQA (Niu et al., 2021) test
robustness against adversarial inputs. Additionally,
OCR impact studies such as OHRBench (Zhang
et al., 2024d) examine the cascading effects of errors
on RAG systems.

The choice of dataset significantly influences the
evaluation focus, ranging from foundational pre-
training on large-scale image-text corpora like
LAION-5B (Schuhmann et al., 2022) (5.85 bil-
lion pairs) or MINT-1T (Awadalla et al., 2024) (3.4
billion images with 1 trillion text tokens), to more
specialized tasks such as video understanding with
HowTo100M (Miech et al., 2019) (136 million video
clips) or medical report generation using MIMIC-
CXR (Johnson et al., 2019) (125,417 image-report
pairs).

Datasets are often tailored for specific downstream
tasks. For visual question answering, VQA (Antol
etal., 2015) and A-OKVQA (Schwenk et al., 2022)
specifically require external knowledge, making
them suitable for evaluating RAG systems’ ability
to retrieve and reason over such knowledge. For
document understanding, datasets such as DocVQA
(Mathew et al., 2021) and M3DocVQA (Cho et al.,
2024) are essential. As discussed in the benchmarks
overview above, unified evaluation frameworks like
M?RAG (Ma et al., 2024d) provide a comprehen-
sive assessment across multiple tasks, including
image captioning, visual question answering, and
fact verification.

Evaluating complex reasoning capabilities in multi-
modal RAG systems has become increasingly im-
portant. Datasets such as MultimodalQA (Talmor
et al., 2021), WebQA (Chang et al., 2022), and Sci-
enceQA (Lu et al., 2022) are specifically designed
to benchmark multi-hop reasoning abilities crucial
for advanced RAG systems, with Dyn-VQA (Li
et al., 2024d) additionally focusing on robustness to
changing information.

Comparative Analysis of Datasets Understanding
the strategic trade-offs in dataset design is crucial for
multimodal RAG development, as different dataset
characteristics serve distinct purposes across the
model development pipeline.

(i) Scale and Diversity vs. Curation: Large-scale
datasets such as LAION-5B (Schuhmann et al.,
2022) and Conceptual Captions (Sharma et al., 2018)
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provide substantial scale essential for pre-training,
enabling models to learn generalizable represen-
tations across diverse domains. However, their
reliance on web-crawled data introduces inherent
noise that can compromise training quality. Con-
versely, smaller, meticulously curated datasets like
Flickr30K (Young et al., 2014) (31,000 images
with human annotations) and domain-specific collec-
tions such as Fashionpedia (Jia et al., 2020) (48,000
images with segmentation masks) prioritize anno-
tation quality over scale, making them essential
for fine-tuning models and assessing specialized
performance.

(ii) Modality Focus and Combination: While many
systems aggregate unimodal datasets to construct
multimodal contexts, datasets explicitly designed
for multimodal tasks demonstrate superior align-
ment between modalities. Foundational datasets
like MS-COCO (Lin et al., 2014) and VQA (An-
tol et al., 2015) establish benchmarks for image-
text understanding, while specialized collections
such as AudioSet (Gemmeke et al., 2017) (2 mil-
lion audio clips) and AudioCaps (Kim et al., 2019)
(46,000 audio clips with captions) address audio-
language integration. Emerging modalities like 3D
(e.g., ShapeNet (Chang et al., 2015)) remain under-
represented, yet are essential for expanding RAG
applications into spatial reasoning domains.

Table 1 and Table 2 present a comprehensive
overview of datasets and benchmarks commonly
employed in multimodal RAG research. The table
is organized into five columns:

* Category: This column categorizes each
dataset or benchmark based on its primary
domain or modality. The datasets are grouped
into eight categories: Image—Text General,
Video—Text, Audio—Text, Medical, Fashion, 3D,
Knowledge & QA, and Other. The benchmarks
are grouped into two categories: Cross-Modal
Understanding and Text-Focused. This clas-
sification facilitates a clearer understanding
of each dataset or benchmark’s role within a
multimodal framework.

e Name: The official name of the dataset or
benchmarks is provided along with a citation
for reference.

* Statistics and Description: This column sum-
marizes key details such as dataset size, the
nature of the content (e.g., image—text pairs,
video captions, QA pairs), and the specific

tasks or applications for which the dataset or
benchmarks are used. These descriptions are
intended to convey the dataset’s scope and its
relevance to various multimodal RAG tasks.

* Modalities: The modalities covered by each
dataset or benchmark are indicated (e.g., Image,
Text, Video, Audio, or 3D). Notably, several
datasets are unimodal; however, within multi-
modal RAG systems, these are combined with
others to represent distinct aspects of a broader
multimodal context.

* Link: A hyperlink is provided to direct readers
to the official repository or additional resources
for the dataset or benchmark, thereby facili-
tating further exploration of its properties and
applications.

Limitations of Existing Datasets and Benchmarks
While the datasets and benchmarks discussed above
have significantly advanced multimodal RAG re-
search, several limitations persist that offer important
avenues for future work:

(i) Bias and Fairness: Large datasets, especially
those scraped from the web, can inherit societal
biases related to gender, race, or culture. This can
lead to skewed model behavior and unfair outcomes.
Efforts to create more balanced datasets are crucial,
but comprehensive bias auditing across modalities
remains a challenge.

(ii) Annotation Quality and Noise: The trade-off
between dataset scale and annotation quality re-
mains a persistent challenge. While large datasets
facilitate broad learning, their often noisy or weakly
supervised labels (e.g., alt-text for images) can hin-
der precise model training. As demonstrated by
OHRBench (Zhang et al., 2024d), OCR errors ex-
emplify how noise in one modality can cascade and
affect overall RAG system performance.

(iii) Coverage and Generalization Gaps: Many
datasets are domain-specific, which can limit the
generalization of models to out-of-domain scenar-
ios. There is a need for more datasets covering a
wider array of real-world contexts and less common
modalities.

(iv) Real-World Complexity and Long-Context
Understanding: Current datasets inadequately cap-
ture real-world multimodal information complexity.
Challenges include efficient sampling of relevant
video frames, handling multi-page documents with
numerous images, and processing dynamic infor-
mation environments; benchmarks like Dyn-VQA
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(Li et al., 2024d) are, however, beginning to address
this latter challenge.

(v) Lack of Adversarial and Robustness Testing:
While benchmarks like Counterfactual VQA (Niu
et al., 2021) specifically test robustness against
certain perturbations, there is a general scarcity of
datasets containing multimodal adversarial examples
or structured negative instances. Such datasets are
vital for developing more robust and reliable RAG
systems that can handle out-of-distribution inputs or
misleading information.

(vi) Retrieval-Generation Integration: Many
benchmarks evaluate retrieval and generation compo-
nents separately rather than assessing their synergis-
tic interplay. More holistic evaluation frameworks
are needed that jointly measure retrieval accuracy,
relevance of retrieved multimodal context, and final
output quality, as aimed by benchmarks like MRAG-
Bench (Hu et al., 2024c¢) for visual integration and
RAG-Check (Mortaheb et al., 2025a) for retrieval
relevance.

(vii) Limited Support for '"Any-to-Any'' Modali-
ties: While current research primarily focuses on
text, image, video, and audio, future RAG systems
are envisioned to support any-to-any modality inter-
actions. Existing datasets offer limited support for
such comprehensive multimodality.

C Evaluation and Metrics

Evaluating multimodal RAG models is complex due
to their varied input types and complex structure.
The evaluation combines metrics from VLMs, gener-
ative Al, and retrieval systems to assess capabilities
like text/image generation and information retrieval.
Our review found about 60 different metrics used
in the field. In the following paragraphs, we will
examine the most important and widely used metrics
for evaluating multimodal RAG.

Retrieval Evaluation Retrieval performance is
measured through accuracy, recall, and precision
metrics, with an F1 score combining recall and pre-
cision. Accuracy is typically defined as the ratio of
correctly predicted instances to the total instances.
In retrieval-based tasks, Top-K Accuracy is defined
as:

Top-K Accuracy(y, f) = 1 Z Z“‘(fzy =)

n “—

ey
Recall @K, which examines relevant items in top
K results, is preferred over standard recall. Mean

Reciprocal Rank (MRR) serves as another key met-
ric for evaluation, which is utilized by (Adjali et al.,
2024; Nguyen et al., 2024). MRR measures the rank
position of the first relevant result in the returned
list. The formula for calculating MRR is:

MRR = - ZQ: . (2)
- Q o rank,

where () is the total number of queries. rank, is
the rank of the first relevant result for query gq.

Modality Evaluation Modality-based evaluations
primarily focus on text and image, assessing their
alignment, text fluency, and image caption quality.
For text evaluation, metrics include Exact Match
(EM), BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), and METEOR (Banerjee and Lavie, 2005).
The ROUGE metric is commonly used to evaluate
text summarization and generation. ROUGE-N mea-
sures the overlap of N-grams between the generated
and reference text. The formula for ROUGE-N is:

Z gram ; ERef Countmagcn (gI‘ am )

ROUGE-N =
Z gram j; €Ref Count(gramN )

3)

ROUGE-L measures the longest common subse-
quence (LCS) between generated and reference text.
The formula for ROUGE-L is:

LCS(X,Y)

ROUGE-L =
Y]

“4)

BLEU is another metric used for assessing text
generation. The formula for calculating BLEU is:

N
BLEU(p,,, BP) = BP - exp (Z wy, log pn>
n=1
&)

Here, p,, represents the precision of n-grams, wy,
denotes the weight assigned to the n-gram precision,
and the Brevity Penalty (BP) is defined as:

length > rl

1
BP = 6
{exp ( — Z—f) length < 7l ©

Here, 7l represents the reference length and cl
represents the candidate length.
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Figure 3: Taxonomy of application domains for Multimodal Retrieval-Augmented Generation systems.

MultiRAGen (Shohan et al., 2024) uses Multilingual
ROUGE for multilingual settings.

For image captioning, CIDEr (Consensus-Based
Image Description Evaluation) (Vedantam et al.,
2015) measures caption quality using TF-IDF and
cosine similarity (Yasunaga et al., 2023; Zhao et al.,
2024; Luo et al., 2024a; Yuan et al., 2024; Shar-
ifymoghaddam et al., 2024; Hu et al., 2023; Rao
et al., 2024; Xu et al., 2024a; Kim et al., 2024,
Zhang et al., 2024c), while SPICE (Semantic Propo-
sitional Image Caption Evaluation) (Anderson et al.,
2016) focuses on semantics. SPIDEr (Liu et al.,
2017), used in (Zhang et al., 2024c), combines both
metrics.

For semantic alignment, BERTScore (Zhang et al.,
2020) compares BERT embeddings (Sun et al.,
2024b; Shohan et al., 2024), and evaluates fluency
(Chen et al., 2022a; Zhi Lim et al., 2024; Ma et al.,
2024d).

CLIP Score (Hessel et al., 2021), used in (Shari-
fymoghaddam et al., 2024; Zhang et al., 2024c),
measures image-text similarity using CLIP (Radford
etal., 2021). The formula for calculating CLIPScore
is:

CLIPScore = @)

t.i
el
where t and i are text and image embedding,
respectively.

For image quality, FID (Fréchet Inception Distance)
(Heusel et al., 2017) compares feature distributions
(Yasunaga et al., 2023; Zhao et al., 2024; Sharify-
moghaddam et al., 2024; Zhang et al., 2024c), while
KID (Kernel Inception Distance) (Binkowski et al.,
2018) provides an unbiased alternative. The formula
for FID is:

FID = |1t — pig || + tr(%, + B — 21/, 5)
®)

where u, and X2, are the mean and covariance of
real images’ feature representations, respectively.
ftg and X5, are the mean and covariance of generated
images’ feature representations, respectively. To
extract features, InceptionV3 (Szegedy et al., 2016)
is typically used.

Inception Score (IS) evaluates image diversity and
quality through classification probabilities (Zhi Lim
et al., 2024). For audio evaluation, Zhang et al.
(2024c) use human annotators to assess sound qual-
ity (OVL) and text relevance (REL), while also
employing Fréchet Audio Distance (FAD) (Kilgour
et al., 2019), an audio-specific variant of FID.

System efficiency is measured through FLOPs, exe-
cution time, response time, and retrieval time per
query (Nguyen et al., 2024; Strand et al., 2024;
Dang, 2024; Zhou, 2024). Domain-specific metrics
include geodesic distance for geographical accuracy
(Zhou et al., 2024e), and Clinical Relevance for
medical applications (Lahiri and Hu, 2024).

D Robustness Advancements and Loss
Functions

D.1 Robustness and Noise Management

Multimodal training faces challenges such as noise
and modality-specific biases (Buettner and Ko-
vashka, 2024). Managing noisy retrieval inputs is
critical for maintaining model performance. MORE
(Cui et al., 2024) injects irrelevant results dur-
ing training to enhance focus on relevant inputs.
AlzheimerRAG (Lahiri and Hu, 2024) uses progres-
sive knowledge distillation to reduce noise while
maintaining multimodal alignment. RAGTrans
(Cheng et al., 2024) leverages hypergraph-based
knowledge aggregation to refine multimodal repre-
sentations, ensuring more effective propagation of
relevant information. RA-BLIP (Ding et al., 2024b)
introduces the Adaptive Selection Knowledge Gener-
ation (ASKGQG) strategy, which leverages the implicit
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capabilities of LLMs to filter relevant knowledge for
generation through a denoising-enhanced loss term,
eliminating the need for fine-tuning. This approach
achieves strong performance compared to baselines
while significantly reducing computational overhead
by minimizing trainable parameters. RagVL (Chen
et al., 2024e) improves robustness through noise-
injected training by adding hard negative samples
at the data level and applying Gaussian noise with
loss reweighting at the token level, enhancing the
model’s resilience to multimodal noise. Finally,
RA-CM3 (Yasunaga et al., 2023) enhances gener-
alization using Query Dropout, which randomly
removes query tokens during retrieval, serving as
a regularization method that improves generator
performance.

D.2 Loss Function

InfoNCE (Information Noise Contrastive Esti-
mation): The InfoNCE loss is commonly used in
self-supervised learning, especially in contrastive
learning methods. The formula for InfoNCE loss is:

exp(sim(z;, zj)/7)
S, exp(sim(zi, 21,)/T)

where z; and z; are the embeddings of a positive
pair and T is a temperature parameter.

©)

LinfoNcE = — log

GAN (Generative Adversarial Network): The
GAN loss consists of two parts: the discriminator
loss and the generator loss. The discriminator loss
formula is:

ﬁD:_Ezwpdata(a:) [IOg D($)}_Ez~pz (z) [lOg(l_D(G(Z)))}
(10)

where x is a real sample from the data distribution.
G(z) is the generated sample from the generator,
where z is a noise vector. D(x) is the probability
that x is real.

The Generator loss formula is:

Lo=E.y ollog(l-D(G(2))]  (11)

Triplet Loss: Triplet Loss is used in metric learn-
ing to ensure that similar data points are closer
together while dissimilar ones are farther apart in
the embedding space. The Triplet loss formula is:

L=371 ) max(0,f () —f (@) 12~ 1 ()~ f ()12 +)
(12)

where , is the anchor sample. z, and !, are the
positive and negative samples, respectively. f(x) is
the neural network.

E Applications and Relevant Tasks

Multimodal RAG extends traditional RAG beyond
unimodal settings to cross-modal tasks. In content
generation, it enhances image captioning (Zhi Lim
et al., 2024; Hu et al., 2023; Rao et al., 2024)
and text-to-image synthesis (Yasunaga et al., 2023;
Chen et al., 2022b) by retrieving relevant contex-
tual information. It also improves coherence in
visual storytelling and factual alignment in multi-
modal summarization (Tonmoy et al., 2024). In
knowledge-intensive applications, multimodal RAG
supports open-domain QA (Chen et al., 2024e; Ding
et al., 2024b; Yuan et al., 2023), video-based QA
(Luo et al., 2024b), fact verification (Khaliq et al.,
2024), and zero-shot image—text retrieval (Yang
et al., 2024b), grounding responses in retrieved
knowledge and thereby mitigating hallucinations.
Additionally, the incorporation of chain-of-thought
reasoning (Zhai, 2024; Khaliq et al., 2024) further
enhances complex problem-solving and inference.
Finally, their integration into Al assistants such as
Gemini (Team et al., 2024) enables natural language-
driven visual search, document understanding, and
multimodal reasoning.

Multimodal RAGs are increasingly applied across
diverse domains, including healthcare, software en-
gineering, and creative industries (e.g., fashion and
design automation). The taxonomy of application
domains can be seen in Figure 3. The following sec-
tions explore domain-specific adaptations of these
techniques in greater depth.

Healthcare and Medicine Multimodal RAG en-
hances clinical decision-making through integrated
analysis of medical imaging, electronic health
records, and biomedical literature. Systems like
MMED-RAG (Xia et al., 2024a) address diagnostic
uncertainty in medical visual question answering
by aligning radiology images with contextual pa-
tient data. In automated report generation, RULE
(Xia et al., 2024b) mitigates hallucinations through
dynamic retrieval of clinically similar cases. Simi-
larly, RA-RRG (Choi et al., 2025) first leverages an
LLM to extract key textual phrases from a report
corpus, then employs a multimodal retriever to link
the visual features to these relevant phrases. The
coherent report is generated after being retrieved
by another LLM without fine-tuning, thereby re-
ducing hallucinations. FactMM-RAG (Sun et al.,
2024b) further automates radiology report drafting
by retrieving biomarker correlations from medi-
cal ontologies, exemplifying the paradigm’s ca-
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pacity to operationalize expert knowledge at scale.
AsthmaBot (Bahaj and Ghogho, 2024) introduces
a multimodal RAG-based approach for supporting
asthma patients across multiple languages, enabling
structured, language-specific semantic searches. Pre-
dictive frameworks such as Realm (Zhu et al., 2024c¢)
demonstrate robust risk assessment by fusing het-
erogeneous patient data streams, while Su et al.
(2024a) advance privacy-preserving architectures
for federated clinical data integration.

Software Engineering Code generation systems
leverage multimodal RAG to synthesize context-
aware solutions from technical documentation and
version histories. DocPrompting (Zhou et al., 2023)
improves semantic coherence in code completion by
retrieving API specifications and debugging patterns.
Commit message generation models like RACE
(Shi et al., 2022) contextualize code diffs against
historical repository activity, while CEDAR (Nashid
et al., 2023) optimizes few-shot learning through
retrieval-based prompt engineering. REDCODER
(Parvez et al., 2021) enhances code summarization
via semantic search across open-source repositories,
preserving syntactic conventions across program-
ming paradigms.

Fashion and E-Commerce Cross-modal align-
ment drives advancements in product discovery
and design automation. UniFashion (Zhao et al.,
2024) enables style-aware retrieval by jointly em-
bedding garment images and textual descriptors,
while Dang (2024) reduces search friction through
multimodal query expansion. For fashion image
editing, Fashion-RAG (Sanguigni et al., 2025) em-
ploys a retrieval-augmented approach, retrieving
garments that match textual descriptions and inte-
grating their attributes into image generation via
textual inversion techniques within diffusion mod-
els, ensuring personalized and contextually relevant
outputs. LLM4DESIGN (Chen et al., 2024d) demon-
strates architectural design automation by retrieving
compliance constraints and environmental impact
assessments, underscoring RAG’s adaptability to
creative domains.

Entertainment and Social Computing Multime-
dia analytics benefit from RAG’s capacity to cor-
relate heterogeneous signals. SoccerRAG (Strand
et al., 2024) derives tactical insights by linking
match footage with player statistics. MMRA (Zhong
et al., 2024) predicts content virality through joint
modeling of visual aesthetics and linguistic engage-
ment patterns.

Emerging Applications Autonomous systems
adopt multimodal RAG for explainable decision-
making, as seen in RAG-Driver’s (Yuan et al., 2024)
real-time retrieval of traffic scenarios during nav-
igation. ENWAR (Nazar et al., 2024) enhances
wireless network resilience through multi-sensor
fusion, while Riedler and Langer (2024) streamline
equipment maintenance by retrieving schematics
during fault diagnosis. Geospatial systems such
as Img2L.oc (Zhou et al., 2024e) advance image
geolocalization through cross-modal landmark cor-
relation.

F Additional Future Directions

High computational costs in video frame sampling
and memory bottlenecks in processing multi-page
documents with images remain key challenges in
long-context processing. Fixed extraction rates strug-
gle to capture relevant frames, requiring adaptive
selection based on content complexity and move-
ment (Kandhare and Gisselbrecht, 2024). Addi-
tionally, retrieval speed-accuracy trade-offs in edge
deployments and redundant computations in cross-
modal fusion layers emphasize the need for efficient,
scalable architectures. Personalization mechanisms,
like user-specific retrieval (e.g., adapting to medical
history), remain underexplored. As these systems
evolve, ensuring privacy and preventing sensitive
data leakage in multimodal outputs is critical. Lastly,
the lack of datasets with complex reasoning tasks
and multimodal adversarial examples limits robust
evaluation.
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Table 1: Overview of Popular Datasets in Multimodal RAG Research.

7
z
S
if Name Statistics and Description Modalities Link
S

LAION-400M (Schuhmann et al., 2021) 400M image—text pairs; used for pre-training multimodal models. Image, Text LAION-400M

Conceptual-Captions (CC) (Sharma et al., 2018)  More than 3M image—caption pairs; multilingual English-German image descriptions. Image, Text Conceptual Captions
CIRR (Liu et al., 2021) 36,554 triplets from 21,552 images; focuses on natural image relationships. Image, Text CIRR
MS-COCO (Lin et al., 2014) 330K images with captions; used for caption-to-image and image—to—caption generation. Image, Text MS-COCO
E Flickr30K (Young et al., 2014) 31K images annotated with five English captions per image. Image, Text Flickr30K
g Multi30K (Elliott et al., 2016) 30k German captions from native speakers and human—translated captions. Image, Text Multi30K
E NoCaps (Agrawal et al., 2019) For hot image 15K images. Image, Text NoCaps
g}u Laion-5B (Schuhmann et al., 2022) 5.85B image—text pairs used as external memory for retrieval. Image, Text LAION-5B
E COCO-CN (Li et al., 2019) 20,341 images for cross-lingual tagging and captioning with Chinese sentences. Image, Text COCO-CN
CIRCO (Baldrati et al., 2023) 1,020 queries with an average of 4.53 ground truths per query; for composed image retrieval. Image, Text CIRCO
MINT-1T (Awadalla et al., 2024) 1T text tokens and 3.4B images; 10x larger than existing open-source datasets. Image, Text MINT-1T
ShareGPT4V (Chen et al., 2024c) 1.2M images with GPT-4-generated captions, including spatial and factual details. Image, Text ShareGPT4V
OmniCorpus (Li et al., 2025b) 8.6B images and 1.7T tokens across 2.2B web documents; interleaved text-image layout. Image, Text OmniCorpus
BDD-X (Kim et al., 2018) 77 hours of driving videos with expert textual explanations; for explainable driving behavior. Video, Text BDD-X
YouCook2 (Zhou et al., 2018) 2,000 cooking videos with aligned descriptions; focused on video—text tasks. Video, Text YouCook2
ActivityNet (Caba Heilbron et al., 2015) 20,000 videos with multiple captions; used for video understanding and captioning. Video, Text ActivityNet
SoccerNet (Giancola et al., 2018) Videos and metadata for 550 soccer games; includes transcribed commentary and key event annotations. Video, Text SoccerNet
MSVD (Chen and Dolan, 2011) 1,970 videos with approximately 40 captions per video. Video, Text MSVD
LSMDC (Rohrbach et al., 2015) 118,081 video—text pairs from 202 movies; a movie description dataset. Video, Text LSMDC
DiDemo (Anne Hendricks et al., 2017) 10,000 videos with four concatenated captions per video; with temporal localization of events. Video, Text DiDemo
COIN (Tang et al., 2019) 11,827 instructional YouTube videos across 180 tasks; for comprehensive instructional video analysis. Video, Text COIN
— MSRVTT-QA (Xu et al., 2017) Video question answering benchmark. Video, Text MSRVTT-QA
!‘—? ActivityNet-QA (Yu et al., 2019) 58,000 human—annotated QA pairs on 5,800 videos; benchmark for video QA models. Video, Text ActivityNet-QA
é EpicKitchens-100 (Damen et al., 2022) 700 videos (100 hours of cooking activities) for online action prediction; egocentric vision dataset. Video, Text EPIC-KITCHENS-100
- Ego4D (Grauman et al., 2022) 4.3M video—text pairs for egocentric videos; massive-scale egocentric video dataset. Video, Text Ego4D
HowTol00M (Miech et al., 2019) 136M video clips with captions from 1.2M YouTube videos: for learning text—video embeddings. Video, Text HowTol00M
CharadesEgo (Sigurdsson et al., 2018) 68,536 activity instances from ego—exo videos; used for evaluation. Video, Text Charades-Ego
ActivityNet Captions (Krishna et al., 2017) 20K videos with 3.7 localized per video; d events in videos. Video, Text ActivityNet Captions
VATEX (Wang et al., 2019) 34,991 videos, each with multiple captions; a multilingual video—and-language dataset. Video, Text VATEX
‘WebVid (Bain et al., 2021) 10M video—text pairs (refined to WebVid-Refined-1M). Video, Text ‘WebVid
InternVid (Wang et al., 2023b) 7M YouTube videos (760K hours), 234M clips, 4.1B words; used for video-text pretraining and representation learning. Video, Text InternVid
OpenVid-1M (Nan et al., 2024a) 1 million video-text pairs for multimodal learning. Video, Text OpenVid-1M
Youku-mPLUG (Xu et al., 2023) Chinese dataset with 10M video—text pairs (refined to Youku-Refined-1M). Video, Text Youku-mPLUG
LibriSpeech (Panayotov et al., 2015) 1,000 hours of read English speech with corresponding text; ASR corpus based on audiobooks. Audio, Text LibriSpeech
SpeechBrown (Abootorabi and Asgari, 2024) 55K paired speech-text samples; 15 categories covering diverse topics from religion to fiction. Audio, Text SpeechBrown
P AudioCaps (Kim et al., 2019) 46K audio clips paired with human-written text captions. Audio, Text AudioCaps
Fc‘) MusicCaps (Agostinelli et al., 2023) It is composed of 5.5k music-text pairs, with rich text descriptions provided by human experts. Audio, Text MusicCaps
% Clotho (Drossos et al., 2020) Audio captioning dataset with diverse soundscapes. Audio, Text Clotho
< ‘WavCaps (Mei et al., 2024) Large-scale weakly-labeled audio-text dataset, comprising approximately 400k audio clips with paired captions. Audio, Text ‘WavCaps
Spoken SQUAD (Li et al., 2018) Audio version of the SQUAD dataset for spoken question answering, focusing on the listening comprehension task. Audio, Text Spoken SQUAD
AudioSet (Gemmeke et al., 2017) 2,084,320 human-labeled 10-second sound clips from YouTube; 632 audio event cla Audio, Text AudioSet
MIMIC-CXR (Johnson et al., 2019) 125,417 training pairs of chest X-rays and reports. Image, Text MIMIC-CXR
CheXpert (Irvin et al., 2019) 224,316 chest radiographs of 65,240 patients; focused on medical analysis. Image, Text CheXpert
3_ MIMIC-IIT (Johnson et al., 2016) Health-related data from over 40K patients (text data). Text MIMIC-IIT
2 TU-Xray (Pavlopoulos et al., 2019) 7,470 pairs of chest X-rays and corresponding diagnostic reports. Image, Text U X-ray
PubLayNet (Zhong et al., 2019) 100,000 training samples and 2,160 test samples built from PubLayNet (tailored for the medical domain). Image, Text PubLayNet
Quilt-1M (Ikezogwo et al., 2023) 438K medical images with 768K text pairs; includes microscopic images and UMLS entities. Image, Text Quilt-1M
Fashion-IQ (Wu et al., 2021) 77,684 images across three categories; evaluated with Recall@10 and Recall @50. Image, Text ion 1Q
= FashionGen (Rostamzadeh et al., 2018) 260.5K image-text pairs of fashion images and item descriptions. Image, Text Fashion-Gen
E VITON-HD (Choi et al., 2021) 83K images for virtual try-on; high-resolution clothing items. Image, Text VITON-HD
£ Fashionpedia (Jia et al., 2020) 48,000 fashion images d with ion masks and fine-grained attributes. Image, Text Fashionpedia
DeepFashion (Liu et al., 2016) Approximately 800K diverse fashion images for pseudo triplet generation. Image, Text DeepFashion
ShapeNet (Chang et al., 2015) Covering 55 common object categories with 51,300 unique 3D models. Text, 3D ShapeNet
VQA (Antol et al., 2015) 400K QA pairs with images for visual question answering. Image, Text VQA
PAQ (Lewis et al., 2021) 65M text-based QA pairs; a large—scale dataset. Text PAQ
ELIS5 (Fan et al., 2019) 270K complex and diverse questions augmented with web pages and images. Text ELIS
MultimodalQA (Talmor et al., 2021) 29.918 requiring multi-modal multi-hop over text, tables, and images. Image, Text, Table ~ MultimodalQA
VIiQuAE (Lerner et al., 2022) 11.8M passages from Wikipedia covering 2,397 unique entities; knowledge—intensive QA. Text ViQuAE
OK-VQA (Marino et al., 2019) 14K questions requiring external knowledge for VQA. Image, Text OK-VQA
‘WebQA (Chang et al., 2022) 46K queries that require reasoning across text and images. Text, Image ‘WebQA
Infoseek (Chen et al., 2023) Fine-grained visual knowledge retrieval using a Wikipedia—based ki base ( 6M passages). Image, Text Infoseek
s ClueWeb22 (Overwijk et al., 2022) 10 billion web pages organized into three subsets; a large-scale web corpus. Text ClueWeb22
?ﬂ MOCHEG (Yao et al., 2023) 15,601 claims annotated with truthfulness labels and accompanied by textual and image evidence. Text, Image MOCHEG
E; VQA v2 (Goyal et al., 2017b) 1.1M questions (augmented with VG-QA questions) for fine-tuning VQA models. Image, Text VQA v2
E A-OKVQA (Schwenk et al., 2022) Benchmark for visual question answering using world knowledge; around 25K questions. Image, Text A-OKVQA
XL-HeadTags (Shohan et al., 2024) 415K news headline-article pairs consist of 20 languages across six diverse language families. Text XL-HeadTags
DocVQA (Mathew et al., 2021) 12,767 diverse document images with 50K QA pairs, categorized by reasoning type to evaluate DocVQA methods. Image, Text DocVQA
ChartQA (Masry et al., 2022) 9.6K human-written QA pairs + 23.1K generated from chart summaries. Image, Text ChartQA
DVQA (Kafle et al., 2018) 3.5M QA pairs on 300K diagrams, evaluating structure, data retrieval, and reasoning. Image, Text DVQA
RETVQA (Penamakuri et al., 2023) 416,000 QA samples where retrieval from a large image set is needed to answer questions; emphasizes RAG pipeline. Image, Text RETVQA
SEED-Bench (Li et al., 2023a) 19K multiple-choice questions with accurate human annotations across 12 evaluation dimensions. Text SEED-Bench
M3DocVQA (Cho et al., 2024) 2,441 multi-hop questions across 3,368 PDF documents; evaluates open-domain DocVQA. Image, Text M3DocVQA
MMLongBench-Doc (Ma et al., 2024c) 135 lengthy PDFs with 1,091 questions; focuses on multi-hop reasoning in single documents. Image, Text MMLongBench-Doc
GeoDE (Ramaswamy et al., 2023) 61,940 images from 40 classes across 6 world regions; emphasizes geographic diversity in object recognition. Image GeoDE
j:" RU-AI (Huang et al., 2025) 1.47M samples of real vs Al-generated content for fake detection robustness. Image, Text, Audio RU-AI
3 MIMIC-IT (Li et al., 2025a) 2.8M multimodal instruction-response pairs for model alignment. Image, Video, Text  MIMIC-IT
MMVQA (Ding et al., 2024c) 262K question-answer pairs across 3,146 multipage research PDF:s for robust multimodal information retrieval. Image, Text MMVQA
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https://laion.ai/blog/laion-400-open-dataset/
https://github.com/google-research-datasets/conceptual-captions
https://github.com/Cuberick-Orion/CIRR
https://cocodataset.org/
https://shannon.cs.illinois.edu/DenotationGraph/
https://github.com/multi30k/dataset
https://nocaps.org/
https://laion.ai/blog/laion-5b/
https://github.com/li-xirong/coco-cn
https://github.com/miccunifi/CIRCO
https://huggingface.co/datasets/mlfoundations/MINT-1T-HTML
https://sharegpt4v.github.io
https://github.com/OpenGVLab/OmniCorpus
https://github.com/JinkyuKimUCB/BDD-X-dataset
https://youcook2.eecs.umich.edu/
http://activity-net.org/
https://www.soccer-net.org/
https://www.cs.utexas.edu/~ml/clamp/videoDescription/
https://paperswithcode.com/dataset/lsmdc
https://github.com/LisaAnne/TemporalLanguageRelease
https://coin-dataset.github.io/
https://github.com/xudejing/video-question-answering
https://github.com/MILVLG/activitynet-qa
https://epic-kitchens.github.io/2025
https://ego4d-data.org/
https://www.di.ens.fr/willow/research/howto100m/
https://prior.allenai.org/projects/charades-ego
https://cs.stanford.edu/people/ranjaykrishna/densevid/
https://eric-xw.github.io/vatex-website/
https://github.com/m-bain/webvid
https://github.com/OpenGVLab/InternVideo/tree/main/Data/InternVid
https://github.com/NJU-PCALab/OpenVid-1M
https://github.com/X-PLUG/Youku-mPLUG
https://www.openslr.org/12
https://huggingface.co/datasets/llm-lab/SpeechBrown
https://audiocaps.github.io/
https://www.kaggle.com/datasets/googleai/musiccaps
https://zenodo.org/record/3490684
https://github.com/XinhaoMei/WavCaps
https://github.com/chiahsuan156/Spoken-SQuAD
https://research.google.com/audioset/
https://physionet.org/content/mimic-cxr/2.0.0/
https://stanfordmlgroup.github.io/competitions/chexpert/
https://mimic.physionet.org/
https://www.kaggle.com/datasets/raddar/chest-xrays-indiana-university
https://github.com/ibm-aur-nlp/PubLayNet
https://quilt1m.github.io/
https://github.com/XiaoxiaoGuo/fashion-iq
https://paperswithcode.com/dataset/fashion-gen
https://github.com/shadow2496/VITON-HD
https://paperswithcode.com/dataset/fashionpedia
https://paperswithcode.com/dataset/deepfashion
https://shapenet.org/
https://visualqa.org/
https://github.com/facebookresearch/PAQ
https://facebookresearch.github.io/ELI5/
https://allenai.github.io/multimodalqa/
https://github.com/PaulLerner/ViQuAE
https://okvqa.allenai.org/
https://webqna.github.io/
https://open-vision-language.github.io/infoseek/
https://lemurproject.org/clueweb22/
https://github.com/VT-NLP/Mocheg
https://visualqa.org/
https://github.com/allenai/aokvqa
https://huggingface.co/datasets/faisaltareque/XL-HeadTags
https://www.docvqa.org/
https://github.com/vis-nlp/ChartQA
https://github.com/kushalkafle/DVQA_dataset
https://vl2g.github.io/projects/retvqa/
https://github.com/AILab-CVC/SEED-Bench
https://m3docrag.github.io/
https://mayubo2333.github.io/MMLongBench-Doc/
https://github.com/AliRamazani/GeoDE
https://github.com/ZhihaoZhang97/RU-AI
https://github.com/Luodian/Otter
https://github.com/adlnlp/mmvqa

Table 2: Overview of Popular Benchmarks in Multimodal RAG Research.

Category

Name

Statistics and Description

Modalities

Link

MRAG-Bench (Hu et al., 2024c)

Evaluates visual retrieval, integration, and robustness to irrelevant visual information.

Images

MRAG-Bench

" M2RAG (Ma et al., 2024d) Benchmarks multimodal RAG; evaluates retrieval, multi-hop reasoning, and integration. Tmages + Text M2RAG

2

£

E

E

3 Dyn-VQA (Li et al., 2024d) Focuses on dynamic retrieval, multi-hop reasoning, and to changing i Images + Text Dyn-VQA

]

=

2

= MMBench (Liu et al., 2025¢) Covers VQA, captioning, retrieval; evaluates cross-modal understanding across vision, text, and audio. Images + Text + Audio  MMBench

g

o
ScienceQA (Lu et al., 2022 Contains 21,208 questions; tests scientific reasoning with text, diagrams, and images. Images + Diagrams + Text  ScienceQA
SK-VQA (Su et al., 2024b) Offfers 2 million question-answer pairs; focuses on synthetic knowledge, multi ing, and external Images + Text SK-VQA
SMMQG (Wu et al., 2024a) Includes 1,024 question-answer pairs; focuses on synthetic multimodal data and question Images + Text SMMQG

5

g TriviaQA (Joshi et al., 2017) Provides 650K question-answer pairs; reading ion dataset, adaptable for multimodal RAG. Text TriviaQA

]

=

¥

& Natural Questions (Kwiatkowski et al., 2019) Contains 307,373 training examples; real-world search queries, adaptable with visual contexts. Text Natural Questions
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https://arxiv.org/abs/2411.16365
https://openreview.net/forum?id=VvDEuyVXkG
https://github.com/open-compass/MMBench
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https://arxiv.org/abs/2406.19593
https://arxiv.org/abs/2407.02233
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