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Abstract

Retrieval-augmented methods have achieved
remarkable advancements in alleviating the hal-
lucination of large language models. Never-
theless, the introduction of external knowledge
does not always lead to the expected improve-
ment in model performance, as irrelevant or
harmful information present in the retrieved
knowledge can compromise the prediction pro-
cess. To address these challenges, we propose
a novel framework aimed at improving model
performance by incorporating knowledge filter-
ing and prediction fusion mechanisms. In par-
ticular, our approach first employs a perplexity-
based annotation method to collect training
data. Then, we design four distinct strategies to
filter out harmful retrieved knowledge. Finally,
we integrate the filtered knowledge to generate
the final result via batch-wise predictions. We
conduct extensive experiments across multiple
discriminative task datasets to evaluate the pro-
posed framework. The results demonstrate that
our framework can significantly enhance the
performance of models on discriminative tasks.

1 Introduction

Recently, large language models have demon-
strated remarkable potential across various natu-
ral language processing (NLP) tasks (Wang et al.,
2023a; Boshar et al., 2024; Hasan et al., 2024).
However, they also exhibit several critical limi-
tations, including the propensity to generate hal-
lucinated content (Zhou et al., 2021) and the in-
ability to update their internal knowledge dynam-
ically (Kandpal et al., 2023). To mitigate these
problems, Retrieval-Augmented Generation (RAG)
has been introduced as a promising approach. RAG
enhances LLMs by retrieving relevant information
from external sources, such as Wikipedia, and inte-
grating it into the input context, thereby improving
response accuracy and reliability (Fan et al., 2024).

* Zhongqing Wang is the corresponding author
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Figure 1: The illustration of RAG in discriminative
tasks.

Most research on RAG typically follows the
Retrieve-then-Read paradigm and has achieved sig-
nificant success across multiple tasks, such as dia-
logue generation (Wu et al., 2019) and question an-
swering (Izacard and Grave, 2020). Nevertheless,
most recent studies have primarily focused on gen-
erative tasks, while its potential in discriminative
tasks remains largely unexplored. Notably, RAG
holds considerable promise for discriminative tasks
such as sentiment analysis, as retrieving relevant
knowledge can provide implicit meanings, cultural
context, and domain-specific concepts, thereby fa-
cilitating more accurate classification. The investi-
gation of discriminative tasks not only broadens the
application scope of RAG but also offers valuable
insights into how retrieved knowledge contributes
to enhanced discrimination performance. As illus-
trated in Figure 1, our study explores the applica-
tion of RAG across a range of discriminative tasks,
including linguistic acceptablity (Warstadt, 2019),
question classification (Li and Roth, 2002), and
sentiment analysis (Socher et al., 2013).

However, applying RAG to discriminative tasks
presents two significant challenges: On the one
hand, retrieval-augmented methods are constrained
by the quality of retrieved knowledge (Cheng et al.,
2023). The presence of noise in external knowledge
bases, coupled with the performance limitations of
retrievers, may result in retrieved knowledge con-
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taining irrelevant or even contradictory informa-
tion. For instance, in question classification tasks,
irrelevant knowledge may introduce spurious cor-
relations, causing the model to overlook essential
classification features. On the other hand, retrieval-
augmented methods are constrained by their predic-
tion strategy (Shi et al., 2023b). Incorporating all
retrieved knowledge indiscriminately may confuse
the model. For example, in sentiment classification
tasks, the presence of knowledge with opposing
sentiments is inevitable. This can lead the model to
make incorrect judgments as it becomes uncertain
which knowledge to trust.

To address these challenges, we propose a novel
framework as illustrated in Figure 2. Our frame-
work enhances performance through knowledge fil-
tering and prediction fusion, comprising three core
steps: 1) Label Collection, annotating harmfulness
labels of knowledge for training. 2) Knowledge
Filtering, implementing four distinct strategies for
knowledge filtering. 3) Prediction Fusion, mitigat-
ing the potential bias introduced by knowledge.
Specifically, we first annotate query-knowledge
pairs by analyzing variations in the model perplex-
ity with and without knowledge to collect training
data. Then, leveraging the annotated training data,
we design four filtering strategies to eliminate harm-
ful knowledge. Finally, we conduct batch-wise pre-
dictions using the filtered knowledge and employ
a weighted fusion mechanism to generate the final
output. Extensive experiments across multiple dis-
criminative tasks demonstrate the generality and
effectiveness of our framework.

2 Task Formulation & Framework

In this study, we explore the application of RAG
across multiple discriminative tasks: 1) Linguistic
Acceptability (Warstadt, 2019), which evaluates
whether the given sentence follows grammar stan-
dards. 2) Question Classification (Li and Roth,
2002), which aims to categorize questions into pre-
defined topics (e.g., location). 3) Sentiment Anal-
ysis (Socher et al., 2013), which determines the
specific sentence as positive, negative, or neutral.
Formally, these tasks can be defined as discrimina-
tive problems. A unified definition is as follows:
Given a text input x, the objective is to predict an
output ŷ from a pre-defined label set Y .

Figure 2 provides an overview of our proposed
framework. Specifically, given a text input x as
a query, we first employ a retriever R(·) to re-

Retriever Database

Query
Large language

Models

Knowledge
Filtering

Output

Label
Collection

Prediction
Fusion

Guidelines

Filtered
Knowledge

Figure 2: Overview of our framework.

trieve a relevant subset of knowledge from an ex-
ternal database K, where Wikipedia serves as our
knowledge source. Then, we employ four filter-
ing strategies, leveraging annotated training data,
to eliminate harmful knowledge. Finally, the fil-
tered knowledge is concatenated with the original
query and fed into a large language model M(·) to
generate the output.

In the following section, we introduce the two
fundamental components of the RAG pipeline:

Retriever We utilize the dense encoder
BGE (Xiao et al., 2023) as our retriever. To op-
timize retrieval costs, we establish a pre-built static
index for the external database by encoding knowl-
edge. Then, the queries are embedded into the same
latent vector space. The similarity score sim(q, ki)
between the query vector E(q) and each knowl-
edge vector E(ki) is computed using dot product,
followed by efficient similarity retrieval within the
static index through FAISS (Johnson et al., 2019):

sim(q, ki) = E(q)TE(ki), ki ∈ K (1)

Finally, based on these similarity scores, we select
the top-k most relevant knowledge for the next
process stage.

Generator We adopt LLaMA3-8B (Dubey et al.,
2024) as the backbone of our framework. Follow-
ing the retrieval phase, we concatenate the query
with the retrieved knowledge Kret to construct a
prompt, which is then fed into a large language
model to generate the final output ŷ(q,Kret):

ŷ(q,Kret) = M(Prompt(q,Kret)) (2)

Note that the generator’s performance remains sub-
optimal without task-specific fine-tuning, as evi-
denced by our experimental results in Appendix C.

3 Methodology

As illustrated in Figure 3, our framework comprises
three primary steps: Label Collection, Knowledge
Filtering, and Prediction Fusion. Specifically, we
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Figure 3: The illustration of each step in our framework.

first propose a perplexity-based approach to anno-
tate query-knowledge pairs, collecting training data
for subsequent filtering procedures. We then design
four distinct strategies to filter out harmful knowl-
edge. Finally, we integrate the filtered knowledge
through the batch-wise prediction to achieve more
accurate classification. The following sections pro-
vide a detailed description of each step.

3.1 Label Collection

Since subsequent filtering strategies require labeled
training samples, we propose an annotation ap-
proach that evaluates the harmfulness of knowledge
by analyzing the perplexity variation of the model
with and without external knowledge.

Specifically, given a subset D = {(qi, yi)}|D|
i=1

from training samples, we first employ the fine-
tuned LLM to generate the output for each query:

ŷ(qi) = M(Prompt(qi)) (3)

The generated output ŷ(qi) reflects the model’s in-
trinsic knowledge level for the given query (Varsh-
ney et al., 2022).

Subsequently, we utilize the retriever to obtain
the top-k most relevant knowledge from the ex-
ternal database K and incorporate each retrieved
knowledge into the prompt. Then we employ
LLM to generate output ŷ(qi, ki) with retrieved
knowledge. To annotate harmfulness for query-
knowledge pairs, we set a threshold θ and compare
the model perplexity PPL(·) variation between the
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Figure 4: The illustration of four filtering strategies.

two generation settings:

(qi, ki) =

{
Harmful, if PPL(ŷ(qi,ki))

PPL(ŷ(qi))
> θ;

Harmless, otherwise.
(4)

Through this process, we ultimately construct a
training dataset Dkf comprising query-knowledge
pairs annotated for harmfulness.

3.2 Knowledge Filtering

As illustrated in Figure 4, we propose four distinct
strategies to filter retrieved knowledge: Direct Pre-
diction, In-Context Prediction, Proxy Model, and
Ensemble Prediction. A detailed description of
each strategy is provided below.

Direct Prediction Given a query and a piece of
knowledge, the objective is to evaluate the harm-
fulness of retrieved knowledge. A straightforward
approach is to construct a prompt template, en-
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abling the LLM itself to directly assess the harm-
fulness of the provided knowledge. Here, we adopt
the Multiple-Choice Question (MCQ) prompt tem-
plate (Wang et al., 2023b), as LLMs generally
exhibit greater familiarity with the MCQ format
compared to the conventional prompts. The set of
prompt templates can be found in Appendix E.

In the MCQ format, each predefined label is
mapped to a corresponding option, which is then
presented to the LLM for selection. This strategy
is both simple and intuitive and adapts well across
various tasks. Nevertheless, due to the absence of
explicit task-specific demonstrations, the model’s
performance may be inherently constrained.

In-Context Prediction Recent studies have
demonstrated that incorporating task-specific
demonstrations into prompts can significantly en-
hance the performance of LLMs without fine-
tuning (Zhang et al., 2022). Therefore, we ran-
domly sample several query-knowledge pairs from
Dkf and integrate them into the prompt as task-
specific demonstrations. Subsequently, we lever-
age the LLM itself to assess the harmfulness of the
provided knowledge.

Both of the aforementioned strategies that utilize
the LLM itself for filtering exhibit several limi-
tations: 1) Context-based methods are inherently
susceptible to the quality of provided demonstra-
tions (Fan et al., 2024), frequently resulting in sub-
optimal performance. 2) These methods are con-
strained by the LLM’s context length limitations,
making it struggle to utilize more training samples.

Proxy Model To overcome these limitations,
we propose a proxy model strategy, which is im-
plemented by fine-tuning a lightweight LLaMA3-
1B (Dubey et al., 2024) on the dataset Dkf. Specifi-
cally, we formulate the harmfulness evaluation as a
text generation task, where given a query q and a
piece of knowledge ki, the proxy model PM(·) gen-
erates discriminative predictions. The prediction
process is formally defined as:

â(q, ki) = PM(Prompt(q, ki)) (5)

where â(q, ki) ∈ {Harmful,Harmless} indicates
the harmfulness of knowledge. By leveraging a
lightweight proxy model, our strategy enhances the
efficiency and accuracy of harmfulness evaluation.

Ensemble Prediction Existing research (Ma
et al., 2023) has demonstrated that LLMs exhibit
superior performance in handling difficult sam-
ples, while small language models (i.e., our proxy
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Figure 5: The illustration of prediction fusion.

model) tend to perform more effectively on simpler
samples. Motivated by this, we suppose that our
proposed filtering strategies are not mutually exclu-
sive but complementary. To leverage the strengths
of distinct strategies, we propose an ensemble pre-
diction strategy. Specifically, we first employ the
proxy model for initial sample predictions:

conf(ki) = max
a∈A

ProbPM (a|q, ki) (6)

where conf(ki) denotes the confidence level of the
given sample, A is the set of candidate labels and
ProbPM (a|q, ki) represents the conditional proba-
bility distribution generated by the proxy model.
We set a threshold θ to distinguish the difficulty of
samples. For high-confidence samples (conf(ki) ≥
θ), we directly adopt the proxy model’s predictions.
In contrast, for low-confidence samples, we further
apply In-Context Prediction strategy, thereby inte-
grating both strategies in a complementary manner.

3.3 Prediction Fusion

To mitigate the problem that the LLMs are suscepti-
ble to being misled by certain pieces of knowledge,
we propose the Prediction Fusion mechanism, as il-
lustrated in Figure 5. Specifically, we first integrate
the query with each filtered knowledge separately
to construct prompts and then perform batch-wise
predictions. Subsequently, we apply a weighted
fusion strategy to aggregate the probability distri-
butions p(y|q, ki) generated by the LLM, yielding
the final prediction:

p(y|q,K ′
ret) =

∑

ki∈K′
ret

λ(q, ki) · p(y|q, ki) (7)

where K
′
ret denotes the filtered knowledge set. Note

that when K
′
ret = ∅, our method degenerates into

the standard non-retrieval generation. Furthermore,
λ(q, ki) represents the weight assigned to each
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Methods SST-2 SST-5 CR MR MPQA CoLA TREC Average
w/o Retrieval

T5-Large 92.43 48.39 90.75 78.35 84.10 64.60 76.20 76.40
Roberta-Large 74.74 40.60 89.40 81.15 57.85 67.21 73.00 69.14

ICL* 91.17 46.00 73.20 61.70 71.60 72.29 74.80 70.11
LM-BFF* 90.80 49.00 89.05 83.50 86.40 53.69 70.60 74.72

w/ Retrieval
GPT-4o 91.63 52.01 90.50 88.65 87.20 78.62 73.20 80.26

Direct RAG 91.74 52.56 89.35 87.05 86.30 77.47 90.80 82.18
FiD 91.05 52.46 90.20 78.35 84.10 64.62 76.20 76.71

PGRA 92.43 53.82 90.30 78.00 82.95 70.80 76.00 77.76
RECOMP 92.31 53.64 90.65 87.75 87.85 76.99 89.20 82.63

SKR 93.34 54.09 91.50 88.45 86.95 78.04 88.60 83.00
Ours 94.50 55.68 92.85 90.20 89.45 81.78 93.40 85.41

Table 1: Comparison with baselines. * denoted we partially refer to the results from other papers (Guo et al., 2023) .

piece of knowledge, which is computed as follows:

λ(q, ki) = αsim(q, ki) + (1− α)Px(a|q, ki) (8)

where Px(a|q, ki) corresponds to the probability of
harmlessness estimated by the LLM or the proxy
model, and α controls the balance of two factors.

4 Experiment

4.1 Datasets & Metric
This study evaluates our proposed framework using
datasets from three distinct text classification tasks:
(1) Linguistic Acceptability: CoLA (Warstadt,
2019), assessing the grammatical acceptability of
English sentences. (2) Question Classification:
TREC (Li and Roth, 2002), classifying questions
into six predefined categories. (3) Sentiment Anal-
ysis: SST-2 and SST-5 (Socher et al., 2013) for de-
termining the sentiment polarity of sentences into
two or five categories; MR (Pang and Lee, 2004)
from the movie review domain; MPQA (Wiebe
et al., 2005) from the news opinion domain; and
CR (Ding et al., 2008) from the product review
domain. We adopt accuracy as the evaluation met-
ric for all datasets and follow the data splits from
LM-BFF (Gao et al., 2020). The statistics of the
datasets are presented in Table 2, while a detailed
description of each dataset is provided in Table 6
in the appendix. The implementation details of our
approach are discussed in Appendix A.

4.2 Main Result
This section conducts a comparison between our
proposed framework and methods both with and
without retrieval. For methods without retrieval,
T5-Large (Raffel et al., 2020) and Roberta-
Large (Liu, 2019) serve as representative pre-
trained models; LM-BFF (Gao et al., 2021) em-

Datasets Train Dev Test Label Len
CoLA 32 32 1,043 2 8
TREC 96 96 500 6 10
SST-2 32 32 872 2 19
SST-5 79 79 2,209 5 18
MR 32 32 2,000 2 20

MPQA 32 32 2,000 2 3
CR 32 32 2,000 2 19

Table 2: Statistics of datasets. Label denotes the number
of candidate labels. Len represents the length of the
input content.

ploys prompt-based fine-tuning to enhance few-
shot performance; ICL utilizes OPT-13B (Zhang
et al., 2023) with eight task-specific demonstrations
without fine-tuning; For methods with retrieval,
Direct RAG incorporates retrieved knowledge di-
rectly into the LLaMA3-8B model’s prompt for
generation; GPT-4o (OpenAI, 2024) is the state-of-
the-art large language model released by OpenAI;
FiD (Izacard and Grave, 2021) adopts a generative
approach by aggregating information from multi-
ple documents; PGRA (Guo et al., 2023) employs
a two-stage framework for re-ranking retrieved
knowledge; SKR (Wang et al., 2023c) retrieves
external knowledge based on problem’s complexity
adaptively; RECOMP (Xu et al., 2023) enhances
performance by compressing retrieved knowledge.

As demonstrated in Table 1, large language mod-
els relying exclusively on ICL show significant lim-
itations in achieving competitive performance, even
underperforming small models (e.g., T5-Large).
This can be attributed to ICL’s sensitivity to demon-
stration quality, which often results in suboptimal
performance. Our analysis reveals that retrieval-
augmented methods consistently outperform those
without retrieval, confirming the necessity of exter-
nal knowledge for discriminative tasks. Notably,
while advanced retrieval-augmented methods such
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Methods SST-2 SST-5 CR MR MPQA CoLA TREC Average
Direct RAG 91.74 52.56 89.35 87.05 86.30 77.47 90.80 82.18

w/ Knowledge Filtering
Direct Prediction 92.07 51.65 91.10 87.15 87.95 77.95 90.20 82.58

In-Context Prediction 93.12 52.92 91.50 88.25 87.50 76.51 90.80 82.94
Proxy Model 92.20 53.28 91.45 87.80 88.50 79.58 89.60 83.20

Ensemble Prediction 93.00 54.14 91.90 87.60 88.40 80.15 92.00 83.88
w/ Prediction Fusion

Ours 94.50 55.68 92.85 90.20 89.45 81.78 93.40 85.41

Table 3: The effects of knowledge filtering and prediction fusion.

Methods CR MPQA MR SST-5
P R F P R F P R F P R F

Direct 41.7 11.6 18.2 39.3 23.9 29.7 49.4 30.3 37.6 48.5 40.4 44.1
In-Context 59.4 95.3 73.2 51.7 100.0 68.1 58.3 94.4 72.0 54.0 66.9 59.8

Proxy 86.0 100.0 92.5 83.7 89.1 86.3 86.5 94.4 90.2 84.9 88.8 86.8
Ensemble 89.5 100.0 94.5 82.1 100.0 90.2 87.7 95.8 90.9 88.1 92.9 90.4

Table 4: The performance of strategies on knowledge filtering.

as SKR and RECOMP incorporate sophisticated
mechanisms like problem filtering and knowledge
compression, their performance improvements over
Direct RAG remain marginal. This suggests that
these advanced strategies still struggle to eliminate
the influence of harmful knowledge.

In comparison, our framework achieves signifi-
cant performance improvements over baseline mod-
els across all tasks, demonstrating its superior ef-
fectiveness and robust generalization capabilities.

4.3 Impact of Filtering Strategies and
Prediction Fusion

This section conducts an ablation study to evaluate
two critical components of our framework. We
take Direct RAG as the baseline and investigate
the effectiveness of four distinct filtering strategies
alongside prediction fusion.

As illustrated in Table 3, the performance of
Direct Prediction barely surpasses the baseline,
suggesting that LLMs struggle to assess the harm-
fulness of knowledge by themselves. When sup-
plemented with task demonstrations for harmful
knowledge identification, the performance of In-
Context Prediction achieves improvement across
most datasets. However, the decline in performance
observed in certain datasets can be attributed to the
suboptimal quality of task demonstrations. Proxy
Model demonstrates superior performance com-
pared to both LLM-based approaches, indicating
that fine-tuning a smaller model can achieve higher
accuracy without manually providing demonstra-
tions. Ensemble Prediction outperforms all other
strategies, demonstrating the complementary na-
ture of our proposed methods. Dynamic adjustment

of strategies based on sample difficulty enables full
exploitation of their respective advantages.

While knowledge filtering has achieved consid-
erable performance improvement, the integration
of prediction fusion yields optimal results. This
indicates that weighted consideration of each piece
of knowledge can indeed mitigate the risk of model
misguidance by a single piece of knowledge.

5 Analysis and Discussion

5.1 Performance of Strategies on Knowledge
Filtering

Although we have demonstrated the effective-
ness of the filtering strategies, it remains unclear
whether the improvement stems from the removal
of harmful knowledge. To address this gap, we
conduct a comprehensive analysis across four rep-
resentative datasets and evaluate the performance
of four strategies in filtering harmful knowledge us-
ing F1 scores. Given that the objective of filtering
is to prevent the introduction of harmful knowl-
edge, we provide the performance of strategies on
"Harmful" label rather than the overall.

As shown in Table 4, Direct exhibits consistently
inferior performance across evaluation metrics, in-
dicating that LLMs struggle to accurately assess the
harmfulness of knowledge without demonstrations.
In-Context achieves a substantial improvement in
Recall (even reaching 100%) by incorporating task
demonstrations. However, this comes at the ex-
pense of Precision, indicating excessive false posi-
tives in classification. Proxy further improves Preci-
sion while maintaining Recall. Ensemble achieves
the optimal filtering performance by integrating
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the strengths of these strategies, demonstrating that
the proposed strategies are complementary and can
jointly enhance filtering performance. Furthermore,
we observe a positive correlation between filtering
effectiveness and overall model performance, sug-
gesting that the model improvements are indeed
driven by the elimination of harmful knowledge.

5.2 Effects of Different Retrievers
While our framework demonstrates effectiveness
within dense retrievers (e.g., BGE), such retrievers
are constrained by computational cost and storage
requirements. This leads to a critical question: Can
our framework maintain its effectiveness when im-
plemented with lightweight sparse retrievers such
as BM25? To address this gap, we conduct evalu-
ations across multiple datasets using BM25 as the
retriever, comparing two scenarios: (1) Direct in-
corporates the retrieved knowledge directly, and (2)
Ours employs the proposed framework to filter the
retrieved knowledge. For comparison, we adopt
the BGE-based method as the baseline.

As illustrated in Figure 6, the overall perfor-
mance of BM25 is significantly lower compared to
the baseline, primarily due to its limited semantic
matching capabilities. This limitation results in the
retrieval of irrelevant or even harmful knowledge
that may compromise model performance. Never-
theless, when our proposed framework is employed,
we observe significant performance improvements,
indicating its ability to eliminate harmful knowl-
edge from different retrievers. These results con-
firm our framework’s capability of knowledge fil-
tering and cross-retriever adaptability.
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Figure 7: The influence of strategies on perplexity.

5.3 Impact of Filtering Strategies on PPL

Our annotation strategy leverages changes in per-
plexity (PPL) to assess whether a given piece of
knowledge is harmful. However, the effectiveness
of this annotation strategy in optimizing the final
model PPL remains uncertain. We therefore con-
duct experiments to investigate the changes in the
final model PPL across three datasets using pro-
posed filtering strategies. We employ the model
without filtering as a baseline for comparison.

As illustrated in Figure 7, Direct exhibits limited
ability to assess knowledge harmfulness when lack-
ing task-specific guidances. While incorporating
task demonstrations further reduces model PPL,
the effectiveness of In-Context is highly depen-
dent on the quality of the provided demonstrations.
This limitation is particularly evident in the CoLA
dataset, where the suboptimal quality of demonstra-
tions resulted in a substantial PPL increase. Proxy
achieves significant model PPL reduction but its
performance isn’t stable. Ensemble demonstrates
the lowest PPL while maintaining consistent perfor-
mance across all datasets, validating the robustness
and effectiveness of our ensemble mechanism.

5.4 Effects of Different Knowledge for
Prediction Fusion

To investigate whether the effectiveness of predic-
tion fusion stems exclusively from its mechanism
design, we conduct experiments to analyze the
influence of knowledge quality on model perfor-
mance. Specifically, we compare the performance
variations before and after applying prediction fu-
sion using random knowledge, with filtered knowl-
edge serving as the baseline for comparison.

As shown in Figure 8, the introduction of ran-
dom knowledge results in a substantial perfor-
mance degradation of the model compared to the

1722



50.0

60.0

70.0

80.0

90.0

100.0

CoLA MR CR TREC SST-2

A
cc

u
ra

cy
 (

%
)

Filter

Random

Random + Fusion

Figure 8: The performance of prediction fusion under
different quality of knowledge.

baseline. We suppose that this decline is primarily
caused by the introduction of irrelevant and harmful
information present in random knowledge. When
applying batch-wise prediction fusion to random
knowledge, we observe a general performance de-
cline rather than improvement across most datasets.
This phenomenon suggests that considerable ir-
relevant information in random knowledge will
compromise the fusion process. Furthermore, this
also validates that the performance improvements
achieved by prediction fusion are not only derived
from its mechanism design but also depend on high-
quality filtered knowledge. In general, the compo-
nents within our framework are complementary,
collectively contributing to significant improve-
ments in model performance.

6 Related Works

6.1 Retrieval-Augmented Generation

Retrieval-Augmented methods have been widely
applied since the era of pre-trained models (Liu,
2019), achieving significant progress in many NLP
tasks such as dialogue generation (Wu et al., 2019)
and question answering (Izacard and Grave, 2020;
Wang et al., 2024). With the emergence of large
language models, RAG has been further utilized
to alleviate problems such as hallucinations in
LLMs (Shao et al., 2023). The mainstream ap-
proach to solving generative tasks follows Retrieve-
then-Read paradigm (Yoran et al., 2023). Recent
research has primarily focused on improving im-
portant components in RAG systems: query aug-
menter (Tan et al., 2024), paragraph retriever (Shi
et al., 2023b), and generator (Jin et al., 2024).

Since retrieved knowledge is not always helpful,
especially when the internal knowledge of LLMs is
sufficient to answer the question (Shi et al., 2023a).
To mitigate this problem, mainstream approaches
can be divided into two categories: 1) Pre-retrieval

methods, which aim to determine whether retrieval
is necessary for a given query: Wang et al. (2023c)
proposes using a small classification model or the
LLM itself to analyze queries in order to determine
whether the LLM can rely on its own knowledge
to provide an answer. Tan et al. (2024) proposes
using a proxy model to first generate a pseudo-
answer, which is then used to determine whether
the LLM needs to retrieve external knowledge. 2)
Post-retrieval methods, which focus on optimizing
the retrieved knowledge in various ways: Since the
generator is a black-box model, Yang et al. (2023)
proposes training an adapter through reinforcement
learning to compress the retrieved knowledge. Zhu
et al. (2024) introduces the information bottleneck
theory to optimize the noise filter from a com-
prehensive perspective, aiming to optimize the re-
trieved passages by simultaneously maximizing
useful information and minimizing noise.

6.2 Discriminative Tasks
The current mainstream methods for discriminative
tasks can be divided into the following categories:
Tree-based (Khandagale et al., 2020; Wang et al.,
2022; Bao et al., 2023), Graph-based (Ye et al.,
2021; Xu et al., 2021), Embedding-based (Chen
et al., 2020; Gweon and Schonlau, 2024) and
Ensemble-based approaches (Zhao et al., 2022; Liu
et al., 2022). Bao et al. (2023) proposes a novel
opinion tree parsing model to extract all sentiment
elements from opinion trees. Zhao et al. (2025)
proposes an instruction augmentation approach to
enhance the performance of emotion classification,
which does not rely on labeled instances. Although
significant progress has been made in these tasks,
few studies have attempted to leverage external
knowledge for completion.

Existing RAG methods struggle to accurately
identify retrieval requirements, while compres-
sion techniques cannot completely discard harmful
knowledge. Furthermore, the integration of exter-
nal knowledge is often overlooked in discriminative
task research. To address this gap, our framework
aims to apply RAG to discriminative tasks and en-
hance performance from the perspective of knowl-
edge filtering. Notably, our approach prevents the
missing of potentially helpful information due to
the misidentification of retrieval requirements. Fur-
thermore, in scenarios where all retrieved knowl-
edge is harmful, our filtering strategies can dis-
card all knowledge and degenerate to standard non-
retrieval generation.
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7 Conclusion

In this study, we propose a novel framework to en-
hance the performance of RAG in discriminative
tasks by introducing knowledge filtering and predic-
tion fusion mechanisms. Specifically, our method
first employs a perplexity-based annotation method
to collect training data for subsequent procedures.
Then, we propose four strategies to effectively filter
out harmful knowledge. Finally, we integrate the
filtered knowledge via batch-wise predictions to
generate the final results. We conduct extensive
experiments across multiple datasets, and the ex-
perimental results demonstrate that our framework
significantly enhances model performance.

Limitations

The limitations of our work lie in below: The inte-
gration of additional filtering processes for the re-
trieved knowledge within our framework inevitably
heightens the overall time complexity. While these
processes are designed to enhance the quality and
relevance of the knowledge used, the trade-off is a
less efficient retrieval pipeline compared to simpler
methodologies.
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A Implementation

For the external knowledge base, we employ the
Wiki-1M (Gao et al., 2021) where each piece of
knowledge is presented as individual sentences
rather than paragraph-level chunks. For the re-
trieval stage, we utilize the BGE model1 as our
dense retriever and retain the top-30 most relevant
knowledge. During the stage of knowledge filter-
ing, we constrain the amount of knowledge uti-
lized for subsequent augmentation to a maximum
of eight. It is noteworthy that the quantity of fil-
tered knowledge may potentially be zero (indicat-
ing all retrieved knowledge is harmful), in which
case our approach degenerates into a non-retrieval
generation.

Our approach adopts LLaMA3-8B 2 as the back-
bone of our framework. We employ parameter-
efficient adaptation through Low-Rank Adaptation
(LoRA) to fine-tune the model for each dataset
and the detailed training hyperparameters are doc-
umented in Table 5. During inference, we employ
greedy decoding for the reasons described in Ap-
pendix D. All experiments are conducted on an
NVIDIA Tesla A100 64G GPU.

For our experiments with GPT-4o, we evaluate
the model on our dataset using the OpenAI Fine-
tuning API3. The prompt "Read knowledge and the

1https://huggingface.co/BAAI/bge-large-en-v1.5
2https://huggingface.co/meta-llama/Llama-3.1-8B-

Instruct
3https://platform.openai.com/finetune
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Datasets Category Input Candidate Labels
CoLA Linguistic Acceptability Sentence Incorrect; Correct
TREC Question Classification Sentence Desc.; Entity; Abbr.; Person; Location; Quantity
SST-2 Sentiment Analysis Sentence Negative; Positive
SST-5 Sentiment Analysis Sentence Terrible; Bad; Neutral; Good; Excellent
MR Sentiment Analysis Sentence Negative; Positive

MPQA Sentiment Analysis Sentence Negative; Positive
CR Sentiment Analysis Sentence Negative; Positive

Table 6: The description of datasets. Desc is short for Description and Abbr is short for Abbreviation.
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Figure 9: The performance of different amounts of
knowledge.

sentence, predict the sentiment of the sentence as <
Candidate Labels > " is chosen empirically for its
strong performance. During the generation stage,
the temperature is set to 0.0, ensuring consistency
with our approach.

B Impact of Different Amounts of
Knowledge

The incorporation of external knowledge has
proven beneficial for discriminative tasks. How-
ever, an important question arises: Does increasing
the amounts of knowledge consistently enhance
model performance? To address this gap, we inves-
tigate the effect of varying the amounts of knowl-
edge on model performance across four datasets.

As illustrated in Figure 9, the performance of
the model exhibits the expected upward trend as
more retrieved knowledge is gradually incorpo-
rated. Nevertheless, when the knowledge quantity
surpasses an optimal threshold, further increases
in knowledge result not in continued improvement
but rather in performance degradation. We hypoth-
esize that this decline may stem from the excessive
amounts of knowledge imposing a cognitive bur-
den on the model. This heightened burden could
render the model more vulnerable to the misleading
influence of certain pieces of knowledge, thereby

Methods CR MPQA CoLA TREC Avg.
ICL 86.7 79.7 78.1 71.2 78.9
SFT 89.7 87.7 77.9 90.0 86.3

Table 7: The performance of different optimization
strategies.

adversely impacting its overall performance.

C Impact of Different Optimization
Strategies

We investigate the effectiveness of different opti-
mization strategies for addressing the discrimina-
tive task. Since the proposed framework is based on
LLMs, we focus on evaluating two widely adopted
methods across four datasets: In-Context Learning
(ICL) and Supervised Fine-Tuning (SFT). For the
ICL method, we provide three task demonstrations
for each category, while the detailed information
of the training data for SFT is provided in Table 2.

As shown in Figure 7, the experimental results
reveal that SFT consistently outperforms ICL in
overall performance, with particularly notable im-
provements observed on the TREC dataset, which
contains a larger number of categories. This can be
attributed to two primary factors: First, the effec-
tiveness of ICL is highly contingent on the quality
of task demonstrations, which often results in sub-
optimal performance. Second, SFT benefits from
removing the limitation of context length, enabling
it to utilize richer training data. Consequently, SFT
demonstrates superior performance.

D Impact of Different Decoding
Strategies

While temperature-based sampling methods are
widely employed in generative tasks to enhance
output diversity, their applicability to discrimina-
tive tasks (e.g., text classification) remains underex-
plored. To investigate this, we conduct experiments
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Methods CR MPQA CoLA TREC Avg.
Greedy 86.7 79.7 78.1 71.2 78.9
T=0.5 86.0 78.6 78.4 70.6 78.4
T=0.7 85.4 78.3 76.2 70.8 77.7
T=1.0 81.7 77.2 75.8 68.4 75.8
T=1.5 74.1 72.6 67.9 62.0 69.1

Table 8: The performance of the model under different
temperatures.

across four datasets using five distinct decoding
configurations. Greedy sampling, which selects
the token with the highest probability, serves as a
baseline and corresponds to a temperature value
of 0.0. In addition, we evaluate the model’s per-
formance under four different temperature settings
T ∈ {0.5, 0.7, 1.0, 1.5} to analyze its sensitivity to
temperature adjustments.

As evidenced by Table 8, model performance
demonstrates consistent deterioration with rising
temperature values. Through manual analysis of
token-level output probabilities across selected
samples, we observe that higher temperatures re-
sult in the model generating non-candidate labels,
which substantially degrades performance. Ac-
cordingly, for discriminative tasks, we recommend
adopting the greedy sampling strategy to ensure the
accuracy and consistency of the model’s outputs.

E Prompts for Different Datasets

Here we present the MCQ templates (Figure 10,
11, 12) employed in the LLMs-based knowledge
filtering strategies described in Section 3.2.
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Multi-Choice Question Prompt

(Demonstrations if available)

Instruction: Given the knowledge and sentence, choose if the knowledge 

is harmful for predicting the sentiment polarity of the sentence as A or B.

Knowledge: {Retrieved Knowledge}

Sentence: {Query}

Candidate Choices: (A) Harmful (B) Harmless

Answer: {Correct Answer}

…

(Test Sample)

Instruction: Given the knowledge and sentence, choose if the knowledge 

is harmful for predicting the sentiment polarity of the sentence as A or B.

Knowledge: {Retrieved Knowledge}

Sentence: {Query}

Candidate Choices: (A) Harmful (B) Harmless

Answer:

Figure 10: Multi-Choice Question (MCQ) template for MR, CR, MPQA, SST-2, SST-5.

Multi-Choice Question Prompt

(Demonstrations if available)

Instruction: Given the knowledge and question, choose if the knowledge 

is harmful for predicting the question category as A or B.

Knowledge: {Retrieved Knowledge}

Sentence: {Query}

Candidate Choices: (A) Harmful (B) Harmless

Answer: {Correct Answer}

…

(Test Sample)

Instruction: Given the knowledge and question, choose if the knowledge 

is harmful for predicting the question category as A or B.

Knowledge: {Retrieved Knowledge}

Sentence: {Query}

Candidate Choices: (A) Harmful (B) Harmless

Answer:

Figure 11: Multi-Choice Question (MCQ) template for TREC.

Multi-Choice Question Prompt

(Demonstrations if available)

Instruction: Given the knowledge and sentence, choose if the knowledge 

is harmful for predicting the grammatical correctness of the sentence as A 

or B.

Knowledge: {Retrieved Knowledge}

Sentence: {Query}

Candidate Choices: (A) Harmful (B) Harmless

Answer: {Correct Answer}

…

(Test Sample)

Instruction: Given the knowledge and sentence, choose if the knowledge 

is harmful for predicting the grammatical correctness of the sentence as A 

or B.

Knowledge: {Retrieved Knowledge}

Sentence: {Query}

Candidate Choices: (A) Harmful (B) Harmless

Answer:

Figure 12: Multi-Choice Question (MCQ) template for CoLA.
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