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Abstract

Generating knowledge-intensive and compre-
hensive long texts, such as encyclopedia arti-
cles, remains significant challenges for Large
Language Models. It requires not only the pre-
cise integration of facts but also the mainte-
nance of thematic coherence throughout the
article. Existing methods, such as direct gener-
ation and multi-agent discussion, often strug-
gle with issues like hallucinations, topic inco-
herence, and significant latency. To address
these challenges, we propose RAPID, an ef-
ficient retrieval-augmented long text genera-
tion framework. RAPID consists of three
main modules: (1) Retrieval-augmented pre-
liminary outline generation to reduce halluci-
nations, (2) Attribute-constrained search for ef-
ficient information discovery, (3) Plan-guided
article generation for enhanced coherence. Ex-
tensive experiments on our newly compiled
benchmark dataset, FreshWiki-2024, demon-
strate that RAPID significantly outperforms
state-of-the-art methods across a wide range
of evaluation metrics (e.g., long-text genera-
tion, outline quality, latency, etc). Our work
provides a robust and efficient solution to the
challenges of automated long-text generation.1

1 Introduction

Large Language Models (LLMs) have showcased
significant proficiency in handling various natu-
ral language tasks (Chen et al., 2024; Hu et al.,
2024; Wu et al., 2024), achieving near-human per-
formance in tasks like summarizing lengthy docu-
ments (Liu et al., 2024b) and crafting poetry (Yu
et al., 2024). Despite these achievements, generat-
ing long and knowledge-intensive texts (e.g., ency-
clopedia articles) faces significant challenge (Shen
et al., 2023). Such tasks demand not only the seam-
less integration of facts and narratives over exten-

*Corresponding authors.
1Code is publicly avaiblely at https://github.com/

USTC-StarTeam/RaPID.
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Figure 1: An example of generating a wiki-style article
using various methods highlights distinct challenges
and considerations. Direct generation may suffer from
the large model’s limited internal knowledge. While
methods based on multi-agent discussions can provide
broad coverage of the topic, they may also result in
increased hallucinations and reduced efficiency.

sive text but also the maintenance of thematic and
stylistic consistency throughout the document.

Bai et al. (2024) focus on fine-tuning LLMs to
generate long-text solely based on LLMs’ inter-
nal knowledge. However, limited LLM’s internal
knowledge (You et al., 2023) can lead to signifi-
cant hallucinations in its generation, as evident in
Figure 1. Such phenomenon is further exacerbated
when generating with fact-intensive content (Rawte
et al., 2023). To address these issues, retrieval-
augmented generation (RAG) techniques are com-
monly utilized to provide LLMs with additional
retrieved content (Jiang et al., 2024b). Nonetheless,
the effectiveness and scope of retrieved content can
significantly influence the quality of generated long
texts (Shao et al., 2024). Moreover, RAG-based
long text generation relies on multiple rounds of
retrieval, formulating dedicated search queries, and
obtaining characteristic content for different sec-
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tions. This can cause thematic and stylistic incon-
sistency between sections (Zhou et al., 2023). A
more effective approach is to mimic human writ-
ing practices (Rohman, 1965; Doyle and Center,
1994), directing LLMs to develop a structured out-
line prior to full-text generation.

A recent work, STORM (Shao et al., 2024) intro-
duces a novel long-text generation strategy based
on multi-agent discussions. This approach identi-
fies multiple perspectives on each topic and uncov-
ers information through interactions among agents
assigned distinct roles, resulting in better perfor-
mance compared to direct RAG-based methods.

Despite its promising results, long text genera-
tion based on multi-agent disscussion faces three
challenges as follows: (1) writing intentions are
often general and ambiguous , but agents are con-
strained by the internal knowledge of LLMs, mak-
ing it highly possible to misinterpret the writing
intention from the very beginning and generate
hallucinations. (2) agent interactions lack self-
correction mechanisms, leading to a failure to de-
tect hallucinations and allowing ineffective discus-
sions to perpetuate errors unchecked. (3) long texts
inherently involve intricate long-range dependen-
cies and complex logical structures. Consequently,
maintaining consistency and accuracy throughout
the generation process remains challenging.

To address these challenges, we propose RAPID,
an efficient Retrieval-Augmented long text gen-
eration framework with writing Planning and
Information Discovery. Specifically, (1) we de-
sign a retrieval-augmented outline generation mod-
ule. We first establish an outline corpus containing
approximately 2.6 million example outlines from
Wikipedia, covering a diverse range of topics and
structures. Given a question, it is disambiguated via
results from web search, and the refined intent is
used to retrieve outline examples from established
outline corpus. These outline examples are used
as context for high-quality outline generation. (2)
To comprehensively gather information across mul-
tiple topics, we extract attributes from the outline.
We maintain a comprehensive attribute buffer and
convert the extracted attributes into search queries
for attribute-constrained search. The collected in-
formation contributes to iteratively updating the
outline and serves as reference material to support
the generation of the final long text. (3) Most im-
portantly, we design a novel structured writing plan.
It is derived from the outline, to guide full article
generation. Specifically, the writing plan is a topo-

logical graph that plots section dependencies and
writing sequences.

Our contributions are summarized as follows:

• We revisit the automated knowledge-intensive
long text generation, particularly focusing on the
unified consideration of pre-writing and genera-
tion stages for generating wiki-style articles.

• We propose RAPID, a framework that lever-
ages retrieval-augmented outline generation, ef-
ficient information discovery, and logic writing
plan guidance to generate comprehensive and
knowledge-intensive articles.

• We construct a new dataset, and extensive experi-
ments demonstrate the effectiveness of RAPID
in terms of factuality and coherence.

2 Related Works

Long-form Text Generation Long-form text
generation (Tan et al., 2021; Guan et al., 2021;
Yang et al., 2022) has been a significant focus
in NLP research, even prior to the emergence of
large language models. Recently, researchers have
achieved considerable success in various applica-
tions of long text generation using LLMs, including
creative writing (Lei et al., 2024; Li et al., 2024;
Yang et al., 2023), scientific survey (Kang and
Xiong, 2024; Wang et al., 2024) and expository
writing (Balepur et al., 2023). Previous efforts to
enhance long text generation have often involved
improving models’ abilities to produce extended
outputs by constructing crafted SFT dataset (Xu
et al., 2024). This paper, however, primarily fo-
cuses on generating knowledge-intensive long ar-
ticles based on topic retrieval. For instance, Shao
et al. (2024) proposed a pre-writing method that
utilizes perspective-guided questioning and out-
line generation, which automates wiki-style article
generation from scratch. Building on this founda-
tion, Jiang et al. (2024a) introduced a multi-agent
dialogue and user interaction mechanism, which
further enhances the large language model’s ability
to explore unknown unknowns. Additionally, Pham
et al. (2024) and Bai et al. (2024) proposed to en-
hance the ability of LLMs to directly generate long
outputs by improving LLM alignment methods.
However, these methods still face challenges re-
lated to hallucinations, efficiency, and consistency,
which are the primary focus of optimization in this
paper.
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Retrieval Augmented Generation Retrieval-
Augmented Generation (Lewis et al., 2020) rep-
resents an innovative approach that integrates the
advantages of information retrieval with language
generation. The performance of RAG heavily de-
pends on the accuracy of the retrieved informa-
tion (Mallen et al., 2023; Dong et al., 2025a). Some
works improve retrieval performance through adap-
tive retrieval (Asai et al., 2023; Liu et al., 2024a;
Li et al., 2025) or query rewriting (Gao et al., 2023;
Ma et al., 2023). More recently, Edge et al. (2024)
proposes to enhance the accuracy of RAG by au-
tomatically building knowledge graphs. Although
these methods have demonstrated significant effec-
tiveness in short-format output tasks (Joshi et al.,
2017; Yang et al., 2018), they remain inadequate for
application in knowledge-intensive long text gen-
eration tasks, which usually require multi-faceted
information retrieval and fine-grained information
filtering.

3 Methods

In this section, we introduce RAPID, an efficient
and effective framework for automated wiki-style
article generation. We first formulate the article
generation problem in Section 3.1. Next, we detail
the retrieval-augmented outline generation process
in Section 3.2, the attribute-constrained search in
Section 3.3, and plan-guided long-text generation
in Section 3.4. The overall framework of RAPID
is illustrated in Figure 2.

3.1 Problem Formulation
The goal of this task is to automatically generate
a comprehensive wiki-style article, denoted as D,
based on a given topic t. This process involves
generating a clear outline and crafting coherent sec-
tions that thoroughly explore the topic. Formally,
the task includes three main steps: (i) Initial out-
line generation: given a topic t, we first generate
an initial outline Oini related to t, (ii) Information
gathering and update: we then use the search en-
gine to collect a diverse set of information from the
knowledge source S as the reference R and iter-
atively refine Oini to produce the final outline O;
(iii) Article crafting: finally, the complete article D
is generated by elaborating on the final outline O
using the reference R.

3.2 Retrieval Augmented Outline Generation
“Well begun is half done.” A clear and logically
coherent outline is crucial for the writing process,

which serves as a roadmap to guide the detailed
content unfold in appropriate places and to ensure
overall cohesion (Fan and Gardent, 2022). How-
ever, existing methods rely on generating an ini-
tial outline using the model’s internal knowledge,
which will inevitably introduce inaccuracies or mis-
conceptions. This outline is then iteratively refined
through RAG. However, such inaccuracies may es-
calate as the writing progresses, leading to topic
deviations. To address this, we employ retrieval-
augmented generation during the initial outline gen-
eration phase to improve writing intent recognition
and reduce hallucinations. Additionally, we re-
trieve similar topic outline examples from a cu-
rated corpus, generating a high-quality preliminary
outline that is further refined through an efficient
information retrieval module.

Intent recognition. To reduce ambiguity, we be-
gin by using an intention recognition module to
clarify intentions and maintain focus. Specifically,
for a given topic t, we first query a search engine
for relevant information and then generate an initial
summary of the results. This process is formalized
as follows:

St = Sch(t,S) and Ibrief = LLM(t,St) (1)

where Ibrief represents the brief summary of the
topic, and St denotes the search results obtained by
the search engine Sch from the knowledge base S.

Outline example retrieval. To improve the qual-
ity of the generated initial outline, we retrieve high-
quality outline examples from a curated corpus
based on the given topic, which serve as few-shot
examples for outline generation. Specifically, to
construct the corpus C, we extract outlines from
the extensively crawled structured articles in the
Wiki archives2. We then concatenate the topic
t and its brief summary Ibrief to facilitate query
expansion, and use a dense retriever Ret1 to re-
trieve similar topics from the constructed Wiki
corpus C. We denote these retrieved topics as
T = {t′1, t′2, ..., t′n}, with their corresponding out-
lines O = {O′

1,O′
2, ...,O′

n}. We have:

(T,O) = Ret1(t, Ibrief, C) (2)

After retrieval, we combine the topic t, summary
Ibrief as the reference context, and the retrieved
outlines T and O as few-shot examples to instruct

2https://dumps.wikimedia.org/
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Figure 2: The framework of RAPID, which consists of three main stages: (a) Retrieval-Augmented Outline
Generation, where an initial outline is created based on a brief introduction and examples; (b) Attribute-Constrained
Search, which leverages an attribute-based mechanism to discover relevant information and refine the outline
accordingly; and (c) Plan-Guided Article Generation, where a structured writing plan is developed based on
dependencies between sections, resulting in a more coherent and fluent article. The blue dashed lines illustrate how
the outline evolves throughout the processes of information discovery and writing planning.

LLM to generate the initial outline, denoted as
Oini:

Oini = LLM(t,St,T,O) (3)

3.3 Attribute-Constrained Search

After generating the initial outline Oini, we de-
sign an attribute-constrained information collection
module to enhance the efficiency and comprehen-
siveness of information gathering, further refining
the Oini to produce the final outline O.

Attribute & Query Generation. In the process
of generating long-form text, it is crucial to ensure
that the content is comprehensive and relevant. To
this end, we introduce the concept of attributes.
Each attribute is defined as a distinct, indivisible
concept to prevent overly complex queries, thereby
effectively summarizing the essential information
for writing the full article. By breaking down the
outline into distinct attributes, we can focus on cap-
turing the most pertinent details without introduc-
ing overwhelming complexity. We prompt LLM
to extract the possible attribute from the current
outline Oini and maintain an attribute buffer, A.
Such buffer encompasses the key aspects necessary
for composing the final article. We then prompt
LLM to transform the attributes into queries, Q,
that are related to the article’s title and are suitable

for search engine 3. The collected information will
be added into the reference set R. We have:

A = LLM(Oini),Q = LLM(A) and R = Sch(Q,S)
(4)

We have fully parallelized the search process to
enhance the efficiency. The example queries are
then selectively merged into a set of queries Q by
a LLM. The merged queries Q′ are used in parallel
with search engines to gather information, which
serves as references R for the outline refinement
and subsequent writing process. This attribute-
constrained approach is highly parallelized, en-
abling effective and efficient information gathering.

Outline Refinement To further align the initial
outline Oini with the desired structure, we provide
the LLMs with the titles of all references from
R and instruct LLMs to generate modifications
to Oini. These modifications can include actions
such as [add section], [delete section], or
[do nothing], ensuring that the outline aligns
with the most current information and insights
available.

We will iterate the outline refinement process
until the attribute buffer A and outline converge,

3Note that such attributes can also be directly provided or
modified by humans to guide relevant retrieval during long-
form text generation, incorporating points that are of interest
or that they wish to highlight.
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or the search limits are reached. Thus, the final
outline O is generated based on Oini and R:

O = LLM(Oini,R) (5)

3.4 Plan-Guided Article Generation
Plan Generation Existing methods directly gen-
erate the article based on outline O, such a simple
one-way writing logic may cause the content to
gradually deviate from the initial section. A long ar-
ticle has a relatively complex structure (Dong et al.,
2024), with interdependencies between sections.
To maintain the overall coherence and consistency,
we introduce an additional writing plan, denoted
as P , which provides a carefully planned writing
order derived from the outline O. Specifically, we
first extract all the first-level section titles from O,
denoted as {s1, s2, . . . , sm}. We then define the
“dependency” of a section as the content from other
sections that must be referenced before developing
that particular section, ensuring a logical flow and
integration throughout the article.

Leveraging the planning capabilities of LLMs,
we construct plan P by providing human-written
few-shot examples. Specifically, the plan P con-
sists of a list that defines the dependencies of each
section, with “None" indicating no dependencies
on other sections. We then calculate its topological
order to ensure the feasibility of the plan, and the
full article is generated section by section accord-
ing to this order. In the rare instances where the
generation of P fails, we will revert to the more
conventional approach of generating each section
in parallel.

The generation of the particular section si can
be formulated as:

P = LLM({s1, s2, . . . , sm}),
Rsi = Ret1(si,P,R,O), (6)

si = LLM(t,P,O,Rsi).

where Rsi represents the references retrieved from
R that are needed to generate si.

After generating all the sections, we follow es-
tablished methodologies by concatenating them to
create a comprehensive summary of the topic. This
process culminates in the creation of a complete
wiki-style article.

4 Experiments

4.1 Dataset
To evaluate the capabilities of RAPID, we intro-
duce the FreshWiki-2024 dataset, a chronological

extension of the original FreshWiki dataset (Shao
et al., 2024) which consists of human-authored
Wikipedia articles covering 100 distinct topics.
To address temporal data contamination concerns,
FreshWiki-2024 follows the rigorous curation
protocol of its predecessor and only includes
Wikipedia entries revised during 2024, ensuring all
evaluation materials postdate conventional model
training cutoffs. For robust performance evaluation,
we randomly selected 100 representative topics
from FreshWiki-2024 to evaluate both RAPID and
baseline methods. Comprehensive dataset statistics
and details are provided in Appendix A.

4.2 Baselines

We compared RAPID with several different LLM-
based methods:
• RAG: It generates an outline or full article based

on the information retrieved from a search related
to the writing topic.

• Outline-driven RAG (oRAG): Building upon
RAG, this method first generates an outline. It
then uses the section titles to retrieve additional
relevant information and generates the full article,
section by section, using the retrieved content.

• STORM (Shao et al., 2024): A writing sys-
tem designed to generate wiki-style articles from
scratch. It majors in the pre-writing stage
by generating the outline through retrieval and
perspective-guided question-asking.

• Co-STORM (Jiang et al., 2024a): An enhanced
version of STORM that incorporates user inter-
action and multi-agent discussion, further im-
proving the exploration of previously unknown
aspects within the topic.

4.3 Evaluation Metrics

Outline Quality. To objectively assess outline
generation quality, we propose an evaluation frame-
work based on section title alignment. Rather than
employing NER-based metrics as in STORM (refer
to Appendix B.1 for its limitations), we perform
direct string matching between generated section
titles and human-authored ground truth titles. We
calculate recall, precision, and F1 score, providing
a balanced assessment of outline comprehensive-
ness and conciseness.

Article Quality. Evaluating long-form text gen-
eration remains a challenging task. To comprehen-
sively assess the quality of generated articles, we
consider four key aspects: (1) Similarity: We use
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Method
LLM Evaluation Similarity Factuality Info

Intere. Organiz. Relev. Cover. Rouge-1 Rouge-L Entity Recall Precision Claims F1@300 Diversity
Q

w
en

-M
ax

RAG 3.66 4.24 4.56 4.20 33.22 14.72 11.23 46.50 193.90 54.09 0.456
oRAG 3.32 3.79 3.87 3.61 40.04 14.49 9.27 43.90 396.30 65.90 0.552
STORM 3.90 4.44 4.49 4.15 41.35 15.07 10.85 44.30 440.90 68.08 0.618
Co-STORM 3.92 4.16 4.51 4.10 32.43 13.08 8.38 49.00 230.90 59.88 0.580
Rapid 3.96 4.49 4.69 4.13 44.65 15.86 12.60 51.10 493.70 77.98 0.650

w/o plan 3.85 4.49 4.58 4.06 44.06 15.62 12.45 46.80 464.6 71.88 –

D
ee

pS
ee

k-
v3 RAG 4.03 4.39 4.66 4.05 25.27 12.23 9.40 57.50 103.10 43.02 0.469

oRAG 3.68 4.23 4.70 4.11 24.74 10.74 6.53 52.40 125.40 46.50 0.498
STORM 4.23 4.58 4.80 4.14 40.05 14.78 11.81 48.00 395.50 70.38 0.607
Co-STORM 3.88 3.89 4.10 3.81 23.09 9.68 5.87 52.10 174.50 54.97 0.591
Rapid 4.37 4.53 4.85 4.21 40.64 15.16 10.94 54.70 337.70 73.62 0.670

w/o plan 4.27 4.52 4.72 4.13 40.08 14.87 10.86 53.80 311.3 70.86 –

G
PT

-4
o

RAG 4.18 4.42 4.86 4.02 30.02 12.98 10.80 56.80 128.60 48.86 0.429
oRAG 3.46 4.19 4.50 4.07 31.01 12.18 7.85 46.20 261.00 60.35 0.539
STORM 4.16 4.46 4.61 4.09 40.56 14.46 12.19 45.60 398.10 67.88 0.626
Co-STORM 4.31 4.30 4.78 4.14 34.14 13.07 8.83 44.80 276.80 60.31 0.584
Rapid 4.38 4.61 4.73 4.20 43.35 15.33 12.01 48.80 448.10 73.57 0.650

w/o plan 4.35 4.47 4.73 4.16 39.19 14.35 10.65 45.00 364.70 65.69 –

Table 1: Results of article quality evaluation. The best results of each metric are marked in bold. LLM Evaluation
uses an LLM to assess the generated articles across four different dimensions. The LLM Evaluation uses a 1-5 scale.
Similarity assesses the resemblance between generated and real articles. Factuality evaluates the quantity and
accuracy of facts in the generated content. Info Diversity evaluates the diversity of the searched information. w/o
plan denotes direct parallel generation without a writing plan. Since search components remain unchanged in this
scenario, "Info Diversity" is not applicable and denoted by "–".

Rouge (Lin, 2004) scores and entity recall from a
FLAIR NER model (Akbik et al., 2019) to com-
pare the similarity between generated articles and
human-written articles. (2) Factuality: We also
assess the factual accuracy of the generated ar-
ticles. Specifically, we employ FActScore (Min
et al., 2023), an automated long-text factuality
evaluation framework based on LLMs. We re-
port the precision and the number of claims of
FActScore. Additionally, we include F1@300 as
defined in FactAlign (Huang and Chen, 2024), to
penalize articles that contain few factual statements.
(3) LLM Evaluation: To evaluate the quality of
generated articles at the article level, we utilized
Prometheus-7b-v2.0 (Kim et al., 2024), an open-
source model that supports a 5-point rubric for text
evaluation. We employed the same version of the
criteria used by STORM, focusing on four aspects:
Interest, Organization, Relevance, and Coverage.
(4) Diversity: We measure the diversity of col-
lected information using the info diversity metric
proposed by CoSTORM, which quantifies the va-
riety of information included in the generated arti-
cles. Further details on the evaluation metrics can
be found in Appendix B.2.

4.4 Implementation Details
We implemented RAPID using the DSPy
framework4, with all prompts detailed in Ap-
pendix C. Three foundation models were em-
ployed as backbones: gpt-4o-2024-11-20,
qwen-max-2024-09-19, and deepseek-v3. For
web search functionality across all methods, we
integrated the Google Custom Search API5, retriev-
ing the top-5 most relevant results per query to
balance precision and computational overhead. To
prevent data leakage, we explicitly excluded offi-
cial Wikipedia pages related to target topics during
web search and outline retrieval. We implemented
Ret1 and Ret2 using e5-large-v2 (Wang et al.,
2022) and paraphrase-MiniLM-L6-v2 (Reimers
and Gurevych, 2019), respectively. The Wikipedia
dump6 (version 2024-08-01) served as the retrieval
corpus for outline generation.

5 Results and Analysis

5.1 Main Results
Table 1 presents the article quality evaluation of
RAPID across different foundation models. Our

4https://github.com/stanfordnlp/dspy
5https://developers.google.com/custom-search/

v1/overview
6https://dumps.wikimedia.org/backup-index.

html
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Method Recall Precision F1

Q
w

en
M

ax RAG/oRAG 10.53 9.05 5.48
STORM 13.86 6.23 4.94
Co-STORM 3.8 8.68 4.93
RAPID 19.83 8.50 10.86

D
S-

v3

RAG/oRAG 9.97 5.79 6.82
STORM 11.95 4.90 6.56
Co-STORM 5.13 8.78 5.82
RAPID 20.82 14.25 16.07

G
PT

-4
o RAG/oRAG 10.28 5.10 6.28

STORM 11.12 3.66 5.19
Co-STORM 2.83 4.09 2.93
RAPID 22.77 15.92 17.52

Table 2: Results of outline quality evaluation. We assess
the resemblance between generated and real outline.

approach demonstrates substantial improvements
over baseline methods in multiple dimensions. In
terms of LLM-based evaluation and similarity met-
rics, RAPID outperforms existing baselines on
most criteria while remaining competitive on the
remaining indicators. The factuality assessment
reveals that RAPID achieves significant improve-
ments in F1@300 scores across all foundation mod-
els compared to baselines, indicating its superior
capability to maintain factual accuracy while pre-
serving high information density. Furthermore,
RAPID attains the highest info diversity scores
among all tested configurations, suggesting that
our method effectively balances information dis-
covery efficiency with diversity preservation.

Additionally, we observed that certain sim-
ple baseline methods achieved unexpectedly high
scores on specific metrics. For instance, RAG ex-
hibits an unusually high relevance score on GPT-4o.
This phenomenon may be attributed to the lower
information density of its generated content, as ev-
idenced by the fact that the number of claims it
produces is less than one-third of that generated
by RAPID. This observation underscores the chal-
lenge of evaluating long-form content quality using
a single metric. In contrast, RAPID demonstrates
superior performance across multiple evaluation
criteria, reinforcing its robustness and effective-
ness.

The quality evaluation results of outlines are pre-
sented in Table 2. RAPID significantly outper-
forms other methods across different foundation
models, particularly in recall and F1-score met-
rics. This demonstrates its superior ability to main-
tain thematic focus while achieving comprehensive
coverage of research topics. Notably, although

Backbone Avg.
Nodes

Avg.
Edges

Dependency
Density

Longest
Path

Qwen-Max 8.72 16.64 2.09 2.79

DeepSeek-v3 7.21 12.18 1.91 2.62

GPT-4o 8.43 11.86 1.55 3.59

Table 3: Results of the graph metrics of Writing Plan.

STORM achieves relatively higher recall compared
to other baselines, RAPID can efficiently generate
higher-quality outlines through retrieval of similar
topics, without requiring complex multi-turn agent
discussion mechanisms.

5.2 Ablation Studies

To evaluate the impact of the writing plan, we con-
ducted an ablation study by removing the Plan-
Guided Article Generation module and instead em-
ploying a parallel section-wise generation approach
(denoted as "w/o plan"). As shown in Table 1, the
absence of a writing plan led to performance degra-
dation across multiple metrics. Without contextual
paragraph awareness, the model exhibited stylistic
inconsistencies and coherence issues between sec-
tions, explaining the decline in organization scores.
Additionally, generating sections in isolation re-
sulted in redundant content, as each paragraph at-
tempted to cover multiple aspects of the topic in-
dependently. While techniques such as STORM
can partially mitigate these issues through post hoc
refinement, maintaining coherence and quality in
long-form text remains challenging due to inherent
output length limitations. In contrast, our struc-
tured planning approach explicitly defines inter-
sectional dependencies, enhancing overall coher-
ence and enabling the generation of longer, more
cohesive articles. These findings underscore the
critical role of planning in long text generation.

5.3 Writing Plan Analysis

Our method relies on constructing a directed
acyclic graph (DAG) of sections prior to writing,
which defines the contextual dependencies between
sections. In this section, we analyze the Writing
Plan’s functionality through graph-theoretical met-
rics. By representing sections as nodes and inter-
sectional dependencies as directed edges, we for-
mally define the Writing Plan as a DAG structure
G = (V,E), where V = {v1, v2, . . . , vn} denotes
the set of n nodes (sections), and E ⊆ V × V
represents the directed edges indicating dependen-
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cies. To quantify the "dependency density" of the
Writing Plan, we define it as the ratio of the num-
ber of edges to the maximum possible edges in a
minimally connected DAG:

D(G) =
|E|
n− 1

, (7)

where |E| is the cardinality of the edge set E, and
n−1 corresponds to the maximum number of edges
in a linear chain structure. For example, in a slid-
ing window of length k = 1, where each section
depends only on its immediate predecessor, the
number of edges is |E| = n− 1, yielding a depen-
dency density of D(G) = 1. Besides dependency
density, we also report key metrics to describe the
DAG structure: average nodes, edges, and longest
path length. The longest path highlights the critical
dependency sequence, determining the minimum
steps to traverse the Writing Plan.

The results for the plans generated by three back-
bone models are summarized in Table 3. These
results reveal that while the average number of sec-
tions across the plans remains relatively consistent,
the number of dependencies exhibits more signifi-
cant variation. Notably, the dependency density for
all three backbones exceeds 1, ranging from 1.55 to
2.09. This indicates that the generated plans effec-
tively transcend simple linear structures, capturing
more complex long-range dependencies. These
findings demonstrate the strong generalization ca-
pability of our method. The detailed case study of
the writing plan is provided in Appendix E.

Furthermore, an excessively long critical path
can lead to reduced parallelism during section gen-
eration, thereby decreasing efficiency. However,
the average longest path length of the plans gener-
ated by the three backbones does not exceed 4, en-
suring that the generation time of RAPID remains
within an acceptable range. Further evidence can
be found in the detailed efficiency analysis pro-
vided in Appendix D.

6 Human Evaluation

To gain deeper insights into the quality of the
generated articles, we recruited 10 master-degree
level volunteers to conduct a human evaluation.
We randomly selected 20 topics and requested the
volunteers to evaluate articles generated by both
RAPID and STORM for each topic. Each arti-
cle was assigned to two different volunteers to
ensure a balanced and unbiased assessment. We

Method Intere. Organiz. Relev. Cover. #Prefer

STORM 4.03 3.80 3.75 4.05 13
RAPID 3.98 4.03 4.25 4.15 27

Table 4: Results of human evaluation. We had human
evaluators evaluate the articles across four dimensions
using a fine-grained scale ranging from 1 to 5, and we
documented their preferences accordingly.

provided the volunteers with the same evaluation
criteria as those used in the LLM-based assessment
(see Table 6), which assess four dimensions: Inter-
est Level, Organization, Relevance, and Coverage.
Volunteers rated each dimension on a scale from 1
to 5. Additionally, they were asked to indicate their
preference for each pair of articles. To mitigate
potential bias, the order of methods in each article
pair was randomized.

As shown in Table 3, our RAPID significantly
outperforms STORM in terms of Organization, Rel-
evance, and Coverage. Additionally, it achieves a
notable improvement in overall preference, despite
showing a slight disadvantage in Interest. These
results indicate that RAPID generates articles of
higher overall quality compared to STORM.

Notably, the significantly lower Relevance score
of STORM may be attributed to hallucination prop-
agation caused by its agent-based discussion mech-
anism. For example, feedback from volunteers
revealed that when processing the topic Vultures
1 (album), STORM’s pre-writing phase—relying
solely on LLM-driven dialogue for information col-
lection—misinterpreted the task, mistakenly assum-
ing it involved generating content about vultures
(the animal). This misunderstanding led to irrel-
evant, animal-related perspectives, rendering the
entire information collection and writing process in-
effective. In contrast, RAPID addresses this issue
by employing retrieval-based methods to ensure
accurate intent recognition from the outset. This
approach enables a more precise and efficient infor-
mation collection process, significantly reducing
the risk of misinterpretation and ultimately improv-
ing the quality of the generated content.

7 Conclusion

In this paper, we addressed the challenge of
knowledge-intensive long-text generation, with a
particular focus on encyclopedia-style article gen-
eration. We introduced RAPID, an efficient and
effective retrieval-augmented writing system that
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integrates a structured writing plan and information
discovery mechanisms. Our extensive experiments
and human evaluations demonstrate that our model
outperforms state-of-the-art baselines in both effec-
tiveness and efficiency. Additionally, our model
maintains scalability for other knowledge-intensive
long-text writing tasks. In the future, we plan to
explore the potential of LLMs in other domain-
specific writing tasks, such as financial reports.

Limitations

Our proposed RAPID, while demonstrating effi-
cacy in long-form Wikipedia article generation, is
subject to two key constraints that warrant discus-
sion. The current methodology exclusively focuses
on textual content generation, overlooking the crit-
ical integration of multimodal elements such as
images and tabular data that significantly enhance
article credibility and reader engagement in authen-
tic Wikipedia entries. Furthermore, the evaluation
framework remains confined to the Wikipedia do-
main, leaving untested the method’s adaptability to
other long-form generation scenarios like financial
reporting or academic writing, which demand dis-
tinct structural precision and factual rigor. We plan
to use more advanced data augmentation strate-
gies (Yin et al., 2024) in the future to improve the
model’s performance on texts of specific styles or
domains. These limitations underscore the need
for subsequent research to expand multimodal inte-
gration capabilities and conduct cross-domain vali-
dation, thereby enhancing both the practical utility
and generalizability of the proposed RAPID.

Ethics Statement

Our research focuses on automated long-text gen-
eration using LLMs, specifically for producing
Wikipedia-style articles. While this technology
holds great potential for enhancing knowledge ac-
cessibility and streamlining content creation, it also
presents several ethical challenges that we acknowl-
edge and actively address.

One key concern is that the generated content
may delve into sensitive topics, as the model syn-
thesizes information from diverse sources. Despite
our extensive efforts to exclude controversial sub-
jects during dataset construction, there remains a
risk of producing biased, misleading, or inappro-
priate content. Such outputs could inadvertently
activate LLM content safety mechanisms. We take
this issue seriously and underscore the importance

of advancing content filtering techniques and bias
mitigation strategies to ensure the responsible use
of this technology.

Another significant challenge lies in ensuring
factual accuracy. Despite implementing measures
to minimize errors, the model may still generate in-
correct or hallucinated information. Worse still, if
misused, this technology could actively contribute
to the spread of false information, amplifying its
potential societal impact. Addressing this issue
calls for future research aimed at enhancing factual
consistency, developing safeguards against misuse,
and integrating more robust verification systems to
validate the generated content.
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A Dataset Details

Figure 3: The distribution of the length of FreshWiki-
2024

We adopted the data collection methodology out-
lined in FreshWiki to construct our dataset. Specif-
ically, we systematically crawled the top 100 most
frequently edited topics monthly from January to
December 2024, retaining only articles rated as
Class B or higher by the ORES quality assessment
system7. To streamline processing and focus our
analysis, we removed all tabular data and multi-
modal content, preserving only plain text following
the same approach as STORM.

From this curated collection, we randomly se-
lected 100 topics for model evaluation. As shown
in Figure 3, article lengths followed a bimodal dis-
tribution: approximately 70% of articles ranged
between 2,000 and 8,000 tokens, while we inten-
tionally retained articles exceeding 15,000 tokens
to evaluate the model’s performance or processing
intricate topic matter.

To ensure thematic diversity, We used GPT-4o
to categorize 100 selected topics into nine main
groups based on Wikipedia’s official classification
standards. Figure 4 illustrates the resulting cate-
gory distribution, demonstrating broad coverage
and relatively balanced representation across sub-
ject areas.

B Evaluation Details

B.1 Limitations for NER-based outline
evaluation methods

STORM’s NER-based evaluation metrics, namely
Entity Recall and Soft Entity Recall, exhibit two
fundamental limitations. First, conventional NER
models are not specifically designed for outline
evaluation. In particular, key section titles (e.g.,

7https://www.mediawiki.org/wiki/ORES
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Figure 4: The distribution of classification of Freshwiki-
2024

"Background") in outlines often do not correspond
to well-defined named entities. As a result, extract-
ing entities from golden outlines can be unreliable,
and in extreme cases, no identifiable entities may
be present at all. Second, the soft entity recall
metric suffers from abnormal scaling behavior due
to the lack of a normalization mechanism. This
absence of normalization, coupled with the inher-
ent limitations of entity recognition, can lead to
inflated scores that misrepresent the actual quality
of an outline.

B.2 Article Quality Evaluation
We utilize the Qwen-Turbo model as the backbone
for FactScore, which decomposes atomic facts and
assesses their accuracy. FactScore can be regarded
as a measure of the factual accuracy of generated
text. However, comparing FactScore across differ-
ent texts can be challenging when the generated
content varies significantly in length. To address
this issue, we utilize FactAlign, which assumes a
predefined number of claims, denoted as K, for
each article. The recall is then computed as the
ratio of generated claims to K, allowing for a more
balanced evaluation. Based on this, we calculate
the F1@K score, where we set K = 300 in our
experiments.

Meanwhile, we follow existing work (Shao et al.,
2024; Dong et al., 2025b) to utilize LLM for auto-
matic evaluation. We observe that due to the con-
text length limitations of Prometheus-7b-v1.0,
STORM truncates all generated articles to a lim-
ited length of 2,000 words, which significantly im-
pacts the fairness of the evaluation. Thanks to the
extended context length of Prometheus-7b-v2.0,

Pearson Correlation

Interst Level 0.58
Organization 0.51
Relevance 0.31
Coverage 0.47

Table 5: Pearson correlation between average human
evaluation scores and LLM-based evaluation scores on
genreated article quality (n=20)

we were able to process articles up to 10,000 words
in our experiments, leading to a more comprehen-
sive assessment. The detailed prompts for LLM
Evaluation are shown in Table 6. Table 5 shows
the Pearson correlation coefficient data between hu-
man evaluation and LLM evaluation. Our prelimi-
nary correlation analysis of this evaluation model
revealed relatively low correlation for the Rele-
vance metric, possibly due to ambiguous topics
and the LLM’s tendency to be overly lenient. For
instance, "vultures 1" (an album) was considered
relevant even when "vultures" (the animal) was the
primary topic. For a more comprehensive correla-
tion analysis of this evaluation approach, refer to
STORM (Shao et al., 2024) and Prometheus (Kim
et al., 2024). It is important to note that the evalua-
tion of long articles remains a challenging problem,
and existing evaluation models are not yet perfect.
We consider this a direction for future research.

Additionally, we utilized text-embedding-
3-small to generate embeddings for the info di-
versity metric, following the implementation of
CoSTORM.

C Full Prompt

As discussed in §2, we divided our RAPID frame-
work into three modules and listed the prompts
used for each. The prompts we use for §§3.2 are
listed in Figure 6, 7 while §§3.3 in Figure 8, 9, 10,
11, 12 and §§3.4 in Figure 13, 14.

D Efficiency and Usage Analysis

RAPID integrates an attribute-constrained
information-seeking module, which is designed to
enhance efficiency while maintaining comprehen-
siveness. To evaluate its efficiency and usability
compared to other baselines, we collected the
average time and API usage for generating 100
topics. For methods involving parallel section
generation, we set the maximum parallelism to
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Criteria Description Interest Level: How engaging and thought-provoking is the article?

Score 1 Description Not engaging at all; no attempt to capture the reader’s attention.

Score 2 Description Fairly engaging with a basic narrative but lacking depth.

Score 3 Description Moderately engaging with several interesting points.

Score 4 Description Quite engaging with a well-structured narrative and noteworthy points that frequently capture and retain attention.

Score 5 Description Exceptionally engaging throughout, with a compelling narrative that consistently stimulates interest.

Criteria Description Coherence and Organization: Is the article well-organized and logically structured?

Score 1 Description Disorganized; lacks logical structure and coherence.

Score 2 Description Fairly organized; a basic structure is present but not consistently followed.

Score 3 Description Organized; a clear structure is mostly followed with some lapses in coherence.

Score 4 Description Good organization; a clear structure with minor lapses in coherence.

Score 5 Description Excellently organized; the article is logically structured with seamless transitions and a clear argument.

Criteria Description Relevance and Focus: Does the article stay on topic and maintain a clear focus?

Score 1 Description Off-topic; the content does not align with the headline or core subject.

Score 2 Description Somewhat on topic but with several digressions; the core subject is evident but not consistently adhered to.

Score 3 Description Generally on topic, despite a few unrelated details.

Score 4 Description Mostly on topic and focused; the narrative has a consistent relevance to the core subject with infrequent digressions.

Score 5 Description Exceptionally focused and entirely on topic; the article is tightly centered on the subject, with every piece of inform-

ation contributing to a comprehensive understanding of the topic.

Criteria Description Broad Coverage: Does the article provide an in-depth exploration of the topic and have good coverage?

Score 1 Description Severely lacking; offers little to no coverage of the topic’s primary aspects, resulting in a very narrow perspective.

Score 2 Description Partial coverage; includes some of the topic’s main aspects but misses others, resulting in an incomplete portrayal.

Score 3 Description Acceptable breadth; covers most main aspects, though it may stray into minor unnecessary details or overlook some relevant points.

Score 4 Description Good coverage; achieves broad coverage of the topic, hitting on all major points with minimal extraneous information.

Score 5 Description Exemplary in breadth; delivers outstanding coverage, thoroughly detailing all crucial aspects of the topic without including

irrelevant information.

Table 6: Scoring Rubrics for both Human and LLM Evaluation

Calls(/it) Tokens(k/it) Time(s/it)

RAG 2 6.37 32.12

ORAG 14.25 24.13 109.83

STORM 88.06 60.71 163.22

Co-STORM 70.30 50.52 154.14

RAPID 31.04 43.62 127.19

Table 7: Results of pipeline efficiency evaluation. We
evaluated the average API calls, token consumption, and
the total duration time of generating an article.

3. As shown in the table, although the first three
simple baselines consume less time and resources,
they struggle to generate reliable articles. In
contrast, RAPID not only produces high-quality
articles but also significantly reduces API usage
and time consumption compared to STORM
and Co-STORM. Additionally, we analyzed the
proportion of time consumed at each stage by
STORM, Co-STORM, and RAPID, as illustrated
in Figure 5. The results indicate that both
STORM and Co-STORM predominantly allocate a
substantial amount of time to the pre-writing stage,
leading to significant time consumption. This is
largely due to their reliance on an agent-based

Outline Generation Stage

Generation Stage

Information Seeking Stage

STORM

Co-STORM

RAPID

Pre-writing Stage

Figure 5: The distribution of time consumed in each
stage of the pipelines.

dialogue mechanism during the pre-writing phase,
which is inherently difficult to optimize further. In
contrast, RAPID drastically reduces the time spent
in the pre-writing stage through its parallelized
information collection approach, enabling more
efficient resource allocation across all stages.

E Case Study

We utilized RAPID to generate an article on the
topic of AlphaFold. The complete outline and writ-
ing plan are illustrated in Figures 15 and 16, re-
spectively. Due to space limitations, only a small
portion of the final generated article is presented in
Figure 17. This case demonstrates that RAPID is
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capable of effectively generating a coherent writing
plan and producing a comprehensive and consistent
long-form article.
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Topic Summarization

You are an expert in utilizing search engines effectively. You are currently compiling information
for a wiki page based on a given topic. Now that you have obtained content returned by search
engines regarding this topic, please analyze whether there are any ambiguities or multiple concepts
associated with it. If the topic is clear, generate a brief introduction based on the search engine
content to clarify the concept for subsequent writing, ensuring that the introduction remains within
three sentences.

Topic you are discussing about: <topic>

Gathered information from search engines: <search results>

Now give your response. Make sure that only the introduction is outputted. Do not repeat the input
prompt.

Figure 6: Prompt used for Topic Summarization

RAG Outline Generation

Write an outline for a Wikipedia page.
Here is the format of your writing:
1. Use "#" Title" to indicate section title, "##" Title" to indicate subsection title, "###" Title" to
indicate subsubsection title, and so on.
2. Do not include other information.
3. Do not include topic name itself in the outline.

The topic you want to write: <topic>

Brief intro of the topic: <brief info>

Outlines of similar topics: <similar topic outline>

Write the outline of the topic:

Figure 7: Prompt used for RAG Outline Generation
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Attributes Extraction

Generate attributes for a specified topic with its outline. The generated attributes should summarize
all information needed to write the wiki page for this topic. Please avoid creating complex
attributes; ensure that each attribute represents a distinct and indivisible aspect.
Here is the format of your response:
1. Generate attributes, each on a new line, ensuring no additional tags or formatting are included.
2. Do not include other information.
3. Do not include topic name itself in the attribute list.

Topic: <topic>

Outline: <outline>

Attributes:

Figure 8: Prompt used for Attributes Extraction

Attributes to Queries

You want to search the info of attributes of the topic using Google search. What do you type in the
search box? Write the queries you will use in the following format:
- query 1
- query 2
- ...
- query n

Topic you are discussing about: <topic>

The attributes of the topic: <attributes>

Now give your response. Make sure that only queries are output. Do not repeat the input prompt

Figure 9: Prompt used for Attributes to Queries
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Queries Merging

I want you to act as a researcher gathering information to compose a wiki article on a specific
topic. You are now presented with a topic and a list of queries designed to gather information
for the topic. Your task is to modify or enhance the query list based on the relevant topics and
their queries. Ensure that the final queries comprehensively encompass information beneficial for
writing about the topic and are suitable for use in Google searches. Do not repeat the input prompt.
Here is the format of your response:
- query 1
- query 2
- ...
- query n

The topic you are discussing about: <topic>

The queries of the topic: <queries>

The similar topics with their queries: <similar topics with queries>

The final response of the queries:

Figure 10: Prompt used for Queries Merging

Operation Generation

You are improving an outline for a wiki page. Now I will give you a draft outline and some titles
of the searched results. You can do three operations:
add section
delete section
do nothing

Please list the operations you need to do:
-[add section] : section_title
-[delete section] : section_title
If nothing is needed to do, please just generate:
-[do nothing]

Directly write the operations and do not include any other information.

The topic you want to write: <topic>

The draft outline: <outline>

Titles of the searched results: <titles>

Please generate the operations:

Figure 11: Prompt used for Operation Generation
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Outline Refinement

You are improving an outline for a wiki page. Now I will give you a draft outline and some
operations like:
-[add section]
-[delete section]
-[do nothing]
Please proceed with the operations for the outline and then refine the overall outline. Directly
write the refined outline and do not include any other information.

The topic you want to write: <topic>

The draft outline: <outline>

The operations: <operations>

Please generate the refined outline:

Figure 12: Prompt used for Outline Refinement

Plan Generation

You are an experienced wiki writer. I will provide you with a topic with its outline to write. I want
you to generate a writing plan for this outline to improve the coherence of the article. The plan
defines which sections is needed to be generated before the current section. Try to choose the
sections that can help improve the coherence and fluency of the current section. For example,
sections like ’Background’ don’t need extra information while sections like ’Introduction’ or
’Conclusion’ need all other sections. Please just generate the plan for the first level sections and
make sure that the plan is in a valid topological order. If no extra information is needed, generate
"None". All the needed sections are connected by ’<-’ and make sure that they are all from the
first level sections of outline. Just output the plan and do not explain.

Here is an example: <example>

Topic: <topic>

Outline: <outline>

Generate the plan of the given topic and outline(do not repeat the outline):

Figure 13: Prompt used for Plan Generation
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Section Writing

Write a Wikipedia section based on the collected information. Here is the format of your writing:
1. Use "#" Title" to indicate section title, "##" Title" to indicate subsection title, "###" Title" to
indicate subsubsection title, and so on.
2. Use [1], [2], ..., [n] in line (for example, "The capital of the United States is Washington,
D.C.[1][3].").
You DO NOT need to include a References or Sources section to list the sources at the end.
The collected information: <collected info>

The topic of the page: <topic>

The other sections of the page: <other sections>

The section you need to write: <section title>

The outline of the section: <section outline>

Write the section with proper inline citations (Start your writing with # section title. Don’t include
the page title or try to write other sections):

Figure 14: Prompt used for Section Writing
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AlphaFold

# Background
# Development
## Origin of the project
## Collaboration with scientific communities
# Algorithm
## Neural network architecture
## Training datasets
## AlphaFold 1
## AlphaFold 2
## Updates and enhancements in Alpha-
Fold 3
## AlphaFold 3 Pairformer and advance-
ments
# Protein Structure Predictions
## Methodology
## Accuracy and reliability
## Comparison with experimental methods
# Competitions and Benchmarks
## CASP12
## CASP13
## CASP14
## CASP15
# Applications
## Drug discovery
## Enzyme engineering
## Understanding diseases
## Environmental research

## Synthetic biology
## Role in antibody characterization
## Use of AlphaFold in predicting genetic
mutation impacts
# Database
## AlphaFold Protein Structure Database
## Accessibility and usage
## Global impact on research
# Source Code and Open Access
## Release of AlphaFold source code
## Community contributions and forks
# Limitations
## Known issues
## Challenges in complex protein assemblies
## Limitations with membrane proteins and
disordered regions
## Limitations in predicting intrinsically dis-
ordered regions
# Reception and Impact
## Scientific community
## General public
## Ethical considerations
# Future Directions
## Enhancements in accuracy
## Integration with other biological tools
## Expansion to other molecular complexes

Figure 15: The complete outline of AlphaFold generated by RAPID.

AlphaFold

Background: Development
Development: Algorithm,
Algorithm: Protein Structure Predictions, Competitions and Benchmarks, Limitations
Protein Structure Predictions: Applications, Limitations
Competitions and Benchmarks: None
Applications: Database,Reception and Impact
Database: Source Code and Open Access
Source Code and Open Access: None
Limitations: Reception and Impact
Reception and Impact: Future Directions
Future Directions: None

Figure 16: The writing plan for AlphaFold generated by RAPID. Each section is a dependency for the sections
listed as its values; "None" indicates that the section does not serve as a dependency for any other section.
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AlphaFold

# Development
## Origin of the Project
The development of AlphaFold emerged from a long-standing challenge in the field of structural
biology: accurately predicting protein structures based on amino acid sequences, a problem
often referred to as the "protein-folding problem." This issue had persisted as one of the most
significant puzzles in biology for over five decades, with limited progress despite numerous
scientific efforts[2]. DeepMind, a subsidiary of Alphabet Inc., initiated the AlphaFold project with
the goal of leveraging advances in artificial intelligence, particularly deep learning, to address this
challenge. The project culminated in the release of AlphaFold 2 in 2020, a system that achieved
near-experimental accuracy in many cases and fundamentally reshaped the landscape of protein
structure prediction[3].

## Collaboration with Scientific Communities
The development and adoption of AlphaFold have been significantly bolstered by its integration
with and support from scientific communities. Following its launch, AlphaFold quickly became
a focal point of discussion and collaboration within the structural biology field. For instance,
researchers like Pedro Beltrao from ETH and EMBL-EBI initiated joint studies based on results
shared on social media platforms, turning the excitement surrounding AlphaFold into a collective
research effort. This bottom-up approach exemplified the enthusiasm and openness fostered by
AlphaFold’s innovations, allowing scientists from various institutions to collaborate and build
upon shared findings[4]. Moreover, AlphaFold embraced the principles of open science by
releasing its predictions and source code, alongside the establishment of an open-access protein
structure database containing over 200 million protein structures. This democratized access to
cutting-edge resources and enabled researchers globally to integrate AlphaFold’s predictions into
their work, regardless of institutional funding or geographic location. By adhering to transparency,
accessibility, and collaboration, AlphaFold not only advanced the field of protein structure
prediction but also inspired open science initiatives in other disciplines[2].

# Algorithm
## AlphaFold 1
The first iteration of AlphaFold debuted in the Critical Assessment of Structure Prediction
(CASP13) competition, marking a significant milestone in protein structure prediction. While
AlphaFold 1 relied on traditional homology modeling approaches combined with deep learning
techniques, its ability to predict protein structures with reasonable accuracy laid the groundwork
for future advancements. This version introduced key innovations in handling sequence alignments
and template-based predictions, setting the stage for subsequent breakthroughs[5].

## AlphaFold 2
AlphaFold 2 represented a transformative leap in protein structure prediction. Unveiled during
CASP14, it utilized a completely redesigned architecture to achieve near-experimental accuracy
in many cases. Unlike its predecessor, AlphaFold 2 did not rely solely on homology modeling
or templates but could predict structures for previously unknown protein folds[6][5]. The model
introduced innovations such as the incorporation of attention mechanisms and pairwise geometric
features, enabling it to accurately model spatial relationships between amino acids. These advances
allowed AlphaFold 2 to excel at decoupling the training and inference tasks, a unique approach
that optimized the system for both learning from data and making predictions[7][6].

Figure 17: A segment of the AlphaFold article generated by RAPID.
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