
Findings of the Association for Computational Linguistics: ACL 2025, pages 1663–1699
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Towards Efficient LLM Grounding for Embodied
Multi-Agent Collaboration

Yang Zhang1*†, Shixin Yang2∗, Chenjia Bai3,5‡,
Fei Wu4, Xiu Li1, Zhen Wang2, Xuelong Li3

1Tsinghua University, 2Northwestern Polytechnical University,
3Institute of Artificial Intelligence (TeleAI), China Telecom, 4Zhejiang University,

5Shenzhen Research Institute of Northwestern Polytechnical University

Abstract

Grounding the reasoning ability of large lan-
guage models (LLMs) for embodied tasks is
challenging due to the complexity of the physi-
cal world. Especially, LLM planning for multi-
agent collaboration requires communication of
agents or credit assignment as the feedback to
re-adjust the proposed plans and achieve effec-
tive coordination. However, existing methods
that overly rely on physical verification or self-
reflection suffer from excessive and inefficient
querying of LLMs. In this paper, we propose a
novel framework for multi-agent collaboration
that introduces Reinforced Advantage feedback
(ReAd) for efficient self-refinement of plans.
Specifically, we perform critic regression to
learn a sequential advantage function from
LLM-planned data, and then treat the LLM
planner as an optimizer to generate actions that
maximize the advantage function. It endows
the LLM with the foresight to discern whether
the action contributes to accomplishing the final
task. We provide theoretical analysis by extend-
ing advantage-weighted regression in reinforce-
ment learning to multi-agent systems. Exper-
iments on Overcooked-AI and a difficult vari-
ant of RoCoBench show that ReAd surpasses
baselines in success rate, and also significantly
decreases the interaction steps of agents and
query rounds of LLMs, demonstrating its high
efficiency for grounding LLMs. More results
are given at https://read-llm.github.io/.

1 Introduction

Benefiting from large-scale text corpora from the
web (Devlin et al., 2019; Radford et al., 2019;
Brown et al., 2020; Raffel et al., 2020), LLMs ab-
sorb vast world knowledge for decision-making.
Recent research (Firoozi et al., 2023; Yao et al.,
2023b; Song et al., 2023a) has shown that LLMs
can perform planning and solve embodied tasks

*Equal Contributions.
†Work done during the internship at TeleAI.
‡Correspondence to: <baicj@chinatelecom.cn>.

using zero-shot or few-shot example prompting,
based on a closed-loop framework to refine LLM
outputs through feedback. Existing methods that
design a closed-loop framework can be roughly
divided into two lines. Specifically, one line of
research adopts self-reflection by performing self-
evaluation by LLMs to improve the plan genera-
tion of LLM planner (Shinn et al., 2023; Yao et al.,
2023b; Hao et al., 2023; Liu et al., 2023b); and the
other works perform physical verification by using
feedback from the external environment to dynam-
ically replan depending on unexpected feedback
(Huang et al., 2022b; Song et al., 2023a). Despite
these efforts, the feedback is often sparse or heuris-
tic, and a more principled feedback mechanism for
LLM-based embodied task planning is still lacking.

The challenge becomes even more pronounced
in embodied multi-agent settings, where LLM-
based agents must communicate and negotiate to
cooperate effectively. Both self-reflection and phys-
ical verification struggle to evaluate the impact of
individual actions on team outcomes, leading to
inefficiencies such as excessive LLM queries or
frequent environmental interactions. For instance,
RoCo (Mandi et al., 2023) integrates physical veri-
fication to refine LLM-generated actions in multi-
agent scenarios but suffers from poor efficiency
due to excessive interactions. As shown in Fig-
ure 1, RoCo requires excessive interaction to ob-
tain physical feedback and queries to LLMs to get
feasible joint-action plans, resulting in the failure.
In contrast, various methods in Multi-Agent Rein-
forcement Learning (MARL) (Zhang et al., 2021)
have developed value or advantage decomposition
theories (Rashid et al., 2020; Kuba et al., 2022a,b),
which evaluate individual contributions on a team
outcome and improve the coordination. Inspired by
these principles, we ask "How can we enhance the
reasoning efficiency of LLMs for embodied multi-
agent collaboration with theoretical supports of
MARL?". Our objective is to develop an efficient

1663

https://read-llm.github.io/

Task: Sweep Yellow and Green cubes Bob Prompt
Alice Prompt

You are Alice, and you
are collaborating with Bob
-[Task Context] [Observation]
-[Agent Capability] [History]
-Improve plans with
[Env Feedback].

Your response:

Multi-Agent Dialog Bob Prompt
Alice Prompt

You are Alice, and you
are collaborating with Bob

Your response:

Alice

Bob

Multi-Agent Dialog

-[Task Context] [Observation]
-[Agent Capability] [History]
- Critic: [Advantage Score].
- The higher the value, the
more helpful the answer is.
- If the value < [Threshold],
you need revise the plan.

……..

……..

……..
I am Alice, the cube you
sweep has a wrong color.

I am Bob, I apologize for
the confusion. I will…

The maximum steps meet,
mission failed.

I am Alice, cube-1 is
close to me, I will move..
I am Bob, cube-1 is very
far from me, can we …

(a) The task snapshot (b) Multi-Agent negotiation with env. feedback (RoCo) (c) Multi-Agent negotiation with Adv. feedback (Ours)

I am Alice. I will move to
cube-1. Adv. score is 1.3.
I am Bob. I will move &
sweep cube-1. Adv. is 1.2.

I am Alice. I will move to
cube-6. Adv. score is -0.5.

I am Alice. Adv. of plan is
too low. A revised plan is..
I am Bod. I will move to
cube-7. Adv. score is 1.0.

……..
All eligible cubes are
swept, mission success.

I am Alice, according to
your new plan, I plan to..

Figure 1: An illustration of the negotiation process of RoCo and our method. RoCo interacts with the environment
for each plan and takes the environment’s feedback as prompts. In contrast, our method takes the advantage function
(Adv.) evaluated by a critic as feedback, and revises the plan if the advantage value is lower than the threshold,
which significantly reduces the interaction rounds to the environment.

feedback and refinement algorithm by utilizing
multi-agent advantage functions, for multi-agent
planning assisted by LLMs.

To this end, we propose Reinforced Advantage
(ReAd), a closed-loop feedback mechanism for
LLMs in embodied multi-agent collaboration.
ReAd offers two plan refinement schemes: (i) Joint
Plan Refinement (named ReAd-J) evaluates the
advantage of joint actions, which requires LLMs
to generate the joint plans of all agents at once;
(ii) Sequential Individual Plan Refinement (named
ReAd-S) evaluates the local advantages of each
agent’s action based on multi-agent advantage de-
composition (Kuba et al., 2022a), which allows
LLMs to generate actions for each agent sequen-
tially. Both advantages are estimated by a critic net-
work that regresses LLM-planned data. Based on
the critic, an LLM planner is used as an optimizer
by prompting to generate actions that maximize the
advantage value. Otherwise, the LLM planner is
required to re-plan if the advantage value is small.
We provide a theoretical motivation for such a pro-
cess by extending advantage-weighted regression
(Peng et al., 2019) to multi-agent settings. In ex-
periments, we extend RoCoBench (Mandi et al.,
2023) to a difficult variant, which we term DV-
RoCoBench. Results on DV-RoCoBench and our
adapted Overcooked-AI show that ReAd signifi-
cantly decreases the interaction and query rounds,
and also surpasses baselines in success rate, high-
lighting its effectiveness for grounding LLMs in
multi-agent collaboration tasks.

2 Preliminaries

We consider a Markov game, which is defined
by a tuple ⟨N ,S,A, P, r, γ⟩, in which N de-
notes the set of agents, S denotes state space,

A =
∏n

i=1Ai denotes the product of finite ac-
tion spaces of all agents (i.e., joint action space),
P : S × A × S → [0, 1] denotes the transition
probability function, r : S × A → R denotes
the reward function, and γ ∈ [0, 1) denotes the
discount factor. In the Markov game, every agent
at time step t ∈ N observes the state of environ-
ment st ∈ S and takes an action ait ∈ Ai from
its corresponding policy πi(·|st), which together
with other agents’ actions forms a joint action
at = (a1t , a

2
t , ..., a

n
t) ∈ A drawn from the joint

policy π(·|st) =
∏n

i=1 π
i(·|st). Then agents re-

ceive a shared reward rt = r(st,at) and observe
a new state st+1 with probability P (st+1|st,at).
With the joint policy π and the transition probabil-
ity function P , the state value function is defined
as Vπ(s) ≜ Es1:∞∼P,a0:∞∼π[

∑∞
i=0 γ

iri|s0 = s].
And the state-action value function is defined
as Qπ(s,a) ≜ Es1:∞∼P,a1:∞∼π[

∑∞
i=0 γ

iri|s0 =
s,a0 = a]. We aim at finding a joint pol-
icy to maximize the expected return J(π) ≜
Es0:∞∼P,a0:∞∼π

[∑∞
t=0 γ

trt
]
. In the following,

we consider the LLM planner as a special RL pol-
icy, which can be evaluated by a value function.

3 Methodology

We first give definitions and learning algorithms for
two kinds of advantage functions in §3.1. Then, we
provide theoretical motivation for efficient LLM
grounding by extending advantage-weighted re-
gression to multi-agent settings in §3.2. Finally,
we describe how to derive Reinforced Advantage
(ReAd) feedback from the motivation and use an
LLM planner as an optimizer and refine the plan in
§3.3.

1664

3.1 Learning of Advantage Functions

We first introduce the estimation of joint advantage
function. Then the local advantage is obtained
via advantage decomposition by following theories
from MARL.

Joint Advantage Function. Based on joint
value functions Qπ(s,a) and Vπ(s), we define the
joint advantage function as

Aπ(s,a) ≜ Qπ(s,a)− Vπ(s),

which evaluates the advantage value of joint actions
at = (a1t , a

2
t , ..., a

n
t) from all agents. Aπ(s,a)

will be used for ReAd-J to evaluate the joint plan-
ning of all agents as feedback. Here, we assume
the option of taking no actions is available to each
agent, which is reasonable and common in embod-
ied tasks. With this special action that we term
WAIT, we can estimate the joint advantage using
only Qπ(s,a).

When taking WAIT action a = w, the agent
will keep dormant at the current time step. The
joint WAIT action is denoted as w = (w,w, ..., w).
Choosing w at the current state s signifies all
agents take no actions, then the next state s′ = s
and the agents receive shared reward r(s,w) = 0
since w bring no changes to the environment. Then
we can hold the following relationship. The de-
tailed derivation is provided in §A.1.

Aπ(s,a) = Qπ(s,a)−
1

γ
Qπ(s,w). (1)

Local Advantage Function. In cooperative
multi-agent settings, we can further consider the
contribution to performance in different subsets of
agents’ views. We adopt the standard definition in
MARL to measure the local advantages.

Definition 1. (Kuba et al., 2022a) Let i1:m denote
an ordered subset {i1, ..., im} of N , and let −i1:m
refer to its complement. We mark ik when we re-
fer to the kth agent in the ordered subset. Corre-
spondingly, the multi-agent local state-action value
function is defined as

Qi1:m
π (s,ai1:m) ≜ Ea−i1:m∼π−i1:m

[
Qπ(s,a

i1:m ,a−i1:m)
]

(2)
and for disjoint sets j1:k and i1:m, the multi-agent
local advantage function is

Ai1:m
π (s,aj1:k ,ai1:m) ≜ Qj1:k,i1:m

π (s,aj1:k ,ai1:m)

−Qj1:k
π (s,aj1:k) (3)

Monte Carlo Estimation. Both Eqs. (1) and
(3) can be estimated via the local value function
Qi1:u

π (s,ai1:u) with arbitrary action subset ai1:u .
More precisely, the local advantages can be esti-
mated by changing ai1:u to disjoint action sets or
subsets, and the joint advantages can be obtained
by changing ai1:u to a1:n that contains the joint ac-
tions or the joint WAIT action. In the following, we
denote the underlying policy of the LLM planner
as µ = πllm(a|s). To estimate Qi1:u

µ , we collect a
dataset D by following the behavior policy µ, and
further augment it with enhanced trajectories to
overcome the out-of-distribution (OOD) problem
of action estimation (Levine et al., 2020). Then we
estimate Qi1:u

µ (s,ai1:u) via Monte Carlo estimation
by following Rs,ai1:u =

∑
a−i1:u∈D

∑T
t=0 γ

trt,
where the complement sets is sampled from the
dataset. Then the value function is learned by a
regression loss as

Es,ai1:u∼D
[∥∥Rs,ai1:u −Qi1:u

µ

∥∥2
]
.

We refer to Alg. 1 in §C for the details. The setting
of reward rt depends on the specific task, e.g., for
sweeping cubes in Figure 1, rt = 1 if a correct
cube is swept and rt = 0 otherwise. The details of
data collection are given in §E.6.

Advantage Decomposition. Based on Eq. (2),
we can express the state value function Vπ(s) in
a new form. Given the whole set of agents N =
{1, .., n},

Vπ(s) = Ea1:n∼π1:n

[
Qπ(s,a

1:n)
]
.

Based on Definition 1, we can introduce a pivotal
lemma, which reveals that joint advantage function
can be decomposed into the summation of local
advantages of each agent.

Lemma 1. (Multi-Agent Advantage Decomposi-
tion). In any cooperative Markov games, given a
joint policy π and the whole set of agents N =
{1, .., n}, for any state s, and any ordered set i1:n
of all agents, we have

Aπ(s,a) =

n∑

k=1

Aik
π (s,ai1:k−1 , aik), (4)

where a = (a1, a2, ..., an).

The proof follows Kuba et al. (2022a) and is
given in §A.2. Lemma 1 will be used for derivation
in §3.2.

1665

3.2 Theoretical Motivation for Grounding
LLM

In this section, we give a theoretical motivation that
closely resembles advantage-weighted regression
(Peng et al., 2019) in single-agent RL, while we
extend it for multi-agents via advantage decom-
position in Lemma 1. To achieve efficient LLM
grounding, i.e., to obtain a superior policy to the
LLM planner, one option is adopting LLM as a
basic policy and searching for a stronger policy
than it. Therefore, we derive our objective as an
approximate optimization of a constrained policy
search problem. Specifically, we denote the policy
of LLM planners as µ = πllm(a|s), and our goal
is to find a policy π that maximizes the expected
improvement η(π) = J(π)− J(µ) over the basic
policy µ. Following the performance difference
lemma (Kakade and Langford, 2002; Schulman
et al., 2015), we show the expected improvement
η(π) can be expressed in terms of the advantage
over µ(a|s), as

η(π) = Es∼ρπ(s),a∼π(a|s) [Aµ(s,a)] , (5)

where ρπ(s) =
∑∞

i=0 γ
iP (si = s) is the (unnor-

malized) discounted visitation frequencies over pol-
icy π. Since the objective in Eq. (5) is difficult to
optimize due to the dependency on ρπ(s) and π,
we introduce a surrogate objective η̂(π) to approx-
imate η(π), instructed by Schulman et al. (2015),
as

η̂(π) = Es∼ρµ(s),a∼π(a|s) [Aµ(s,a)] , (6)

with the constraint that the new policy π is close
enough to the basic policy µ1, i.e., the KL diver-
gence between π and µ DKL (π(·|s)∥µ(·|s)) ≤ ϵ.

Optimal Joint Policy. The optimal policy π∗

for the above surrogate constrained optimization
problem is expressed by,

π∗(a|s) = 1

Z(s)
µ(a|s) exp

(
1

β
Aµ(s,a)

)
,

(7)

where Z(s) is the partition function.
Optimal Individual Policy. Following advan-

tage decomposition in Lemma 1, we can decom-
pose the optimal joint policy π∗(a|s) to optimal
individual policies by assuming the agents choose

1We refer to Schulman et al. (2015) for details.

actions sequentially in the order of 1, 2, ..., n, as

π∗(ai|s,a1:i−1)

=
µi(ai|s,a1:i−1)

Zi(s)
exp

(
1

β
Ai

µ(s,a
1:i−1, ai)

)

(8)

where Zi(s) is the partition function. We refer to
§A.3 for a detailed derivation of Eqs. (7) and (8).

By maximizing the expected policy improve-
ment η(π) = J(π) − J(µ), we obtain stronger
joint and individual policies (i.e., π∗(a|s) and
π∗(ai|s,a1:i−1)) over the basic policy µ = πllm.
The key insight behind the policy improvement
is to re-weight the LLM policy with exponential
weights defined in terms of advantages. The advan-
tage function is estimated by local value function
Qi1:u

µ (s,ai1:u), where we calculate it via Monte-
Carlo estimation from a collected dataset D, as we
discussed in §3.1.

3.3 Prompting by Reinforced Advantage
Feedback

Upon the basic policy µ = πllm, the advantage-
weighted solution in Eq. (8) offers a crucial in-
tuition that (i) by increasing the probability of
µi(aipos|s,a1:i−1) for those actions aipos with posi-
tive advantages, i.e., Ai

µ(s,a
1:i−1, aipos) > 0, and

(ii) decreasing the probability of µi(aineg|s,a1:i−1)
for those actions aineg with negative advantages,
i.e., Ai

µ(s,a
1:i−1, aineg) < 0, we can ensure an

expected performance improvement over J(µ).
Therefore, Eq. (8) can be equivalently viewed as
behavior cloning (BC) on the exponential weight-
ing dataset D̄ where the better actions are given
by higher weights eA

i
µ(s,a

1:i−1,ai)/β . When β is
sufficiently small, it becomes BC on a dataset pro-
cessed by binary filtering 1[Ai

µ(s,a
1:i−1, ai) > 0]

where 1 is the indicator function. This provides
an ideal alternative for improving µ without ac-
cess to the exact probability of the sampled action
ai ∼ µi(·|s,a1:i−1), there being convenient for
grounding close-source LLMs. We provide theo-
retical proof for the monotonic improvement with
the binary filtering in §A.4.

Inspired by the binary filtering, we develop a
novel feedback mechanism, wherein the main idea
is to convert the filter 1[Ai

µ(s,a
1:i−1, ai) > ϵ ≥ 0]

into the feedback of LLM-proposed plans with their
corresponding scores Ai

µ(s,a
1:i−1, ai) for refin-

ing the plans. Based on different types of advan-
tages, we design two algorithms for plan refine-

1666

ment: ReAd-S and ReAd-J. The process of prompt-
ing and refinement is depicted in Figure 2. Algo-
rithmic details of ReAd-S and ReAd-J are given in
§C.

Prompting and Refinement for ReAd-S. For
each time step, we initialize an empty action-
set at = {} and follow the order of [1, . . . , n]
for agents in planning. For planning action ait
of agent i at state st, the process of ReAd-S
contains two parts. (i) Prompting as Optimiz-
ing. An LLM planner is given the history of
advantages of previous state-action pairs, i.e.,
H = {(s, (a1:i−1, ai), Ai

µ(s,a
1:i−1, ai))}, and is

prompted to choose an action with the highest ad-
vantage for agent i, which recovers the principle
of advantage-weighted regression. Leveraging the
in-context learning ability, we hope the LLM plan-
ner can induce the advantage values of available
actions implicitly and choose the action ait with
the highest advantage. This process is inspired by
recent work for LLM as optimizer (Yang et al.,
2023), where the agent is prompted to give a plan
that optimizes a score function. (ii) Feedback for
Refinement. Nevertheless, the implicit advantage
maximizing can be hard since the number of avail-
able actions can be large. Thus, we introduce a
refinement process to allow the LLM to refine the
policy if an unsatisfactory action is generated. We
use the pre-trained critic network Qi1:u

θ (s,ai1:u)
with parameter θ to estimate the advantage score
of a generated action, as

SReAd−S(a
i
t) = Ai

θ(st,a
1:i−1
t , ait)

= Q1:i
θ (st,a

1:i−1
t , ait)−Q1:i−1

θ (st,a
1:i−1
t).

Given a threshold ϵ ≥ 0, if the score function is
less than the threshold (i.e., SReAd−S(a

i
t) < ϵ), we

add this failed action to the historyH and prompt
the agent to re-plan. Such a refinement guaran-
tees embodied agents always take the actions with
Ai

θ(st,a
1:i−1
t , ait) > ϵ, further ensuring monotonic

improvements over πllm. It significantly decreases
the interaction rounds of agents since the action
ait has been evaluated and refined via advantage
feedback before execution. In contrast, previous
methods like RoCo need to interact with the envi-
ronment to get physical feedback regardless of the
quality of the generated actions. The refined action
is added into the action-set at ← at∪{ait} and we
then perform sequential decision for agent i+ 1.

Prompting and Refinement for ReAd-J. The
planning process of the LLM planner for ReAd-J is

similar to that of ReAd-S. The main difference is the
LLM planner for ReAd-J is required to give a joint
action at for all agents at once. Meanwhile, we use
the joint advantage function for history prompting
with H = {(s,at, Aµ(st,at))} rather than con-
sidering the local advantages. The score function
is

SReAd−J(at) = Aθ(st,at)

= Qθ(st,at)− 1/γ Qθ(st,w)

based on Eq. (7). The joint plan at is refined if it
is less than a threshold (i.e., SReAd−J(at) < ϵ).

4 Related Works

We discuss with the most relevant literature here
and provide more in-depth discussions in §B.

Grounding LLM with RL. RL with Human
Feedback (RLHF) has been used to align LLM
with human preference through parameter tuning
(Dai et al., 2023; Fernandes et al., 2023; Song et al.,
2023b). In contrast, our work focuses on grounding
closed-source LLM with RL via few-shot prompt-
ing and closed-loop feedback (Zeng et al., 2023;
Wu et al., 2023; Huang et al., 2022a; Lin et al.,
2023b). Previous works tried to integrate RL into
LLM planning under the framework tree search
(Browne et al., 2012). For example, FAFA (Liu
et al., 2023b) and TS-LLM (Feng et al., 2023) learn
an environment model and value function to plan
the subroutine in MCTS. REX (Murthy et al., 2023)
proposes to balance exploration and exploitation
in LLM-based MCTS. Other works like SayCan
(Ahn et al., 2022) and Text2Motion (Lin et al.,
2023d) adopt a model-free manner by learning
value functions to connect LLM knowledge to phys-
ical environments. SwiftSage (Lin et al., 2023a)
performs imitation learning for rapid thinking and
LLM for methodical training. Remember (Zhang
et al., 2023b) learns value functions for LLM to pre-
dict Q-value via exemplars in prompts and select
actions based on Q-values. Unlike the Remem-
ber framework, which retrieves similar states from
a buffer, we evaluate the advantage function of
planned actions via a neural network and follow
advantage-weighted regression in prompting. We
employ the advantage function in a multi-agent set-
ting, while previous methods focus on single-agent
planning. Previous LLM-based multi-agent works
mostly manually designed communication, reflec-
tion, and reasoning modules (Zhang et al., 2023a,c;
Kannan et al., 2023; Chen et al., 2023). CAMEL

1667

Language Model Generated Plans

Plan Prompt

• History of (s, a, Adv)
• task/state/capability

“Please generate plan
with the highest

advantages”

？

Critic Evaluator

scored by Critic

Refinement Prompt

• History of (s, a, Adv)
• task/state/capability

• Failed Plan & Score

Add low-score plan (𝕊𝕊 < 𝜖𝜖)

into Failed Plan & Score List

“You need to refine the plan
as the advantage is low”

reason and generate

Allow high-score
 plan (𝕊𝕊 > 𝜖𝜖) to interact

External Env

Figure 2: An overview of prompting and refinement. For each timestep t, the LLM planner is given the history,
which contains states, actions, and advantages, and is prompted to generate a plan with the highest advantage. The
pre-trained critic is used to evaluate the score of the generated action SReAd(a

i
t). If SReAd(a

i
t) < ϵ, the failed plan

is used as a prompt, and the LLM planer is asked to refine the policy until the SReAd(a
i
t) > ϵ. The (refined) action

is used to interact with the environment, and the LLM planner is processed in the next step.

(Li et al., 2023a) facilitated cooperation among
communicative agents through role-playing and in-
ception prompting, which also includes a critic with
different purposes and does not have theoretical
guarantees. MetaGPT (Hong et al., 2023) similarly
incorporated Standardized Operating Procedures
(SOPs) into LLM-based multi-agent collaborations
where the roles of each agent was predefined by
humans. Compared to previous LLM-based multi-
agent works, we propose a more principled way
by using the sequential advantage function from
multi-agent RL for cooperation.

5 Experiments

We provide the main results and corresponding
analysis on the benchmark DV-RoCoBench adapted
from RoCoBench (Mandi et al., 2023) in this
section. The additional results on the adapted
Overcooked-AI (Carroll et al., 2019) with a detailed
setup description in §D.4 are provided in §E.2.

5.1 Experimental Setup

DV-RoCoBench. We present Difficult Variants of
RoCoBench (DV-RoCoBench) for embodied multi-
robot collaboration, which is derived from Ro-
CoBench (Mandi et al., 2023). RoCoBench con-
sists of 6 multi-robot collaboration tasks in a table-
top manipulation environment, typically involving
interactive objects that are semantically straightfor-
ward to comprehend and reason about for LLMs.
In contrast to RoCoBench, which focuses primarily
on tasks with a fixed difficulty level, we select three
tasks to enrich the complexity of the benchmark
and create the new DV-RoCoBench, where each
task is tailored to have 4-5 difficulty levels for ex-
periments. Due to technically unresolved issues in
the original RoCoBench, we have already selected

all executable tasks to form our newly developed
DV-RoCoBench.

In the following, we give a brief description of
tasks and settings. See §D for details.
- Sweep Floor. Two robot arms need to work

together to sweep all the cubes of given colors
into the bin. We establish 5 difficulty levels
based on the number of overall cubes and the
target cubes.

- Make Sandwich. Two robot arms need to stack
the ingredients to make a sandwich according
to the recipe. Each arm is limited in operat-
ing range and cooperation between agents is re-
quired. We establish 4 difficulty levels depend-
ing on the length of the recipe.

- Sort Cubes. Three robot arms within their oper-
ating ranges are required to coordinate and place
cubes to their target positions. We establish 5
different difficulty levels based on the distance
between the cubes and their target locations.
For quantitative comparisons, we impose the

maximum number of environment steps per
episode to 15 in DV-RoCoBench. And the max-
imum rounds of re-planning per step is set to 15 for
all tasks except for Sort Cubes where it is set to 10.

Baseline Methods. We use GPT-4-Turbo (Ope-
nAI, 2023) as the basic LLM policy for all experi-
ments. Since our ReAd lies in the setting of LLM
grounding on embodied tasks, we mainly choose
LLM-based methods as baselines. On both bench-
marks, we compare ReAd-J with three strong close-
loop baselines – ReAct (Yao et al., 2023b), Reflex-
ion (Shinn et al., 2023) and MindAgent (Gong et al.,
2023), and a planner named Central Plan which in-
structs the LLM to generate actions for all robots
based on the history of all agents. These five meth-
ods output agents’ plans in a parallel manner. In

1668

DV-RoCoBench, we particularly add one more base-
line RoCo (Mandi et al., 2023) which achieves the
state-of-the-art performance in RoCoBench (Mandi
et al., 2023), for comparisons with ReAd-S. Both of
them generate joint plans in a sequential manner. A
detailed comparison among all chosen algorithms
is provided in Table 3 of §E.1.

Evaluation Metrics. We evaluate the perfor-
mance of algorithms on three metrics that closely
resemble that in RoCoBench: (i) SR: the success
rate of completing tasks within the limited interac-
tion rounds; (ii) ES: the number of interaction steps
to the environment taken by the robots to complete
the task; (iii) NQ: the number of queries to LLMs
in completing the task, which measures the effi-
ciency in enquiring LLMs to obtain a feasible plan.
An algorithm is better if it has higher SR, fewer
ES, and fewer NQ. Among these metrics, SR and
ES directly reflect the effectiveness of a planner
in completing tasks, while NQ can be somewhat
trivial since a planner can have much fewer queries
to LLM but has a low SR. In contrast, methods
that require policy refinement often require more
queries to lead to a high SR.

5.2 Results
ReAd-S and ReAd-J outperform their corre-
sponding strong baselines on all metrics and
achieve more efficient LLM grounding. As
shown in Figure 3, the performance gap in SR be-
comes pronounced gradually with increasing diffi-
culty level in DV-RoCoBench. In more challenging
scenarios (e.g., level 4 or 5 in tasks), our approach
obtains higher success rates while baselines show
limited progress. Meanwhile, ReAd-S and ReAd-J
exhibit lower ES and comparable or even lower NQ
across most tasks in DV-RoCoBench when com-
pared to their baselines. A lower ES indicates that
prompting LLMs to generate actions that maximize
advantages can enhance the optimality of the pro-
posed plans, as higher advantages suggest that the
generated actions contribute more effectively to
task completion. A similar trend is also observed
in the result on the adapted Overcooked-AI shown
in Figure 9. By replacing the physical verification
feedback with advantage function, we implicitly
perform one-step monotonic policy improvement
over the base LLM in a tuning-free manner, re-
sulting in a stronger LLM planner. On the other
hand, as the scenario becomes more challenging
for multi-agent collaboration, it is inevitable to in-
volve more redundant information and disturbing

Table 1: Evaluation results over 10 runs of ReAd-S
and RoCo and its modified versions on disturbances at
timestep n. We present the disturbance as resetting the
environment. n = 0: no resetting.

Method NQ ES SR

ReAd-S 22.1±1.65 8.9±0.28 1.0±0.00
recipe3 RoCo-L 44.7±4.90 12.0±0.54 0.9±0.10
(n = 0) RoCo-P 33.7±3.16 11.5±0.95 0.8±0.13

RoCo 33.7±3.16 11.5±0.95 0.8±0.13

ReAd-S 39.7±5.30 10.4±0.34 1.0±0.00
recipe3 RoCo-L 55.3±2.63 14.1±0.28 0.8±0.13
(n = 1) RoCo-P 33.6±2.03 12.5±0.73 0.9±0.10

RoCo 46.3±3.60 13.9±0.43 0.7±0.15

ReAd-S 44.9±4.34 12.5±0.34 1.0±0.00
recipe3 RoCo-L 53.4±2.28 14.8±0.20 0.3±0.15
(n = 2) RoCo-P 35.2±0.98 14.3±0.26 0.8±0.13

RoCo 61.2±11.95 14.2±0.44 0.5±0.16

ReAd-S 49.1±4.53 13.4±0.54 1.0±0.0
recipe3 RoCo-L 75.9±6.91 15.0±0.00 0.0±0.00
(n = 3) RoCo-P 40.0±2.94 14.3±0.26 0.5±0.17

RoCo 74.8±10.79 15.0±0.00 0.0±0.00

components in the environment, which poses a chal-
lenge for the LLM planner to capture and reason
about the essential part inside the state and phys-
ical feedback. In contrast, benefiting from ReAd
feedback, the LLM planner only needs to concen-
trate on how to maximize the advantage score no
matter how challenging the scenario is. Hence, our
approach exhibits superior planning capabilities
and better LLM grounding results for embodied
tasks. Additionally, we evaluate the performance
of the open-source model Llama-3.1-70B-Instruct
(Dubey et al., 2024) equipped with our algorithm
on the Y2_G3 task. The result is provided in §E.4.

With sudden disturbances towards the envi-
ronments, the LLM-planner can re-adjust plans
rapidly to accomplish the task via ReAd feed-
back. Since the critic takes both the current state
and the proposed actions as input, it endows the
LLM planner with not only the foresight to dis-
cern whether the action contributes to realizing the
goal but also the ability to reschedule the planning
quickly when encountering sudden disturbances to
the advancement of the task. To evaluate the robust-
ness of the LLM planner, we compare ReAd-S and
RoCo in extra extended scenarios with unexpected
disruptions. We select recipe3 (3rd difficulty level
in Make Sandwich) that takes a minimum environ-
ment step of 8 to accomplish the task. When a dis-
ruption occurs at timestep n (0 ≤ n < 8, n ∈ N),
we reset the task and reinitialize the state with-
out giving any hints about this resetting in the
prompt and clearing previous history information

1669

1 2 3 4 5
0

10

20

30

40

50
NQ

Sweep Floor

1 2 3 4

Make Sandwich

ReAd-J Central ReAct Reflexion MindAgent ReAd-S RoCo

1 2 3 4 5

Sort Cubes

1 2 3 4 5
0

5

10

15

ES

Sweep Floor

1 2 3 4

Make Sandwich

1 2 3 4 5

Sort Cubes

1 2 3 4 5
Task difficulty level

0%

25%

50%

75%

100%

SR

Sweep Floor

1 2 3 4
Task difficulty level

Make Sandwich

1 2 3 4 5
Task difficulty level

Sort Cubes

Figure 3: We report mean SR (↑), ES (↓), and NQ (↓) in 3 tasks with various difficulty levels averaged over 10
random seeds. The detailed score is given in Table 4 of §E.3.

contained in the prompt. Specifically, the “adver-
sarial” case affects the LLM-based agent from two
aspects: (i) the description of current state sreset
which is given to the LLM planner before plan-
ning; (ii) the unexpected transition of environment
after executing an action. It raises an intractable
challenge as the remaining historical information
becomes misaligned with the actual situation. The
lack of a complete description of the sudden dis-
ruption significantly increases the likelihood of the
LLM planner proposing erroneous actions. To elim-
inate the influence induced by the different history
information utilized between ReAd-S and RoCo,
we provide two more variants of RoCo as base-
lines. One uses only the history of the previous
round, which we name RoCo-L, while the other
is informed with descriptions of the sudden dis-
turbance, which we name RoCo-P. The evaluation
results are shown in Table 1. A larger step n sig-
nifies a more severe influence of disturbance. As
n increases from 0 to 3, ReAd-S consistently out-
performs RoCo and its variants on SR and ES. Al-
though RoCo retains a high SR under n = 1, 2, it
fails to recalibrate the misalignment between the re-
maining history information and the actual status of
the environment, leading to a significant drop in SR
when n = 3. Regardless of what kind of history
information RoCo relies on, consistent superior
performance demonstrates that ReAd feedback al-
leviates the potentially severe hallucination issue
and brings reliable robustness.

5.3 Ablation Studies

Plan refinement has a remarkable impact on
grounding LLM. The advantage score plays two

Table 2: The performance of the multi-step and single-
step version of ReAd-S and ReAd-J on the Y3_G3 task.

NQ ES SR

ReAd-J(Multi-Step) 16.4±0.54 13.4±0.27 0.8±0.13
ReAd-J(Single-Step) 19.1±1.25 14.1±0.28 0.6±0.16

ReAd-S(Multi-Step) 31.4±1.11 14.0±0.26 0.8±0.13
ReAd-S(Single-Step) 35.1±1.16 14.5±0.17 0.6±0.16

roles in ReAd: (i) prompting as optimizing for gen-
erating actions with the highest score, and (ii) feed-
back as refinement for re-plan if the score is less
than a threshold. The policy refinement makes our
method a multi-step process since the action can
be refined for multi-rounds. To investigate the role
of plan refinement, we adopt a single-step version
by removing the second role, which forms an open-
loop plan generation without refinement. In Table
2, we denote the original version as Multi-Step
and the open-loop version as Single-Step. We pick
the most difficult variant Y3_G3 in Sweep Floor
and observe a marginal decline in both efficiency
and success rates in Single-Step. It suggests that
plan refinement that ensures monotonic policy im-
provement is crucial for performance. Interestingly,
ReAd-J(Single-Step) can also achieve a consider-
able success rate of 60%, which is dramatically
comparable or superior to the baselines with physi-
cal verification as feedback.

6 Conclusion

We have presented ReAd as a novel LLM feedback
for closed-loop planning in multi-agent collabora-
tion. We provide theoretical motivation based on
multi-agent advantage-weighted regression. The

1670

LLM is prompted to generate plans with high ad-
vantages and perform policy refinement. The ex-
periments on DV-RoCoBench and Overcooked-AI
show that our method outperforms physical feed-
back with improved efficiency. Moreover, the ad-
vantage feedback can handle sudden disturbances
and is crucial for refinement.

Limitations

Due to the limitation of currently available bench-
mark for embodied multi-agent collaboration eval-
uation, most of our experiments are conducted in 2
or 3-agent scenarios. In a case with an increasing
number of agents, theoretically speaking, ReAd-J
would be hindered by the exponential growth of
the joint state-action space while ReAd-S could
maintain consistent performance by scoring in the
individual state-action space, enjoying the bene-
fit of sequential decision-making manner. How-
ever, it also necessitates more computational costs
and time for dataset collection in such a scenario.
Thus, how our proposed ReAd feedback mecha-
nism practically scales under scenarios with many
agents remains fascinating. To this end, building
a well-established embodied many-agent collabo-
ration benchmark is essential, which provides an
opportunity to push our algorithm to the limit. We
consider investigating the ReAd feedback mecha-
nism in the many-agent scenario and tackling the
potential limitation in future works. Future works
also include extending the advantage feedback to
multi-objective and safe planning scenarios. Last
but not least, we provide extended discussion on
Symbol Grounding Problem (Harnad, 1990) in §F.

Acknowledgements

We would like to thank Prof. Zhuoran Yang for
his insightful discussions and comments. This
work is supported by the National Key Re-
search and Development Program of China (Grant
No.2024YFE0210900), the National Natural Sci-
ence Foundation of China (Grant No.62306242),
the Young Elite Scientists Sponsorship Pro-
gram by CAST (Grant No.2024QNRC001), and
the Yangfan Project of the Shanghai (Grant
No.23YF11462200).

References
Jacob Abernethy, Alekh Agarwal, Teodor V Marinov,

and Manfred K Warmuth. 2023. A mechanism for

sample-efficient in-context learning for sparse re-
trieval tasks. arXiv preprint arXiv:2305.17040.

Michael Ahn, Anthony Brohan, Yevgen Chebotar,
Chelsea Finn, Karol Hausman, Alexander Herzog,
Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan
Julian, Dmitry Kalashnikov, Sergey Levine, and et al.
2022. Do as i can, not as i say: Grounding language
in robotic affordances. In Annual Conference on
Robot Learning.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas,
Tengyu Ma, and Denny Zhou. 2023. What learn-
ing algorithm is in-context learning? investigations
with linear models. In International Conference on
Learning Representations.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli
Ding, Danny Driess, Avinava Dubey, Chelsea Finn,
Pete Florence, Chuyuan Fu, Montse Gonzalez Are-
nas, Keerthana Gopalakrishnan, Kehang Han, Karol
Hausman, Alexander Herzog, and et al. 2023a. RT-2:
vision-language-action models transfer web knowl-
edge to robotic control. CoRR, abs/2307.15818.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alexander Herzog,
and et al. 2023b. Rt-1: Robotics transformer for
real-world control at scale. In Robotics: Science and
Systems.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems.

Cameron B Browne, Edward Powley, Daniel White-
house, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, and Simon Colton. 2012. A survey
of monte carlo tree search methods. IEEE Transac-
tions on Computational Intelligence and AI in games,
4(1):1–43.

Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L.
Griffiths, Sanjit A. Seshia, Pieter Abbeel, and Anca
Dragan. 2019. On the utility of learning about hu-
mans for human-ai coordination. Proceedings of the
33rd International Conference on Neural Information
Processing Systems.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas
Roy, and Chuchu Fan. 2023. Scalable multi-
robot collaboration with large language models:
Centralized or decentralized systems? CoRR,
abs/2309.15943.

1671

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Open X.-Embodiment Collaboration. 2023. Open x-
embodiment: Robotic learning datasets and RT-X
models. CoRR, abs/2310.08864.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo
Xu, Mickel Liu, Yizhou Wang, and Yaodong Yang.
2023. Safe rlhf: Safe reinforcement learning from
human feedback. arXiv preprint arXiv:2310.12773.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT, pages
4171–4186.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey
Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe
Yu, Wenlong Huang, Yevgen Chebotar, Pierre Ser-
manet, Daniel Duckworth, Sergey Levine, Vincent
Vanhoucke, Karol Hausman, Marc Toussaint, Klaus
Greff, Andy Zeng, Igor Mordatch, and Pete Florence.
2023. Palm-e: An embodied multimodal language
model. In International Conference on Machine
Learning, volume 202, pages 8469–8488.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen,
Weinan Zhang, and Jun Wang. 2023. Alphazero-like
tree-search can guide large language model decoding
and training. arXiv preprint arXiv:2309.17179.

Patrick Fernandes, Aman Madaan, Emmy Liu, António
Farinhas, Pedro Henrique Martins, Amanda Bertsch,
José GC de Souza, Shuyan Zhou, Tongshuang Wu,
Graham Neubig, et al. 2023. Bridging the gap: A sur-
vey on integrating (human) feedback for natural lan-
guage generation. arXiv preprint arXiv:2305.00955.

Roya Firoozi, Johnathan Tucker, Stephen Tian,
Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke
Zhu, Shuran Song, Ashish Kapoor, Karol Hausman,
Brian Ichter, Danny Driess, Jiajun Wu, Cewu Lu,
and Mac Schwager. 2023. Foundation models in
robotics: Applications, challenges, and the future.
CoRR, abs/2312.07843.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane
Durante, Yusuke Noda, Zilong Zheng, Song-Chun
Zhu, Demetri Terzopoulos, Li Fei-Fei, et al. 2023.
Mindagent: Emergent gaming interaction. arXiv
preprint arXiv:2309.09971.

Yanjiang Guo, Yen-Jen Wang, Lihan Zha, Zheyuan
Jiang, and Jianyu Chen. 2023. Doremi: Ground-
ing language model by detecting and recovering
from plan-execution misalignment. arXiv preprint
arXiv:2307.00329.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Stevan Harnad. 1990. The symbol grounding problem.
Physica D: Nonlinear Phenomena, 42(1-3):335–346.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023.
Metagpt: Meta programming for multi-agent collabo-
rative framework. arXiv preprint arXiv:2308.00352.

Mengkang Hu, Yao Mu, Xinmiao Yu, Mingyu Ding,
Shiguang Wu, Wenqi Shao, Qiguang Chen, Bin
Wang, Yu Qiao, and Ping Luo. 2023a. Tree-planner:
Efficient close-loop task planning with large language
models. arXiv preprint arXiv:2310.08582.

Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang
Gao. 2023b. Look before you leap: Unveiling the
power of gpt-4v in robotic vision-language planning.
arXiv preprint arXiv:2311.17842.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022a. Language models as zero-
shot planners: Extracting actionable knowledge for
embodied agents. In International Conference on
Machine Learning, pages 9118–9147. PMLR.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu
Li, Jiajun Wu, and Li Fei-Fei. 2023. Voxposer: Com-
posable 3d value maps for robotic manipulation with
language models. In Annual Conference on Robot
Learning.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, Pierre Sermanet,
Tomas Jackson, Noah Brown, Linda Luu, Sergey
Levine, Karol Hausman, and brian ichter. 2022b. In-
ner monologue: Embodied reasoning through plan-
ning with language models. In Annual Conference
on Robot Learning.

Sham Kakade and John Langford. 2002. Approximately
optimal approximate reinforcement learning. In In-
ternational Conference on Machine Learning, page
267–274.

Shyam Sundar Kannan, Vishnunandan L. N. Venkatesh,
and Byung-Cheol Min. 2023. Smart-llm: Smart
multi-agent robot task planning using large language
models. CoRR, abs/2309.10062.

1672

Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen,
Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. 2022a. Trust region policy optimisation in
multi-agent reinforcement learning. In International
Conference on Learning Representations, ICLR.

Jakub Grudzien Kuba, Xidong Feng, Shiyao Ding,
Hao Dong, Jun Wang, and Yaodong Yang. 2022b.
Heterogeneous-agent mirror learning: A contin-
uum of solutions to cooperative MARL. CoRR,
abs/2208.01682.

Harold W. Kuhn and Albert W. Tucker. 1950. Nonlinear
programming. In Berkeley Symposium on Mathemat-
ical Statistics and Probability, page 481–492.

Sergey Levine, Aviral Kumar, George Tucker, and Justin
Fu. 2020. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023a. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008.

Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun
Yu, Jie Xu, Hongtao Wu, Chilam Cheang, Ya Jing,
Weinan Zhang, Huaping Liu, Hang Li, and Tao Kong.
2023b. Vision-language foundation models as effec-
tive robot imitators. CoRR, abs/2311.01378.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. 2023. Code as policies: Language model pro-
grams for embodied control. In IEEE International
Conference on Robotics and Automation, pages 9493–
9500. IEEE.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brah-
man, Shiyu Huang, Chandra Bhagavatula, Prithviraj
Ammanabrolu, Yejin Choi, and Xiang Ren. 2023a.
Swiftsage: A generative agent with fast and slow
thinking for complex interactive tasks. In Neural
Information Processing Systems.

Bill Yuchen Lin, Chengsong Huang, Qian Liu, Wenda
Gu, Sam Sommerer, and Xiang Ren. 2023b. On
grounded planning for embodied tasks with language
models. In AAAI Conference on Artificial Intelli-
gence, volume 37, pages 13192–13200.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner,
Pieter Abbeel, Dan Klein, and Anca Dragan. 2023c.
Learning to model the world with language. arXiv
preprint arXiv:2308.01399.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco
Pavone, and Jeannette Bohg. 2023d. Text2motion:
from natural language instructions to feasible plans.
Auton. Robots, 47(8):1345–1365.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023a. Llm+ p: Empowering large language models

with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi
Ke, Boyi Liu, and Zhaoran Wang. 2023b. Reason
for future, act for now: A principled architecture for
autonomous llm agents. In NeurIPS 2023 Foundation
Models for Decision Making Workshop.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-
An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. 2023. Eu-
reka: Human-level reward design via coding large
language models. CoRR, abs/2310.12931.

Zhao Mandi, Shreeya Jain, and Shuran Song. 2023.
Roco: Dialectic multi-robot collaboration with large
language models. CoRR, abs/2307.04738.

Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai
Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng Dai,
Yu Qiao, and Ping Luo. 2023. EmbodiedGPT: Vision-
language pre-training via embodied chain of thought.
In Neural Information Processing Systems.

Rithesh Murthy, Shelby Heinecke, Juan Carlos Niebles,
Zhiwei Liu, Le Xue, Weiran Yao, Yihao Feng,
Zeyuan Chen, Akash Gokul, Devansh Arpit, et al.
2023. Rex: Rapid exploration and exploitation for ai
agents. arXiv preprint arXiv:2307.08962.

OpenAI. 2023. Gpt-4 technical report.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey
Levine. 2019. Advantage-weighted regression: Sim-
ple and scalable off-policy reinforcement learning.
CoRR, abs/1910.00177.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:140:1–140:67.

Tabish Rashid, Mikayel Samvelyan, Chris-
tian Schroeder de Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2020. Monotonic
value function factorisation for deep multi-agent
reinforcement learning. Journal of Machine
Learning Research, 21(178):1–51.

John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. 2015. Trust region pol-
icy optimization. In International Conference on
Machine Learning, pages 1889–1897.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning. In Neural Information Process-
ing Systems.

1673

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B
Tenenbaum, Leslie Pack Kaelbling, and Michael
Katz. 2023. Generalized planning in pddl do-
mains with pretrained large language models. arXiv
preprint arXiv:2305.11014.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M. Sadler, Wei-Lun Chao, and Yu Su. 2023a.
Llm-planner: Few-shot grounded planning for em-
bodied agents with large language models. In
IEEE/CVF International Conference on Computer
Vision (ICCV).

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei
Huang, Yongbin Li, and Houfeng Wang. 2023b. Pref-
erence ranking optimization for human alignment.
arXiv preprint arXiv:2306.17492.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and
Ashish Kapoor. 2023. Chatgpt for robotics: Design
principles and model abilities. Microsoft Auton. Syst.
Robot. Res, 2:20.

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shrid-
har, Chen Bao, Yuzhe Qin, Bailin Wang, Huazhe Xu,
and Xiaolong Wang. 2023a. Gensim: Generating
robotic simulation tasks via large language models.
CoRR, abs/2310.01361.

Yen-Jen Wang, Bike Zhang, Jianyu Chen, and Koushil
Sreenath. 2023b. Prompt a robot to walk with large
language models. CoRR, abs/2309.09969.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang,
Yian Wang, Zackory Erickson, David Held, and
Chuang Gan. 2023c. Robogen: Towards unleash-
ing infinite data for automated robot learning via
generative simulation. CoRR, abs/2311.01455.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Zhenyu Wu, Ziwei Wang, Xiuwei Xu, Jiwen Lu,
and Haibin Yan. 2023. Embodied task plan-
ning with large language models. arXiv preprint
arXiv:2307.01848.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul
Mineiro, and Alekh Agarwal. 2021. Bellman-
consistent pessimism for offline reinforcement learn-
ing. Advances in neural information processing sys-
tems, 34:6683–6694.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu,
Qian Luo, Victor Zhong, Yanchao Yang, and Tao Yu.
2023a. Text2reward: Automated dense reward func-
tion generation for reinforcement learning. CoRR,
abs/2309.11489.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao,
Min-Yen Kan, Junxian He, and Qizhe Xie. 2023b.
Self-evaluation guided beam search for reasoning.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen,
Jiangmiao Pang, and Dahua Lin. 2023. Pointllm:
Empowering large language models to understand
point clouds. arXiv preprint arXiv:2308.16911.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2023.
Large language models as optimizers. Preprint,
arXiv:2309.03409.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. 2023a. Tree of thoughts: Deliberate
problem solving with large language models. In Neu-
ral Information Processing Systems.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023b. React: Synergizing reasoning and acting
in language models. In International Conference on
Learning Representations.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kir-
mani, Kuang-Huei Lee, Montse Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasen-
clever, Jan Humplik, Brian Ichter, Ted Xiao, Peng Xu,
Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa
Sadigh, Jie Tan, Yuval Tassa, and Fei Xia. 2023. Lan-
guage to rewards for robotic skill synthesis. CoRR,
abs/2306.08647.

Andy Zeng, Maria Attarian, brian ichter,
Krzysztof Marcin Choromanski, Adrian Wong,
Stefan Welker, Federico Tombari, Aveek Purohit,
Michael S Ryoo, Vikas Sindhwani, Johnny Lee, Vin-
cent Vanhoucke, and Pete Florence. 2023. Socratic
models: Composing zero-shot multimodal reasoning
with language. In International Conference on
Learning Representations.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang,
Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. 2023a. Proa-
gent: Building proactive cooperative ai with large
language models. arXiv preprint arXiv:2308.11339.

Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu,
Zihan Zhao, and Kai Yu. 2023b. Large language

1674

https://arxiv.org/abs/2309.03409

models are semi-parametric reinforcement learning
agents. In Neural Information Processing Systems.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong
Zhou, Yilun Du, Joshua Tenenbaum, Tianmin Shu,
and Chuang Gan. 2023c. Building cooperative em-
bodied agents modularly with large language models.
In NeurIPS 2023 Foundation Models for Decision
Making Workshop.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. 2021.
Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Studies in Sys-
tems, Decision and Control, 325:321 – 384.

Zirui Zhao, Wee Sun Lee, and David Hsu. 2023.
Large language models as commonsense knowl-
edge for large-scale task planning. arXiv preprint
arXiv:2305.14078.

Zhehua Zhou, Jiayang Song, Kunpeng Yao, Zhan Shu,
and Lei Ma. 2023. Isr-llm: Iterative self-refined
large language model for long-horizon sequential
task planning. arXiv preprint arXiv:2308.13724.

1675

A Theoretical Proof

A.1 Derivation of Joint Advantage Function with Joint Action WAIT
The state-action value function with respect to the joint action WAIT w can be expressed by,

Qπ(s,w) = Es1:∞∼P,a1:∞∼π

[∑∞
i=0

γiri
∣∣s0 = s,a0 = w

]

= γEs2:∞∼P,a1:∞∼π

[∑∞
i=0

γiri+1

∣∣s1 = s
]

= γVπ(s).

Therefore, the joint advantage function can be derived by using only the Qπ function, as

Aπ(s,a) = Qπ(s,a)− Vπ(s)

= Qπ(s,a)−
1

γ
Qπ(s,w).

A.2 Proof of Multi-Agent Advantage Decomposition
Proof. With the definition of the multi-agent local advantage function in Eq. (3), we can have
n∑

k=1

Aik
π (s,ai1:k−1 , aik) =

n∑

k=1

Qi1:k
π (s,ai1:k)−Q

i1:k−1
π (s,ai1:k−1)

= Qi1:n
π (s,ai1:n)−Q

i1:n−1
π (s,ai1:n−1) +Q

i1:n−1
π (s,ai1:n−1)−Q

i1:n−2
π (s,ai1:n−2)

+ ...+Qi1:1
π (s,ai1:1)−Qi1:0

π (s,ai1:0)

= Qi1:n
π (s,ai1:n)−Qi1:0

π (s,ai1:0)

= Qπ(s,a)− Vπ(s)

= Aπ(s,a).

A.3 Derivation of Optimal Joint Policy and Optimal Individual Policy
In this section, we begin with the constrained policy search problem. Following the performance difference
lemma (Kakade and Langford, 2002), the expected improvement η(π) = J(π)− J(µ) can be expressed
by

Es0,a0,...∼π

[∞∑

t=0

γtAµ(st,at)

]
= Es0,a0,...∼π

[∞∑

t=0

γt (r(st,at) + γVµ(st+1)− Vµ(st))

]

= Es0,a0,...∼π

[
−Vµ(s0) +

∞∑

t=0

γtr(st,at)

]

= −Es0∼p(s0) [Vµ(s0)] + Es0,a0,...∼π

[∞∑

t=0

γtr(st,at)

]

= −J(µ) + J(π). (9)

We can rewrite Eq. (9) with an expectation over states using discounted visitation frequencies ρπ(s),

η(π) = Es0,a0,...∼π

[∞∑

t=0

γtAµ(st,at)

]
=

∞∑

t=0

∫

s
p(st = s|π)

∫

a
π(a|s)γtAµ(s,a) da ds

=

∫

s

∞∑

t=0

γtp(st = s|π)
∫

a
π(a|s)Aµ(s,a) da ds

=

∫

s
ρπ(s)

∫

a
π(a|s)Aµ(s,a) da ds, (10)

1676

where ρπ(s) =
∑∞

t=0 γ
tp(st = s|π) represents the (unnormalized) discounted visitation frequencies over

policy π and p(st = s|π) is the likelihood of the agent at state s after following π for t timesteps. Our
goal is to find the optimal policy π∗ that maximizes the expected improvement η(π).

However, it’s intractable to sample over the target policy π, further causing that the objective in Eq. (10)
can be difficult to optimize. Following (Schulman et al., 2015), we can introduce an approximation η̂(π)
of η(π) using the discounted visitation frequencies over the old policy µ,

η̂(π) =

∫

s
ρµ(s)

∫

a
π(a|s)Aµ(s,a) da ds.

η̂(π) matches η(π) to first order (Kakade and Langford, 2002), and provides a good estimate of η if π
is close enough to µ. In practice, we initialize the target policy π with the LLM policy µ to satisfy the
above condition. Therefore, we can formulate the following constrained policy search problem,

argmax
π

∫

s
ρµ(s)

∫

a
π(a|s)Aµ(s,a) da ds, (11)

s.t. DKL (π(·|s)∥µ(·|s)) ≤ ϵ, ∀s, (12)∫

a
π(a|s) da = 1, ∀s. (13)

However, enforcing the pointwise KL constraint in Eq. (12) at all states is intractable. To simplify the
constrained optimization problem, we relax the hard KL constraint by converting it into a soft constraint
in an expectation form, as

argmax
π

∫

s
ρµ(s)

∫

a
π(a|s)Aµ(s,a) da ds,

s.t.

∫

s
ρµ(s)DKL (π(·|s)∥µ(·|s)) ds ≤ ϵ,

∫

a
π(a|s) da = 1, ∀s.

Next, we form the Lagrangian, as

L(π, β, ν) =
∫

s
ρµ(s)

∫

a
π(a|s)Aµ(s,a) da ds+ β

(
ϵ−

∫

s
ρµ(s)DKL (π(·|s)∥µ(·|s)) ds

)

+

∫

s
νs

(
1−

∫

a
π(a|s) da

)
ds,

where ν = {νs|∀s ∈ S} and β > 0 correspond to the Lagrange multipliers.

Derivation of Optimal Joint Policy. Differentiating L(π, β, ν) with respect to π(a|s) gives the fol-
lowing,

∂L
∂π(a|s) = ρµ(s)Aµ(s,a)− βρµ(s) logπ(a|s) + βρµ(s) logµ(a|s)− βρµ(s)− νs. (14)

According to KKT conditions (Kuhn and Tucker, 1950), if (π∗, β∗, ν∗) is a saddle point of L, π∗ is the
optimal solution of the primal problem. Thus, let Eq. (14) be equal to zero, then we have

logπ∗(a|s) = 1

β∗Aµ(s,a) + logµ(a|s)− 1− 1

ρµ(s)

ν∗s
β∗ , (15)

π∗(a|s) = µ(a|s) exp
(

1

β∗Aµ(s,a)

)
exp

(
− 1

ρµ(s)

ν∗s
β∗ − 1

)
. (16)

1677

Note that the primal problem holds the constraint
∫
a π(a|s) da = 1, the second exponential term is

consequently viewed as the partition function Z(s) that normalizes the conditional action distribution,

Z(s) = exp

(
1

ρµ(s)

ν∗s
β∗ + 1

)
=

∫

a′
µ(a′|s) exp

(
1

β∗Aµ(s,a
′)
)

da′. (17)

Optimal Joint Policy is then given by,

π∗(a|s)︸ ︷︷ ︸
Left-Hand Side

=
1

Z(s)
µ(a|s) exp

(
1

β∗Aµ(s,a)

)

︸ ︷︷ ︸
Right-Hand Side

. (18)

Derivation of Optimal Individual Policy. Given the set of agents N = {1, 2, ..., n}, we assume the
agents choose actions sequentially in the order of 1, 2, ..., n, i.e., agents i is aware of current state s and
the chosen actions of agents 1, 2, ..., i− 1 and select actions based on that. The following equation holds
by the support of the definition of conditional probability,

π(a|s) =
n∏

i=1

πi(ai|s,a1:i−1), (19)

where πi is the individual policy of agent i. Here we consider a general case that the old joint policy and
the target joint policy are both in a sequential manner. Following multi-agent advantage decomposition in
Lemma 1, the LHS and RHS of Eq. (18) can be expressed respectively (in order to present the Optimal
Individual Policy we omit the superscript of it which denotes agent id),

LHS =
n∏

i=1

π∗(ai|s,a1:i−1), (20)

RHS =
1

Z(s)

n∏

i=1

µi(ai|s,a1:i−1) exp

(
1

β∗A
i
µ(s,a

1:i−1, ai)

)

=
n∏

i=1

1

Zi(s)
µi(ai|s,a1:i−1) exp

(
1

β∗A
i
µ(s,a

1:i−1, ai)

)
. (21)

Thus, we can get the expression of Optimal Individual Policy,

π∗(ai|s,a1:i−1) =
1

Zi(s)
µi(ai|s,a1:i−1) exp

(
1

β∗A
i
µ(s,a

1:i−1, ai)

)
, (22)

where Zi(s) is the partition function that normalizes the conditional action distribution π∗(ai|s,a1:i−1)
of agent i and satisfies Z(s) =

∏n
i=1 Z

i(s). Finally, all that remains for us to do is to derive the validity
of Z(s) =

∏n
i=1 Z

i(s).
Since Zi(s) is the partition function that normalizes the conditional action distribution π∗(ai|s,a1:i−1),

we can have,

Zi(s) =

∫

ai
µi(ai|s,a1:i−1) exp

(
1

β∗A
i
µ(s,a

1:i−1, ai)

)
dai. (23)

Meanwhile, we can rewrite Eq. (17) after applying multi-agent advantage decomposition in Lemma 1,

Z(s) =

∫

a
µ(a|s) exp

(
1

β∗Aµ(s,a)

)
da (24)

=

n∏

i=1

∫

ai
µi(ai|s,a1:i−1) exp

(
1

β∗A
i
µ(s,a

1:i−1, ai)

)
dai (25)

=
n∏

i=1

Zi(s). (26)

Beyond the general case, if we consider a special case that the old policy µ is in a parallel manner (i.e.,
µ =

∏n
i=1 µ

i(ai|s)) while the target policy remains in a sequential manner, we can still derive similar
results, differing only by the modification from µi(ai|s,a1:i−1) to µi(ai|s).

1678

A.4 Proof of Monotonic Improvement with Binary Filtering
Proposition 1. (Relationship between Exponential Weighting and Binary Filtering). In terms of the
weight eA

i
µ(s,a

1:i−1,ai)/β in Exponential Weighting where β > 0, for any Ai
µ(s,a

1:i−1, ai) < 0, we have
the following limitation,

lim
β→0+

exp(
Ai

µ(s,a
1:i−1, ai)

β
) = 0 , for ∀Ai

µ(s,a
1:i−1, ai) < 0 (27)

As β → 0+, Exponential Weighting becomes a special case – Binary Filtering where the samples with
Ai

µ(s,a
1:i−1, ai) < 0 are filtered out.

Proof. We first define the minimum of the absolute value of those negative Ai
µ,

α = min
Ai

µ<0
|Ai

µ| = min
Ai

µ<0
−Ai

µ

To achieve Eq. (27), we only need to ensure that the rate at which eA
i
µ(s,a

1:i−1,ai)/β approaches zero is
faster than the rate at which β approaches zero. One way to guarantee this is to choose β such that it is
proportional to the absolute value of A. Thus, we define β = k · α where k is a positive hyperparameter.
Then we have,

exp

(
Ai

µ(s,a
1:i−1, ai)

β

)
≤ exp

(−α
β

)
= exp

(−1
k

)

Finally, for any positive ϵ > 0, there exists a positive k > 0, it holds the following:

exp

(−1
k

)
< ϵ

Taking the natural logarithm of both sides, we get:

k ln(ϵ) + 1 > 0 (28)

With an arbitrary ϵ > 0, we can always find a k that satisfies Eq. (28), further satisfying Eq. (27).

Proposition 2. (Policy improvement with Binary Filtering). By behaviour cloning (BC) on a filtered
dataset with Binary Filtering 1[Ai

µ(s,a
1:i−1, ai) > ϵ] where ϵ ≥ 0, new policy π is superior to the basic

policy µ, i.e., J(π)− J(µ) > 0.

Proof. According to BC on a filtered dataset with Binary Filtering 1[Ai
µ(s,a

1:i−1, ai) > ϵ], we have:

πi(ai|s,a1:i−1) =
1[Ai

µ(s,a
1:i−1, ai) > ϵ]µi(ai|s,a1:i−1)

Zi(s)
(29)

where Zi(s) is the partition function. Given the new policy π(a|s) =∏n
i=1 π

i(ai|s,a1:i−1), the expected
improvement from Eq. (6) can be rewritten as,

η̂(π) = Es∼ρµ(s),a∼π(a|s) [Aµ(s,a)]

= Es∼ρµ(s)Ea1∼π1(a1|s)Ea2∼π2(a2|s,a1) · · ·Ean∼πn(an|s,a1:n−1) [Aµ(s,a)]

Substituting Lemma 1 and Eq. (29) into the above equation, we get:

η̂(π) = Es∼ρµ(s)Ea1∼π1(a1|s)Ea2∼π2(a2|s,a1) · · ·Ean∼πn(an|s,a1:n−1)

[
n∑

i=1

Ai
µ(s,a

1:i−1, ai)

]

= Es∼ρµ(s)

[
n∑

i=1

Eai∼πi(ai|s,a1:i−1)

(
Ai

µ(s,a
1:i−1, ai)

)
]

= Es∼ρµ(s)

[
n∑

i=1

Eai∼µi(ai|s,a1:i−1)

(
1[Ai

µ(s,a
1:i−1, ai) > ϵ]Ai

µ(s,a
1:i−1, ai)

Zi(s)

)]
(30)

1679

And we note that the expected improvement from Eq. (6) entails the following relationship,

η̂(µ) = J(µ)− J(µ) = Es∼ρµ(s),a∼µ(a|s) [Aµ(s,a)]

= Es∼ρµ(s)

[
n∑

i=1

Eai∼µi(ai|s,a1:i−1)

(
Ai

µ(s,a
1:i−1, ai)

)
]

= 0 (31)

Comparing Eq. (30) with Eq. (31), it is obvious that those local advantages Ai
µ(s,a

1:i−1, ai) below the
threshold ϵ would not be calculated in the expectation η̂(π). Hence, when the threshold ϵ ≥ 0 it naturally
holds η̂(π) > η̂(µ) = 0, i.e., J(π)− J(µ) > 0.

B Additional Related Works

Task Planning with LLMs. LLMs (Chowdhery et al., 2023; OpenAI, 2023; Touvron et al., 2023a,b)
trained on a large-scale corpus exhibits notable reasoning abilities via in-context learning (Dong et al.,
2022; Abernethy et al., 2023; Akyürek et al., 2023). However, LLMs can also give infeasible plans for
embodied agents due to the lack of real-world knowledge. A line of research modifies the open-loop
planning framework to a closed-loop one via self-evaluation and reflection. For example, ReAct (Yao
et al., 2023b), Reflexion (Shinn et al., 2023), and BeamSearch (Xie et al., 2023b) incorporate the feedback
of an LLM evaluator in the prompts after the previous plan is completed. Other works integrate domain
knowledge of embodied agents in feedback. For example, RoCo (Mandi et al., 2023) and Inner Monologue
(Huang et al., 2022b) design physical verification such as collision checking, object recognition, and scene
description for feedback. DoReMi (Guo et al., 2023) leverages LLM to generate physical constraints, and
ViLA (Hu et al., 2023b) adopts Vision-Language Model (VLM) as a constraint detector for verification.
Another line of research develops advanced reasoning frameworks, including chain-of-thought (Wei et al.,
2022; Mu et al., 2023) and tree-of-thought (Yao et al., 2023a). Works like (Zhao et al., 2023; Hao et al.,
2023) consider LLMs as a world model (Lin et al., 2023c) and adopt tree search in planning (Hu et al.,
2023a). Other works adopt the planning domain definition language (PDDL) for searching in long-horizon
problems (Silver et al., 2023; Liu et al., 2023a; Zhou et al., 2023). Our work lies in closed-loop frameworks
but has a novel advantage function in feedback, which is different from self-reflection or physical feedback
and does not rely on advanced searching algorithms.

Other LLM-based Embodied Agent. Beyond task planning, LLMs also shoulder other roles for
embodied agents. (i) Foundation Policy. Robot Transformer (Brohan et al., 2023b,a), PaLM-E (Driess
et al., 2023), Open-X (Collaboration, 2023), and RoboFlamingo (Li et al., 2023b) use pre-trained LLM
or VLM as the foundation policies and fine-tune the parameters with embodied data from real-world
tasks. The LLM tokens and action tokens of agents are unified in fine-tuning. (ii) Code Generator.
Given high-level task descriptions, LLMs can generate executable code by calling the basic control
primitives (Liang et al., 2023; Vemprala et al., 2023) or low-level actions (Wang et al., 2023b) of embodied
agents. VoxPoser (Huang et al., 2023) leverages the code-writing capabilities of LLMs to compose 3D
value maps via VLM and adopt model-predictive control (MPC) for planning. (iii) Reward Designer.
Text2Reward (Xie et al., 2023a), Language2Reward (Yu et al., 2023), and Eureka (Ma et al., 2023)
leverage GPT-4 to produce interpretable reward codes, and allow iterative refinement with feedback. (iv)
Data Generator. To enhance task-level generalization, GenSim (Wang et al., 2023a) adopts LLMs to
propose task curriculum and novel sub-tasks to solve complex tasks. RoboGen (Wang et al., 2023c)
proposes a closed-loop process to generate robot data, including proposing tasks, generating simulation
environments, decomposing sub-tasks, and solving sub-tasks via RL or MPC.

C Algorithmic Description

In this section, we give the algorithm descriptions of critic regression via Monte Carlo estimation, as well
as the process of ReAd-S and ReAd-J algorithms. We highlight the difference between ReAd-S and ReAd-J
by different colors.

1680

Algorithm 1 Critic regression on D following µ = πllm

Require: data buffer D, batch size B, critic Qθ, the set of agents N
for iteration k = 1, ...,M do

for all ordered subsets {i1, i2, ..., iu} ⊆ N do
compute Monte Carlo return estimatesRs,ai1:u

Rs,ai1:u =
∑

a−i1:u∈D

T∑

t=0

γtrt

update estimated critic Qi1:u
θ by using

argmin
Q

i1:u
µ

Es,ai1:u∼D
[∥∥Rs,ai1:u −Qi1:u

µ

∥∥2
]

end for
end for

Algorithm 2 ReAd-S: Reinforced Advantage Feedback with Sequential Individual Plan Refinement

Require: agent name u1, ..., uN , task horizon T , refinement threshold α, history buffer H , critic Qθ

Denotation: dialog d; agent ui’s plan ai

initialize timestep t← 0
initialize observation s0 ← env.reset()
while t < T do

initialize joint action at = {} and history H = {}
set α← 2α
for i = 1, ..., N do

initialize the history of evaluated action-score pairs P = {}
repeat
d, ait ← LLMPrompt(H, st, u

i
t,P)

SReAd−S(a
i
t) = Q1:i

θ (st,a
1:i−1
t , ait)−Q1:i−1

θ (st,a
1:i−1
t)

P ← P ∪ {(st,a1:i−1
t , ait,SReAd−S(a

i
t))}

α← α/2
until SReAd−S(a

i
t) > α

H ← H ∪ {d}
end for
σt ←MotionPlanner(ot,at)
ot+1, done← env.step(σt)
if done is True then

break
end if

end while

1681

Algorithm 3 ReAd-J: Reinforced Advantage Feedback with Joint Plan Refinement

Require: agent name u1, ..., uN , task horizon T , pick action threshold α, history buffer H , critic Qθ,
discount factor γ
Denotation: dialog d; Joint WAIT action w
set H = {}
initialize timestep t← 0
initialize observation s0 ← env.reset()
while t < T do

set α← 2α
initialize the history of evaluated action-score pairs P = {}
repeat
d,at ← LLMPrompt(H, st, [u

1, ..., uN],P)
SReAd−J(at) = Qθ(st,at)− 1

γQθ(st,w)
P ← P ∪ {(st,at, SReAd−J(at))}
α← α/2

until SReAd−J(at) > α
H ← {d}
σt ←MotionPlanner(ot,at)
ot+1, done← env.step(σt)
if done is True then

break
end if

end while

D Environment Details

We use Difficult Variants of RoCoBench (DV-RoCoBench) adapted from RoCoBench (Mandi et al.,
2023) and Overcooked-AI (Carroll et al., 2019) in our experiments. DV-RoCoBench involves three tasks:
Sweep Floor, Make Sandwich and Sort Cubes. And we choose two representative scenarios – Cramped
Room and Forced Coordination from Overcooked-AI in our experiments. In this section, we present a
comprehensive overview of the task specifications along with the difficulty modifications we have made
in DV-RoCoBench and the scenario specifications in two scenarios of Overcooked-AI.

As for DV-RoCoBench, we directly inherit the action set and quantity of robots from RoCoBench, but
design diverse task goals to introduce different difficulty levels. In original RoCoBench, the action set is
not the same among different tasks.

As for Overcooked-AI, different scenarios share the same action space but are initialized with different
kitchen layouts.

D.1 Sweep Floor
Task Description. In this task, the two robots are positioned on opposite sides of the table. Each robot
arm equipped with a dustpan and broom must collaborate to efficiently sweep all cubes of the designated
color into the dustpan. Subsequently, the robot that holds the dustpan is responsible for disposing of the
collected cubes in the trash bin. In this environment, two distinct types of robots with different action sets
are used.

1. UR5E robot holding a dustpan (‘Alice’): can move to all cubes and can perform only three operations:
MOVE, DUMP, and WAIT.

2. Franka Panda holding a broom (‘Bob’): can move to all cubes and can perform only three operations:
MOVE, SWEEP, and WAIT.

3. Action sets: (i) MOVE [target]: target can only be a cube. (ii) DUMP: pour all cubes in the dustpan
into the trash bin. (iii) SWEEP [target]: sweep the target cube into the dustpan. (iv) WAIT.

1682

Difficulty Settings. We shift the task goal from sweeping away all the cubes to sweeping away the
cubes of a given color. We establish 5 distinct difficulty levels based on the number of cubes and the
number of the target cubes. By increasing the difficulty level step by step, the quantity of all cubes and the
cubes of a given color increase also gradually, as shown in Figure 4.

Y1_G1 Y1_G2 Y2_G2 Y2_G3 Y3_G3

Figure 4: The initial states of the 5 difficulty levels in modified Sweep Floor. The yellow and green squares are the
ones to be swept in this task. The first three tasks have a total of 7 squares, while the last two have 9. We assess
task difficulty based on the number of cubes to be swept and the total cube number. For example, the Y1_G1 in the
figure represents 1 yellow cube and 1 green cube needs to be swept.

D.2 Make Sandwich
Task Description. In this task, two robots are positioned on opposite sides of a table to assemble a
sandwich based on a given recipe, requiring collaborative effort to collect and stack the ingredients in the
specified order until all components have been properly arranged. This environment accommodates two
distinct types of robots capable of executing all actions in the action set. Each robot has a restricted range
to manipulate the cubes.

1. UR5E robot (‘Chad’): can only retrieve the food on the right side.

2. Humanoid robot (‘Dave’): can only retrieve the food on the left side.

3. Action set: 1) PICK [object]: object must be a food. 2) PUT [object] on [target]: object must be a
food and target could be a food, cutting_board, or table. 3) WAIT.

Difficulty Settings. We establish 4 distinct difficulty levels dependent on the length of the recipe. A
longer recipe requires more complex collaboration between humanoid and robot arm. The recipe lengths
for these different settings are set to 3, 5, 7, and 9, respectively, as shown in Figure 5.

recipe1 recipe2 recipe3 recipe4

Figure 5: The initial states of the 4 difficulty levels in modified Make Sandwich. The initial three tasks shared the
same food and layout, differing only in the length of the recipe. Conversely, the final task presented distinct food
and layout, accompanied by a lengthier recipe. The recipe lengths for four tasks are set to 3, 5, 7, and 9, respectively.

D.3 Sort Cubes
Task Description. The task requires three robots positioned on opposite sides of a table to collaboratively
place three target blocks in specific locations, utilizing their limited range of motion and assisting each

1683

other as needed. The current environment consists of three robots capable of executing all actions in the
action set, albeit with limited mobility range.

1. UR5E with robotic gripper (‘Alice’): must put the blue square on panel2, can only reach: panel1,
panel2, panel3.

2. Franka Panda (‘Bob’): must put pink polygon on panel4, can only reach: panel3, panel4, panel5.

3. UR5E with suction gripper (‘Chad’): must put yellow trapezoid on panel6, can only reach: panel5,
panel6, panel7.

4. Action set: 1) PICK [object] PLACE [panelX]: the object must be a cube and panelX cannot be the
target panel of another cube. 2) WAIT.

Difficulty Settings. We establish 5 difficulty levels based on the distance of the three blocks towards
their corresponding target location. Since each robot has limited range of motion, picking further cube to
the target location requires more complex collaboration between three robot arms.

sort1 sort2 sort3 sort4 sort5

Figure 6: The initial states of the 5 difficulty levels in modified Sort Cubes. In these tasks, we orchestrated the initial
placement of each block, and gauged difficulty based on the cumulative distance between the three blocks and the
target panel. The shape of the three cubes was modified to avoid the robot’s inability to pick up the objects due to
their shape.

D.4 Overcooked-AI
Overcooked-AI (Carroll et al., 2019) is a fully cooperative multi-agent benchmark environment based on
the wildly popular video game Overcooked. In this environment, agents need to deliver soups as fast as
possible. Each soup requires placing up to 3 ingredients in a pot, waiting for the soup to cook, and having
an agent pick up the soup and deliver it. In details, two agents are originally required to make as much
soup as possible in limited timesteps with high coordination efficiency. Agents place a specified number
of onions in a pot, leave them to cook for a specified number of timesteps, put the resulting soup in a dish,
and serve it, giving all agents a reward. The capacity of all agents to pick up items is 1. Every agent can
only carry 1 item such as the dish and the onion.

The environment consists of 5 different kitchen scenarios, covering from low-level motion coordination
challenges to high-level strategy coordination challenges. In our experiment, we chose two representative
scenarios: Cramped Room and Forced Coordination, and set the number of ingredients to make soups
as 2 and the timesteps to cook as 2. Importantly, to enable measuring with the success rate metric, we
modify the task as cooking and delivering a soup to the service counter within a specified number of
timesteps.

The action set of this environment is as follows:

1. north: agent moves one step north. If agent collides with another object, it will not move.

2. south: agent moves one step south. Same as the previous term.

3. east: agent moves one step east. Same as the previous term.

4. west: agent moves one step west. Same as the previous term.

1684

5. interact: agent interacts with a object, including picking up or putting down an item, turning on the
cooking table, and putting the cooked soup in the dish.

6. stay: agent does nothing.

The first four actions (north, south, east, and west) cover the movement of the agent, and the interact
action enables the interaction between the agent and other objects. We use Figure 7 to explain the above
rules:

begin
agent0: south
agent1: east

agent0: interact
agent1: interact

agent0: west
agent1: west

agent0: east
agent1: north

agent0: north
agent1: interact

agent0: stay
agent1: interact

agent0: west
agent1: north

agent0: stay
agent1: stay

agent0: interact
agent1: interact

agent0: east
agent1: stay

agent0: interact
agent1: stay

agent0: south
agent1: stay

agent0: interact
agent1: stay

Figure 7: In 2nd frame, since both agents collide with the workbench, the agents merely change their current
orientation. In 4th frame, since both agents have picked up an object in their hands, executing "interact" again will
not pick up additional items. In 7th frame, agent1 places the onion on the cooking table. And in 8th frame, agent1
turns on the cooking table and starts cooking. In 10th and 11th frames, the soup is done and then put in a dish by
agent0. In the last frame, agent0 serves the cooked soup.

Cramped Room. Two agents collaborate in a relatively small kitchen, and thus two agents must be
extremely careful to avoid collisions in order to complete the cooking task as quickly as possible. The
scenario is shown in the Figure 7.

Forced Coordination. The working spaces of two agents are completely separated, where one agent
only has access to the cooking table and the service counter and the other only has access to onions and
dishes. The scenario is shown in the Figure 8.

E Additional Experimental Results

In this section, we give the detailed experiment results of 3 tasks in DV-RoCoBench and 2 scenarios in
Overcooked-AI. We also show the execution screenshots of our method and baselines in the representative
environments.

1685

Figure 8: In this task, agent0 must wait for agent1 to deliver the onion to the table before agent0 can place it on the
cooking table, and after the soup is ready, agent0 must wait for agent1 to place the plate on the table before it can
serve the soup and deliver it to the service table.

E.1 Comparison among Chosen Algorithms

Table 3: Overview of the key properties that distinguish four methods. (i) State Type: whether the environment
state included in the prompt is global or not; (ii) Planning Scheme: whether LLM output plans sequentially or not;
(iii) History Info: whether all the history before is reserved in the prompt or not.

STATE TYPE PLANNING SCHEME HISTORY INFO FEEDBACK TYPE

ROCO PARTIAL SEQUENTIAL ALL PREVIOUS ROUNDS PHYSICAL VERIFICATION
READ-S PARTIAL SEQUENTIAL LAST ROUND ADVANTAGE SCORE

CENTRAL-PLAN GLOBAL PARALLEL ALL PREVIOUS ROUNDS PHYSICAL VERIFICATION
READ-J GLOBAL PARALLEL LAST ROUND ADVANTAGE SCORE
REACT GLOBAL PARALLEL ALL PREVIOUS ROUNDS PHYSICAL VERIFICATION

REFLEXION GLOBAL PARALLEL ALL PREVIOUS ROUNDS PHYSICAL VERIFICATION
MINDAGENT GLOBAL PARALLEL ALL PREVIOUS ROUNDS PHYSICAL VERIFICATION

E.2 Additional Experiments on adapted Overcooked-AI

We impose the maximum number of environment steps per episode to 20 in Cramped Room, and 25
in Forced Coordination. Specifically, for our adapted Cramped Room and Forced Coordination, we
deliberately set the maximum environment steps almost equal to the least number of environment steps
for accomplishing the task, thereby presenting a challenge for highly effective coordination.

Due to the expensive cost of sequential planning with more environment steps in Overcooked-AI, we
only evaluate the performance of methods that generate joint plans in a parallel manner. Figure 9 illustrates
the results on the adapted Overcooked-AI. As shown in Figure 9, our methods achieve a significantly
higher SR compared with the methods relying on physical verification as feedback in Overcooked-AI.
Due to the heavy coordination challenges inherent to Overcooked-AI, LLM-based agents cannot advance
toward task completion unless the LLM planner generates highly collaborative plans.

Cramped room Forced coordination
0

5

10

15

20

25

30

NQ

ReAd-J Central ReAct Reflexion MindAgent

Cramped room Forced coordination
0

5

10

15

20

25

ES

Cramped room Forced coordination
0%

20%

40%

60%

80%

100%

SR

Figure 9: We report mean SR (↑), ES (↓), and NQ (↓) in two scenarios of Overcooked-AI averaged over 10 random
seeds. The detailed score is given in Table 5 of §E.3.

E.3 Detailed Results on DV-RoCoBench and Overcooked-AI

The results of all experiments are shown in Table 4, and Table 5. SR, NQ and ES represent success rates,
the average number of requests to LLMs, and rounds of environment interactions, respectively. We have
provided a detailed introduction to these metrics in §5.1.

1686

Table 4: The detailed results of the comparison in different tasks with various difficulty levels in DV-RoCoBench.
The mean value and standard error are calculated over 10 random seeds.

ROCO REACT CENTRAL PLAN REFLEXION
SR NQ ES SR NQ ES SR NQ ES SR NQ ES

SWEEP

Y1_G1 0.9±0.32 14.4±5.95 6.2±3.12 1.0±0.00 5.5±0.50 5.5±0.50 0.4±0.52 15.3±0.48 11.2±4.92 1.0±0.00 5.0±0.00 5.0±0.00
Y1_G2 1.0±0.00 24.2±4.18 8.9±1.45 1.0±0.00 8.2±0.25 8.2±0.25 1.0±0.00 7.8±1.99 7.8±1.99 1.0±0.00 7.0±0.00 7.0±0.00
Y2_G2 1.0±0.00 29.1±5.40 10.6±1.35 1.0±0.00 10.0±0.00 10.0±0.00 0.8±0.42 12.7±1.77 12.7±1.77 1.0±0.00 10.1±0.10 10.0±0.00
Y2_G3 0.7±0.48 36.7±6.63 13.5±1.27 0.6±0.16 14.4±0.67 13.8±0.33 0.2±0.42 14.6±0.97 14.6±0.97 0.7±0.15 14.3±0.87 12.9±0.48
Y3_G3 0.6±0.52 41.8±7.73 14.7±0.48 0.4±0.16 15.2±0.25 14.9±0.32 0.0±0.00 15.0±0.00 15.0±0.00 0.3±0.15 15.1±0.23 14.9±0.10

SANDWICH

RECIPE1 1.0±0.00 13.2±3.74 4.7±0.67 1.0±0.00 4.0±0.00 4.0±0.00 1.0±0.00 6.2±0.63 4.0±0.00 1.0±0.00 5.0±0.00 4.0±0.00
RECIPE2 0.9±0.32 28.9±11.25 9.1±2.42 1.0±0.00 6.0±0.00 6.0±0.00 1.0±0.00 8.2±0.42 6.0±0.00 1.0±0.00 6.8±0.13 6.0±0.00
RECIPE3 0.8±0.42 33.7±10.00 11.5±2.99 0.7±0.15 12.9±2.61 10.1±1.07 1.0±0.00 10.2±0.42 8.0±0.00 0.6±0.16 14.9±2.47 10.8±1.14
RECIPE4 0.5±0.53 43.1±17.84 13.1±2.47 0.6±0.16 16.7±2.60 12.5±0.75 0.4±0.52 80.5±53.35 14.2±1.14 0.5±0.17 17.7±2.39 13.1±0.67

SORT

SORT1 1.0±0.00 3.3±0.95 1.1±0.32 1.0±0.00 1.2±0.13 1.0±0.00 1.0±0.00 1.0±0.00 1.0±0.00 1.0±0.00 1.2±0.13 1.0±0.00
SORT2 1.0±0.00 13.5±4.67 3.4±0.52 0.6±0.16 14.8±4.56 7.8±1.96 1.0±0.00 16.9±9.13 2.6±0.52 1.0±0.00 5.5±0.48 2.9±0.10
SORT3 1.0±0.00 18.6±15.10 4.9±2.60 0.8±0.13 19.4±6.18 6.4±1.45 1.0±0.00 8.3±4.32 2.3±0.95 1.0±0.00 6.6±0.50 4.7±0.33
SORT4 1.0±0.00 24.8±9.37 6.4±1.78 0.8±0.13 24.0±11.31 6.1±1.49 1.0±0.00 37.2±25.05 7.1±2.77 0.7±0.13 19.2±6.83 7.1±1.45
SORT5 1.0±0.00 38.5±9.96 7.4±2.95 0.7±0.15 17.3±3.00 8.4±1.59 0.6±0.52 128.4±115.99 11.0±3.97 0.8±0.13 13.9±3.27 6.9±1.43

AVERAGE 0.89±0.19 25.99±8.06 8.25±1.74 0.80±0.09 12.11±2.29 8.19±0.69 0.74±0.17 25.88±15.32 8.39±1.36 0.83±0.06 10.16±1.24 7.59±0.41
MIND READ-S READ-J

SR NQ ES SR NQ ES SR NQ ES

SWEEP

Y1_G1 1.0±0.00 5.0±0.00 5.0±0.00 1.0±0.00 10.4±0.52 5.0±0.00 1.0±0.00 5.9±0.99 5.0±0.00
Y1_G2 1.0±0.00 7.1±0.10 7.1±0.10 1.0±0.00 14.4±0.84 7.0±0.00 1.0±0.00 7.6±0.70 7.0±0.00
Y2_G2 1.0±0.00 9.9±0.18 9.8±0.13 1.0±0.00 19.9±3.28 9.4±0.70 1.0±0.00 13.0±4.32 9.0±0.00
Y2_G3 0.7±0.15 13.4±0.48 13.4±0.48 0.9±0.32 26.8±5.20 12.2±1.32 1.0±0.00 16.4±6.02 11.7±1.49
Y3_G3 0.2±0.13 15.1±0.10 15.0±0.00 0.8±0.42 31.4±3.50 14.0±0.82 0.8±0.42 16.4±1.71 13.4±0.84

SANDWICH

RECIPE1 1.0±0.00 5.1±0.10 4.0±0.00 1.0±0.00 10.5±4.74 4.2±0.42 1.0±0.00 4.3±0.48 4.0±0.00
RECIPE2 1.0±0.00 6.6±0.16 6.0±0.00 1.0±0.00 14.5±2.46 6.4±0.52 1.0±0.00 6.5±0.85 6.0±0.00
RECIPE3 0.7±0.16 12.4±1.92 10.1±1.07 1.0±0.00 22.1±5.22 8.9±0.88 1.0±0.00 14.6±8.04 8.9±1.00
RECIPE4 0.6±0.16 16.5±2.24 12.7±0.72 1.0±0.00 27.9±8.06 11.1±1.73 1.0±0.00 10.8±0.42 10.0±0.00

SORT

SORT1 1.0±0.00 1.2±0.13 1.0±0.00 1.0±0.00 3.4±0.52 1.0±0.00 1.0±0.00 1.1±0.32 1.1±0.32
SORT2 1.0±0.00 6.1±1.12 3.2±0.33 1.0±0.00 10.8±2.53 3.1±0.32 1.0±0.00 7.3±2.91 3.3±0.48
SORT3 0.8±0.13 11.1±3.70 6.2±1.54 1.0±0.00 17.5±2.80 3.9±0.57 1.0±0.00 8.3±3.80 3.4±0.84
SORT4 0.9±0.10 22.6±9.62 5.9±1.12 1.0±0.00 21.6±7.07 3.7±0.67 1.0±0.00 18.8±6.29 4.3±0.95
SORT5 0.8±0.13 18.0±4.12 7.8±1.35 1.0±0.00 33.5±6.35 6.1±0.88 1.0±0.00 17.3±11.87 4.4±1.26

AVERAGE 0.84±0.07 10.72±1.71 7.66±0.49 0.98±0.05 18.91±3.79 6.86±0.63 0.99±0.03 10.59±3.48 6.54±0.51

Table 5: The detailed results of the comparison in two scenarios in Overcooked-AI. The mean value and standard
error are calculated over 10 random seeds.

CRAMPED_ROOM FORCED_COORDINATION AVERAGE
SR NQ ES SR NQ ES SR NQ ES

REACT 0.0±0.00 20.1±0.10 20.0±0.00 0.0±0.00 26.9±0.75 25.0±0.00 0.00±0.00 23.50±0.43 22.50±0.00
REFLEXION 0.0±0.00 20.0±0.00 20.0±0.00 0.0±0.00 26.1±0.60 25.0±0.00 0.00±0.00 23.05±0.30 22.50±0.00

MINDAGENT 0.0±0.00 20.8±0.47 20.0±0.00 0.0±0.00 26.9±0.80 25.0±0.00 0.00±0.00 23.85±0.64 22.50±0.00
CENTRAL 0.0±0.00 20.0±0.00 20.0±0.00 0.0±0.00 25.0±0.00 25.0±0.00 0.00±0.00 22.50±0.00 22.50±0.00
READ-J 0.4±0.16 23.9±1.49 18.9±0.59 0.3±0.15 27.2±0.53 24.8±0.20 0.35±0.16 25.55±1.01 21.85±0.40

E.4 Extended Experiment with Llama-3.1-70B-Instruct
Here, we instead use Llama-3.1-70B-Instruct (Dubey et al., 2024) as the basic LLM policy to validate that
our algorithm can improve the performance of not only the closed-source models but also the open-source
models. We select Y2_G3 as the task for evaluation, and compare our ReAd-J with other baselines
including Central Plan, ReAct, Reflexion and MindAgent. The result is reported in Table 6. In terms of
the prompt and generation parameters of Llama 3.1-70B in additional experiments, we keep the prompt
essentially unchanged. We coarsely search for suitable parameters for the Llama 3.1 70B instruct model.
The current generation parameters are determined by a simple grid search on them. Finally, we set the
temperature as 0 and topp as 0.1.

Most methods have a 10%-20% decline in SR, with a slight increase in NQ and ES. Judging from the
performance of task Y2_G3, GPT-4 has better performance than the Llama-3.1-70B-Instruct. Although
using an open-source model like Llama 3.1-70B might result in suboptimal performance, our ReAd-J
significantly outperforms other baselines based on the same LLM, demonstrating the effectiveness of our
method.

Table 6: The detailed result of the comparison in the task Y2_G3 with Llama-3.1-70B-Instruct as the basic LLM.

ReAd-J Central Plan ReAct Reflexion MindAgent

SR 0.9±0.10 0.0±0.00 0.4±0.16 0.5±0.17 0.7±0.15
NQ 13.6±0.56 15.0±0.00 15.0±0.00 13.7±0.37 14.3±0.15
ES 11.8±0.42 15.0±0.00 15.0±0.00 13.6±0.43 14.3±0.15

E.5 Visualization of Robustness Evaluation
We visualize the robustness comparison between ReAd-S and RoCo for accomplishing Make Sandwich
recipe3 task when the environment resets at timestep n = 2, as shown in Figure 10 and Figure 11.

1687

Chad: PUT tomato bread_slice1
Dave: PICK bacon

reset env
Chad: WAIT
Dave: PICK bread_slice1

Chad: WAIT
Dave: PUT bread_slice1 cutting_board

Chad: PICK tomato
Dave: PICK bacon

Chad: WAIT
Dave: PUT bacon table

Chad: WAIT
Dave: PICK bread_slice1

Chad: WAIT
Dave: PUT bread_slice1 cutting_board

Chad: PICK cucumber
Dave: PUT bacon tomato

begin

Chad: PUT cucumber bacon
Dave: PICK cheese

Chad: PICK ham
Dave: PUT cheese cucumber

Chad: PUT ham cheese
Dave: PICK bread_slice2

Chad: WAIT
Dave: PUT bread_slice2 ham

Figure 10: Screenshots of ReAd-S completing the recipe3 task in robustness test. After the environment is reset,
our method will be affected by the historical dialogue information in a short period. After being prompted by the
advantage function re-evaluated in the new state, our method can make a rapid re-plan based on the new state.

reset env
Chad: PICK tomato
Dave: WAIT

Chad: PUT tomato table
Dave: WAIT

Chad: WAIT
Dave: PICK bread_slice1begin

Chad: WAIT
Dave: PUT bread_slice1 cutting_board

Chad: PICK tomato
Dave: WAIT

Chad: PUT tomato bread_slice1
Dave: WAIT

Chad: WAIT
Dave: PICK bacon

Chad: WAIT
Dave: PUT bacon tomato

Chad: WAIT
Dave: PICK bread_slice2

Chad: WAIT
Dave: PICK cheese

Chad: WAIT
Dave: PUT cheese cucumber

Chad: PICK ham
Dave: WAIT

Chad: PUT ham cheese
Dave: WAIT

Chad: WAIT
Dave: PUT bread_slice2 ham

Chad: PUT cucumber bacon
Dave: WAIT

Chad: PICK cucumber
Dave: WAIT

Figure 11: Screenshots of RoCo completing the recipe3 task in robustness test. RoCo needs more steps to recover
from the environmental disturbance. Since the reset information is not included in the history, RoCo will be misled
by historical information and require multi-round physical feedback to adjust the plan.

1688

E.6 Dataset and Critic Network

Dataset Collection Details. The advantage function relies on the Monte-Carlo estimation of value
function with access to an offline dataset collected by πllm. In practice, we employ two techniques to
enhance the quality of the collected dataset. (i) We perform data collection using an LLM planner with
physical verification, inspired by the RoCo policy (Mandi et al., 2023), which ensures the acquisition
of high-quality interaction samples. (ii) Additionally, to address the limited state coverage issue that
may arise from directly rolling out the πllm policy, we intentionally reset the environment state to an
unreachable state and initiate LLM-planning from that point.

Given that our theoretical analysis demonstrates that our method can achieve a superior policy compared
to the behavior policy µ through advantage-weighted regression, it is natural to consider whether a better
behavior policy than πllm can be utilized for dataset collection, potentially leading to further policy
improvement during optimization. Subsequently, we conduct an ablation study utilizing a mixed dataset
collected by an expert policy and an LLM policy. Our preliminary findings indicate that the inclusion of
additional optimal data does not result in performance improvement. We hypothesize that two reasons
contribute to these unexpected results. (i) The incorporation of data from a different policy introduces
increased variance in Monte-Carlo estimation, thereby reducing the stability of the value functions.
Consequently, the value function may produce high-variance outputs, potentially leading to misleading
optimization of the LLM planner as prompts. (ii) The LLM planner equipped with enhanced augmentation
techniques achieves improved data coverage of the resulting policy. In contrast, the optimal policy is
more deterministic, leading to more limited state coverage, which poses challenges for value estimation
of out-of-distribution (OOD) states and actions in LLM planning. This issue bears resemblance to the
distribution shift problem encountered in offline RL (Levine et al., 2020; Xie et al., 2021).

We describe the differences between expert policy and an LLM policy in detail here.
• LLM policy: This policy is to leverage the reasoning power of LLM to solve specific tasks and use

physical verification as feedback. It is recommended to use a variant of ReAd-J for data collection,
which replaces ReAd feedback with physical verification and uses only the previous round of historical
information in the prompts. At each time step t, environment state st, robot optional actions, and task
goals are added into the prompt in the form of text. And then the LLM takes the prompt as input,
generates the joint action at of all robots and get a reward rt. We store every transition as a tuple (st ,
at , rt) until the task is accomplished.

• Expert policy: Here we implement this policy with human control. This requires a human player to
analyze the task and infer the optimal action at each time step. The collected data format is the same as
the method described above.

Table 7: An ablation study of data ratio of optimal data and LLM planner data in the offline dataset. The mixing
ratio is represented by X% : Y%, where X% denotes the percent of samples collected by the LLM policy, and Y%
denotes the percent of samples collected by the optimal policy.

NQ ES SR

READ-J(0%:100%) 16.4±0.54 13.4±0.27 0.8±0.13
READ-J(50%:50%) 15.8±1.12 13.9±0.35 0.6±0.16
READ-J(100%:0%) 17.6±1.89 13.9±0.41 0.7±0.15

READ-S(0%:100%) 31.4±1.11 14.0±0.26 0.8±0.13
READ-S(50%:50%) 29.1±0.91 13.9±0.31 0.7±0.15
READ-S(100%:0%) 34.2±2.18 14.3±0.30 0.5±0.17

Critic Architecture. The critic learns to estimate the value function of state-action pairs from the
dataset. The state includes the environment state and the agent state, where the environment state contains
variables of the simulator and the agent state is described by language. The action is also described
by language. We adopt the pre-trained BERT Transformer model to extract language features of the
agent state and actions. Then we concatenate the output feature with environment state features to some
MLP layers to predict the Q-value. The structure of the critic network is given in Figure 12, and the
hyper-parameters are given in Table 8.

1689

BERT
Transformer

MLP Network

Input
layer

Output
layer Q value

Hidden
layer

Structure of Critic

 Action
（language）

Input of Bert

 Agent state
 (language) language

 feature

 env state
 (simulator)

MLP

 variable
 feature

Figure 12: In this figure, the parameters of BERT Transformer are fixed and will not be updated during the training
of Critic.

Table 8: The input dimensions for Critic of ReAd-J and ReAd-S are represented by JIS and SIS respectively, while
HS represents the hidden layer input dimension, HN represents the number of hidden layers, LR is the learning rate,
BS is batch size, TN represents the number of training iterations, SS is the dimension of environment state, and n is
the number of robots in the environment.

JIS SIS HS HN LR BS TN
VALUE 768+SS n× 768+SS 256 1 10−3 32 9× 105

Token Consumption. We report the details of token consumption on both benchmarks in Table 9
and Table 10 respectively. The total number of tokens consumed includes tokens consumed during
pre-sampling data for training critic network. We utilize LLM policy to collect data for critic training
in the experiment of DV-RoCoBench, while the data is collected by expert policy in the experiment of
Overcooked-AI. Obviously, during the phase of planning, ReAd-S and ReAd-J consume less tokens than
all other baselines. In terms of total consumed tokens, ReAd-J is comparable to the baselines which also
generate joint plans in a parallel manner, and ReAd-S is significantly superior to RoCo.

Critic Training. The quantity of trajectories required for critic training depends on how challenging the
task is. For 5 difficulty levels in Sweep Floor, critic training demands about 70, 120, 240, 600, and 1400
trajectories respectively. For 4 difficulty levels in Make Sandwich, about 60 trajectories are needed for
critic training. For 5 difficulty levels in Sort Cube, critic training demands about 230, 240, 300, 400 and
510 trajectories respectively. For Cramped room and Forced coordination, the number is about 128 and
2048 respectively. It is important to note that the volume of data utilized for critic training can be adjusted
flexibly to align with the specific demands and challenges of the actual situation.

Table 9: Tokens consumed by all methods during the evaluation in DV-RoCoBench.

Methods ReAd-S ReAd-J RoCo Central Plan ReAct Reflexion MindAgent

Tokens for planning 9M 6M 24M 15M 11M 11M 13M
Tokens for training Q̂ 7M 7M - - - - -
Total tokens 16M 13M 24M 15M 11M 11M 13M

1690

Table 10: Tokens consumed by all methods during the evaluation in Overcooked-AI.

Methods ReAd-J Central Plan ReAct Reflexion MindAgent

Tokens for planning 1M 2M 4M 3M 4M
Tokens for training Q̂ - - - - -
Total tokens 1M 2M 4M 3M 4M

F Extended Discussion about Symbol Grounding

In this section, we would like to discuss the LLM grounding problem in embodied tasks beyond our
algorithm. Currently, most of available embodied multi-agent collaboration benchmarks (e.g., DV-
RoCoBench and Overcooked-AI) establish the base for LLM grounding by transforming the state/image
in the environment to the textual description. Since the LLM is not capable of perceiving the current
situation in the environment via visual signals, such a transformation may be achieved by directly using
specific object identifiers without visual grounding. However, it may seem to ruin the purpose of LLM
grounding where the main role of language is originally to provide a vehicle for establishing common
ground and resolving ambiguities. It makes the evaluation of ours and other LLM-based embodied
algorithms (Ahn et al., 2022; Yao et al., 2023b; Shinn et al., 2023; Gong et al., 2023) on these benchmarks
possibly overestimated on solving the symbol grounding problem (Harnad, 1990).

We acknowledge that directly using fictional object identifiers without visual grounding is a limitation
while at the same time it implies that a potential solution to overcome this limitation is to use strong
Visual Language Models (VLMs), e.g., GPT-4o. Specifically, it requires identifying the object types
(in Make Sandwich) or positions (in Sort Cubes and Sweep Floor), and summarizing the information
with a corresponding textual representation, which aligns well with the purpose of symbol grounding.
Inspired by this, we conduct a simple but essential experiment to investigate how well GPT-4o captures
and describes the necessary information compared with that generated by the object identifiers. Taking the
Forced Coordination as the test scenario, we give a example in the prompt, which includes a image of
current situation of the environment paired with a textual description previously given by the human about
this image. Then we ask GPT-4o for generating an appropriate response for the input image, following the
template in the example. The example case and test case are shown as Figure 13, and the output textual
state and ground truth textual state are listed as follows.

(a) Example case (b) Test case

Figure 13: The example case and test case for testing the visual understanding and summarizing capability of
GPT-4o.

1691

[Inputting the example image observation]

[Prompt]:

You need to accomplish a task where you need to precisely summarize the necessary information from a given image. We start

by introducing the meaning of each character appeared in the *Current Env State* which would be introduced in the example

we provide later.

Character Meaning:

The letter X stands for table, P for cooking station, O and o stand for onion, D and d for plates, and S for service desk. When

the onion or dish is on the table or being held by agent, an o or d will be added after its corresponding character. When the

onion is placed on the cooking table, it will be denoted as p{ø, p{øø means that there are two onions on the cooking table.

And when the cooking table cooks the soup, it will show how long it has been cooked, such as p{ø20 means that it has been

cooked in 20 time steps. The numbers 1 and 0 represent the agent, and the direction arrow ↑ ↓ ← → represents the direction

the agent is facing.Each object occupies a grid size, and the agent moves one grid distance at a time.

Given a image we input, you should first describe the environment status of the image in *Current Env State*, then summarize

the events according to *Character Meaning*. Now we provide a specific example. Taking the attached image as input, the

standard response corresponding to this image is as follows:

Current Env state:

X X X P X

O ↑1 X ←0 P

O X X

D X X

X X X S X

Cook station local (0, 3) (1, 4), there are 0 onions on it, soup has not yet begun to cook

Onions local: (1, 0) (2, 0)

Dishes local: (3, 0)

Server desk local: (4, 3)

Agent0 local: (1, 3), direction: west, hold: nothing

Agent1 local: (1, 1), direction: north, hold: nothing

The above all is the instruction for the task.

[Inputting the test image observation]

[Prompt]:

Please describe this picture following the previous instruction.

[Output]:

Based on the new environment state:

Current Env state:

X X X P X

O ↑1 X ↑0 P

O X X

D X X

X X X S X

Cook station local: (0, 3) (1, 4), there are 0 onions on it, soup has not yet begun to cook.

Onions local: (1, 0), (2, 0).

Dishes local: (3, 0).

Server desk local: (4, 3).

Agent0 local: (1, 3), direction: north, hold: nothing.

Agent1 local: (1, 1), direction: north, hold: nothing.

This description follows the format used earlier to capture the environment’s status at the current timestep.

1692

[Ground truth]:

Current Env state:

X X X P X

O X P

O ↓1 X ↓0 X

D X X

X X X S X

Cook station local (0, 3) (1, 4), there are 0 onions on it, soup has not yet begun to cook

Onions local: (1, 0) (2, 0)

Dishes local: (3, 0)

Server desk local: (4, 3)

Agent0 local: (2, 3), direction: south, hold: nothing

Agent1 local: (2, 1), direction: south, hold: nothing

Shown in the above response, GPT-4o can generate a textual state with the correct format based on
the image and template, but the coordinates and relative positions of objects are inconsistent with the
actual situation, which has also been discussed in previous works (Xu et al., 2023). But surprisingly, it can
correctly summarize the location and status of all entities in the wrong text-format array. Overall result
shows that VLMs are hard to understand spatial relationship from images currently.

G Illustration of the Interaction Process

we illustrate the distinctions between ReAd-S and RoCo by presenting a series of task execution screen-
shots. In Figure 14 and Figure 15, we compare the screenshots of our method and RoCo algorithm in task
Sweep Floor Y2_G2. Our method can perform re-plan and correct the initial planning using advantage
feedback, which results in a minimum number of environmental interactions. In contrast, RoCo which
relies on physical feedback requires more negotiation and interactions with the environment. A similar
comparison is shown in Figure 16 and Figure 17 for Sort Cubes sort4. A comparison between ReAd-J and
Central Plan on Forced Coordination scenario is shown in Figure 18 and Figure 19.

begin
Alice: MOVE yellow_cube_2
Bob: MOVE yellow_cube_2

Alice: WAIT
Bob: SWEEP yellow_cube_2

Alice: MOVE green_cube_2
Bob: MOVE green_cube_2

Alice: WAIT
Bob: SWEEP green_cube_2

Alice: MOVE yellow_cube_1
Bob: MOVE yellow_cube_1

Alice: WAIT
Bob: SWEEP yellow_cube_1

Alice: MOVE green_cube_1
Bob: MOVE green_cube_1

Alice: WAIT
Bob: SWEEP green_cube_1

Alice: DUMP
Bob: WAIT

Figure 14: Snapshots of the interaction process of ReAd-J in task Sweep Floor Y2_G2. Our method obtains the
minimum number of environmental interactions needed to complete the task.

1693

Alice: MOVE green_cube_1
Bob: MOVE green_cube_1

Alice: DUMP
Bob: WAIT

Alice: WAIT
Bob: SWEEP green_cube_2

Alice: WAIT
Bob: SWEEP green_cube_1

Alice: WAIT
Bob: WAIT

Alice: WAIT
Bob: WAIT

Alice: DUMP
Bob: WAIT

begin
Alice: MOVE yellow_cube_2
Bob: MOVE yellow_cube_2

Alice: WAIT
Bob: SWEEP yellow_cube_2

Alice: MOVE yellow_cube_1
Bob: MOVE yellow_cube_1

Alice: WAIT
Bob: SWEEP yellow_cube_1

Alice: DUMP
Bob: WAIT

Alice: DUMP
Bob: MOVE green_cube_2

Alice: MOVE green_cube_2
Bob: WAIT

Figure 15: Snapshots of the interaction process of RoCo in task Sweep Floor Y2_G2. The figure above shows that
after planning and sweeping a cube into the dustpan, RoCo will dump it into the trash bin. However, after sweeping
the last cube into the dustpan, instead of immediately planning to dump it to complete the task, LLM stubbornly
believes that the task is done and plans to wait for the next two interactions.

Alice: PICK pink_polygon PLACE panel3
Bob: PICK blue_square PLACE panel3begin

Alice: PICK blue_square PLACE panel2
Bob: PICK pink_polygon PLACE panel4

Alice: PICK blue_square PLACE panel2
Bob: PICK pink_polygon PLACE panel4
Chad: PICK yellow_trapezoid PLACE panel6

Figure 16: Snapshots of the interaction process of ReAd-S in task Sort Cubes sort4. This task is challenging and
requires the collaboration of three robots and takes a minimum of three steps to complete. Our approach efficiently
accomplishes this task with minimal environment interactions.

begin

Bob: PICK pink_polygon PLACE panel4

Alice: PICK pink_polygon PLACE panel3Alice: PICK blue_square PLACE panel2Bob: PICK blue_square PLACE panel3

Bob: PICK yellow_trapezoid PLACE panel5 Chad: PICK yellow_trapezoid PLACE panel6

Figure 17: Snapshots of the interaction process of RoCo in task Sort Cubes sort4. Before the joint actions of
all robots are executed, the planning result can only be improved through the dialogue of LLMs. In addition,
environmental feedback can be generated only after the agent interacts with the simulator. In contrast, our advantage
feedback provides timely feedback in the process of LLM planning for policy improvement before interaction.

1694

agent0: west
agent1: north

agent0: west
agent1: interact

agent0: interact
agent1: west

agent0: stay
agent1: interact

agent0: interact
agent1: east

agent0: interact
agent1: interact

agent0: interact
agent1: west

agent0: east
agent1: interact

agent0: interact
agent1: east

agent0: west
agent1: interact

agent0: interact
agent1: south

agent0: east
agent1: south

agent0: interact
agent1: west

agent0: interact
agent1: interact

agent0: stay
agent1: north

agent0: west
agent1: north

agent0: stay
agent1: east

begin

agent0: interact
agent1: south

agent0: interact
agent1: north

agent0: east
agent1: interact

agent0: south
agent1: north

agent0: south
agent1: west

agent0: north
agent1: interact

agent0: interact
agent1: west

agent0: stay
agent1: interact

Figure 18: Snapshots of the interaction process of ReAd-J in task Forced Coordination. This task is challenging and
requires the collaboration of two agents and takes a minimum of 22 steps to complete. Most of the time, ReAd
can improve the unreasonable planning result generated by LLM, so that ReAd-J can complete the task smoothly.
However, due to the out-of-distribution (OOD), it is possible to evaluate the advantage value of some unreasonable
planning to carry out environmental interaction

1695

begin agent0: west
agent1: west

agent0: interact
agent1: north

agent0: west
agent1: interact

agent0: interact
agent1: south

agent0: south
agent1: interact

agent0: interact
agent1: east

agent0: east
agent1: interact

agent0: interact
agent1: east

agent0: north
agent1: interact

agent0: south
agent1: interact

agent0: interact
agent1: west

agent0: east
agent1: north

agent0: south
agent1: interact

agent0: interact
agent1: west

agent0: east
agent1: south

agent0: south
agent1: interact

agent0: interact
agent1: west

agent0: interact
agent1: interact

agent0: north
agent1: west

agent0: east
agent1: south

agent0: south
agent1: west

agent0: interact
agent1: interact

agent0: north
agent1: interact

agent0: south
agent1: interact

agent0: interact
agent1: east

Figure 19: Snapshots of the interaction process of Central Plan in task Forced Coordination. From the screenshot
of the interaction process, it can be found that in the Forced Coordination, it is difficult for LLM to understand
the state of the current environment, so hallucination occurs frequently, resulting in the failure of Central Plan to
effectively complete the task.

1696

H Examples of Reinforced Advantage Feedback

Format of Advantage Feedback. The Advantage Feedback comprises of [Evaluation Score] and
[Improvement Feedback]. If the advantage score of the action is higher than a threshold, the response will
only contain [Evaluation Score]. Otherwise, we perform a re-plan to improve the previous action, and the
response will include both [Evaluation Score] and [Improvement Feedback].

Below we will briefly show a few examples of the LLM’s planning corrected by advantage feedback,
using ReAd-S to complete the Sweep Floor task.
[Alice Response]:

Bob, we have green_cube_1 and green_cube_2 in the dustpan. Let’s MOVE to the trash_bin so I can DUMP these cubes.

After that, we can go for any remaining cubes.

PROCEED

NAME Alice ACTION MOVE trash_bin.

[Advantage Feedback]:

[Evaluation Score]:

The advantage score of Alice’s action is -0.6652!

The advantage score is low and the plan need to be changed!

[Improve Feedback]

Alice’s previous response:

Bob, we have green_cube_1 and green_cube_2 in the dustpan. Let’s MOVE to the trash_bin so I can DUMP these cubes.

After that, we can go for any remaining cubes.

PROCEED

NAME Alice ACTION MOVE trash_bin

The advantage score is -0.665, it is too low to run. The answer may contain a misunderstanding of the state of the environment,

you must change your action to raise the advantage score over 0!

[Alice Response]:

Bob, I made a mistake in my previous plan. Since we already have green_cube_1 and green_cube_2 in the dustpan, I should

DUMP them into the trash_bin. I’ll do that while you WAIT.

PROCEED

NAME Alice ACTION DUMP

[Advantage Feedback]:

[Evaluation Score]:

The advantage score of Alice’s action is 17.376!

The advantage score is high enough.

Explain. In this example, the MOVE action can only be used for cubes due to the task setting, and the
MOVE of the trash bin is illegal. However, the LLMs learned from the web may consider the MOVE
action can also be applied to the trash bin, which does not ground well with the specific task, resulting in
the fact of hallucination. Our method can correct this type of error with advantage feedback according to
the reward since taking MOVE action to the trash bin will obtain a zero reward and lead to the same next
state as the current state.

[Alice Response]:

Bob, we have green_cube_1 and green_cube_2 in the dustpan. Let’s MOVE to the next cube we need to sweep. I suggest we

go to pink_cube_1 since it’s the closest cube on the table. Once we’re in position, I will WAIT for you to SWEEP it.

PROCEED

NAME Alice ACTION MOVE pink_cube_1

[Advantage Feedback]:

[Evaluation Score]:

The advantage score of Alice’s action is -0.0927!

The advantage score is low and the plan needs to be changed!

[Improve Feedback]

1697

Alice’s previous response:

Bob, we have green_cube_1 and green_cube_2 in the dustpan. Let’s MOVE to the next cube we need to sweep. I suggest we

go to pink_cube_1 since it’s the closest cube on the table. Once we’re in position, I will WAIT for you to SWEEP it.

PROCEED

NAME Alice ACTION MOVE pink_cube_1 The advantage score is -0.0927, it is too low to run. The answer may contain a

misunderstanding of the state of the environment, you must change your action to raise the advantage score over 0!

[Alice Response]:

Bob, I made a mistake in my previous suggestion. We should not move to pink_cube_1 as it’s not one of our targets. Instead,

let’s DUMP the cubes we have in the dustpan into the trash_bin. I will do that while you WAIT.

PROCEED

NAME Alice ACTION DUMP

[Advantage Feedback]:

[Evaluation Score]:

The advantage score of Alice’s action is 18.4184!

The advantage score is high enough.

Explain. In this example, the target colors to sweep are yellow and green. Since the environment also
includes many cubes with other colors, LLM may plan to sweep cubes with the wrong colors initially. In
such cases, the advantage feedback is helpful to correct the plan generated by the LLM.

[Bob Response]:

Alice, I will WAIT as you move into position for yellow_cube_3.

PROCEED

NAME Bob ACTION WAIT

[Advantage Feedback]:

[Evaluation Score]:

The advantage score of Bob’s action is -3.2211!

The score is low and the plan needs to be changed!

[Improve Feedback]

Bob’s previous response:

Alice, I will WAIT as you move into position for yellow_cube_3.

PROCEED

NAME Bob ACTION WAIT

The advantage score score is -3.221, it is too low to run, the answer may contain a misunderstanding of the state of the

environment, you must change your action to raise the advantage score over -0.2!

[Bob Response]:

Alice, since you are moving to yellow_cube_3, I will also MOVE to yellow_cube_3 to be ready to SWEEP it once you are in

position.

PROCEED

NAME Bob ACTION MOVE yellow_cube_3

[Advantage Feedback]:

[Evaluation Score]:

The advantage score of Bob’s action is 0.6383!

The advantage score is high enough.

Explain. In this example, the LLM plans for Bob to move to yellow_cube_3 with Alice, it can sweep
directly into the dustpan in the next step. However, during the first LLM planning, the LLM plans the
WAIT action for Bob. If Bob performs this action at this time, Alice can only wait for Bob to move to
yellow_cube_3. Thus, our method performs replanning based on the advantage feedback to reduces the
interaction steps to the environment.

1698

I Broader Impact

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential
societal consequences of our work, none of which we feel must be specifically highlighted here. This paper
presents a novel feedback mechanism which enhances the reasoning and planning capabilities of large
language models (LLMs) in multi-agent settings. It has potential implications and societal impacts that
are worth considering. First, the overall framework can significantly improve the way robots collaborate
on tasks, which could lead to more efficient automation in industries such as manufacturing, logistics, and
disaster response. Improved collaboration among robots can lead to increased productivity and reduced
human workload. Second, by grounding the reasoning of LLMs in physical tasks, it contributes to the
development of AI systems that can make more informed and effective decisions. This advancement can
be beneficial across various sectors, including healthcare, where AI could assist in complex diagnostic
processes, or in environmental management, where AI could optimize resource allocation. In conclusion,
our work presents exciting opportunities for advancing AI and robotics.

1699

