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Abstract

Grounded natural language understanding in
Human-Robot Interaction (HRI) requires inte-
grating linguistic, visual, and world knowledge
to ensure effective task execution. We propose
an approach that enhances Multi-Modal Large
Language Models (MLLMs) with a novel ex-
plicit dialogue planning phase, allowing robotic
agents to systematically refine their understand-
ing of ambiguous commands through struc-
tured clarification steps. This reduces hallu-
cinations and improves task feasibility. To eval-
uate this approach, we introduce a novel dataset
of over 1, 100 annotated dialogues in English
and Italian, designed for fine-tuning and as-
sessing Multi-Modal models in HRI scenarios.
Experimental results show that dialogue plan-
ning improves response accuracy and quality,
and contributes to cross-lingual generalisation,
enabling models trained in one language to
transfer effectively to another. To the best of
our knowledge, this is the first application of
structured, goal-driven, and explicit dialogue
planning in Multi-Modal LLMs for grounded
interaction.

1 Introduction

Grounded natural language understanding in
Human-Robot Interaction (HRI) presents signif-
icant challenges due to the need to integrate lin-
guistic, visual, and world knowledge to ensure ef-
fective task execution (Kiseleva et al., 2022). In
real-world scenarios, a robotic agent receives Multi-
Modal inputs: a natural language command from a
human user and a perceptual representation of the
environment, typically in the form of visual input,
such as images or derived from more complex sen-
sors, as in (Huang et al., 2023). However, human
instructions may be underspecified or ambiguous
(Borazio et al., 2024), requiring an interactive di-
alogue where the agent actively requests missing
information before taking action.

Add some blocks above the
easternmost purple column. @
ah

How many blocks do I need
- o toadd above the eastern
ﬁ] most purple column?
Five @
What colour should the
blocks be?
Blue please @
R

How should I arrange the

Eﬁl blue blocks?

Which direction should I
face to arrange the blocks?

Make them horizontal. @
ah

Look to the east. @
[

Ok, I'll add five blue blocks
positioned above the
easternmost purple column

and arranged horizontally,
ﬁ] facing east.

Figure 1: Example of a Multi-Modal interaction where
the agent iteratively refines its understanding of a com-
mand through clarification steps before execution.

Recent advances in Multi-Modal Large Lan-
guage Models (MLLMs) have enabled the joint
processing of textual and visual information (Yin
et al., 2024). While these models were not orig-
inally designed for HRI, they provide a promis-
ing foundation for robotic applications, allowing
agents to interpret visual contexts and language si-
multaneously. Hromei et al., 2024 have explored
the application of MLLMs in Multi-Modal environ-
ments, such as the Minecraft-inspired MM-IGLU
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framework, where agents must reason over com-
mands and visual scenes to understand if a com-
mand is executable or not.

However, standard MLLMs lack reasoning ca-
pabilities for solving specific tasks: they gener-
ate responses based on local conversational his-
tory but do not construct a structured sequence
of information-seeking steps, which is crucial in
HRI. This limitation risks leading to inefficient
interactions, redundant queries, or hallucinated re-
sponses (Bai et al., 2024) that do not align with
the environment. Recent research has demon-
strated that incorporating planning mechanisms
into LLMs can significantly enhance their robust-
ness and generalisation capabilities. Techniques
such as Chain-of-Thought reasoning (Wei et al.,
2022) have proven beneficial in guiding models
through complex decision-making tasks.

In this work, we study the role of planning within
a Multi-Modal setting, focusing on grounded inter-
action with a robotic agent operating in an environ-
ment similar to MM-IGLU (Hromei et al., 2024,
Borazio et al., 2025). Figure 1 illustrates the struc-
tured dialogue planning mechanism employed in
our approach. In a Multi-Modal Human-Robot In-
teraction (HRI) setting, a robotic agent receives an
initial command from the user along with a visual
representation of the environment. However, the
command may be incomplete, requiring additional
clarification before it can be executed correctly.
Instead of attempting an immediate response, the
agent engages in an interactive process to gather
missing details. At each turn, the agent processes
three inputs: the current world state provided as
an image, the accumulated dialogue history con-
taining prior interactions, and the user’s latest ut-
terance. Given this context, an MLLM generates a
structured plan identifying the missing information
required for task completion. Rather than providing
an immediate response, the plan serves as a guide
for the necessary clarifications before execution.

Once the plan is generated, it is incorporated into
the ongoing interaction to guide the formulation
of the next clarification question. The agent iter-
ates through this process, dynamically updating its
plan as new information emerges from the dialogue.
The clarification questions systematically address
ambiguities related to attributes such as the num-
ber of blocks, their colour, orientation, or precise
positioning within the scene. When all necessary
details have been gathered, the agent produces a fi-
nal recap summarising the inferred command. This

final step allows the user to confirm the interpreted
instruction before execution, ensuring alignment
between the intended and understood task. To this
end, benchmarks (Attanasio et al., 2024) have been
created for evaluating their capabilities.

To evaluate the effectiveness of our approach,
we have created a dataset of more than 1, 100 di-
alogues in English, specifically designed for fine-
tuning and evaluating Multi-Modal models in HRI
scenarios!. Although many State-of-the-Art mod-
els undergo pre-training on large-scale corpora of
text and images, such pre-training does not nec-
essarily equip them with the structured reasoning
and dialogue capabilities required for interactive
problem-solving.

To demonstrate the broad applicability of our ap-
proach, independent of the underlying architecture,
we apply it to two State-of-the-Art Multi-Modal
models, LLaVA (Liu et al., 2024) and MiniCPM
(Yao et al., 2024), and demonstrate that:

1. Explicit dialogue planning contributes sub-
stantially to system performance. To the best
of our knowledge, this is the first application
of dialogue planning in Multi-Modal mod-
els. Our experimental results show significant
performance gains when transitioning from a
zero-shot setting to a fine-tuned setting where
interaction history is utilised. Furthermore,
incorporating planning further enhances re-
sults by making dialogues more efficient and
reducing redundant or repetitive queries.

2. We show that cross-lingual generalisation can
be achieved through the adoption of a bilin-
gual English and Italian dataset. We test
whether planning-based approaches improve
robustness when a model trained in one lan-
guage is applied to another. Our results sug-
gest that planning facilitates generalisation: a
model trained in English and applied to Italian
(with planning) achieves performance compa-
rable to a model fine-tuned directly in Italian
but lacking planning capabilities.

In the remainder of the paper, Section 2 discusses
related work, Section 3 describes the proposed
Multi-Modal architecture and dialogue planning
approach, Section 4 details experimental evalua-
tion, and Section 5 concludes our findings.

LAll the resources and code are available at https://
github.com/crux82/MM-IGLU-Dialogues
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2 Related Work

Effective Multi-Modal dialogue planning requires
integrating structured decision-making into LLMs,
enhancing model outputs with external knowledge,
and systematically evaluating the impact of these
mechanisms. Our work builds upon three key re-
search directions.

First, explicit planning mechanisms have been
explored to enhance structured reasoning in LLMs,
but primarily outside the context of HRI. Prior
studies have integrated planning into LL.Ms for
tasks such as code generation (Jiang et al., 2024),
visual question answering (Scaiella et al., 2024),
response structuring in textual dialogues (Li and
Zhang, 2024), and incremental decision-making
(Gestrin et al., 2024). While these works demon-
strate the benefits of intermediate planning steps,
they focus on structuring outputs in non-embodied
scenarios rather than in interactive, Multi-Modal
dialogue settings. A closely related line of work
is DialFRED (Gao et al., 2022), which extends
the ALFRED benchmark (Shridhar et al., 2020) to
support dialogue-enabled agents capable of asking
clarification questions when task instructions are
ambiguous. Unlike our approach, which introduces
explicit plan generation to structure such interac-
tions, DialFRED equips agents with a questioning
module but lacks systematic integration of planning
steps to guide the dialogue evolution. In contrast,
planning has also been applied in HRI, but predom-
inantly for action execution rather than dialogue
structuring. For example, some studies have inves-
tigated planning-based decision-making for task
execution in embodied agents (Hao et al., 2023; Wu
et al., 2023; Hromei et al., 2022a,b), where models
generate step-by-step action sequences to achieve
a goal. However, these approaches do not address
how planning can be leveraged within dialogue
itself to systematically elicit missing information
before taking action.

Second, Multi-Modal dialogue systems have
been enhanced through external knowledge inte-
gration, improving response coherence by leverag-
ing perceptual and linguistic information. Previ-
ous work has focused on enriching dialogue mod-
els with implicit visual cues (Zhang et al., 2025;
Hromei et al., 2023a) or persona-driven dialogue
structuring (Alavi et al., 2024). These contributions
highlight the benefits of injecting Multi-Modal in-
formation but do not employ explicit dialogue plan-
ning to systematically structure interactions. In par-

allel, EMMA (Pantazopoulos et al., 2023) proposes
a unified encoder-decoder framework for embodied
task completion in Alexa Arena (Gao et al., 2023),
formulating both action execution and dialogue
grounding as a text generation problem. While
EMMA achieves strong results through multitask
training and dialogue-guided execution, it does not
incorporate an explicit planning module to struc-
ture or optimise the clarification process across
turns.

Finally, evaluating dialogue quality remains a
challenge, particularly for coherence, informative-
ness, and engagement. Recent studies propose
LLM-based evaluation techniques (Zhang et al.,
2024; Abbasiantaeb et al., 2023), demonstrating
that automated methods can provide reliable as-
sessments of dialogue quality. Although they are
efficient and scalable, a key issue emerges regard-
ing the reliability of evaluation: the final results
may be affected by errors originating from both the
system and the evaluator.

Our work builds upon these foundations by
explicitly incorporating dialogue planning into
MLLMs. Inspired by prior work on Multi-Modal
task execution (Hromei et al., 2024), we extend the
scope beyond single-turn decision-making to multi-
turn interactions, enabling systematic refinement
of ambiguous commands through structured dia-
logue. This approach aligns with prior studies on
collaborative dialogue in Minecraft (Narayan-Chen
et al., 2019; Hromei et al., 2023b) but goes further
by introducing an explicit planning mechanism to
optimise the interaction process: a unified dialogue
plan representation, similar in spirit to the struc-
tured interaction histories in (Padmakumar et al.,
2021), where a multimodal transformer jointly
models visual input and prior dialogue context for
instruction-following. However, our method ex-
tends beyond reactive modelling by introducing an
explicit, generative planning stage that precedes
and guides the dialogue: the dynamic form of our
approach allows the Agent to induce different plans
(or re-plan) on the fly, support online search for al-
ternative situations emerging during the dialogue.

3 A Multi-Modal Neural Architecture for
Dialogue Planning in Grounded HRI

Prior approaches to Multi-Modal interaction in
Minecraft-like environments, such as MM-IGLU
(Hromei et al., 2024), only considered simple one-
turn dialogues. The builder could ask only a single
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clarification question before executing the com-
mand, and questions were drawn from a closed set
with limited linguistic variability. This constraint
often led to suboptimal task performance, as the
system lacked mechanisms to iteratively refine its
understanding of the user’s intent.

To overcome these limitations, we introduce a
novel dialogical dataset tailored for Multi-Modal
environments and propose a methodology for train-
ing Multi-Modal Language Models to handle more
dynamic and adaptive conversations. Our approach
defines structured information categories that the
assistant should inquire about, enhancing its ability
to formulate clarification questions systematically.
Inspired by self-reflection (Huang et al., 2022) and
chain-of-thought reasoning (Wei et al., 2022), our
system first generates an information plan to guide
the dialogue, identifying missing details, then it-
eratively refines its understanding by formulating
targeted questions. Additionally, the agent must
continuously reassess dialogue coherence, detect-
ing inconsistencies and dynamically adjusting its
strategy as needed. In the following, we present
the Multi-Modal architectures employed in our ap-
proach, the underlying dialogue planning mecha-
nism, and the methodology used to construct and
train the dialogue models.

3.1 The MLLM Approach

Integrating visual and textual inputs is essential for
an intelligent agent to make informed decisions
based on both its environment and the commands it
receives. To achieve this, Multi-Modal Large Lan-
guage Models (MLLMs) employ different architec-
tures to process and fuse image and text data ef-
fectively. Several approaches have been proposed,
including LLaVA (Liu et al., 2024) and MiniCPM
(Yao et al., 2024), each offering distinct trade-offs
in terms of complexity and performance.

For instance, LLaVA (Liu et al., 2024) provides a
straightforward integration of language and vision
through a simple projector module, which trans-
forms an image into the neural space of the lan-
guage model, as a neural vector. For simplicity,
we will call this vector s, as the scene depicted in
the image. This design, built upon LLaMA (Tou-
vron et al., 2023a,b; Dubey et al., 2024), enables
efficient Multi-Modal learning while maintaining
strong text-generation capabilities. On the other
hand, MiniCPM (Yao et al., 2024) optimises the
balance between parameter efficiency and perfor-
mance. It employs a compression layer incorpo-

rating a perceiver resampler, similar to Flamingo
(Alayrac et al., 2022), which utilises cross-attention
to reduce the dimensionality of visual data while
preserving critical features. The resulting com-
pressed visual tokens s are then combined with tex-
tual inputs and processed by the underlying Qwen2-
7B-based language model (Yang et al., 2024).
Formally, the agent’s response «a is defined as
a function MLLM acting over a dialogue in-
put d and the reference scene s as an image in
# : a = MLLM(d, s). These architectures pro-
cess both the dialogue history and the reference im-
age simultaneously, leveraging the attention mech-
anism of the language model to identify the most
relevant contextual information. At run-time, the
entire dialogue history is utilized to guide decision-
making, ensuring that each response is grounded
in the accumulated context of previous exchanges.

3.2 A Model for Dialogue Planning

Since the agent’s response depends on prior inter-
actions, we need to define the dialogue history H;
at turn ¢ as the sequence of past interactions (u;, a;)
between the user and the agent, respectively. So,
for: = 2,...,k, where k is the dialogue length, at
a given ¢-th user’s turn we have:

H;, = (ui,ai_l,Hi_l) 1> 1

Hl - (’U,l,ﬁ, He) (1)

whereas € and H, correspond to the empty string
and the empty triple, respectively, as no history is
available at the first turn. As a consequence, the
agent’s response a; is therefore a function of both
the dialogue history H; and the scene s as an image
in .7:

a; = MLLM (prompt(Hi), s) 2)

where prompt is a function used to instruct the
model to reflect the history, i.e., the user turn u; as
well as the whole dialogue. Here, a; corresponds
to a confirmation about the command execution,
i.e. as “Ok, I can do it” or a similar utterance, as
a rejection of the command or as a clarification
question when needed. The prompts adopted in
this work are provided in the Appendix A.

As the history H; makes explicit reference to the
(u;, a;—1) pairs, the MLLM function is autore-
gressive. However, as the typical characteristic of
standard LL.Ms, it presents significant drawbacks
as the model must exhibit implicit reasoning ca-
pabilities, often leading to inconsistent responses,
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redundant queries or even complete hallucinations.
To mitigate these issues, we introduce the concept
of Dialogue Plan: a structured and goal-driven se-
quence of clarification requests, i.e., a sequence
of class labels in the set of abstract and general
categories. These describe the different types of
missing information, as discussed in the next Sec-
tion, that guide the agent in solving any ambiguity
in the requested task. In general, they are domain-
agnostic, making the Dialogue Plan applicable to
any scenario or domain while ensuring the clarifi-
cation process becomes inherently Multi-Modal.

The Dialogue Plan organises the interaction step-
by-step, guiding the agent to systematically ad-
dress specific aspects of the user’s request. In some
scenarios, the order of categories may be flexible,
while in others, a fixed sequence is required to
maintain logical coherence. For example, clarify-
ing the orientation of an object might necessitate
prior knowledge of its position or clarifying the
departure time for a flight requires knowing the de-
parture and arrival places. In this way, the Dialogue
Plan enables the model to track what has already
been asked, the responses received from the user,
and the categories of information that still require
clarification.

This explicit organisation reduces hallucinations
by allowing the model to infer certain details from
the context rather than redundantly querying the
user. A dialogue history H; can be augmented via a
dialogue plan P, giving rise to the extended history
H, defined as follows:

H' = (uij,a;-1, P—1, H ) i>1 3)
Hi" = (u1, €, €, H:)

where no answer, no dialogue plan and no history
are provided at the first step. The dialogue plan F;
is generated at each i-th turn by the same function
MLLM, with the planning prompt prompt(-; p),
defined as:

P; = MLLM (prompt(H;";p),s) (4

where the scene s is depicted in an image in .#.
Notice how the planning ability exploits the same
function MLLM also used as a language genera-
tion function. It is thus also used to produce opti-
mal answers a; over the scene s, coherent with the
dialogue plan F;, through the generation prompt
prompt(+; g), as follows:

a; = MLLM (prompt((H;", P); 9),s)  (5)

By structuring the interaction through a dialogue
plan P;, the dialogue supported by MLLM be-
comes more coherent and adaptive, by minimis-
ing inconsistencies and redundant queries. This
method represents a modular and systematic ap-
proach to dialogue planning, improving the robust-
ness and efficiency of Multi-Modal interactions.

3.3 Annotated Dialogue and MLLM Training

In our Minecraft-like environment, the plan dia-
logue P; in the i-th turn of the dialogue is a se-
quence, whose members are types of missing infor-
mation: for example, a category such as COLOR
can be used to express that the colour of a block
involved in a command is still unknown, and this
limits the capability of the builder to carry out the
underlying action. These types allow the agent
to structure the dialogue effectively, as a specific
question corresponds to an answer a; at a given step
of the plan. These categories correspond to a set
T ={t1,...,t,} and allow the agent to systemati-
cally identify the still missing information to guide
the dialogue in the clarification process. Every plan
P; is a sequence (t;,, ...., t;, ), where the missing
type t;, € 7 will be requested k steps after the i-th
dialogue turn. The defined types t; € 7 used in this
study and dependent on the Minecraft-like domain
are summarised in Table 1. Intuitively, while the
concept of dialogue planning is domain-agnostic,
T is domain-dependent, i.e., different domains re-
quire different instances of categories. As such, for
adapting this methodology to a new domain, e.g.,
flight booking in air travel information systemes, it
is necessary to model the domain and define the
Triighis categories necessary for a typical dialogue.

The above types are the target of the agent’s

DIRECTION

DISPOSITION

BLOCK MISSING

NUMBER

POSITION

NOT EXECUTABLE

ORIENTATION
PRECISE

Figure 2: Category Distribution in the Annotated
Dataset.
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Confirms that the command can be executed; includes a CONFIRMATION WITH RECAP subcate-
Inquires about the arrangement of blocks, with a subcategory PRECISE DISPOSITION for detailed
Clarifies the location where blocks should be placed or removed from, with subcategories

Indicates when the command cannot be executed in cases of inconsistencies, with subcategories

Category Description
COLOR Clarifies the colour of blocks when unspecified in the command.
NUMBER Asks for the number of blocks required to fulfil the task.
ORIENTATION Seeks the orientation of the builder (e.g., North, South, East, West).
DIRECTION Determines the direction for placing a sequence of blocks.
BLOCK MISSING Identifies cases where a specified block is absent on the map and requests clarification.
CONFIRMATION
gory that reiterates the command with a summary of the information gathered.
DISPOSITION
alignment questions.
POSITION
PRECISE POSITION and PRECISE BLOCK for detailed positioning or block identification.
NOT EXECUTABLE
such as COMMAND, ACTION, and COLOR NOT FOUND for specific reasons.

Table 1: Dialogue clarification categories and their descriptions.

decision about the dialogue plan, i.e. the sequence
P, = (tiy,...,t;,, ) corresponding to the dynamic
generation of clarification requests. This means
that P; is the sequence of turns used to produce the
final answer a,,. In the example of Fig. 1, the u;
command “Add some blocks above the easternmost
purple column”, the agent will first produce the
plan containing 5 types:

P, = (NUMBER, COLOR, DISPOSITION,
DIRECTION, CONFIRMATION)

They are necessary for gathering all the required
information before accepting the executability of
the action. In the example, a1 = “How many blocks
do I need to add above the easternmost purple col-
umn?” 1is justified by the type {1, = NUMBER.
On the subsequent turn, the agent will have to de-
cide whether the user answered its question with
relevant information, if its dialogue plan is still
consistent with the newly received information and
generate the new required dialogue plan:

P, = (COLOR, DISPOSITION, DIRECTION,
CONFIRMATION)

In this way, at each (¢ 4 1)-th interaction, the
agent will exploit type ?;, to produce the next rele-
vant question a;41, in the case of Figure 1 “What
colour should the blocks be?”.

The distribution of these adopted missing infor-
mation types in the plans of our dialogue dataset is
reported in Figure 2. It can be observed that they
are almost evenly distributed, with a few examples
of BLOCK MISSING. Notice that the CONFIRMA-
TION is not reported, since all our dialogues end
with a confirmation from the Builder, since our goal
was to provide dialogues where, at some point, all
ambiguities are resolved!

The structured planning mechanism was used to
annotate a dataset of 1, 100 dialogues in English
and Italian, created by five annotators based on
MM-IGLU-generated images (Hromei et al., 2024).
The dialogues were designed to simulate real-world
scenarios, including ambiguous or misleading com-
mands, to test model robustness. Annotators freely
generated interactions starting from a given scene s,
defining an initial command w1, the Builder’s plan
p;, clarification questions a;, and user responses
u;, iterating until task completion. Dialogues av-
erage seven turns, ranging from simple two-turn
exchanges to complex interactions of up to twenty
turns. The Builder refines its understanding iter-
atively, handling diverse tasks such as shape con-
struction, block removal, and figure assembly.

4 Experimental Evaluation

Our evaluation examines the impact of explicit
dialogue planning in Multi-Modal LLMs by ad-
dressing three key aspects: i) whether fine-tuning
on a dedicated dataset improves performance over
zero-shot inference, ii) how the dialogue planning
phase enhances dialogue efficiency at both the turn
and full dialogue level, and iii) whether the dia-
logue planning phase facilitates cross-lingual gen-
eralisation. To assess the effects of fine-tuning,
we compare zero-shot performance against models
fine-tuned on our annotated dataset. For dialogue
efficiency, we contrast models trained solely on di-
alogue history with those incorporating structured
dialogue planning, measuring improvements in re-
sponse quality, reduction of redundant queries, and
overall interaction effectiveness.

The dataset (see Table 2) consists of 1, 136 man-
ually annotated dialogues, with an average of 7.52
turns per dialogue, and is split into training (908),
development (113), and test (115) sets following
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Lang | Train Dev Test

Dialogues Number - 908 113 115
AVG Turns Number - 7,52 7,40 7,60
EN 10,71 9,77 10,37

AVG Turn Lenght IT 9.77 8,91 9.56
EN 23,71 21,30 23,09

AVG Recap Lenght | .| 55’58 9's7 2219

Table 2: Dataset statistics: number of dialogues, average
turns, and turn/recap lengths in English and Italian, split
for training, development, and testing.

an 80-10-10 ratio. Each dialogue is available in
both English and Italian to enable controlled cross-
lingual evaluations. The inclusion of a manu-
ally translated Italian version ensures that cross-
lingual assessments measure generalisation effects
rather than language-specific variations. We assess
whether planning enhances cross-lingual robust-
ness by evaluating model transfer between English
and Italian, testing if structured planning improves
performance across languages.

Turn-Driven Evaluation. This evaluation focuses
on the model’s ability to generate responses at the
individual turn level. The agent (LLM) must de-
termine whether additional clarification is needed
before execution. If necessary, it generates a clarifi-
cation question (Q)); otherwise, it provides a recap
(RC) summarising its understanding of the task.
To assess these aspects, we evaluate clarification
questions and recap generation separately.

To examine the impact of fine-tuning, we test
two state-of-the-art Multi-Modal models with a
compact number of parameters: LLaVA (Liu et al.,
2024) and MiniCPM (Yao et al., 2024). These
models are evaluated in a zero-shot setting, where
they rely solely on a system prompt, and in a fine-
tuned setting, where they learn to generate struc-
tured plans before responding. For plan genera-
tion, the model receives a context consisting of
the initial task-defining prompt (see Appendix A),
the dialogue history up to that turn, and an image.
We assess the alignment of generated plans with
expected outputs using Precision, Recall, and F1-
score for the plan categories defined in Section 3.
For clarification questions and recap generation,
output quality is measured using cosine similarity
between the embedding vectors of generated re-
sponses and expected outputs, to better capture the
semantic and pragmatic quality of responses in our
highly contextual, interactive HRI scenario: notice
that rather than simple text generation (as in trans-
lation), we focus on suitable linguistic interactions

as capable to preserve all inferences needed by the
underlying HRI tasks (e.g. posing questions such
as potential paraphrases). This capability is very
weakly modelled by machine translation metrics
such as BLEU or ROUGE. This is computed using
the Sentence-BERT model (Reimers and Gurevych,
2019)2. Higher cosine similarity indicates greater
syntactic and semantic alignment with the expected
clarification and recap.

Fine-tuning was conducted on four A100 GPUs
using a total batch size of 8 and a learning rate of
5-1075. Complexity reduction techniques such
as LoRA (rank R and « set to 64) were applied to
reduce training costs in terms of time and energy,
to the attention and output layers of the language
decoding module. Moreover, we continued the
joint fine-tuning of the vision encoder as well, as
detailed in the MiniCPM paper (Yao et al., 2024).

Setting Model Plan Generation
P R F1| Q RC
zero-shot LLaVA 0T 3739
MiniCPM | - - - .55 71
Fine-tuned | LLaVA 93 90 92| .82 91
(with Plan) | MiniCPM | 90 91 91| .84 96

Table 3: Comparison of LLaVA and MiniCPM in zero-
shot and fine-tuned settings for plan accuracy and re-
sponse generation.

Table 3 compares LLaVA and MiniCPM across
both evaluation settings, highlighting the impact of
fine-tuning with structured planning. The results
show that fine-tuned models effectively classify
planning categories, achieving over 90% F1-score
in plan generation. In contrast, baseline zero-shot
models struggle to generate contextually appropri-
ate responses, with LLaVA scoring only 0.37 in
the similarity between its clarification questions
and expected ones. Fine-tuning significantly im-
proves performance, with LLaVA reaching 0.82
when incorporating planning. Comparing the two
models, fine-tuned MiniCPM outperforms LLaVA
in question and recap generation, while both mod-
els achieve similar performance in planning.

To further assess the impact of explicit planning
beyond fine-tuning alone, we conduct a detailed
evaluation comparing MiniCPM in settings with
and without structured planning. Given its consis-
tently superior performance across previous experi-
ments, we focus exclusively on MiniCPM for this
analysis. Table 4 presents results across three con-

2https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2
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Setting Language Generation

Train Test | Question Recap

zero-shot - EN 0.548 0.706
- IT 0.595 0.727

EN EN 0.768 0.921

Fine-tuned EN IT 0.659 0.861
(no Plan) IT IT 0.794 0.925
IT EN 0.638 0.908

EN EN 0.843 0.955

Fine-tuned EN IT 0.735 0.930
(with Plan) IT IT 0.867 0.947
IT EN 0.738 0.927

Table 4: MiniCPM performance in zero-shot, fine-tuned,
and planning-enhanced settings across monolingual and
cross-lingual evaluations.

figurations: zero-shot, fine-tuning on dialogue his-
tory alone, and fine-tuning with explicit planning.
In the monolingual EN—EN scenario, fine-tuning
without planning significantly improves genera-
tion quality compared to the zero-shot model (e.g.,
Question Generation rises from 0.548 to 0.768,
while Recap Generation increases from 0.706 to
0.921). However, the addition of planning fur-
ther boosts performance, with Question Generation
reaching 0.843 and Recap Generation improving
to 0.955.

These findings confirm that fine-tuning alone
enhances response quality, but planning refines
the interaction by making clarification requests
more structured and summaries more accurate. We
also examine cross-lingual generalisation, where
the model is trained in one language and tested
in another. The results reveal that models fine-
tuned only on dialogue history experience a no-
table drop in Question Generation accuracy when
applied across languages (EN—IT: 0.659, IT—EN:
0.638). This degradation suggests that, without
structured planning, the model struggles to trans-
fer the reasoning process necessary for effective
question formulation. In contrast, incorporating
planning significantly mitigates this issue: the
EN—IT model achieves 0.735, and the IT—EN
model reaches 0.738, both exceeding the perfor-
mance of the history-only model in monolingual
settings.

Interestingly, Recap Generation remains more
stable across settings, with smaller differences be-
tween monolingual and cross-lingual results. This
indicates that summarisation is a more transfer-
able skill, whereas effective clarification question
generation benefits more directly from structured
planning. These findings underscore the role of
explicit planning not only in improving dialogue

quality but also in strengthening the model’s abil-
ity to generalise across languages, reinforcing the
importance of structured Multi-Modal training for
robust cross-lingual HRI applications.

Dialogue Evaluation. In the previous evalua-
tion, we analysed the performance of the model at
the individual response level, leveraging the gold-
standard dialogue history to assess its ability to
generate appropriate clarification questions and re-
caps. However, in this phase, we shift our focus
to evaluating the overall quality of full dialogues
rather than isolated responses. Specifically, we aim
to answer the question: How well can the model
sustain a complete interaction that dynamically
adapts to user input while effectively gathering the
necessary information? To achieve this, we deploy
the fine-tuned MiniCPM model in an interactive
setting, allowing it to generate dialogues in real-
time.

Two independent annotators, who had not par-
ticipated in the dataset annotation, conducted this
evaluation. Prior to the study, they were given
only a brief introduction: they reviewed ten train-
ing examples and read descriptions of the dialogue
categories to familiarise themselves with the inter-
action structure. Each annotator randomly selected
a test case, viewed the corresponding world image,
and initialised the system by providing the user’s
first request, after reading the gold-standard recap
to understand the intended task outcome. From that
point, they interacted with the model by answering
its clarification questions, ensuring they provided
the necessary details for the system to achieve the
expected goal. This process was repeated across
40 dialogues, enabling a comprehensive evaluation
of how effectively the model conducts a full con-
versation and adapts to evolving user input.

To assess how efficiently the model conducts
interactions, we measure the Dialogue Efficiency
Cost, defined as the ratio between the actual num-
ber of turns and the ideal number needed to com-
plete the task. A lower score indicates that the
model gathers necessary information with fewer
exchanges, highlighting the impact of planning on
dialogue effectiveness.

At the end of each interaction, annotators com-
pleted a brief questionnaire to assess the overall
quality of the dialogue. Specifically, they provided
ratings on two key dimensions: relevance and flu-
ency. Relevance measures the model’s ability to
seek and provide only necessary information, ensur-
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ing that each turn contributes meaningfully to task
completion without unnecessary or redundant ex-
changes. A higher relevance score indicates that the
dialogue remains focused and aligned with user in-
tent. Fluency assesses how naturally and coherently
the assistant formulates questions and responses,
prioritising clarity, grammatical correctness, and
ease of comprehension. Poor fluency may result in
unnatural phrasing or disjointed interactions, while
high fluency ensures smooth and user-friendly com-
munication. Annotators rated these dimensions on
a five-point scale, from 1 (EXTREMELY POOR) to 5
(EXCELLENT). The full questionnaire and scoring
details are provided in Appendix C.

. AVG Dialogue
Setting Length Efficiency Relevance Fluency
no Plan 12.5 1.05 3.13 4.88
with Plan 11.6 0.98 4.25 4.90

Table 5: Dialogue evaluation results

Table 5 presents a comparative analysis of model
performance with and without planning across four
key metrics: dialogue efficiency, relevance, fluency,
and average dialogue length. The results show that
incorporating a planning phase leads to notable
improvements in dialogue quality. In particular,
the planned model achieves a significantly higher
relevance score (4.25 vs. 3.13), suggesting that it
generates more contextually appropriate and pur-
poseful exchanges, avoiding unnecessary, off-topic
questions. Similarly, fluency improves slightly
(4.90 vs. 4.88), indicating that while both settings
produce grammatically well-formed responses, the
planned model better maintains conversational co-
herence.

From an efficiency perspective, the model with
planning achieves a dialogue efficiency score closer
to the optimal value of 1 (0.98 vs. 1.05), suggesting
that it requires fewer redundant turns to reach the
intended task completion. This is further reflected
in the average dialogue length, where the planned
model produces slightly shorter interactions (11.6
vs. 12.5), potentially indicating a more structured
and goal-driven exchange. These results indicate
that explicit planning improves dialogue relevance
while offering a moderate gain in efficiency by
keeping interactions more focused and reducing
unnecessary exchanges. An error analysis is shown
in Appendix B.

5 Conclusion

This work explored the integration of explicit dia-
logue planning in Multi-Modal Large Language
Models for Human-Robot Interaction. We pro-
posed a structured planning mechanism to enhance
an agent’s ability to gather task-relevant informa-
tion through dialogue before executing user com-
mands. To support this investigation, we intro-
duced a dataset of over 1, 100 annotated dialogues
in English and Italian, enabling fine-tuning and
cross-lingual evaluation.

Our experimental results demonstrate that fine-
tuning significantly improves performance over
zero-shot inference, while explicit planning fur-
ther enhances response accuracy, reduces redun-
dant exchanges, and improves overall dialogue effi-
ciency. Additionally, we show that planning facili-
tates cross-lingual generalisation, allowing models
trained in one language to transfer effectively to
another. In this way, we contribute a novel bench-
mark and methodology to advance future research
on grounded, multi-modal dialogue systems for
HRI.

Future directions include investigating alterna-
tive planning strategies, such as integrating plan-
ning into a single-step generation process, explor-
ing more advanced learning paradigms like rein-
forcement learning, and extending this approach
to less structured environments with dynamically
evolving configurations.
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Limitations

While our approach demonstrates the benefits of
explicit dialogue planning in Multi-Modal Large
Language Models (MLLMs) for Human-Robot In-
teraction (HRI), several limitations remain.
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First, the proposed planning mechanism relies on
predefined clarification categories, which may not
generalise to all HRI scenarios. Although these cat-
egories improve dialogue efficiency, they impose
a structured framework that might limit the flex-
ibility needed for open-ended or highly dynamic
interactions.

Second, our dataset consists of dialogues set in
a block-based, synthetic environment with static
world configurations. While this controlled setting
allows for systematic evaluation, real-world HRI
scenarios often involve environments that change
over time and require continuous adaptation. Ex-
tending this approach to more complex, evolving
contexts would be a natural next step.

Third, the planning step is currently treated as
a separate generation process. While this modular
approach facilitates structured reasoning, it may
introduce additional latency. Future work could
explore integrating planning directly into the re-
sponse generation step, potentially reducing infer-
ence time while maintaining structured dialogue
management.

Finally, our experiments focus on fine-tuning
MLLMs, but alternative training paradigms, such
as reinforcement learning, could further refine plan-
ning strategies and enable models to adapt dynami-
cally based on user interactions. Investigating such
approaches could improve long-term engagement
and generalisation in interactive systems.
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A Prompt Design

In this section, we describe the prompts used to
condition the MiniCPM? and LLaVA* models for
the experimental analysis (Section 4), both in En-
glish and Italian. The prompts are categorised into
two primary settings:

* Without Plan Setting: In this configuration,
the model does not rely on a predefined plan.
The prompt instructs the model to either:

— Generate a clarification question based
on the given dialogue history, reference
image, and user command. The model
must identify missing or ambiguous in-
formation related to specific categories
such as block colour, number, orienta-
tion, direction, position, or the feasibility
of actions and commands.

— Generate a confirmation response if the
model determines that all necessary in-
formation is available. This response can
either affirm the execution of the com-
mand or summarise all prior executed
actions relevant to the user request.

This type of prompt has been used in both the
zero-shot setting and the fine-tuned (no Plan)
scenario. See Figures 7 and 8 for reference.

* With Plan Setting: In this setting, the model
is conditioned to first generate a structured
plan before producing a question or confirma-
tion. This enables a more systematic approach
to gathering necessary information. The set-
ting includes two distinct prompt types:

— Plan Generation Prompt: Given the
dialogue history, user command, and ref-
erence image, the model is instructed
to generate a structured plan, listing
the categories of missing information
that require clarification. The categories
are predefined, covering aspects such as
block colour, number, spatial arrange-
ment, or command feasibility. The
model must ensure consistency with pre-
viously generated plans when applicable.
See Figures 9 and 10.

3https ://huggingface.co/openbmb/MiniCPM-V-2_6

4https: //huggingface.co/meta-1lama/
Llama-2-7b-chat-hf
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— Clarification/Confirmation Prompt:
Once a plan is available, the model is
instructed to generate either: i) a clarifi-
cation question corresponding to the first
category in the input plan; if) a confirma-
tion response if the plan indicates that all
necessary information is available. This
response may include an explicit recap
of the actions performed. See Figures 11
and 12.

Each prompt follows a structured format:

¢ Context Definition: The model is provided
with structured input, including a world im-
age, a history of prior interactions, and (if
applicable) a previously generated plan.

» Task Objective: The model is explicitly in-
structed to either generate a clarification ques-
tion, formulate a confirmation, or produce a
structured plan, depending on the setting.

* Categorical Breakdown: The prompts define
the missing information through the specific
categories in 7, ensuring that the model sys-
tematically assesses what aspects require clar-
ification before executing a command. The
set 7 includes the following categories:

— CoLOR: Clarifications about block color.

— NUMBER: Clarifications about the num-
ber of blocks.

— ORIENTATION: Direction in which the
model should operate.

— DIRECTION: Direction of block place-
ment.

— BLOCK MISSING: Verifying whether re-
quested blocks exist in the environment.

— NOT EXECUTABLE ACTION: Determin-
ing whether an action can be performed.

— NOT EXECUTABLE COMMAND: Deter-
mining whether a command can be exe-
cuted.

— NoT EXECUTABLE: COLOR NOT
FOUND: Addressing unavailable block
colors.

— DISPOSITION: General arrangement of
blocks.

— PRECISE DISPOSITION: Fine-grained
clarifications about block disposition.

— POSITION: General clarification about
block positioning.

— PRECISE POSITION: Detailed clarifica-
tion about block positioning.

— PRECISE BLOCK: Clarifications about a
specific block in question.

— CONFIRMATION: Affirming the execu-
tion of a command.

— CONFIRMATION WITH RECAP: Summa-
rizing all previous actions relevant to the
command.

* Task Execution: Finally, the model is in-
structed to generate a well-formed response
that adheres to the specified categories (either
posing a clarification question), confirming
the execution of the command, or summaris-
ing prior actions.

B Error Analysis

Figure 3 presents three illustrative scenarios from
the dynamic dialogue test set, where a human eval-
uator independently interacts with both models,
one incorporating planning and the other operating
without it. Below, we summarise key observations.

In the first scenario (Figure 3a), the user pro-
vides a vague command, “Place some blocks”. The
model without a planning mechanism initially gath-
ers most of the necessary information but after a
few turns, begins repeating questions about posi-
tion and colour. Moreover, it fails to ask about
the arrangement of the blocks (e.g., whether they
should be placed in a line, column, or scattered). In
contrast, the model that integrates planning avoids
redundancy, systematically gathers all relevant de-
tails, including arrangement, and concludes more
efficiently. As a result, the model without planning
received an EXTREMELY BAD relevance score: this
example represents the only dialogue where the
model without a plan failed to conclude the inter-
action. In contrast, the system leveraging planning
achieved the highest rating. We report the entire
dialogue in Figure 4.

In the second scenario (Figure 3b), the user in-
structs, “Add some black blocks and then add four
blocks of another color.”” Since black blocks are
not available in the environment, both models cor-
rectly detect the issue and prompt the user to choose
another colour, successfully handling the request.
However, the model without planning produces an
inconsistent final recap, incorrectly stating that it
will add black blocks despite having resolved the
colour issue earlier. This inconsistency highlights a
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(a) CQ-game-6796

(b) CQ-game-8747 (c) CQ-game-2702

Figure 3: Environments examples of some dialogues we tested the models on.

Place some blocks

u How many blocks do I need to place?

4

fﬁ ‘What color?

Pink

ﬁ I don’t have pink blocks, do you want to indicate another color?

OK, red then

m How do I arrange the blocks?
In two rows of two blocks each

u ‘Which direction should I face?
Look to the north

rﬁ ‘Where do I place the blocks of the first row?

Place this other one to the left of the westernmost blue

block
u ‘Which direction should I face?

Still to the north

OK, I’ll place 4 blue blocks in two rows of two blocks each, placing

Place some blocks &
m How many blocks do I need to place?

4 2
ﬂl What color?

Pink 2

ﬁ; I don’t have pink blocks, do you want to indicate another color?
OK, red then a
m; Where should I place the blocks?

Place two of them to the right of the easternmost blue
block and two to the left of the westernmost blue block &

u Which direction should I face?

Look to the north

m; How should I arrange the blocks?

Arrange them in two rows of two blocks each

mﬁ In which direction should I direct the rows?

West for the row on the left of the westernmost blue
block and east for the row on the right of the eastern-
most blue block a

the first row to the right of the easternmost blue block, facing north.

(a)

Ok, I'll place 4 red blocks, two to the right of the easternmost

blue block and two to the left of the westernmost blue block,

facing north, in two rows of two blocks each, directing the row
; of the left of the westernmost blue block west and directing the
m row to the right of the easternmost blue block east.

(b)

Figure 4: Dialogues related to the CQ-game-6796 image from Figure 3a. The left subfigure shows the interaction with
the model without a planning step, while the right subfigure illustrates the interaction with the model incorporating

planning.

failure to maintain coherence. The model equipped  “Add blocks to create the number ten on the map”.
with planning, on the other hand, avoids this issue, =~ The model, lacking planning, misinterprets the
maintaining logical consistency throughout the di-  request, asking irrelevant questions such as how
alogue. We report the entire dialogue in Figure = many blocks are needed and incorrectly assuming

5.

the task involves creating a column. The model us-

The third scenario (Figure 3c) is associated with ~ ing planning correctly, infers the number of blocks
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Add some black blocks and then add 4 blocks of another
color a

There are no black blocks on the map, what color do you want me to

@

[ )
Green please -
m How many black blocks do I need to add?
[ ]
Only 3 -
m ‘Where should I place the 3 green blocks?
On top of the central yellow block on the top of the struc-
ture &
m How many black blocks do I need to add?
As I said, add just 3 blocks -

) Ok, I'll add 3 black blocks and then add 4 green blocks and place
m] them on top of the central yellow block on the top of the structure

(a)

Add some black blocks and then add 4 blocks of an-
other color a

ﬁ; I can’t add black blocks, would you like to indicate another color?

[ ]
Green please -

m; How many green blocks should I add?

Only 3 a
m Where should I place the three green blocks?

On top of the central yellow block on the top of the PY

structure -
m; How should I arrange the three green blocks?

One on top of the others a

. Ok, I’ll add 3 green blocks on top of the central yellow block on
m the top of the structure, one on top of the others

(b)

Figure 5: Dialogues related to the CQ-game-8747 image from Figure 3b. The left subfigure shows the interaction
with the model without a planning step, while the right subfigure illustrates the interaction with the model incorpo-

rating planning.

from the image but does not explicitly confirm this
information in its final response. While this omis-
sion is less critical, it still suggests minor gaps in
reasoning completeness. We report the entire dia-
logue in Figure 6.

C Evaluation Questionnaire

As discussed in Section 4, to conduct a comprehen-
sive analysis of the dialogue quality, we integrated
human evaluation into our framework. Two inde-
pendent annotators were involved in assessing the
dialogues based on two key dimensions: Relevance
and Fluency.

The evaluation was carried out using a dedicated
annotation interface where annotators engaged in
chat-based interactions with the assistant while
having access to the reference image of the en-
vironment. Importantly, annotators were blind to
whether the system they interacted with had been
trained with or without an explicit planning phase,
as this information was not exposed during evalua-
tion.

At the end of each interaction, annotators rated
the assistant’s performance by completing a struc-
tured questionnaire. The evaluation employed a
five-point Likert scale, allowing fine-grained as-
sessment of dialogue quality. The criteria for as-
signing scores are outlined in Figure 13.

The Relevance dimension evaluates whether the

assistant asks only necessary clarification ques-
tions, avoiding irrelevant or redundant requests. A
higher relevance score indicates that the assistant
effectively focuses on the essential aspects of the
command without digressions. At the lowest end
of the scale, the assistant fails to request crucial
clarifications or asks entirely irrelevant questions.
As the score increases, the assistant progressively
refines its queries, reducing unnecessary questions
while maintaining the essential ones. A perfect
score is awarded when all clarification requests are
both necessary and relevant to the task.

The Fluency dimension assesses the linguistic
quality of the assistant’s responses, ensuring that
the generated questions and confirmations are well-
formed, grammatically correct, and natural in their
formulation. At the lowest score, responses may
contain severe grammatical errors, unnatural phras-
ing, or even nonsensical text. As fluency improves,
the assistant’s utterances become progressively
more structured and comprehensible, with minor
linguistic imperfections persisting in the mid-range.
A maximum score is given when the language is
completely natural, error-free, and appropriately
structured for a seamless interaction.
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Add some blocks to create the number ten on the map a Add some blocks to create the number ten on the map a
m What color should the blocks be? ml What color should the blocks be?
: [ ] [ ]
Make them purple - Make them purple -
m Where should I place the first block of the column? m; Where should I place the purple blocks?
Two cells to the right of the existing purple column a Two cells to the right of the existing purple column a
‘ml Which direction should I face? ml Which direction should I face?
West a West a
m How many blocks should the column have? . Ok, I'll add purple blocks two cells to the right of the existing

m; purple column, facing west, to create the number ten on the map.

It should have 12 blocks, but it’s not just a column, it’s a

[ )
shape - (b)
mﬂ In which direction should I direct the column?

g [ ]
It’s a 0, not a column

Ok, I'll add 12 purple blocks, placing the first block two cells to the
. right of the existing purple column, facing west, and not directing the
m column. This will create the number ten on the map.

(a)

Figure 6: Dialogues related to the CQ-game-2702 image from Figure 3c. The left subfigure shows the interaction with
the model without a planning step, while the right subfigure illustrates the interaction with the model incorporating
planning.

In this Minecraft-style virtual environment, you are a robotic builder capable of performing actions such as adding,
placing, putting, removing, destroying, taking, stacking, moving, and building blocks on the map. Each block on the
map has a distinct colour belonging to this list of allowed colors: red, blue, yellow, orange, purple, green. You can
orient yourself according to the cardinal directions (North, South, West, and East).

Your task is: given the user’s command, the map image, and the possible history of the dialogue (if present),
you must generate a clarification question as output. The possible categories for generating clarification questions are
as follows:

- block colors

- number of blocks

- the orientation you need to have to perform an operation

- the direction of blocks

- blocks not present on the map

- actions that cannot be performed

- commands that cannot be performed

- colors that cannot be used

- block arrangement

- precise arrangement of blocks

- block positions

- precise block positions

- specific clarifications about a block in question.

If you believe you have all the necessary information regarding the user’s commands, you must generate an
affirmative response confirming the execution of the command, or generate an affirmative response summarizing all the
operations previously performed (and thus present in the dialogue history) to execute the command.

Figure 7: English system prompt for the Without Plan setting, guiding the model to generate either a clarification
question or a confirmation with a recap.
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In questo ambiente virtuale in stile Minecraft, sei un costruttore robotico in grado di eseguire azioni come aggiungere,
posizionare, mettere, rimuovere, distruggere, togliere, impilare, spostare, costruire blocchi sulla mappa. Ogni blocco
sulla mappa ha un colore distinto appartenente a questa lista di colori ammissibili: rosso, blu, giallo, arancione, viola,
verde. Hai la capacita di orientarti secondo i punti cardinali (Nord, Sud, Ovest ed Est).

1l tuo task e: dato in input il comando dell’utente, 'immagine della mappa e [’eventuale storia pregressa
del dialogo (se presente), devi generare in output una domanda di chiarimento. Le categorie possibili sulle quali devi
generare le domande di chiarimento sono le seguenti:

- colore dei blocchi

- numero di blocchi

- orientamento che devi avere per eseguire un’operazione

- direzione dei blocchi

- blocchi non presenti sulla mappa

- azioni non eseguibili

- comandi non eseguibili

- colori non utilizzabili

- disposizione dei blocchi

- precisa disposizione dei blocchi

- posizione dei blocchi

- precisa posizione dei blocchi

- chiarimenti precisi su un blocco interessato.

Se ritieni di avere tutte le informazioni chiare circa i comandi dell’utente, dovrai generare una risposta af-
fermativa di esecuzione del comando, oppure dovrai generare una risposta affermativa di esecuzione del comando
riassumendo tutte le operazioni effettuate in precedenza (e quindi presenti nella storia pregressa del dialogo) per
poterlo eseguire.

Figure 8: Italian system prompt for the Without Plan setting, guiding the model to generate either a clarification
question or a confirmation with a recap.

In this Minecraft-style virtual environment, you are a robotic builder capable of performing actions such as adding,
placing, putting, removing, destroying, taking, stacking, moving, and building blocks on the map. Each block on the
map has a distinct colour belonging to this list of allowed colors: red, blue, yellow, orange, purple, green. You can
orient yourself according to the cardinal directions (North, South, West, and East).

Your task is: given the user’s command, the map image, and the possible history of the dialogue (if present),
you must generate a plan of the question categories to ask the user to clarify the command and be able to execute it.

The plan you generate must follow this format: ['CATEGORYI’, 'CATEGORY2’]. The categories you can
include in the plan are as follows:

- COLOR (for clarifications about block color),

- NUMBER (for clarifications about the number of blocks),

- ORIENTATION (for clarifications about which orientation to take to perform the operation),

- DIRECTION (for clarifications about the direction of blocks),

- BLOCK MISSING (for requests about blocks not present on the map),

- NOT EXECUTABLE ACTION (for actions that cannot be performed),

- NOT EXECUTABLE COMMAND (for commands that cannot be performed),

- NOT EXECUTABLE: COLOR NOT FOUND (for colors that cannot be used),

- CONFIRMATION (if the command is clear and executable),

- CONFIRMATION WITH RECAP (to confirm all the actions performed to complete the command),
- DISPOSITION (for clarifications about the arrangement of blocks),

- PRECISE DISPOSITION (for precise clarifications following a DISPOSITION category),

- POSITION (for clarifications about the position of blocks),

- PRECISE POSITION (for precise clarifications following a POSITION category),

- PRECISE BLOCK (for precise clarifications about the block in question).

When generating the plan, if the user’s input request is consistent with the previously generated plan (and
thus present in the input dialogue history), the plan to be generated must follow the old plan already generated.
However, if the user’s input request is inconsistent with the old plan, you must generate a new plan with the new relevant
categories for the user’s requests.

Figure 9: English system prompt for the With Plan setting, instructing the model to generate a structured plan for
dialogue clarification.
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In questo ambiente virtuale in stile Minecraft, sei un costruttore robotico in grado di eseguire azioni come aggiungere,
posizionare, mettere, rimuovere, distruggere, togliere, impilare, spostare, costruire blocchi sulla mappa. Ogni blocco
sulla mappa ha un colore distinto appartenente a questa lista di colori ammissibili: rosso, blu, giallo, arancione, viola,
verde. Hai la capacita di orientarti secondo i punti cardinali (Nord, Sud, Ovest ed Est).

Il tuo task e: dato in input il comando dell’utente, I'immagine della mappa e l’eventuale storia pregressa
del dialogo (se presente), devi generare in output il piano delle categorie delle domande da porre all’utente per chiarire
il comando e poterlo eseguire.

Il piano che devi generare deve avere il seguente formato: ['CATEGORIAI’CATEGORIA2’]. Le categorie
che puoi inserire nel piano sono solo le seguenti:

- COLOR (per chiarimenti sul colore dei blocchi),

- NUMBER (per chiarimenti sul numero di blocchi),

- ORIENTATION (per chiarimenti su quale orientamento devi avere per eseguire I’operazione),

- DIRECTION (per chiarimenti sulla direzione dei blocchi),

- BLOCK MISSING (in caso di richiesta su blocchi non presenti sulla mappay),

- NOT EXECUTABLE ACTION (in caso di azioni non eseguibili),

- NOT EXECUTABLE COMMAND (in caso di comandi non eseguibili),

- NOT EXECUTABLE: COLOR NOT FOUND (in caso di colori non utilizzabili),

- CONFIRMATION (in caso il comando sia chiaro ed eseguibile),

- CONFIRMATION WITH RECAP (per confermare tutte le azioni effettuate per completare il comando),

- DISPOSITION (per chiarimenti sulla disposizione dei blocchi),

- PRECISE DISPOSITION (in caso di necessita di chiarimenti precisi a seguito di una categoria DISPOSITION),
- POSITION (per chiarimenti sulla posizione dei blocchi),

- PRECISE POSITION (in caso di necessita di chiarimenti precisi a seguito di una categoria POSITION),

- PRECISE BLOCK (in caso di necessita di chiarimenti precisi sul blocco interessato).

Al momento della generazione del piano, se la richiesta dell’utente in input e consistente con il piano pre-
gresso gia generato (e quindi presente nella storia pregressa del dialogo in input), il piano da generare dovra seguire
quello vecchio gia generato. Se invece la richiesta dell’utente non é consistente con il vecchio piano presente, dovrai
generare un nuovo piano con le nuove categorie rilevanti per le richieste dell utente.

Figure 10: Italian system prompt for the With Plan setting, instructing the model to generate a structured plan for
dialogue clarification.

In this Minecraft-style virtual environment, you are a robotic builder capable of performing actions such as adding,
placing, putting, removing, destroying, taking, stacking, moving, and building blocks on the map. Each block on the
map has a distinct colour belonging to this list of allowed colors: red, blue, yellow, orange, purple, green. You can
orient yourself according to the cardinal directions (North, South, West, and East).

Your task is: given the user’s command, the map image, the plan generated for that command, and the pos-
sible history of the dialogue (if present), you must output a clarification question related to the first category in the input
plan. For example, with this input plan: [’ CATEGORY1’, 'CATEGORY?2’], the question you generate must only pertain
to CATEGORY]I.

If the plan contains only the CONFIRMATION category, you must generate an affirmative response indicat-
ing the execution of the command. If it contains only CONFIRMATION WITH RECAP, you must generate an affirmative
response summarizing all the operations previously performed (and thus present in the dialogue history) to execute the
command.

The possible categories in the plan for which you need to generate questions are as follows:
- COLOR (for clarifications about block color),

- NUMBER (for clarifications about the number of blocks),

- ORIENTATION (for clarifications about which orientation to take to perform the operation),
- DIRECTION (for clarifications about the direction of blocks),

- BLOCK MISSING (for requests about blocks not present on the map),

- NOT EXECUTABLE ACTION (for actions that cannot be performed),

- NOT EXECUTABLE COMMAND (for commands that cannot be performed),

- NOT EXECUTABLE: COLOR NOT FOUND (for colors that cannot be used),

- DISPOSITION (for clarifications about the arrangement of blocks),

- PRECISE DISPOSITION (for precise clarifications following a DISPOSITION category),
- POSITION (for clarifications about the position of blocks),

- PRECISE POSITION (for precise clarifications following a POSITION category),

- PRECISE BLOCK (for precise clarifications about the block in question).

Figure 11: English system prompt for the With Plan setting, guiding the model to generate either a clarification
question or a confirmation with a recap.
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In questo ambiente virtuale in stile Minecraft, sei un costruttore robotico in grado di eseguire azioni come aggiungere,
posizionare, mettere, rimuovere, distruggere, togliere, impilare, spostare, costruire blocchi sulla mappa. Ogni blocco
sulla mappa ha un colore distinto appartenente a questa lista di colori ammissibili: rosso, blu, giallo, arancione, viola,
verde. Hai la capacita di orientarti secondo i punti cardinali (Nord, Sud, Ovest ed Est).

1l tuo task é: dato in input il comando dell’utente, 'immagine della mappa, il piano generato per quel co-
mando e ’eventuale storia pregressa del dialogo (se presente), devi generare in output una domanda di chiarimento
relativa alla prima categoria presente nel piano in input. Ad esempio, con questo piano in input: ['CATEGO-
RIAI’CATEGORIA2’], la domanda che dovrai generare dovra essere relativa solamente alla CATEGORIAI.

Se nel piano c’e solo la categoria CONFIRMATION, dovrai generare una risposta affermativa di esecuzione del
comando, se invece c’é solo CONFIRMATION WITH RECAP dovrai generare una risposta affermativa di esecuzione
del comando riassumendo tutte le operazioni effettuate in precedenza (e quindi presenti nella storia pregressa del
dialogo) per poterlo eseguire.

Le categorie possibili nel piano sulle quali devi invece generare le domande sono le seguenti:

- COLOR (per chiarimenti sul colore dei blocchi),

- NUMBER (per chiarimenti sul numero di blocchi),

- ORIENTATION (per chiarimenti su quale orientamento devi avere per eseguire I’ operazione),

- DIRECTION (per chiarimenti sulla direzione dei blocchi),

- BLOCK MISSING (in caso di richiesta su blocchi non presenti sulla mappa),

- NOT EXECUTABLE ACTION (in caso di azioni non eseguibili),

- NOT EXECUTABLE COMMAND (in caso di comandi non eseguibili),

- NOT EXECUTABLE: COLOR NOT FOUND (in caso di colori non utilizzabili),

- DISPOSITION (per chiarimenti sulla disposizione dei blocchi),

- PRECISE DISPOSITION (in caso di necessita di chiarimenti precisi a seguito di una categoria DISPOSITION),
- POSITION (per chiarimenti sulla posizione dei blocchi),

- PRECISE POSITION (in caso di necessita di chiarimenti precisi a seguito di una categoria POSITION),
- PRECISE BLOCK (in caso di necessita di chiarimenti precisi sul blocco interessato).

Figure 12: Italian system prompt for the With Plan setting, guiding the model to generate either a clarification
question or a confirmation with a recap.

Category Value Relevance Fluency
The assistant’s responses
The assistant doesn’t ask for do not belong to the reference
EXTREMELY POOR 1 any relevant information or lan%luagf:, ar aée 2 cg}lectlon of
doesn’t understand at all the task. randomly words withouta
coherent structure or meaningful
context
The asshst?intldq%sn’t‘ ask for . TlheA ?iss1§tant asks gl(git cle?lr
one needed clarification or as clarifications, mistaking the
INADEQUATE 2 for more than two irrelevant information and using l%nnatural
information. language.
The1 assmta?t gfsiks for orl;e or tv&ﬁ
irrelevant clarifications but is able : 9
to ask also for the needed The astststimt ? rest onbsestare
ADEQUATE 3 information during the dialogue. lclorre.c‘t. uf T Wl U1 ﬂf S h still
The assistant asks for unnecessary 1n§ulstlc dogln’ Eveil Unotigin 6
information that could be derived UNCEISIaNCaD )
from the image.
The assistant asks for all the - 5 -
Goop 4 needed information but asks also Tthe as§1stant 3 respotl_lsels E
for one irrelevant information e L
The assistant asks for the right Thg as:lstgntt)lusle S an
EXCELLENT 5 clarification selecting only the unt ersl anca qbailnguecllgteﬁ as
most relevant needed information gﬁ ellSIgOI?SS gr(zzscszll 2 ai 2‘; e oeir -—

Figure 13: Evaluation criteria for assessing the assistant’s dialogue performance. The table defines five rating
categories (EXTREMELY POOR to EXCELLENT) based on two key dimensions: Relevance, which measures the
appropriateness and necessity of clarification requests, and Fluency, which evaluates linguistic quality and coherence.
Each category is assigned a numerical score from 1 to 5, with detailed descriptions of the corresponding assistant
behaviour for both evaluation aspects.
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