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Abstract

Large Language Models (LLMs) have shown
promise in automating high-labor data tasks,
but the adoption of LLMs in high-stake scenar-
ios faces two key challenges: their tendency to
answer despite uncertainty and their difficulty
handling long input contexts robustly. We in-
vestigate commonly used off-the-shelf LLMs’
ability to identify low-confidence outputs for
human review through "check set selection"—
a process where LLMs prioritize information
needing human judgment. Using a case study
on social media monitoring for disaster risk
management, we define the “check set” as a
list of tweets escalated to the disaster manager
when the LLM has the least confidence, en-
abling human oversight within budgeted effort.
We test two strategies for LLM check set selec-
tion: individual confidence elicitation — LLM
assesses confidence for each tweet classifica-
tion individually, requiring more prompts with
shorter contexts, and direct set confidence elici-
tation — LLM evaluates confidence for a list of
tweet classifications at once, using less prompts
but longer contexts. Our results reveal that set
selection via individual probabilities is more
reliable but that direct set confidence merits
further investigation. Direct set selection chal-
lenges include inconsistent outputs, incorrect
check set size, and low inter-annotator agree-
ment. Despite these challenges, our approach
improves collaborative disaster tweet classifi-
cation by outperforming random-sample check
set selection, demonstrating the potential of
human-LLM collaboration.

1 Introduction

Large language models (LLMs) have significantly
advanced the field of natural language processing
(NLP) and made it possible to automate a wide
range of NLP tasks such as classification, infor-
mation retrieval, summarization, and many more
(Raiaan et al., 2024; Lee et al., 2022; Cohen et al.,
2022; Yang et al., 2024). LLMs can perform these

tasks by following prompts, where the enduser pro-
vides task details and input data, and the model
generates a text response. However, studies show
that end users tend to struggle to identify incor-
rect LLM responses, a problem that can escalate as
larger and more complex LLMs are less likely to
refrain answering questions (Zhou et al., 2024).

The adoption of LLMs in high-stakes scenarios
continues to be a challenge, as assuming LLM-
generated responses to be always correct can have
severe consequences, i.e., if incorrect outputs in-
fluence decision-making processes. Previous stud-
ies evaluated LLMs’ ability to express uncertainty
which we refer to as confidence elicitation (Xiong
etal., 2024; Lin et al., 2022; Tian et al., 2023; Kada-
vath et al., 2022). Confidence elicitation methods
have shown that uncertainty estimates are closely
correlated with the accuracy of the prediction (Tian
et al., 2023; Kumar et al., 2023). While LLM’s
output is challenging to evaluate automatically in
high-stakes scenarios, we investigate if we can sur-
face LLM incorrectness using confidence elicita-
tion techniques.

We introduce the check set for the human-LLM
collaboration pipeline. The check set is a list of
potentially misclassified predictions by the LLM
needing review by the end users. While prior re-
search has evaluated the quality of LLM-generated
output for escalation to human review, such efforts
have typically relied on separate verifier models
(Wang et al., 2024; Varshney and Baral, 2023),
task-specific fine-tuning (Xin et al., 2021; Chen
et al., 2023), or probing the model (Yoshikawa and
Okazaki, 2023). In contrast, this study introduces
a novel approach in which the check set is directly
selected by the off-the-shelf LLM itself.

In this paper, we investigate the LLMs’ check set
selection capability with a case study in the field
of disaster risk management. For this use case, the
check set is a list of tweets escalated to the disaster
manager when the LLLM has the least confidence,
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Figure 1: Check Set Selection Framework. Two strategies for check set selection (1) Individual Confidence
Elicitation - LLM assesses confidence for each tweet classification individually, requiring more prompts with shorter
contexts (2) Direct Set Confidence Elicitation - LLM evaluates confidence for a list of tweet classifications at once,

using fewer prompts but longer contexts.

enabling human oversight within a budgeted time-
frame. LL.Ms have the potential to assist disaster
managers in sifting through massive amounts of
online social media data for relevant, critical, and
actionable information during disaster events. With
the goal of helping disaster managers, we are fo-
cused on commonly available LLMs that allow the
disaster managers independence from a complex
pipeline and the maintenance it implies.

We present two methods for check set selection
as seen in Figure 1: (1) individual confidence elic-
itation: LLM assesses confidence of each tweet
classification separately using individual probabili-
ties, requiring more prompts with shorter contexts
and (2) direct set confidence elicitation: LLM eval-
uates confidence for a list of tweet classifications at
once which allows for comparison within the list,
using fewer prompts but longer contexts. These
two approaches attempt to mitigate two underlying
problems of LLMs in high-stakes use cases, LLMs
refusing to refrain from answering questions they
may not know the answers to (Zhou et al., 2024)
and LLMs being unable to robustly make use of in-
formation in long input contexts (Liu et al., 2024).

Previous work on selection from long-context
lists (Hsieh et al., 2022; Gupta et al., 2024; Levy
etal., 2024; Laban et al., 2024), has not required the
LLM to identify a subset of specific items within
a longer list provided in the prompt and has not
explored the influence of the referencing method
used for the input. Intuitively, more input data and

longer contexts provide LLMs more information
i.e., the more classifications, the more comparisons
LLMs can make to determine the potential incor-
rect classifications. However, recent studies show
that LL.Ms struggle with long-context tasks where
performance is influenced by the input order and
context size (Liu et al., 2024; Hsieh et al., 2022;
Gupta et al., 2024).

We ran our experiments using both closed and
open-sourced off-the-shelf LLMs: gpt-4o-mini
(OpenAl, 2024a), gpt-4o (OpenAl, 2024b), llama
3.1 8B-Instruct (Llama Team, 2024), mistral 7B-
Instruct v0.3 (Jiang et al., 2023) across check set se-
lection from predictions on two classification tasks:
(1) humanitarian aid vs. not humanitarian aid and
(2) humanitarian aid information type.

Our key contributions are as follows:

* We introduce direct set confidence-based
check set selection, leveraging fewer prompts
with longer context input, and compared it
to the individual confidence-based check set
selection.

* We analyze the long-context capabilities of
LLMs in direct set selection, examining the
impact of context length, input order, and ref-
erencing methods.

Our results show that LLMs have the ability
of check set selection using confidence elicitation
techniques by outperforming random check set se-
lection. Individual confidence elicitation is found
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to be more reliable compared to direct set confi-
dence selection. This demonstrates that the current
off-the-shelf LLMs are not sufficiently developed
for the direct set selection method. This is evi-
denced in Section 4 demonstrating the issues in
the direct set method such as providing incorrect
list sizes, inconsistent outputs across different list-
referencing methods, and low inter-annotator agree-
ment. The direct set selection capabilities ought
to be further explored as LLMs improve, as the is-
sues pointed out need to be solved, especially when
LLMs are to be applied in high stakes scenarios.

2 Method

The study investigates LLM’s ability to select a
useful check set from long-context input using con-
fidence elicitation. First, we present the motivation
of our approach and how we use LLMs as our dis-
aster tweet classifiers. Then, we demonstrate the
two set selection methods. Lastly, we deep dive
on the LLMs direct set selection ability from long
context input.

Problem Definition. LL.Ms have been very ef-
fective in various natural language tasks. However,
adoption of LL.Ms in high-stake scenarios contin-
ues to be a challenge due to two main issues: the
larger and more complex the LLMs the less likely
they are to refrain from answering questions they
do not know the answer to (Zhou et al., 2024) and
LLMs struggle with long-context tasks (Liu et al.,
2024; Hsieh et al., 2022). We aim to mitigate these
problems using check set selection by allowing
LLMs to utilize their confidence estimates of their
initial predictions to prioritize information needing
human review.

LLM as Disaster Tweet Classifier We test the
performance of LLMs as disaster tweet classifiers
using two classification tasks: Task (1) humanitar-
ian aid vs. not humanitarian aid — asking LLMs if
the tweet is useful for humanitarian aid or not and
Task (2) humanitarian aid information classifica-
tion — asking LLMs to classify the tweet based on
the type of humanitarian aid information it contains.
We ran our experiments on sixteen (16) different
disaster events, Task (1) with 6 disaster events with
500 tweets per event and Task (2) with 10 disaster
events with 300 tweets per event. More details are
found in Section 3.1. The selected check sets are
from the initially classified list by these classifiers.

Set Selection using Individual Confidence
Elicitation. We make use of an LLM to predict

the probability of the initial tweet classification
from our disaster tweet classifier to be correct with
a value between 0.0 and 1.0, referring to one of
the methods by Tian et al. (2023) on confidence
elicitation. We select the check set by using the
tweet classifications with the lowest probabilities
of being correct at the lowest 20% of the tweet clas-
sifications. The chosen check set size of 20% corre-
sponds to the estimated effort the disaster managers
have budget for, i.e., time and people to review
check set. We chose a fixed check set size because
it standardizes the effort done by the end users and
allows us to compare across different check set se-
lection strategies. For cut-off tweets with the same
probabilities, we use random selection.

Evaluating the Reliability of Direct Set Se-
lection To evaluate the reliability of off-the-shelf
LLMs in direct set selection, we conducted a com-
prehensive analysis of three factors: input context
length, list-referencing methods, and input list or-
der. For an LLM to be considered reliable, these
factors should not significantly affect its perfor-
mance.

Our experimental design involved prompting
the LLM to identify k tweets with potentially er-
roneous classification labels from a given list of
tweets and classifications provided by an Al assis-
tant. This task requires the LLM to comprehend
the initial classification task prompt, access the list
of k tweets and classifications, and subsequently
select the check set for end-user review. Figure 7
shows an example set selection prompt.

First, we investigate the influence of context
length of the input so we ran prompts with dif-
ferent list context sizes of 25, 50, and 100 tweets
and classifications. For the 25-tweet context, we
partitioned the 100 tweets into four disjoint groups,
each prompt selecting five from the list to create
the check set size of 20.

Second, we investigate the influence of list-
referencing methods used for the tweet and classi-
fication lists. We do these investigations following
Mizrahi et al. (2024)’s finding that instruction tem-
plates lead to very different performance. Further-
more, as our goal is to allow disaster managers inde-
pendence from a complex pipeline and optimize re-
source, the choice of list-referencing method does
influence the cost per token (both input and output)
and so merits further examination. The four list ref-
erencing methods and their rationale are as follows
(see Appendix A.4 for examples):
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numerical ID — method commonly used for single re-
trieval from a list.

¢ full-text — ensures LLLM selects the actual tweets and
not hallucinating IDs.

¢ keywords — similar to how humans recall relevant infor-
mation from a list of sentences.

short-uuid (8 characters) — used as key for single re-
trieval methods that is more robust than numerical IDs
as hallucination can easily be detected.

We used multiple prompts (n = 10) for the same
disaster event where in every prompt, randomly
shuffling the order of tweet classifications in each
prompt to assess the influence of list order on se-
lection choices. To select the final check set from
the responses of the multiple prompts, we applied
majority vote on valid responses.

3 Experimental Setup
3.1 Datasets

Task 1: humanitarian aid vs. not humanitar-
ian aid. We randomly sampled 500 tweets for
six different disaster events, i.e., a total of 3000
tweets from CrisisBench (Alam et al., 2021b) , a
consolidated crisis-related social media dataset for
humanitarian information processing. For the LLM
prompt design, we renamed the class labels as hu-
manitarian aid and not humanitarian aid from the
original broad labels informative vs. not informa-
tive to explicate the labeling task.
Task 2: Humanitarian Aid Information Classi-
fication. For the humanitarian information classi-
fication task, we utilized human-annotated crisis-
related tweets from (Alam et al., 2021a). The
original dataset had 11 labels, however, we limited
our labels to the 5 that were present in all of our
selected crisis events, following (Zou et al., 2023)
who also reduced their labels. Originally, we exper-
imented with including the labels: other relevant
information and not humanitarian, however, our
initial experiments showed that such vague and
negated labels are too challenging for the LLM.
We sampled 300 tweets for each of ten different
disaster events, i.e., a total of 3000 tweets.

More information about the datasets used is
found in Appendix A.2

3.2 Models

We chose four of the latest commonly used off-the-
shelf LLM’s in our experiments. We used gpt-4o-
mini (OpenAl, 2024a), gpt-4o (OpenAl, 2024b),
llama 3.1-8B-Instruct (Llama Team, 2024), and

mistral 7B v0.3-Instruct (Jiang et al., 2023). These
models were chosen because they are commonly
used by both researchers and the public. We ran
our experiments at the temperature setting of 0.0 to
make all models deterministic in their prediction.
All the other parameters were kept default. The
exact model parameters and information are found
in Appendix A.3.1.

3.3 Evaluation Metrics

First, we need to evaluate the initial performance
of the LLM on classifying single tweets. We use
the following metrics for this: Accuracy and Ef-
fective Accuracy. We define effective accuracy
as the overall performance of the collaboration of
the LLM and enduser on the dataset D of length n,
when the enduser is provided with the set size of ¢
to review. For this scenario, we are working with
the assumption that the enduser’s performance on
the check set has 100% accuracy. This is computed
as follows:

n—=c C
%Eff Accp = ( - )%ACCLLM + E%AccHum

To evaluate the LLMs’ ability to select a set from
long context input, we introduce the following met-
rics:

No. of Valid Prompt Response. We test the ro-
bustness of all the LLMs on their ability to provide
valid prompt responses consistently. We consider
an LLM response is considered valid if (1) the set
provides the correct number of items requested and
(2) all the items in the set come from the long-
context input list, i.e., there were no hallucinations.
We report valid prompt responses by the 100-tweet
partitions of a disaster event (our set largest context-
size), i.e., one valid response is equivalent to four
valid responses of each disjoint group of context
size 25 and two valid responses of each disjoint
group of context size 50.

Inter-Annotator Agreement. We used Krippen-
dorff’s alpha (Krippendorft, 1970) to measure the
inter-annotator agreement between the multiple
prompts with the varying classification list order.

3.4 Prompts

Classifier Prompts. We formulated our classifier
prompts with reference to the annotation protocol
and the class description provided from the original
dataset paper sources. We observed that choice of
prompt strategies can influence the relative perfor-
mance of the model which is in line with multiple
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works (Mizrahi et al., 2024; Wei et al., 2024; Gupta
et al., 2024). We used as our maximum perfor-
mance metric Mizrahi et al. (2024), accuracy to se-
lect the final prompt templates. The exact prompts
can be found in the Appendix A.3

Individual Confidence Set Selection Template
Prompts. The set selection prompts consists of
the following: (1) individual confidence elicita-
tion task, (2) the classification task prompt and
(3) individual tweet and classification. We evalu-
ated different prompt strategies for individual con-
fidence elicitation from Xiong et al., 2024 and Tian
et al., 2023 to find the best prompt strategy for our
specific tasks. Chain-of-thought (CoT) prompting
was not explored for set selection as Tian et al.,
2023’s finding suggest that CoT prompting does
not improve verbalized calibration for individual
confidence prompting. We used as our maximum
performance metric (Mizrahi et al., 2024), effec-
tive accuracy to select our final prompt. Figure 6
shows the example individual confidence set selec-
tion prompt.

Direct Set Selection Template Prompts. The
direct set selection prompts consists of the follow-
ing: (1) the direct set selection task instruction, (2)
the classification task prompt and (3) the list of &
tweets and classifications. We manually craft the
set selection prompt, where we make explicit the
importance of the count of the items that need to
be retrieved and that only items in the provided list
are to be selected. Specifically, we explored direct
set selection and re-ranking the list before select-
ing the top-k tweets and classifications. From the
evaluated prompt strategies, the choice of prompt
strategy also influenced the response, so we used
the metric, most number of valid prompt responses,
to select our final prompts. Figure 7 shows the
example direct set selection prompt.

4 Results

4.1 Disaster Tweet Classification Performance

We ran our experiments on two classification tasks
across eight disaster events. The LLMs’ perfor-
mance for Tasks 1 and 2 are found in Tables 3
and 4 measured in accuracy scores at the column
Acc. We observed that the closed-source model,
gpt-4o-mini performs well in both tasks, achieving
accuracy scores of between 74% and 90% for Task
1 and between 86% and 92% for Task 2. Based on
these accuracy scores, we observed that the chosen
20% check set size is the check size that would

be needed for a good classifier, if the check set
selection is perfect (see column Eff Acc (Max), the
maximum effective accuracies of the LLMs given
the check set size in Tables 8 and 9 found in Ap-
pendix A.5.3. At the chosen check set size, the Eff
Acc (Max) of almost all LLMs reach to above 0.85
across all tasks and all disaster events.

4.2 LLM Individual Confidence Check Set
Selection Performance

Using the results from the initial classification
tasks, we select our individual confidence check set
based on the individual probabilities of each tweet
classification of being correct. The effective accu-
racies of the different models for Tasks 1 and 2 are
in Tables 3 and 4 using the individual confidence
set selection strategy at column Eff Acc (I). All
Eff Acc (I) is higher than the original accuracies
of the models, hence improve overall classification
performance.

To check the effectiveness of the individual con-
fidence check set selection strategy, we compare
Eff Acc (I) with the effective accuracy achieved by
the models when selecting a random check set of
the same size. We highlighted the instance where
the individual confidence check set selection did
not outperform random in Tables 3 and 3. We ob-
served that the models, gpt-40, gpt-40-mini, and
llama individual confidece check set selection out-
perform random for all the tasks and all the events.
Mistral, on the other hand, outperforms random for
all except Task (1), Vanuatu cyclone.

We wanted to know if there is an optimal
check set size, compared to the current 20%, from
our models by mapping the effective accuracies
achieved by the models across changing check set
sizes as seen in Figure 8 in Appendix A.5.2. These
were the average effective accuracies from the four
disaster events per task. We found that there is
no obvious optimal check set size, with almost
all models reaching 100% efffective accuracy only
when all the tweets are checked.

4.3 LLM Direct Set Selection Performance

LLMs ability to select from a set is influenced
by the input context size As a first step to test
LLMs’ check set selection ability using direct set
confidence elicitation, we count the number of
valid prompt responses LLMs generate. Figure 2
shows the number of valid prompt responses LLMs
can generate by context size. We observed that the
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Figure 2: Valid prompt responses by context size using
the short UUID referencing method. The values are
raw counts. One valid prompt response corresponds to
one valid check set of size 20 selected from a 100-tweet
partition of each disaster event.

input context size influences LLMs’ ability to se-
lect a set from a list as seen in Figure 2. We observe
that the smallest, 25-tweet context size consistently
provides more valid prompt responses accross all
models except for llama in Task (2) for the short
UUID referencing method.

The list-referencing method used affects LLM’s
direct set selection output Figure 3 shows the
number of valid prompt responses that LLMs can
generate when asked to select 10 tweets from a list
of 50 tweets and classifications by list-referencing
method used. We observed that the chosen refer-
encing method affects the number of valid prompt
responses generated. We observed that providing
an index, i.e., either the ID or the short UUID in
the list, helps LLMs retrieve a set from the input
list. All LLMs struggled in retrieving the full tweet
text and keywords, providing invalid responses as
outputs.

The input list order influences direct set selec-
tion. We observed that the selected check sets
vary significantly when we shuffle the order of the
input list of tweets and classifications. We present
the Krippendorf’s alpha inter-annotator agreement
scores for our models in Tasks 1 and 2 in Tables

Valid Prompt Responses by Referencing Method (D - 50)

250
200
150
100
50 I
0 - — .

Gpt-do-mini Llama Mistral
mUUID mID mTEXT mKEY

Task 1: Humanitarian Aid vs. Not Humanitarian Aid Classification
300

250

200
150
100
o - |

Gpt-do-mini Llama Mistral
EUUID mID mTEXT mKEY

Task 2: Humanitarian Aid Information Classification

Figure 3: Valid prompt responses by list-referencing
method at the 50-tweet context size. The values are
raw counts. One valid prompt response corresponds to
one valid check set of size 20 selected from a 100-tweet
partition of a disaster event.

1 and 2 respectively using the short UUID refer-
encing methods. We do not have agreement scores
for some models with insufficient valid prompts.
The alpha is computed on the agreement across
100 tweets per disaster event i.e., whether they are
included in the check set in each prompt iteration.
We must take note that these agreement scores can-
not be directly compared across context sizes but
are to be evaluated individually. Table 1 shows that
only gpt-4o and gpt-4o-mini had agreement scores
above 0.60 for the for Task 1, while Table 2 shows
only gpt-4o and llama achieve this. This shows that
input list order can influence the chosen check set
using direct set selection.

4.4 Individual Confidence is more reliable but
Direct Set Confidence merits further
investigation

The effective accuracies from the direct set confi-
dence selection are shown in the columns Eff Acc
(D - <context size>) in Tables 3 and 4. Effective
accuracies for direct set selection across tasks and
context sizes are higher than the original accuracies.
We note that the effective accuracies for direct set
sizes D-50 and D-25 are disadvantaged beforehand
compared to the D-100, because they are depen-
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Task 1: Humanitarian Aid vs. Not Hi ian Aid

Event Model D-100 D-50 D-25
gpt-40-mini 0.32 0.55 0.45

California gpt-40 0.30 0.33 0.35
Earthquake llama 0.25 0.25 0.20
mistral 0.23 0.17 0.25

gpt-40-mini 0.25 0.19 0.18

Chile gpt-40 0.55 0.60 0.64
Earthquake llama 0.00 0.00 0.42
mistral 0.09 0.11 0.16

gpt-4o-mini 0.46 0.67 0.72

India gpt-4o 0.69 0.72 0.71
Floods llama 0.25 0.00 0.00
mistral 0.08 0.28 0.33

gpt-4o-mini 0.32 0.43 0.44

Nepal gpt-4o 0.35 0.45 0.48
Earthquake llama 0.00 0.07 0.00
mistral 0.46 0.24 0.33

gpt-40-mini 0.24 0.37 0.38

Pakistan gpt-40 0.26 0.41 0.56
Earthquake Illama 0.07 0.00 0.30
mistral 0.13 0.13 0.18

gpt-40-mini 0.23 0.28 0.28

Vanuatu gpt-40 0.43 0.64 0.66
Cyclone llama 0.07 0.00 0.33
mistral 0.15 0.26 0.21

Table 1: Inter-annotator agreement between the valid
prompts. Krippendorf’s alpha by context size. Bold
values indicate high inter-annotator agreement. Short
UUID referencing was used.

dent on the luck of the misclassified tweets being
evenly distributed across subgroups. When com-
pared with the effective accuracies using random
check set, only check set selection using gpt-4o out-
performs random across all tasks and context sizes,
while gpt-40-mini, llama and mistral have some
events and context sizes that do not outperform
random.

We compare the two check set selection strate-
gies and observe that individual confidence check
set selection is a more reliable method over direct
set confidence selection for having issues across
input context length, list-referencing method and
input list order. Furthermore, as observed in Ta-
bles 3 and 4, only individual confidence outperform
random consistently across tasks and events. Full
tables of effective accuracies, that also include (Eff
Acc (Random)) — effective accuracies for random
check set and (Eff Acc (Max)) — maximum possible
effective accuracies, can be found in Tables 8 and
9 in Appendix A.5.3.

5 Discussion

We discovered from our experiments that although
we set LLMs to their most deterministic setting,
when we do direct check set selection, changing
the order of the input context (list of tweets) leads
to different check set selections and can even return
invalid responses. Invalid responses include pro-
viding incorrect number of items from the output
list (both more or less than asked), repeating items
in the output, editing short-UUID’s where charac-

Task 2: H ian Information Classification

Event Model D-100 D-50 D-25
gpt-40-mini 0.37 0.37 0.47
Canada gpt-4o 0.50 0.47 0.67
Wildfires Illama 0.00 0.06 0.43
mistral 0.07 0.13 0.40
gpt-40-mini 0.36 0.36 0.43
Cyclone Idai gpt-4o 0.31 0.46 0.43
Illama 0.00 0.00 0.23
mistral 0.07 0.15 0.32
gpt-4o-mini 0.18 0.18 0.29
Greece gpt-4o 0.35 0.44 0.48
Wildfires llama 0.38 0.18 0.12
mistral 0.29 0.09 0.19
gpt-4o-mini 0.41 0.41 0.45
Hurricane gpt-40 0.30 0.49 0.55

Harvey Illama 0.00 0.12 -
mistral 0.00 0.17 0.24
gpt-4o-mini 0.37 0.37 0.48
Hurricane gpt-40 0.37 0.47 0.47
Maria Illama 0.00 0.30 0.23
mistral 0.19 0.10 0.20
gpt-40-mini 0.23 0.23 0.31
Hurricane gpt-40 0.25 0.45 0.46
Matthew Illama 0.46 0.19 0.26
mistral 0.22 0.10 0.30
gpt-40-mini 0.28 0.28 0.33
Italy gpt-4o0 0.29 0.44 0.46
Earthquake Illama 0.00 0.50 0.24
mistral 0.07 0.09 0.21
gpt-40-mini 0.32 0.32 0.47
Maryland gpt-4o0 0.16 0.34 0.46
Floods llama 1.00 0.16 0.32
mistral 0.10 0.15 0.14
gpt-40-mini 0.35 0.35 0.38
Mexico gpt-4o 0.47 0.53 0.48
Earthquake llama 0.00 0.50 0.22
mistral 0.34 0.12 0.26
gpt-40-mini 0.55 0.55 0.58
Sri Lanka gpt-4o 0.67 0.55 0.59
Floods llama 0.07 0.18 0.33
mistral 0.05 0.20 0.26

Table 2: Inter-annotator agreement between the valid
prompts. Krippendorf’s alpha by context size. Bold
values indicate high inter-annotator agreement. Short
UUID referencing was used.

ters can be replaced in items, and editing output
full-text tweets to correct the grammar. This ob-
servation holds across different input context sizes.
We recommend evaluating LLMs with multiple
prompts always as we have observed that this issue
is under reported.

We performed a sanity check on the check sets
selected by the LLMs. Upon manual evaluation of
a subset of disaster events for Task 2, we observed
that they were commonly tweets that contain mul-
tiple information, meaning they can be classified
into more than one category.

We did a quick exploration on inference time
vs. Effective Accuracy across our two strategies.
The disaster manager wants to keep the use of the
model cheap, which is probably related to com-
putational/inference time, but more practically it
is related to output tokens. Here, we assume that
direct set selection has a clear advantage. In terms
of inference time a rough estimate on a 100-tweet
sample for Llama to select a checks size of 20, for
example takes 18.4 seconds inference time on in-
dividual confidence (100 prompts), 3 seconds on
direct set (D-100), 3.33 seconds on D-50, and 3.65
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Task 1: Hi itarian Aid vs. Not H ian Aid Task 2: Hi ian Aid Information Classification
Eff Eff Eff Eff Eff Eff Eff Eff
Event Model Acc Acc Acc Acc Acc Event Model Acc Acc Acc Acc Acc
) (D-100) | (D-50) | (D-25) @O | -100) | (D-50) | (D-25)
gpt-do-mini | 0.74 | 0.80 0.86 0.86 0.78 gpt-do-mini | 092 | 097 0.95 0.95 0.96
California apt-4o 067 | 077 0.82 0.81 0.79 Canada gpt-do 092 | 099 0.98 0.98 0.98
Earthquake llama 073 | 079 0.71 0.73 071 Wildfires llama 086 | 092 0.90 0.88 0.90
mistral 054 | 067 0.63 0.67 0.67 mistral 086 | 094 0.87 0.89 0.90
ept-do-mini | 0.82 0.92 0.87 091 0.83 gpt-d4o-mini | 0.87 | 0.94 0.90 0.91 0.92
Chile ept-do 073 | 085 0.91 0.91 0.90 Cyclone gpt-do 089 1 096 092 0.95 0.94
Earthquake llama 073 | 080 0.78 0.78 0.76 Idai llama 080 | 038 084 QLD 085
mistral 065 | 073 0.73 0.75 0.76 mf"m, _ 8;; 8‘32 8;2 8;2 8;71
gpt-do-mini | 0.90 0.95 0.95 0.97 0.96 gpt-do-mini 7 g - - g
. Greece gpt-4o 0.92 0.97 0.95 0.97 0.96
India pt-4o 087 | 094 0.97 0.97 0.97 Wi o og1 | ogs 083 o4 084
Floods llama 0.64 0.71 0.81 0.79 0.81 Hidiires ama : - - - -
mistral 080 | 0.89 0.84 0.89 091 mistral 058 | 0.66 0.66 0.67 0.64
gpt-do-mini | 0.82 1 0.90 0.89 0.90 0.87 gpt-do-mini | 0.86 | 094 0.89 0.8 0.90
Nepal gpt-4o 0.74 | 086 0.86 0.88 088 Hurricane ept-do 089 | 095 | 093 0.94 0.94
Earthquake llama 0.75 0.85 0.81 0.79 0.79 Harvey Illama 0.75 0.85 0.80 0.79 0.80
mistral | 065 | 074 073 078 078 mistral 064 | 079 0.70 0.70 071
. gpt-4o-mini | 0.81 1 0.89 0.86 0.86 085 Zpi-domni | 088 | 095 093 093 0.9%
Pakistan gpt-4o 0.66 0.87 0.87 0.87 0.87 .
Earthquak i 074 079 078 079 078 Hurricane gpt-4o0 0.90 0.97 0.96 0.96 0.95
arthquake ama : : : : : Maria llama 079 | 0.84 0.82 0.82 0.83
mistral 067 | 075 Q7 0.78 078 mistral 076 | 088 0.83 0.83 0.80
gpt-do-mini | 087 | 094 091 091 0.88 ept-do-mini | 088 | 095 091 0.93 0.92
Vanuatu gpt-40 0.76 0.92 0.93 0.94 0.94 Hurricane gpt-40 0.91 0.97 0.96 0.96 0.96
Cyclone llama 0.79 0.85 0.83 0.83 0.82 Matthew 1llama 0.77 0.84 0.82 0.81 0.82
mistral 082 | 084 0.85 0.87 0.87 mistral 065 | 072 0.72 0.73 071
gpt-do-mini | 092 | 094 0.93 0.94 0.94
. . . Italy gpt-do 092 | 097 0.96 0.96 0.96
Table 3: Effective Accuracies of the Check Set Selection Earthquake llama 086 | 0.89 0.88 0.89 0.88
Strategies. Eff Acc (I) is for the individual confidence mistral 066 | 0.74 072 071 0.71
. . gpt-do-mini | 0.88 | 092 0.90 091 0.91
and Eff Acc (D) is for direct set confidence and the num- Maryland ept-do 089 | 093 093 093 0.94
BT . ST Floods llama 077 | 0586 0.80 0.82 0.82
ber indicates the context length size. The highlight e o6 | 05 | oes 070 | oee
indicates when the Eff Acc does not outperform random. o gpdomini 09271095 1 0.9% 053 056
. exico gpt-4o . . . . A
short UUID-referencing was used. Full table can be Earthquake llama 085 | 0.89 0.88 0.89 0.89
. mistral 078 | 0.89 0.81 0.81 0.83
found in Table 8. gpt-do-mini | 092 | 097 0.94 0.96 0.96
Sri Lanka gpt-do 094 | 098 0.98 0.98 0.98
Floods llama 090 | 093 091 0.93 0.93
mistral 0.82 0.92 0.85 0.86 0.87

seconds on D-25. We recommend a more thorough
investigation on these factors as LLMs improve.

6 Related Work

Confidence Elicitation in LLMs. The most com-
mon ways to measure confidence in model pre-
dictions rely on model’s internal logits. However,
with the decoder-only LLMs, it has become less
suitable to use these methods. There have been
methods in prompting LLMs themselves to express
uncertainty in natural language, so called verbal-
ized confidence (Lin et al., 2022). Xiong et al.
(2024) defines a systematic framework for LLM
uncertainty estimation using prompting, sampling
and aggregation strategies and benchmarks these
methods in calibration and failure prediction. Tian
et al. (2023) showed that large LL.Ms can express
calibrated-confidence (as a probability) more accu-
rately than their raw conditional probabilities sug-
gest. For our individual-based check set selection,
we used verbalized numerical confidence.
Selective Prediction for LLMs. Prior research
on selective prediction and escalation for human re-
view in LLMs generally follows three main strate-
gies. First, separate verifier models are trained
as external classifiers to identify uncertain or po-

Table 4: Effective Accuracies of the Check Set Selection
Strategies. Eff Acc (I) is for the individual confidence
and Eff Acc (D) is for direct set confidence and the num-
ber indicates the context length size. The 'highlight
indicates when the Eff Acc does not outperform random.
short UUID-referencing was used. Full table can be
found in Table 9.

tentially incorrect outputs without modifying the
base LLM, as explored in human-LLM collabo-
rative annotation frameworks (Wang et al., 2024;
Varshney and Baral, 2023). Ma et al., 2023’s filter-
then-rerank paradigm employs a separate small lan-
guage model as a verifier model for the LLM Sec-
ond, task-specific fine-tuning adapts the LLM it-
self to better estimate uncertainty by incorporating
error regularization or self-evaluation during train-
ing (Chen et al., 2023; Xin et al., 2021; Lin and Ma,
2024). Third, model-probing techniques analyze
the LLM’s internal signals, for example, Selective-
LAMA uses token-level confidence thresholds to
filter dubious predictions (Yoshikawa and Okazaki,
2023). Unlike these strategies, which require ex-
ternal verifiers, task-specific training, or manual
probing — our approach directly leverages the off-
the-shelf LLM’s own confidence estimates to curate
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check sets for human review, simplifying deploy-
ment and broadening applicability

LLM performance on long-context input text.
For the direct-set check set selection we propose,
we explored long-context prompts, which are previ-
ously studied in, e.g., Hsieh et al. (2022); Shaham
et al. (2023); Levy et al. (2024); Laban et al. (2024).
“Long-context” is an umbrella term for use cases of
LLMs defined by the total length of the model’s in-
put that may include retrieval, summarization, and
information aggregation (Goldman et al., 2024).
The most common task that papers evaluate on
is the needle-in-a-haystack (NIAH) task, where
the LLMs are tasked to retrieve single points (the
“needle”) in a long input context (the “haystack’™)
and asking the LLM to retrieve it given a related
question (Kamradt, 2023) and not multiple nee-
dles. Hsieh et al. (2022) expands the NIAH task
with a comprehensive evaluation of long-context
LLMs by creating a new synthetic benchmark re-
vealing that almost all models exhibit large per-
formance drops as context increases. Most papers
evaluate LLM performance on synthetic datasets
or existing benchmarks (Hsieh et al., 2022; Sha-
ham et al., 2023; Levy et al., 2024; Laban et al.,
2024). The study by Gupta et al. (2024) differs by
evaluating LLMs in a real-world financial dataset,
however, evaluated only the gpt-4 suite of LLMs
in solving tasks, as a function of factors such as
context length, task difficulty, and position of nee-
dle. Our study on the other hand, evaluates both
off-the-shelf closed and open-sourced LL.Ms and
considers list-referencing factors in addition to the
context length and input list order on real-world
crisis-related tweets.

7 Conclusion

In this paper, we investigate the ability of LLMs to
identify low-confidence outputs for human review
through check set creation, the process of utilizing
LLMs to prioritize information needing human re-
view. We run our experiments using a case study
for social media monitoring in disaster risk man-
agement. We tested two strategies for check set
selection: individual confidence elicitation by as-
sessing confidence for each tweet classification and
direct set confidence elicitation by evaluating con-
fidence for a list of tweet classifications at once.
Furthermore, we examined the impact of context
length, input order and referencing methods for
direct set selection. Our results show that LLMs

struggle in direct set selection as they cannot con-
sistently provide valid prompt responses, being in-
fluenced by all the three factors mentioned. Hence,
we say that individual confidence set selection is
more reliable than direct set selection for our par-
ticular setting. However, we observe that the direct
set method has potential and could be explored and
evaluated further as LLMs continue to improve.
Despite these challenges, our approach improves
collaborative disaster tweet classification, demon-
strating the potential of human-LLM collaboration.
Such collaboration is crucial for high stake scenar-
ios where we want the end-user in control of the
final decisions.

8 Limitations

We only evaluated four commonly used off-the-
shelf LLMs: gpt-4o0-mini, gpt-4o, llama and mis-
tral. We only evaluated on the base models to test
their check set selection capabilities. Instruction-
tuning/fine-tuning these models to specifically do
check set selection tasks may lead to more favor-
able results. Our use case is focused on classifica-
tion tasks for disaster risk management with text
that are only in English language tweets. For the
direct set confidence set selection, we only tested
context sizes of 100, 50 and 25 tweets. A smaller
context size may offer more stable responses from
the LLMs. In addition, in selecting the check set
from the smaller context sizes, D-50 and D-25, we
did not try to optimize which tweets to compare
with each other. Our experiments were not per-
formed in a real world application where we had
an actual disaster manager perform the manual ver-
ification of the tweets in the selected check set. As
we assume all wrongly labeled tweets would be
corrected in such manual check, our estimations
are likely too optimistic.

9 Ethical Considerations

The datasets used in this paper were from pub-
licly available datasets (Alam et al., 2021b,a) which
were collected tweets from X (previously, Twitter)
using the platform’s streaming API in line with its
terms of service.

Our work aspires ultimately to support disaster
management in high-stakes scenarios. As such, a
potential risk is that readers misinterpret the readi-
ness of the technology for use by disaster managers,
and move either too quickly to uptake without guar-
antees of reliability or pre-maturely abandon the
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type of solutions we study. We have attempted to
address this point by stating clearly our negative
result (i.e., LLMs struggle with long-context set
selection) and stating that we find human-LLM
collaborations may still hold future potential.
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A Appendix

A.1 Models

Table 5 contains the information about the 4 LLMs
we evaluated and analyzed.

A.2 Datasets

Task 1: humanitarian aid vs. not humanitarian
aid

We used data from CrisisBench (Alam et al.,
2021b), a consolidated crisis-related social media
dataset for humanitarian information processing.
We renamed the classes to humanitarian and not
humanitarian aid from the original informative vs.
not informative classes because these words by
themselves were too broad and general. Tweets
were annotated as follows(Alam et al., 2021b,a):

e humanitarian aid: tweet is useful for humani-
tarian aid and

e not humanitarian aid: tweet is not useful for
humanitarian aid.

We sampled from consolidated disaster events from
CrisisMMD (Alam et al., 2018) dataset specifically
from the following crisis events: Pakistan Earth-
quake 2013, California Earthquake 2014, Chile
Earthquake 2014, India Floods 2014, Nepal Earth-
quake 2014, and Vanuatu Cyclone 2014. We ran-
domly sampled 500 tweets for each disaster event.

Task 2: Humanitarian Aid Information Clas-
sification

For the humanitarian information classification
task, we utilized human-annotated crisis-related
tweets from (Alam et al., 2021a). We sampled
across four different disaster types: earthquake,
hurricane, wildfire and flood. We chose the event
with the highest inter-annotator agreement per dis-
aster type based on (Alam et al., 2021a). The
original dataset had 11 labels, however, we limited
our labels to the 5 that were present in all of our

selected crisis events, following (Zou et al., 2023)
who also reduced their labels to 7. Originally, we
experimented with including the labels: other rel-
evant information and not humanitarian, however,
this seemed to be too challenging for the LLM. The
humanitarian aid information labels are as follows:

* Caution and advice: Reports of warnings
issued or lifted, guidance and tips related to
the disaster;

* Infrastructure and Utility Damage: Reports
of any type of damage to infrastructure such
as buildings, houses, roads, bridges, power
lines, communication poles, or vehicles;

* Injured or dead people: Reports of injured
or dead people due to the disaster;

* Rescue, volunteering, or donation effort:
Reports of any type of rescue, volunteering,
or donation efforts such as people being trans-
ported to safe places, people being evacuated,
people receiving medical aid or food, people
in shelter facilities, donation of money, or ser-
vices, etc.;

* Sympathy and support: Tweets with prayers,
thoughts, and emotional support;

We sampled the test sets of the following cri-
sis events: Canada Wildfires 2016, Cyclone Idai
2019, Greece Wildfires 2018, Mexico Earthquake
2017, Hurricane Matthew 2016, Hurricane Har-
vey 2017, Hurricane Maria 2017, Italy Earthquake
2016, Maryland Floods 2018, and Sri Lanka Floods
2017. We randomly sampled 300 tweets for each
disaster event.

A.3 Prompts

A.3.1 Classification Prompts

The disaster tweet classification prompts are shown
in Figures 4 and 5.

A.3.2 Check Set Selection Prompts

The prompts for the two strategies of check set
selection are in Figures 6 and 7.

A.4 Output Examples by List-referencing
Method

Below are output examples of valid responses by
list-referencing method at 50-tweet context size.
Numerical ID:

[366, 191, 233, 356, 74, 149, 80, 242

)
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Table 5: Information of evaluated and analyzed LLMs

Model Type  Size Context Length Source (OpenAl/Huggingface)
gpt-4o0-mini closed - 128K gpt-40-2024-08-06
gpt-4o closed - 128K gpt-40-mini-2024-07-18
llama 3.1 8B - Instruct open 8B 128K meta-llama/Meta-llama-3.1-8B-Instruct
mistral 7B - Instruct v0.3  open 7B 32K mistralai/mistral-7B-Instruct-v0.3
You will ke provided with & tweet. Your task iz to tO help” ) ”Hurrlcane Marla DlsaSter

claszify the tweet ag either "humanitarisn aid"™ or
"not humanitarian aid" based on its content.

Criteria for Classification:

humanitarian aid:

Classify +the tweet as "humanitarian aid" i1f it
contains one or more of the following:

Caution, advice, or warnings (=21 evacuation
notices, weather alerts).Informaticn about injured,

dead, or affected pecple. Rescue efforts,
volunteering activities, cr donaticn requests.
Mentions of damege to homes, reads, bridges, or

Iuildings. EReferences to naturel disastera (e.g.,
floods, earthguakes, fires, strong winds).Disaster
area maps or other logistical information.

not humanitarian aid:

Classify the tweet &3 "not humanitarian aid" if it
does not include any informaticn relevant to
humanitarian assistance or disaster response.

Claas Label:

Only &s3ign one of the following two labels. Do not
explain.

humanitarian aid

not humanitarian aid

Figure 4: Prompt for Task 1: Humanitarian Aid vs. Not
Humanitarian Aid

You will be provided a tweet. Based on the tweet's
content, assign one of the following labels related
to humanitarian aid that best fits the information
provided:

Caution and adwice: Reports of warnings issued cor
lifted, guidance and tipz related to the disaster;
Infrastructure and wutility damage: Z2epcrts of any
type of damage to infrastructure such a3 buildings,
houses, roads, bridges, power lines, communication
poles, or wehicles;

Injured or dead pecple: Beports of pecple injured or
dead due toc the disaster;

Rescue, wvolunteering, or donation effort: Reports cof
any type of rescue, wvolunteering, or donation efforcs
such as people being transported to safe places,
pecple being evacuated, people receiving medical aid
or feood, people in shelter facilities, donation of
money, or Services, etc.;

Sympathy and support: Tweetz with prayvers, theoughta,
and emctional suppcrt;

Select only cne labkel, even if multiple labels seenm
to apply. Respond with only the lakel.

Do not add additional informaticm.

Lakel: <string>

Figure 5: Prompt for Task 2: Humanitarian Information
Classsification

282, 301,
55, 7, 14]
short UUID:
[’d8d26064’,
’41bb8105"
’4eeff954 ,
’2b577377° ]
Key Word:
["distributing

317, 290, 175, 349, 10, 1, 2,

’88ef4c41’,
’785935¢5’,
’60df1292’,

’9cb96943”
’ea8dfabb’,
'b6f5170d’

commodities”, "donate

Recovery"”, "donate for hurricane relief”,
"devastated by Hurricane Maria”, "damaged

Puerto Rico”, "death toll «climbs”,
"damaged  Arecibo radio telescope”,
"ruined homes and infrastructure”,

"donations with what you can”]

Full Text:
[ "80 hours! ! GoD!!
https://t.co/sNetLbIskQ","RT @QUSER:

.@QUSER Lives may have been saved if
Nepal govt prepared people instead of
funding animal sacrific Gadhimai ht","RT
QUSER: 38,000 Nepal youth in Indian Army
Gorka Rifles. Over 1.25 lakh veterans.
The family will come together in thi
hour of c¢"”, "Big day for nepal people”,
"Pulitzer Prize winning Jim Morin’s
cartoon on NepalQuake NepalEarthquake
URL", "but our farmers issues are gone
unnoticed URL", "@USER You are amazing.

URL", "Economic Impact Of Nepal Quake
Likely To Be Massive: One estimate
puts the reconstruction at more than $5
bill.. URL", "@USER Huh. I guess all

those Christian missions to Nepal are
to protect 7-11’s Himlayan locations.”,
"12 Things Indians Can Do To Help&ENepal
URL" ]

** edited Full Text responses by anonymizing
users and URL’s.

A.5 Supplementary Results

A.5.1 Disaster Tweet Classifier Performance

The performance of the LLMs as disaster tweet
classifiers are in Tables 6 and 7.

A.5.2 Individual Confidence Elicitation
Results

We wanted to know if there is an optimal check set
size, compared to the current 20%, from our models
by mapping the effective accuracies achieved by
the models across changing check set sizes as seen
in Figure 8.
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Provide the preobability that an AI Zssistant’s response is correct, as a value between 0.0 and
for the following task.
Give cnly the probability — no words, explanations, or extra commentary whatscever.
with the prokability in this format:
een 0.0 and 1.0 only>

Respond on
<value bety

1.0

Tazk: {Classification Task Prompt}
Tweet: {Tweet}
AT Assistant response: {Classification}

Figure 6: Prompt for Individual Confidence Elicitation

Taszk Overview:

LLM) . Your rele is to identify tweets where the assigned classification may not accurately reflect the c
potentially indicating an errcr by the AI RAssistant.

Instructicns:
1. Review the AI Assistant’s Classificaticn Prompt: Refer teo the prompt used to instruct the AI Assistant on
classify the tweets. This prompt cutlines the criteria you’ll use to assess the accuracy of each classification.

content.
3. Identify Misclassifications: Flag tweets where the assigned class does not match the content according to
Assistant’s classification prompt.

no less**. If you identify more errors than the required count, prioritize tweets that are the most
misclassified.

5. Record Selected Tweets: Include the complete text of each selected tweet verbatim.
7. Bvoid Duplicates: Ensure each selected tweet appears only once.
Cutput Format:
Your cutput must include exactly {COUNT} tweets, formatted as a Python list. Do not add any explanaticn.

["<tweetl>", "<tweet2>", ..., "<tweet{COUNT}>"

Failure to provide exactly {COUNT} tweets will ke ccnsidered incorrect cutput.

¥You are provided with a list of tweets, each labeled with a classification assigned by an AI Rhssistant (alsc an

ontent,

how to

2. Ewvaluate Classificaticns: For each tweet, determine if the assigned class aligns with the tweet's content based on
the AI &ssgistant’s classification prompt. Emphasize consistency, especially among tweets with similar themes or

the AT

4. Select Exactly {COUNT} Tweets: Choose **precisely {COUNT} unique tweets** with classification errors—** no more and

clearly

&. Use Only Provided Tweets: Choose tweets exclusively from the provided list; do not add, medify, or invent tweets.

AT Assistant's Classificaticn Prompt:
{Classification Task Prompt}

Tweet || Class Assigned by AL Assistant:
{Tweet and Classifications List}

Figure 7: Prompt for Direct Set Selection

A.5.3 Effective Accuracies Full Tables

Tables 8 and 9 show the full tables effective accu-
racies of all the check set selection strategies.
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Table 6: Performance of LLMs on Task 1: Humanitar-
ian Aid vs. Not Humanitarian Aid measured in Accu-

racy.
Event Model Accuracy
majority class 0.84
gpt-4o0-mini 0.74
California Earthquake gpt-4o 0.67
llama 0.73
mistral 0.54
majority class 0.60
gpt-4o-mini 0.82
hile Earthquake t-40 7 .
¢ g o o Table 7: Performance of LLMs on Task 2: the Humani-
mistral 0.65 tarian Aid Information Classification task measured in
majority class 0.86
gpt-do-mini 0.90 Accuracy
India Floods gpt-4o 0.87
llama 0.64 Event Model Accuracy
mistral 0.80 majority class 0.67
majority class 0.72 gpt-40-mini 0.92
gpt-40-mini 0.82 Canada Wildfires gpt-4o0 0.92
Nepal Earthquake gpt-4o 0.74 1lama 0.86
llama 0.75 mistral 0.86
mistral 0.65 majority class 0.52
majority class 0.61 gpt-4o-mini 0.87
gpt-4o-mini 0.81 Cyclone Idai gpt-4o 0.89
Pakistan Earthquake gpt-40 0.66 llama 0.80
llama 0.74 mistral 0.71
mistral 0.67 majority class 0.40
majority class 0.50 gpt-4o-mini 0.93
gpt-40-mini 0.87 Greece Wildfires gpt-40 0.92
Vanuatu Cyclone gpt-4o 0.76 Ilama 0.81
llama 0.79 mistral 0.58
mistral 0.82 majority class 0.45
gpt-4o-mini 0.86
Hurricane Harvey gpt-4o 0.89
1lama 0.75
Effective Accuracy () vs. Check Set Size mistral 0.64
majority class 0.43
gpt-4o-mini 0.88
100 Hurricane Maria gpt-4o0 0.9
- 1lama 0.79
g % mistral 0.76
=) majority class 0.33
8 *gptdo gpt-40-mini 0.88
< “*-gpt-4o-mini Hurricane Matthew gpt-40 0.91
o 80 «llama llama 0.77
B emistral mistral 0.65
L 70 eptdo-R majority class 0.52
o ':lglg::';“'”"“ gpt-4o-mini 0.92
I Italy Earthquake gpt-4o0 0.92
--mistral=R
60 llama 0.86
0 10 20 30 40 50 6 70 8 90 100 mistral 0.66
Check Set Size majority class 0.29
gpt-4o-mini 0.88
Task 1: Humanitarian Aid vs. Not Humanitarian Aid Maryland Floods gpt-4o 0.89
1lama 0.77
Effective Accuracy (I) vs. Check Set Size mistral 0.62
majority class 0.52
100 gpt-40-mini 0.92
77777 - - Mexico Earthquake gpt-40 0.91
> C-e-oIIIIETT - B llama 0.85
§ %0 ) T . mistral 0.78
> majority class 0.70
3 L gpt-do gpt-4o-mini 0.92
< 80 el “*-gpt-do-mini Sri Lanka Floods gpt-40 0.94
(] «e=llama
> ' llama 0.9
g “e-mistral mistral 0.82
(0] --gpt-40-R
E 70 --gptdo-mini-R
--llama-R
--mistral-R
60

0 10 20 30 40 50 60 70 80 90 100
Check Set Size

Task 2: Humanitarian Aid Information Classification
Figure 8: Effective Accuracy (Individual Confidence)

vs. Check Set Size. The broken lines represent the
Effective Accuracies for the random check set selection.
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Task 1: Hu itarian Aid vs. Not Hi itarian Aid

Event Model Acc Eff Acc Eff Acc | Eff Acc Eff Acc Eff Acc | Eff Acc

(Random) (Max) I (D-100) (D-50) (D-25)
gpt-4o-mini | 0.74 0.79 0.94 0.80 0.86 0.86 0.78
California gpt-40 0.67 0.74 0.87 0.77 0.82 0.81 0.79
Earthquake llama 0.73 0.78 0.93 0.79 0.71 0.73 0.71
mistral 0.54 0.63 0.74 0.67 0.63 0.67 0.67
gpt-4o-mini | 0.82 0.86 1.00 0.92 0.87 0.91 0.83
Chile gpt-4o 0.73 0.78 0.93 0.85 0.91 0.91 0.90
Earthquake llama 0.73 0.78 0.93 0.80 0.78 0.78 0.76
mistral 0.65 0.72 0.85 0.73 0.73 0.75 0.76
gpt-4o-mini | 0.90 0.92 1.00 0.95 0.95 0.97 0.96
India gpt-40 0.87 0.90 1.00 0.94 0.97 0.97 0.97
Floods llama 0.64 0.71 0.84 0.71 0.81 0.79 0.81
mistral 0.80 0.84 1.00 0.89 0.84 0.89 0.91
gpt-4o-mini | 0.82 0.86 1.00 0.90 0.89 0.90 0.87
Nepal gpt-40 0.74 0.79 0.94 0.86 0.86 0.88 0.88
Earthquake llama 0.75 0.80 0.95 0.85 0.81 0.79 0.79
mistral 0.65 0.72 0.85 0.74 0.73 0.78 0.78
gpt-4o-mini | 0.81 0.85 1.00 0.89 0.86 0.86 0.85
Pakistan gpt-40 0.66 0.73 0.86 0.87 0.87 0.87 0.87
Earthquake llama 0.74 0.79 0.94 0.79 0.78 0.79 0.78
mistral 0.67 0.74 0.87 0.75 0.73 0.78 0.78
gpt-4o-mini | 0.87 0.90 1.00 0.94 0.91 0.91 0.88
Vanuatu gpt-4o 0.76 0.81 0.96 0.92 0.93 0.94 0.94
Cyclone Illama 0.79 0.83 0.99 0.85 0.83 0.83 0.82
mistral 0.82 0.86 1.00 0.84 0.85 0.87 0.87

Table 8: Effective Accuracies of the Check Set Selection Strategies. Eff Acc (Random) is the effective accuracy for
the task given a random check set, Eff Acc (Max) is the maximum possible effective accuracy for the task, Eff Acc
(D) is for the individual confidence elicitation and Eff Acc (D) is for direct set confidence elicitation and the number
indicates the context length size. The referencing method for direct set used for this table short-uuid
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Task 2: Humanitarian Aid Information Classification

Event Model Acc Eff Acc Eff Acc | Eff Acc Eff Acc Eff Acc | Eff Acc

(Random) (Max) [08) (D-100) (D-50) (D-25)
gpt-4o-mini | 0.92 0.94 1.00 0.97 0.95 0.95 0.96
Canada gpt-40 0.92 0.94 1.00 0.99 0.98 0.98 0.98
Wildfires llama 0.86 0.89 1.00 0.92 0.90 0.88 0.90
mistral 0.86 0.89 1.00 0.94 0.87 0.89 0.90
gpt-4o-mini | 0.87 0.90 1.00 0.94 0.90 0.91 0.92
Idai gpt-4o 0.89 0.91 1.00 0.96 0.92 0.95 0.94
llama 0.80 0.84 1.00 0.88 0.84 0.83 0.85
mistral 0.71 0.77 0.91 0.82 0.76 0.78 0.77
gpt-4o-mini | 0.93 0.94 1.00 0.96 0.95 0.95 0.94
Greece gpt-40 0.92 0.94 1.00 0.97 0.95 0.97 0.96
Wildfires llama 0.81 0.85 1.00 0.85 0.85 0.84 0.84
mistral 0.58 0.66 0.78 0.73 0.66 0.67 0.64
gpt-4o-mini | 0.86 0.89 1.00 0.94 0.89 0.88 0.90
Hurricane gpt-4o 0.89 0.91 1.00 0.95 0.93 0.94 0.94
Harvey llama 0.75 0.80 0.95 0.85 0.80 0.79 0.80
mistral 0.64 0.71 0.84 0.79 0.70 0.70 0.71
gpt-4o-mini | 0.88 0.90 1.00 0.95 0.93 0.93 0.94
Hurricane gpt-40 0.90 0.92 1.00 0.97 0.96 0.96 0.95
Maria llama 0.79 0.83 0.99 0.84 0.82 0.82 0.83
mistral 0.76 0.81 0.96 0.88 0.83 0.83 0.80
gpt-4o-mini | 0.88 0.90 1.00 0.95 0.91 0.93 0.92
Hurricane gpt-40 0.91 0.93 1.00 0.97 0.96 0.96 0.96
Matthew llama 0.77 0.82 0.97 0.84 0.82 0.81 0.82
mistral 0.65 0.72 0.85 0.75 0.72 0.73 0.71
gpt-4o-mini | 0.92 0.94 1.00 0.94 0.93 0.94 0.94
Italy gpt-4o 0.92 0.94 1.00 0.97 0.96 0.96 0.96
Earthquake llama 0.86 0.89 1.00 0.89 0.88 0.89 0.88
mistral 0.66 0.73 0.86 0.74 0.72 0.71 0.71
gpt-4o-mini | 0.88 0.90 1.00 0.92 0.90 0.91 0.91
Italy gpt-40 0.89 0.91 1.00 0.93 0.93 0.93 0.94
Earthquake llama 0.77 0.82 0.97 0.86 0.80 0.82 0.82
mistral 0.62 0.70 0.82 0.75 0.68 0.70 0.69
gpt-4o-mini | 0.92 0.94 1.00 0.95 0.94 0.95 0.96
Maryland gpt-4o 0.91 0.93 1.00 0.96 0.95 0.97 0.96
Floods llama 0.85 0.88 1.00 0.89 0.88 0.89 0.89
mistral 0.78 0.82 0.98 0.89 0.81 0.81 0.83
gpt-4o-mini | 0.92 0.94 1.00 0.97 0.94 0.96 0.96
Sri Lanka gpt-40 0.94 0.95 1.00 0.98 0.98 0.98 0.98
Floods llama 0.90 0.92 1.00 0.93 0.91 0.93 0.93
mistral 0.82 0.86 1.00 0.92 0.85 0.86 0.87

Table 9: Effective Accuracies of the Check Set Selection Strategies. Eff Acc (Random) is the effective accuracy for
the task given a random check set, Eff Acc (Max) is the maximum possible effective accuracy for the task, Eff Acc
(D) is for the individual confidence elicitation and Eff Acc (D) is for direct set confidence elicitation and the number
indicates the context length size. The referencing method for direct set used for this table short-uuid
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