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Abstract

Commonsense, humans’ implicit understand-
ing of everyday situations, is crucial for large
language models (LLMs). Existing common-
sense evaluations for LLMs primarily focus on
downstream knowledge tasks, failing to probe
whether LLMs truly understand and utilize
knowledge or merely memorize it. They also
rely heavily on human annotation and lack au-
tomated large-scale data generation. To address
this, we propose to automatically construct a
large benchmark named CoCo (Consistency of
Commonsense) comprising 39K samples de-
rived from commonsense knowledge graphs
(CSKGs), paired with symbolic questions and
ground-truth answers, which systematically as-
sesses LLMs’ knowledge memorization, com-
prehension, and application and examines the
consistency between these tasks. To enhance
our evaluation, we also propose novel metrics
and prompting strategies. Experimental results
on multiple LLMs reveal that CoCo presents
significant challenges, and our detailed analysis
provides deeper insights into the strengths and
limitations of LLMs’ commonsense abilities.

1 Introduction

Commonsense refers to widely shared basic knowl-
edge, which LLMs are believed to encode signif-
icantly during pre-training (Madaan et al., 2022;
Jain et al., 2023; Zhao et al., 2023b). Previous
commonsense evaluations (Zhou et al., 2020; Li
et al., 2022; Cheng et al., 2024) only focus on
commonsense assessment in LLMs using public
benchmarks. While these evaluations rank overall
performance, they lack clear definitions and di-
visions of evaluated abilities. Additionally, they
inevitably face data contamination and halluci-
nation risks—public benchmarks may leak into
pre-training (Huang et al., 2023b), and correct re-
sponses might result from memorization rather than
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true understanding and reasoning (Ji et al., 2023;
Huang et al., 2023a; Wang et al., 2024b).

Recent knowledge evaluations (Yu et al., 2024;
Wang et al., 2024a; Fei et al., 2024; Sun et al., 2024)
have begun refining ability definitions and address-
ing data contamination. For instance, KoLA (Yu
et al., 2024) introduces a cognitive ability taxon-
omy and diverse data sources to mitigate contami-
nation, while CHARM (Sun et al., 2024) examines
the link between memorization and reasoning. Al-
though knowledge memorization is separated from
higher-level abilities, its vague definition and granu-
larity make LLMs’ reasoning errors hard to explain.
Moreover, these methods heavily rely on human
annotation and lack scalable dataset generation.

To this end, we propose to automatically gen-
erate large-scale evaluation datasets based on the
structured knowledge in commonsense knowledge
graphs (CSKGs) (Speer et al., 2017; Sap et al.,
2019a; Hwang et al., 2021). Using CSKGs as an
evaluation data source offers unique advantages.
They support hierarchical tasks like knowledge re-
trieval and multi-hop reasoning, enabling different
abilities assessment while reducing data leakage
bias. CSKGs also facilitate automated multi-level
data generation through logical queries and help
track whether LLMs follow correct reasoning paths
by comparing them with golden chains, aiding error
analysis. We follow KoLA (Yu et al., 2024) to de-
sign our benchmark considering three key factors:
ability modeling, data and evaluation criteria.

For ability modeling, we evaluate commonsense
knowledge of LLMs and divide our commonsense
evaluation task with three subtasks, memorization,
comprehension, and application, as shown in Fig-
ure 1. Unlike previous benchmarks (Yu et al., 2024;
Wang et al., 2024a; Fei et al., 2024) that rely on
existing disparate datasets, we leverage consistency
and establish an intrinsic connection between mem-
orization and other tasks, similar to CHARM (Sun
et al., 2024). However, CHARM focuses solely
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Head: PersonX played a football game

Relation: xEffect

Tail: feel tired

Head: PersonX feels tired

Relation: xWant

Tail: take a rest

Head: PersonX is on vocation

Relation: xEffect

Tail: feel relaxed

Commonsense Knowledge Graph

Question: What is the effect on 

PersonX after PersonX playing a 

football game?

Memorization Task

Question: What is the effect on 

PersonX after PersonX playing tiring 

events?

Comprehension Task

Question: What event or state is what 

PersonX wants to do after the effect on 

PersonX after playing a football game?

Application Task

Subquestion: What is the effect on PersonX after PersonX 

playing a football game?

playing a football game → playing sports

playing a football game → playing tiring events

Subquestion: What is the effect on PersonX after PersonX 

playing a football game?

Subquestion: What does PersonX want to do after PersonX 

feeling tired?

Figure 1: Examples of CoCo. CoCo consists interconnected memorization, comprehension and application tasks.

on the link between reasoning and memorization,
while its manual annotation of required knowledge
for reasoning questions is labor-intensive and of-
ten incomplete, as multiple solutions may exist,
introducing biases in knowledge-reasoning correla-
tion analysis. In contrast, we start by testing mem-
orization with atomic knowledge from CSKGs,
then evaluate comprehension and application, effec-
tively reversing CHARM’s process and providing
the foundation for assessing higher-level abilities.

For data, for reducing manual annotation, we in-
troduce the CoCo (Consistency of Commonsense)
dataset. Its specificity is that commonsense ques-
tions posed in natural language are grounded in
CSKGs. By sampling triples from CSKGs, our
symbolic questions and answers are then verbal-
ized to natural language (Shen et al., 2023; Fang
et al., 2024). We compose more than 39K com-
monsense questions across three rungs, giving rise
to scenarios which require different commonsense
abilities. Moreover, instead of eliminating data con-
tamination and hallucination, which is challenging
or impossible, evaluating the consistency of com-
monsense in LLMs mitigates their effects by align-
ing memorized samples with internal knowledge.

For evaluation criteria, we design a consistent
evaluation system with specialized metrics for the
three tasks, guided by the principle of consistency.
Traditional benchmarks report absolute metrics for
each task separately, overlooking their interconnec-
tions and mutual influences (Yu et al., 2024). For
example, using standard Accuracy to evaluate rea-
soning can be affected by data contamination (Ji
et al., 2023) and knowledge gaps (Sun et al., 2024).
And CHARM only shows the overall correlation
between knowledge and reasoning results but lacks

specific metrics to evaluate individual samples. We
therefore propose new metrics to measure compre-
hension and application based on memorization.

We perform extensive experiments on seven
LLMs and discover that CoCo is in general very
challenging for LLMs. Exploiting CoCo, we also
introduce a method to elicit consistent common-
sense reasoning in LLMs. Specifically, we de-
velop KnowCoT, a chain-of-thought prompting
strategy (Wei et al., 2022) inspired by the knowl-
edge storage and manipulation in LLMs (Allen-
Zhu and Li, 2023), which prompts the LLM to
recall relevant knowledge, and perform consistent
commonsense reasoning. Our experiments indi-
cate that KnowCoT substantially improves the con-
sistency performance of LLMs especially GPT-
4 (Achiam et al., 2023) on CoCo. We also analyze
fine-grained errors to showcase the limitations of
LLMs in commonsense knowledge and reasoning.

2 Preliminary

Commonsense Knowledge in CSKGs. Denote
the commonsense knowledge triples in the CSKG
as K = {k = (h, r, t) |h ∈ H, r ∈ R, t ∈ T },
where H, R, and T are the set of heads, relations,
and tails in the CSKG. Each element k ∈ K, e.g.,
(PersonX is on vacation, xEffect, feel relaxed), is
a specific piece of knowledge, which can be ex-
pressed by various records, e.g., a text record “Per-
sonX is on vacation, as a result, PersonX will feel
relaxed.” We term such triple as a piece of atomic
knowledge which is the foundation for abstract
knowledge acquisition and multi-hop reasoning.

Knowledge Memorization. Given an LLM de-
noted as M, we formulate that M memorize com-
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PersonX 

played a 

football game

PersonX 

feels tired

PersonX 

takes a rest

PersonX 

enjoys sports

PersonX gets 

a football

PersonX keeps 

healthy

xEffect

xWant

xNeed

xAttr

xEffect

PersonX 

played a 

football game

PersonX 

feels tired
xEffect

Verbalization What is the effect on PersonX after PersonX playing a football game?

A: get hurt   B: shed tears   C: feel happy   D: feel tired   E: get angry

(PersonX played Sport, xEffect, feel tired)
(PersonX played Tiring event, xEffect, feel tired)
(PersonX played Video games, xEffect, feel tired)
(PersonX did Exercise, xEffect, feel tired)
(PersonX attended Activities, xEffect, feel tired)

Concept Generator

AbstractATOMICGPT-2

Conceptualization

Conceptualization 

Verifier

VeraT5

(PersonX played Sport, xEffect, feel tired)

(PersonX played Tiring event, xEffect, feel tired)

(PersonX did Exercise, xEffect, feel tired)

Verification

What is the effect on PersonX after PersonX 

[playing sport/tiring event, doing exercise]?
A: have lunch   B: feel tired   C: feel happy   

D: feel sad   E: get disappointed

PersonX 

played a 

football game

PersonX 

feels tired

PersonX 

takes a rest

xEffect

xWant

Verbalization

Query Verbalizer
&

Query Verifier

Templates Vera

What event or state is what PersonX wants 
to do after the effect on PersonX after 

playing a football game?
A: PersonX wants to take a rest. B: PersonX 

wants to eat. C: PersonX feels sad. D: 
PersonX gets hurt. E: PersonX leaves.

Verbalization

Commonsense Knowledge Graph 

(ATOMIC)

Memorization Sample Comprehension Sample

Application Sample Correct Answer

PersonX 

played a 

football game

PersonX 

feels tired
xEffect

Figure 2: Overview of our dataset construction process.

monsense knowledge k = (h, r, t) if M can cor-
rectly answer the corresponding question qk\t:

M(qk\t) = t (1)

where t ∈ T , qk\t is a record about knowledge k
that lacks pivot information t. Taking Figure 1 as
an example, qk\t is “What is the effect on PersonX
after PersonX playing a football game?”. Then we
drop \t and use only qk for simplicity. Formally,
given an atomic knowledge triple k, an LLM M is
expected to answer question qk with M(qk) = t.

Knowledge Comprehension. The triples sam-
pled from CSKGs can be used to directly evaluate
knowledge memorization. However, rote memo-
rization does not necessarily mean comprehension.
In Figure 1, understanding that playing football
leads to feeling tired involves recognizing it as a
physically demanding activity. If LLMs truly com-
prehend, they should generalize the knowledge to
infer concepts like “Tiring events such as sports
and exercise can make someone feel tired”. Thus
the acquired abstract commonsense knowledge can
be used to evaluate comprehension. Deriving such
knowledge from CSKGs involves conceptualiza-
tion (He et al., 2024). The objective of conceptu-
alization is to form a conceptualized head event,
denoted as hc, from the original head h. This is
achieved by linking a component o ⊆ h to a con-
cept c, forming hc by replacing o with c. Thus
abstract knowledge is formed by combining the
conceptualized head event with the original relation
and tail, represented by kc = (hc, r, t). Formally,
given an atomic knowledge triple k, its concep-
tualized triple is denoted as kc. An LLM M is
expected to answer question qkc with M(qkc) = t.
The prerequisite is the LLM memorizes k.

Knowledge Application. For application evalua-
tion, LLMs are expected to answer commonsense

reasoning questions, provided that they have mas-
tered all the necessary atomic knowledge to answer
this question. We therefore leverage the concept of
logical queries (Hamilton et al., 2018) to acquire
large-scale complex reasoning data from CSKGs
which requires minimum human efforts (Fang et al.,
2024). The query structures (2i, 2p, ip and pi)
that we study in this work are introduced in Ap-
pendix A.3. Figure 1 illustrates an example of 2p.
If LLMs memorize two atomic knowledge triples
(PersonX played a football game, xEffect, feel tired)
and (PersonX feels tired, xWant, take a rest), we
expect LLMs to correctly answer the reasoning
question constructed by the logical query “What
event or state is what PersonX wants to do after the
effect on PersonX after playing a football game?”.
Formally, given several atomic knowledge triples
k1, ..., kn, an LLM M is expected to answer the
question q(k1,...,kn) with M(q(k1,...,kn)) = t. The
prerequisite is the LLM memorizes k1, ..., kn.

3 CoCo Benchmark

Task Formulation. We formulate the proposed
task in the form of Multiple Choice Question An-
swering (MCQA). Our dataset D = {Qi,Ai}Ni=1

consists of N pairs, each containing a question
set Qi, and an answer set Ai. Our main task
is to test the accuracy of the prediction function
M : Q 7→ A, i.e., an LLM which maps natural
language questions to the corresponding answers:

Qm = {qk},Am = {ak}
Qc = {qk, qkc1 , ..., qkcm},Ac = {ak, akc1 , ..., akcm}
Qa = {q(k1,...,kn), qk1 , ..., qkn},
Aa = {a(k1,...,kn), ak1 , ..., akn}

(2)
where Qm, Qc, Qa and Am, Ac, Aa are question
sets and answer sets for memorization, compre-
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hension and application evaluation, respectively.
Note m represents the number of conceptualiza-
tion operations, and n represents the number of
atomic knowledge involved in a reasoning question.
The correct answer corresponding to the multiple
choice option ak ∈ {A,B,C,D,E} is t.

Construction Process. We use ATOMIC (Sap
et al., 2019a) as the atomic knowledge source. The
generation pipeline of CoCo is shown in Figure 2.
Here we briefly introduce this construction process.
Please refer to Appendix A for more details.

The memorization task involves sampling and
representing the atomic knowledge triples from
ATOMIC. This is achieved by selecting 2K diverse
triples for each of the nine relations in ATOMIC.
Diversity is ensured by embedding triples using
Sentence-BERT (Reimers and Gurevych, 2019)
and constructing a graph where nodes represent
triples, and edges connect the most similar ones
based on cosine similarity. A scoring mechanism
prioritizes diversity by penalizing overly similar
triples (Su et al., 2023). During verbalization, each
triple is transformed into MCQA form with four
distractors: two random ones from the CSKG and
two adversarial ones sampled from related triples.

The comprehension task extends atomic knowl-
edge by abstracting it into higher-level concepts
through conceptualization. Using the same diver-
sity mechanism as before, 20K head events are
sampled. Conceptualizations for each head event
are generated by a GPT-2 (Radford et al., 2019)
model fine-tuned on ABSTRACTATOMIC (He et al.,
2024), a corpus of abstract commonsense knowl-
edge. Multiple candidates are filtered by Vera (Liu
et al., 2023), a T5 (Raffel et al., 2020)-based
plausibility scorer, which removes low-plausibility
triples. Head events with at least three valid con-
ceptualizations are retained, yielding 39K concep-
tualized triples for 13K head events. These triples
are then verbalized into MCQA pairs.

The application task broadens reasoning by re-
quiring inferences over multiple pieces of atomic
knowledge. Logical queries are sampled from nor-
malized ATOMIC (Shen et al., 2023), with tail enti-
ties adjusted for consistency. For each query type
(i.e., 2i, 2p, ip and pi), 3K diverse instances are sam-
pled, avoiding over representation of high-degree
nodes. Distractors are carefully designed to chal-
lenge reasoning without ambiguity. Queries and
answers are verbalized using templates (Fang et al.,
2024), and refined with Vera (Liu et al., 2023) to

Task Type Aspects Question Type # Sets # Words / Set # Questions / Set

Memorization

oEffect Single Test 2,000

66.29 1.00

oReact Single Test 2,000
oWant Single Test 2,000
xAttr Single Test 2,000

xEffect Single Test 2,000
xIntent Single Test 2,000
xNeed Single Test 2,000
xReact Single Test 2,000
xWant Single Test 2,000

Comprehension

oEffect 1+3 Joint Test 727

268.68 4.00

oReact 1+3 Joint Test 448
oWant 1+3 Joint Test 693
xAttr 1+3 Joint Test 1,898

xEffect 1+3 Joint Test 2,158
xIntent 1+3 Joint Test 1,299
xNeed 1+3 Joint Test 1,839
xReact 1+3 Joint Test 1,104
xWant 1+3 Joint Test 2,894

Application

2i 2+1 Joint Test 2,490

258.05 3.422p 2+1 Joint Test 2,125
ip 3+1 Joint Test 1,998
pi 3+1 Joint Test 1,329

Table 1: Overview of CoCo. The sample (question set)
numbers of memorization, comprehension and applica-
tion tasks are 18,000, 13,060 and 7,942, respectively.
Aspects include the relation types in ATOMIC and dif-
ferent query types. For comprehension, 1+3 Joint Test
represents 1 memorization test and 3 conceptualization
tests. For application, 2+1 (3+1) Joint Test represents 2
(3) memorization tests and 1 reasoning test.

remove flawed samples.

Dataset Statistics. Our data generating proce-
dure is able to algorithmically generate a vast num-
ber of questions. In practice, we pick a dataset
size that is large enough to be representative, but
not too large to be problematic given the expensive
inference costs of LLMs. We set our dataset size
to be 39K. The dataset roughly balances across the
relation and query types, as shown in Table 1.

Quality Check. Our dataset is generated algo-
rithmically, which has the following potential ben-
efits: formal correctness, zero human annotation
cost, and, most importantly, controllability (e.g.,
for the question distribution, as well as for mak-
ing it more unlikely that the data was previously
seen by LLMs). However, since our dataset is dif-
ferent from common NLP datasets collected from
human natural language writing, we also need to
perform additional data quality checks. We there-
fore checked for a list of natural language proper-
ties. For grammatically, we ran a grammatical er-
ror check using LanguageTool (Naber et al., 2003),
and got on average 1.47 grammatical errors per 100
words (i.e., 98.53% correctness), showing most of
the language in CoCo follows English grammar.
For human readability, we checked how compre-
hensible the questions are to average persons. We
selected 100 questions from CoCo, and let an un-
dergraduate student annotator go through the ques-
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tions to judge whether they could understand or not,
where 94% of the questions were deemed readable.
Lastly, we conducted a sanity check where one
author of this paper tried to solve a random sample
of 100 questions from the dataset, and we recorded
an accuracy of 87% on this task.

4 Evaluation Methods

Evaluation Setup. We instruct LLMs to answer
questions from three sets: Qm, Qc, and Qa, with
their predicted answer sets defined as:

Pm = {pk}
Pc = {pk, pkc1 , ..., pkcm}
Pa = {p(k1,...,kn), pk1 , ..., pkn}

(3)

where we set m = 3, n ∈ {2, 3}. We evaluate
LLMs by comparing Pm, Pc, Pa and Am, Ac, Aa.

Memorization. Accuracy is used as the evalua-
tion metric for the memorization task. Let X ⊂ D
be the memorization subset, and M be an LLM to
be evaluated. Consider a response Pm = M(Qm)
for (Qm,Am) ∈ X , the MEMSCORE of M is:

MEMSCORE(M) =
1

|X |
∑

(Qm,Am)∈X
1pk=ak (4)

where |X | is the number of samples in the dataset.
MEMSCORE simply describes the capabilities of
LLMs to memorize atomic knowledge.

Comprehension. Let Y ⊂ D be the compre-
hension subset, and M be an LLM to be eval-
uated. Consider a response Pc = M(Qc) for
(Qc,Ac) ∈ Y , we define a new metric for com-
prehension evaluation. The key idea is that if an
LLM comprehends a certain atomic knowledge,
then it is likely to master the corresponding con-
ceptualizations. The COMSCORE of M is:

COMSCORE(M) =

1∑
(Qc,Ac)∈Y

1pk=ak

∑

(Qc,Ac)∈Y

1pk=ak

m∑
∗=1

1pkc∗=akc∗

m

(5)

where |Y| is the dataset size, and m denotes con-
ceptualization operations. The first term reflects
the extent of atomic knowledge memorized by M,
while the second measures its mastery of related
conceptualizations. COMSCORE evaluates LLMs’
capabilities to omprehend abstract concepts.

Application. Let Z ⊂ D be the application sub-
set, and M be an LLM to be evaluated. Consider
a response Pa = M(Qa) for (Qa,Aa) ∈ Z , we
consider two conditions: (1) the LLM answers the
question correctly (i.e., p(k1,...,kn) = a(k1,...,kn));
(2) the LLM memorizes all the atomic knowledge
(i.e., pk∗ = ak∗ ,∀∗ ∈ [1, n]). Generally, the overall
reasoning performance of M is defined as follows:

REASCORE(M) =
1

|Z|
∑

(Qa,Aa)∈Z
1p(k1,...,kn)=a(k1,...,kn)

(6)

where |Z| is the dataset size. While REASCORE

assesses overall performance, it cannot evaluate
an LLM’s ability to avoid hallucination or utilize
knowledge. For the first case, a correct answer
with partial atomic knowledge may result from data
contamination or hallucination. Thus we define the
FAISCORE to measure the faithfulness of M:

FAISCORE(M) =
∑

(Qa,Aa)∈Z 1p(k1,...,kn)=a(k1,...,kn)
· 1pk∗=ak∗ ,∀∗∈[1,n]∑

(Qa,Aa)∈Z 1p(k1,...,kn)=a(k1,...,kn)

(7)

where the denominator represents the number of
questions correctly answered by M, while the nu-
merator counts those correctly answered whose
required atomic knowledge are memorized. For the
second case, we define another metric APPSCORE:

APPSCORE(M) =
∑

(Qa,Aa)∈Z 1pk∗=ak∗ ,∀∗∈[1,n] · 1p(k1,...,kn)=a(k1,...,kn)∑
(Qa,Aa)∈Z 1pk∗=ak∗ ,∀∗∈[1,n]

(8)

where the denominator represents the number of
samples with all atomic knowledge memorized by
M, while the numerator counts questions correctly
answered by M. APPSCORE reflects an LLM’s
ability to answer reasoning questions using all re-
quired atomic knowledge, with a higher score indi-
cating stronger knowledge utilization.

5 KnowCoT Prompting

In order to guide LLMs in correctly answering the
questions in CoCo and improve their consistency of
commonsense knowledge, we develop KnowCoT,
a multi-step chain-of-thought prompt in Figure 3.

Given a commonsense question q, we provide
the LLM a list of instructions: l = (s1, s2, s3)
consisting of the detailed descriptions of the three
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Question: What event or state is what PersonX wants to do after the effect on PersonX after playing a football game?

A: PersonX wants to take a rest. B: PersonX wants to eat. C: PersonX feels sad. D: PersonX gets hurt. E: PersonX leaves.

                    Extract the core event.

Guidance: Address the question by following the steps below:

                    Recall the relevant knowledge.

                    Deduce the final result.

Based on all the reasoning above, select the correct option to answer the initial question. A: PersonX wants to take a rest.

Step 1

Step 2

Step 3

The core event is "PeronX plays a football game".

(PersonX plays a football game, causes, fatigue)

After PersonX playing a football game,  it often leads to fatigue, and the final event 
is most likely to be "PersonX wants to take a rest".

Figure 3: Illustration of KnowCoT. Compared with directly prompting the LLMs questions, we impose an inductive
bias upon LLMs by explicitly recalling relevant knowledge, thus improving the comprehension and application.

steps. As the model fLLM : si 7→ ri produces re-
sponses r1, r2, r3 sequentially corresponding to the
three steps, we concatenate all the above before ask-
ing the final question “Based on all the reasoning
above, select the correct option to answer the initial
question.” See the complete prompt in Appendix B.

6 Experiments

6.1 Experimental Setup
We use popular API-based and open-source LLMs
as baselines, including Mistral (Jiang et al., 2023),
Llama (Dubey et al., 2024), Qwen (Yang et al.,
2024), GPT-3 (Brown et al., 2020) and GPT-
4 (Achiam et al., 2023), with various parameter
sizes. Besides the vanilla evaluation, we also eval-
uate LLMs using popular zero-shot CoT (Kojima
et al., 2022) and our KnowCoT prompting strate-
gies. Note that we do not conduct few-shot exper-
iments due to the bias of sample selection on the
final evaluation results. The complete list of model
versions is shown in Table 2 and experimental de-
tails can be found in Appendix C.

Models Is Open Main Language Size

Mistral-7B-Instruct-v0.3 ✓ en 7B
Llama3-8B-Instruct ✓ en 8B
Qwen2.5-7B-Instruct ✓ zh 7B
Llama2-13B-Chat ✓ en 13B
Qwen2.5-14B-Instruct ✓ zh 14B
GPT-3.5-turbo ✗ en > 175B
GPT-4o ✗ en > 175B

Table 2: LLMs evaluated in our experiments.

6.2 Main Results
Table 3 presents the main results of LLMs on CoCo,
where we have the following findings.

Overall, CoCo presents a significant challenge
for all LLMs. GPT-4 achieves the highest per-
formance across five dimensions. However, de-
spite its advancements, a substantial performance
gap of 17.7% still exists between the most capa-
ble LLM and human performance. Notably, the

Models Methods MEM. COM. REA. FAI. APP. Average

Human Sampling Test 90.53 94.43 87.80 90.25 93.46 91.29

Mistral-7B
Vanilla 60.88 78.67 52.35 42.94 68.18 60.60
CoT 62.77 79.35 52.82 44.34 69.65 61.79
KnowCoT 61.55 79.93 54.32 45.91 71.48 62.64

Llama3-8B
Vanilla 63.74 80.66 50.53 40.37 61.21 59.30
CoT 64.26 80.89 50.88 42.29 62.89 60.24
KnowCoT 63.88 81.26 52.87 43.81 64.59 61.28

Qwen2.5-7B
Vanilla 59.52 79.37 48.76 40.18 58.52 57.27
CoT 58.35 80.24 48.95 41.16 58.97 57.53
KnowCoT 60.87 80.90 51.37 43.06 60.94 59.43

Llama2-13B
Vanilla 66.48 82.74 56.16 44.00 68.26 63.53
CoT 65.25 82.86 57.00 45.32 70.75 64.24
KnowCoT 66.42 83.52 58.73 46.97 71.43 65.41

Qwen2.5-14B
Vanilla 67.83 81.22 56.99 44.10 69.36 63.90
CoT 68.00 81.88 58.20 45.53 70.52 64.83
KnowCoT 68.95 82.37 59.67 48.87 73.64 66.70

GPT-3.5-turbo
Vanilla 75.25 85.96 62.87 46.97 72.38 68.69
CoT 77.62 85.20 65.78 49.52 74.96 70.62
KnowCoT 75.78 86.25 67.19 51.63 76.07 71.38

GPT-4o
Vanilla 79.81 87.37 65.16 49.68 75.12 71.43
CoT 81.54 88.63 66.64 52.57 76.17 73.11
KnowCoT 81.66 89.18 68.84 55.49 80.44 75.12

Table 3: Main Results. Global top-3 results are bold.

gap widens to 38.5% on FAISCORE, indicating that
LLMs struggle significantly with maintaining in-
ternal consistency. This suggests that while LLMs
excel in reasoning tasks, they still face fundamental
limitations in aligning their responses with coher-
ent and logically consistent knowledge structures.

As model scale decreases, its knowledge reser-
voir shrinks, leading to gradual performance
degradation. In memorization, GPT-4 falls be-
hind human performance by only 9.8%, highlight-
ing its extensive internal knowledge retention. This
suggests that larger-scale models can store and re-
trieve commonsense knowledge more effectively.
In contrast, Mistral-7B and Qwen2.5-7B exhibit
the weakest performance in knowledge memoriza-
tion, reflecting the limitations of smaller models in
capturing and recalling vast amounts of knowledge.

LLMs that achieve good performance in memo-
rization and comprehension may exhibit perfor-
mance degradation in application. For instance,
LLaMA outperforms Mistral by an absolute aver-
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Models MEMSCORE COMSCORE

oEffect oReact oWant xAttr xEffect xIntent xNeed xReact xWant oEffect oReact oWant xAttr xEffect xIntent xNeed xReact xWant

Mistral-7B 52.1↓ 65.7↑ 51.9↓ 57.4↓ 55.9↓ 78.6↑ 66.8↑ 64.5↑ 55.2↓ 72.7↓ 81.0↑ 70.5↓ 84.4↑ 75.9↓ 87.2↑ 76.8↓ 83.9↑ 74.2↓
Llama3-8B 55.9↓ 60.8↓ 57.1↓ 63.4↓ 58.8↓ 81.8↑ 70.0↑ 66.3↑ 59.7↓ 72.2↓ 79.5↓ 76.1↓ 85.3↑ 77.5↓ 87.9↑ 80.1↓ 85.2↑ 77.4↓
Qwen2.5-7B 51.2↓ 56.8↓ 54.1↓ 60.1↑ 55.8↓ 78.1↑ 66.8↑ 62.6↑ 50.2↓ 72.3↓ 78.8↓ 77.3↓ 87.2↑ 77.8↓ 88.4↑ 77.3↓ 81.3↑ 73.4↓
Llama2-13B 59.5↓ 64.7↓ 60.1↓ 66.0↓ 61.6↓ 85.2↑ 72.8↑ 70.1↑ 58.3↓ 76.7↓ 84.6↑ 76.2↓ 88.5↑ 79.6↓ 89.7↑ 80.7↓ 86.3↑ 78.5↓
Qwen2.5-14B 60.8↓ 66.7↓ 60.3↓ 68.4↑ 61.9↓ 87.3↑ 74.4↑ 70.2↑ 60.5↓ 75.2↓ 82.6↑ 76.3↓ 86.7↑ 78.0↓ 89.6↑ 76.3↓ 86.5↑ 79.9↓
GPT-3.5-turbo 65.4↓ 79.5↑ 66.2↓ 72.4↓ 69.8↓ 89.2↑ 82.0↑ 79.7↑ 73.2↓ 79.2↓ 89.3↑ 80.6↓ 90.6↑ 82.2↓ 94.7↑ 85.4↓ 89.1↑ 80.7↓
GPT-4o 71.1↓ 82.8↑ 71.8↓ 76.3↓ 75.7↓ 94.0↑ 84.3↑ 82.9↑ 79.9↑ 81.6↓ 88.2↑ 83.1↓ 93.3↑ 84.2↓ 96.0↑ 81.7↓ 92.4↑ 85.4↓

Table 4: Results of each relation. ↓ and ↑ represent the performance is lower or higher than its average performance.

Models Methods 2i 2p ip pi

REA. FAI. APP. Avg. REA. FAI. APP. Avg. REA. FAI. APP. Avg. REA. FAI. APP. Avg.

Mistral-7B
Vanilla 67.8↑ 47.0↑ 82.0↑ 65.6↑ 40.0↓ 56.2↑ 52.7↓ 49.6↓ 42.1↓ 35.7↓ 61.3↓ 46.3↓ 59.5↑ 32.9↓ 76.7↑ 56.4↑
CoT 66.8↑ 48.9↑ 83.6↑ 66.4↑ 41.6↓ 56.3↑ 53.0↓ 50.3↓ 42.1↓ 37.1↓ 63.8↓ 47.7↓ 60.7↑ 35.1↓ 78.2↑ 58.0↑
KnowCoT 69.7↑ 49.5↑ 84.5↑ 67.9↑ 42.4↓ 59.9↑ 54.8↓ 52.4↓ 43.4↓ 38.1↓ 65.9↓ 49.1↓ 61.8↑ 36.1↓ 80.7↑ 59.5↑

Llama3-8B
Vanilla 62.0↑ 47.5↑ 73.8↑ 61.1↑ 39.6↓ 51.7↑ 47.9↓ 46.4↓ 46.5↓ 33.6↓ 56.9↓ 45.7↓ 54.1↑ 28.7↓ 66.2↑ 49.7↓
CoT 61.1↑ 48.9↑ 75.9↑ 62.0↑ 38.6↓ 54.3↑ 48.7↓ 47.2↓ 47.8↓ 36.3↓ 58.2↓ 47.4↓ 56.0↑ 29.7↓ 68.8↑ 51.5↓
KnowCoT 64.0↑ 50.8↑ 77.1↑ 64.0↑ 42.2↓ 55.3↑ 51.1↓ 49.5↓ 48.7↓ 36.8↓ 60.0↓ 48.5↓ 56.5↑ 32.3↓ 70.2↑ 53.0↓

Qwen2.5-7B
Vanilla 62.0↑ 48.0↑ 69.4↑ 59.8↑ 36.7↓ 53.6↑ 43.0↓ 44.4↓ 44.2↓ 31.9↓ 55.5↓ 43.9↓ 52.3↑ 27.2↓ 66.2↑ 48.6↓
CoT 62.0↑ 47.2↑ 70.2↑ 59.8↑ 36.5↓ 55.2↑ 42.6↓ 44.8↓ 45.6↓ 32.8↓ 57.0↓ 45.2↓ 51.7↑ 29.4↓ 66.1↑ 49.1↓
KnowCoT 64.5↑ 51.4↑ 71.5↑ 62.4↑ 39.4↓ 56.8↑ 45.4↓ 47.2↓ 47.2↓ 34.5↓ 58.0↓ 46.6↓ 54.4↑ 29.6↓ 69.0↑ 51.0↓

Llama2-13B
Vanilla 70.6↑ 47.4↑ 80.4↑ 66.1↑ 40.6↓ 56.4↑ 50.6↓ 49.2↓ 48.5↓ 37.8↓ 63.5↓ 50.0↓ 64.8↑ 34.4↓ 78.5↑ 59.3↑
CoT 71.6↑ 48.2↑ 82.6↑ 67.5↑ 40.8↓ 57.1↑ 53.6↓ 50.5↓ 49.9↓ 39.7↓ 65.9↓ 51.8↓ 65.7↑ 36.2↓ 80.9↑ 61.0↑
KnowCoT 73.9↑ 49.6↑ 83.3↑ 68.9↑ 43.4↓ 59.7↑ 54.4↓ 52.5↓ 50.7↓ 40.2↓ 66.9↓ 52.6↓ 66.9↑ 38.3↓ 81.1↑ 62.1↑

Qwen2.5-14B
Vanilla 71.1↑ 48.9↑ 81.5↑ 67.2↑ 42.4↓ 57.3↑ 51.7↓ 50.5↓ 48.1↓ 36.4↓ 64.8↓ 49.8↓ 66.4↑ 33.6↓ 79.4↑ 59.8↑
CoT 72.0↑ 51.4↑ 81.8↑ 68.4↑ 44.3↓ 59.7↑ 54.0↓ 52.7↓ 49.7↓ 36.8↓ 66.6↓ 51.0↓ 66.8↑ 34.1↓ 79.6↑ 60.1↑
KnowCoT 73.1↑ 54.1↑ 85.6↑ 70.9↑ 44.9↓ 62.6↑ 55.9↓ 54.5↓ 50.8↓ 41.2↓ 69.3↓ 53.8↓ 69.9↑ 37.7↓ 83.7↑ 63.8↑

GPT-3.5-turbo
Vanilla 79.4↑ 50.0↑ 87.1↑ 72.2↑ 43.1↓ 59.9↑ 53.5↓ 52.2↓ 55.3↓ 41.3↓ 68.9↓ 55.2↓ 73.7↑ 36.7↓ 80.1↑ 63.5↑
CoT 82.9↑ 52.8↑ 88.8↑ 74.8↑ 45.8↓ 62.6↑ 56.9↓ 55.1↓ 57.4↓ 44.2↓ 71.0↓ 57.5↓ 77.0↑ 38.5↓ 83.1↑ 66.2↑
KnowCoT 84.6↑ 55.0↑ 90.5↑ 76.7↑ 46.2↓ 65.5↑ 56.7↓ 56.1↓ 61.2↓ 45.6↓ 72.4↓ 59.7↓ 76.8↑ 40.5↓ 84.7↑ 67.3↑

GPT-4o
Vanilla 81.7↑ 54.7↑ 90.9↑ 75.8↑ 45.5↓ 63.3↑ 53.9↓ 54.2↓ 57.9↓ 43.3↓ 72.0↓ 57.7↓ 75.5↑ 37.5↓ 83.6↑ 65.5↑
CoT 82.6↑ 58.8↑ 91.6↑ 77.7↑ 46.3↓ 65.3↑ 55.3↓ 55.7↓ 59.7↓ 46.3↓ 72.9↓ 59.6↓ 77.9↑ 39.8↓ 84.9↑ 67.5↑
KnowCoT 83.5↑ 60.1↑ 94.6↑ 79.4↑ 53.0↓ 69.5↑ 60.0↓ 60.8↓ 60.5↓ 49.4↓ 78.8↓ 62.9↓ 78.3↑ 43.0↓ 88.3↑ 69.9↑

Table 5: Results of each query. ↓ and ↑ represent the performance is lower or higher than its average performance.

age of 1.92% in MEMSCORE and COMSCORE,
yet it experiences a significant decline of 6.87%
in APPSCORE. This suggests that while certain
LLMs excel at storing and retrieving knowledge,
they may face challenges in applying that knowl-
edge to reasoning-intensive tasks.

KnowCoT consistently improves the LLMs’ per-
formance especially on application. Our Know-
CoT achieves the highest performance of 75.12%,
which is substantially better than the vanilla GPT-4
by 3.69 points on average. And there is also an ab-
solute gain of 14.81% on REASCORE, FAISCORE

and APPSCORE. The impact of CoT across tasks
can be found in Appendix D.

LLM’s faithfulness to knowledge is closely tied
to its comprehension, whereas its overall rea-
soning ability is determined by both memoriza-
tion and application. This conclusion is sup-
ported by the strong correlation between MEM-
SCORE × COMSCORE and FAISCORE, showing
that knowledge faithfulness depends more on com-
prehension than memorization. Likewise, the cor-
relation between MEMSCORE × APPSCORE and

REASCORE confirms that effective reasoning re-
quires both memorization and application, not just
knowledge recall. These findings validate the pro-
posed metrics and demonstrate their effectiveness
in distinguishing and characterizing different LLM
capabilities. See the detailed results in Appendix E.

6.3 Challenges in Commonsense

LLMs excel or fall short in different aspects of
commonsense knowledge. We analyze LLMs’
performance across various commonsense aspects,
as shown in Table 4. We regard the LLMs’ av-
erage performance in memorization and compre-
hension as the baseline. If the LLM outperforms
the baseline in a specific aspect, it suggests greater
proficiency in this relation type of knowledge, and
vice versa. The findings indicate LLMs generally
demonstrate good knowledge of xIntent and xRe-
act. However, their proficiency of o/xEffect and
o/xWant is relatively weaker. The uneven mastery
of knowledge significantly affects the LLMs’s rea-
soning performance, especially when dealing with
complex questions that involve multiple types of
knowledge. Moreover, showing good memoriza-
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Figure 4: Error analysis for fine-grained commonsense reasoning results. We select 100 error cases from each
subtask (i.e., REASCORE, FAISCORE and APPSCORE) for Mistral, Llama and GPT-4, respectively.

tion results in certain aspects does not necessarily
mean good comprehension, and vice versa. For ex-
ample, LLMs generally good at memorize xNeed
knowledge but the comprehension is below average
level, while xAttr knowledge is hard for LLMs to
memorize but shows better comprehension results.

LLMs underperform in (multi-hop) common-
sense reasoning. We analyze LLMs’ reasoning
ability across different query types, as shown in
Table 5. The performance of all LLMs in common-
sense reasoning is unsatisfactory. An intuitive con-
clusion is higher FAISCORE for query types involv-
ing less atomic knowledge (e.g., 2i and 2p). For
different reasoning results, a noticeable decrease is
observed in 2p, ip and pi query types compared to
2i. This is because these three tasks necessitate a
two-step reasoning step. They contain multi-hop
projection which involves inferring hidden reason-
ing contexts. In contrast, the 2i task only requires
intersection operations that can be completed with
a single reasoning step. For intersection and pro-
jection results, LLMs are more struggle with the
projection cases. The APPSCORE of 2p and ip is
much lower than others, because the corresponding
query structure are overally a projection structure,
while 2i and pi require reasoning about complex
intersections between event. In summary, LLMs
struggle with commonsense reasoning, especially
in multi-step reasoning scenarios.

6.4 Error Analysis
We manually analyze 100 error cases in REAS-
CORE, FAISCORE and APPSCORE by Mistral,
Llama and GPT-4, as shown in Figure 4.

REASCORE. We divide errors into: (a) No An-
swer: The model fails to provide a final answer. (b)
Reasoning Error: The model encounters reasoning
errors. (c) Hallucination: The model’s prediction
does not exist in the options. (d) Metric Limit: The
model’s prediction is correct, but the metric is lim-
ited by the evaluation criteria. We observe that

GPT-4 have a higher No Answer rate, while Mistral
and Llama are always able to provide answers. This
discrepancy can be attributed to two factors: (1)
the LLMs may lack the necessary commonsense
knowledge to formulate an answer; (2) advanced
LLMs abstain from answering questions beyond
their knowledge scope, while weaker LLMs often
attempt to answer, regardless of reliability.

FAISCORE. We divide errors into: (a) No Knowl-
edge: The model answers the reasoning question
correctly but has no atomic knowledge. (b) Partial
Knowledge: The model answers the reasoning ques-
tion correctly but has partial atomic knowledge. (c)
Metric Limit: The model’s prediction is correct, but
the metric is limited by the evaluation criteria. (d)
Evaluation Failure: The model answers the reason-
ing question correctly but does not use annotated
atomic knowledge. The first two cases are due to
the hallucination of LLMs. Moreover, there are
very few cases of No Knowledge and in most cases
LLMs have partial knowledge, which indicates that
LLMs are relatively easy to obtain the final an-
swer through partial knowledge. However, in some
cases, evaluation by FAISCORE fails. We manually
check these reasoning chains and find that LLMs
can deduce the final answer using other atomic
knowledge. Although we strictly construct rea-
soning questions through queries based on atomic
knowledge, it is inevitable that other knowledge
can also lead to the correct answer. But our error
analysis also shows that this situation is rare and
mastering the required knowledge is still necessary,
demonstrating the rationality of FAISCORE.

APPSCORE. We divide errors into four groups
as same as REASCORE. Compared to REASCORE,
the No Answer and Hallucination rates are de-
creased, which is intuitive because the premise of
all error cases is all atomic knowledge has been
memorized. It can be observed that more error
cases stem from reasoning errors and metric lim-
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itation. Despite the imperfect metric calculation,
LLMs still have flaws in grounding atomic knowl-
edge from reasoning questions and perform consis-
tent commonsense reasoning.

7 Conclusion

We introduce CoCo, a large-scale benchmark for
commonsense consistency, featuring automatic
construction, novel evaluation metrics, and prompt-
ing methods. Extensive experiments on current
LLMs assess their performance in memorization,
comprehension, and application of commonsense
knowledge. Our findings show a significant gap
between LLMs and humans, and we provide a de-
tailed analysis of the challenges LLMs face and
potential improvement directions.

Limitations

CoCo not fully encompass dimensions such as tem-
poral reasoning, causality, or broader contextual
adaptability. The use of predefined templates for
verbalizing queries and knowledge triples, while
practical, might not fully represent the diversity
of natural language expressions. The reliance on
resources like ATOMIC provides a strong foun-
dation but may not entirely reflect performance
across more diverse or unseen commonsense do-
mains. These observations highlight areas for fur-
ther exploration, such as expanding task diversity,
enhancing adaptability to real-world scenarios, and
broadening the scope of knowledge.
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A Dataset Construction

A.1 Construction of Memorization Task
Atomic Knowledge Sampling. The first step
of our data generating process is to sample a set
of atomic knowledge triples from the CSKG. Be-
cause ATOMIC contains 877K textual descriptions
of triples, triple sampling is required for the mem-
orization task data construction. For 9 relations
in ATOMIC, we sample 2K diverse and representa-
tive (Su et al., 2023) triples for each relation. We
first compute a vector representation for each triple
using Sentence-BERT (Reimers and Gurevych,
2019) by averaging the resulting vectors over the
text input words. We then use the embedding vec-
tors to create a directed graph G = (V, E) where
the vertices V are the embedded triples as defined
above. For each vertex v ∈ V , we create an edge to
its k nearest vertices in terms of the cosine similar-
ity between the embeddings. Let D and U denote
the sets of already chosen and remaining samples,
respectively. Initially, D = ∅. Every vertex u ∈ U
is scored by a modified degree:

score(u) =
∑

v∈{v|(v,u)∈E,v∈U}
s(v),

where s(v) = ρ−|{c∈D|(v,c)∈E}|, ρ > 1

(9)

where s discounts v that is close to the already se-
lected vertices, thereby encouraging diversity. We
take argmaxu∈U score(u) and move it from U to
D in every iteration. We set k to 150, ρ to 10, and
run 2K of these iterations for each relation, where
the current D has 18K triples.

Verbalization. After obtaining the representa-
tive triple set D of the entire CSKG, the common-
sense relation within each triple is verbalized into
human-readable text (Fang et al., 2021b), as shown
in Table 6. For each question qk verbalized by
k = (h, r, t) ∈ D, we sample 4 additional distrac-
tors for the answer t, where 2 of them are randomly
sampled across the whole CSKG, and others are
sampled from the neighbors of k but not the an-
swers, represented as adversarial negative samples.

A.2 Construction of Comprehension Task
We construct the comprehension task based on the
conceptualization (He et al., 2024). Instead of hu-
man annotation using Probase (Wu et al., 2012),
conceptualization is achieved by instructing lan-
guage models to generate knowledge based on con-
crete triples while carefully considering the original

Relation Human Readable Text

oEffect What is the effect on PersonY after
oReact What does PersonY feel after
oWant What does PersonY want to do after
xAttr What is PersonX seen as given

xEffect What is the effect on PersonX after
xIntent What is the intention of PersonX before
xNeed What does PersonX need to do before
xReact What does PersonX feel after
xWant What does PersonX want to do after

Table 6: Textual prompt for commonsense relations.
Commonsense triple (h, r, t) is translated to human lan-
guage “[prompt] h”, and the answer is t.

context throughout the process, where low-quality
generations are eliminated by filtering models.

Concept Generation. Due to the knowledge ab-
straction process only involves head events, we
compute a vector representation for each head
event and then sample 20K head events in total
from ATOMIC via Equation 9. For each head
event, we sample a concrete triple and utilize lan-
guage models to collect conceptualizations in a
one-step inference manner. Specifically, we train
a GPT-2 (Radford et al., 2019) based concept gen-
erator using ABSTRACTATOMIC (He et al., 2024)
as abstract knowledge corpus. We generate pos-
sible concepts for the candidate in a way similar
to COMET (Bosselut et al., 2019). Each sample
(hi, h

c
i ) in ABSTRACTATOMIC is formed as a se-

quence of tokens ti = [hi; [EOS];hci ], with ; indi-
cated the concatenation operation. The standard
causal language model loss on hci is used. Suppose
hi plus [EOS] correspond to first m tokens in ti
with total n tokens, the loss is:

L = −
∑

ti

∑

j=m+1

logP (ti,j |ti,<j) (10)

Then we utilize this fine-tuned model to sample
five candidate conceptualizations for each event.

Conceptualization Verification Finally, we feed
the possible event conceptualizations into a neu-
ral model as a gatekeeper to filter out those not
matching the context. For all conceptualizations
generated, we use an existing plausibility scorer
Vera (Liu et al., 2023), a T5 (Raffel et al., 2020)
based scorer, to score every triple in terms of plau-
sibility of commonsense (between 0 and 1). We
filter out triples with a plausibility score less than
0.5. For all remaining triples, we retain head events
with more than 3 conceptualizations, resulting in
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Relation Mapping Rules

oEffect Add PersonY in front of the tail
oReact Add PersonY and “is” in front of the tail
oWant Add PersonY in front of the tail and remove the initial “to”
xAttr Add PersonX and “is” in front of the tail

xEffect Add PersonX in front of the tail
xIntent Add PersonX in front of the tail and remove the initial “to”
xNeed Add PersonX in front of the tail and remove the initial “to”
xReact Add PersonX and “is” in front of the tail
xWant Add PersonX in front of the tail and remove the initial “to”

Table 7: Normalization rules for ATOMIC tail events.

13K original triples with their 39K conceptualized
triples after random sampling. In other words, we
provide 3 sets of corresponding abstract knowledge
triples for each atomic knowledge triple.

Verbalization. We add 13K samples in compre-
hension task to D, and now D has 31K samples.
Similar to memorization task, each original triple
and conceptualized triple is verbalized into a ques-
tion answering pair. For questions qk and qkc , we
sample 4 additional distractors for each question to
construct MCQA samples, respectively.

A.3 Construction of Application Task
We construct the application task based on mul-
tiple pieces of atomic knowledge, involving rea-
soning on unobserved edges and multiple events
in CSKGs. Following previous works (Ren et al.,
2020; Fang et al., 2024), we use basic projections
2p, intersections 2i and complex queries ip and pi
as evaluation queries. In this formulation, multi-
hop projection involves inferring hidden reasoning
contexts, while intersection operations require rea-
soning about complex interactions between events.

Query Structures. The specific query structures
that we study in this work are visualized in Fig-
ure 5. For 1p, it can be simply instantiated
by an atomic knowledge triple, such as q[t] =
t : xEffect(PersonX is on vacation, t). Following
previous works (Ren et al., 2020; Fang et al., 2024),
we use basic projections 2p, intersections 2i and
complex queries ip and pi. The logical expressions
for these four queries are as follows:

2i : q[t] = t : r1(h1, t) ∧ r2(h2, t)

2p : q[t] = t : r1(h1, V ) ∧ r2(V, t)

ip : q[t] = t : r1(h1, V ) ∧ r2(h2, V ) ∧ r3(V, t)

pi : q[t] = t : r1(h1, V ) ∧ r2(h2, t) ∧ r3(V, t)
(11)

where V denotes the free variable.

1p 2i 2p

ip pi

Anchor Entity

Free Variable

Answer Entity

Figure 5: Visualization of query structures. The an-
chor entities and relations are specified to instantiate the
query. “p” and “i” represent projection and intersection,
and the number ahead of p and i indicates the number
of anchor entities and free variables.

Relation Prompt Template

oEffect the effect on PersonY after
oReact what PersonY feels after
oWant what PersonY wants to do after
xAttr what PersonX is seen as given

xEffect the effect on PersonX after
xIntent the intention of PersonX before
xNeed what PersonX needed to do before
xReact what PersonX feels after
xWant what PersonX wants to do after

Table 8: Templates for verbalizing relations in queries.

Nodes Normalization. Before sampling queries,
we first normalize the tail entities with simple rules
following previous works (Fang et al., 2021a; Shen
et al., 2023). In ATOMIC, heads are pre-defined
complete sentences (e.g., “PersonX says sorry”)
while tails are usually short phrases without a sub-
ject (e.g.,“to say sorry”). We develop simple rules
to add “PersonX” or “PersonY” in front of the tails
to make them a complete sentence, as shown in Ta-
ble 7. This allows the head and tail nodes to merge,
enabling the query sampling from ATOMIC.

Query Sampling. Given a query structure, we
use pre-order traversal to sample free variables and
anchor events starting from an answer event. We
sample predecessors uniformly based on (relation,
event) pairs. For 4 query types, we sample 3K
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Query Type Question Template

2i What event or state is both Prompt (r1) [V1] and also Prompt (r2) [V2]?
2p What event or state is Prompt (r1) Prompt (r2) [V1]
ip What event or state is Prompt (r3) both Prompt (r1) [V1], and also Prompt (r2) [V2]?
pi What event or state is both Prompt (r1) Prompt (r3) [V3], and also Prompt (r2) [V2]?

Table 9: Templates for verbalizing four query types.

Q: [question from the dataset]

Guidance: Address the question by following the steps below:

Step 1) Extract the core event: Identify the core event in the question. The event should simply consists of its subject, 

predicate, and object. 

Step 2) Recall the relevant knowledge: Recall the relevant knowledge triple of the core event implied by the question. The 

knowledge triple should simply consists of its head event, relation and tail event.

Step 3) Deduce the final result: Given all the information above, deduce the final result and answer step by step.

A: [LLM previous response]

Q: Based on all the reasoning above, select the correct option to answer the initial question.

A: [LLM final answer]

Figure 6: Details of our KnowCoT prompting strategy.

instances for each type. During sampling, to avoid
over-sampling on nodes with high degree, we only
sample from top 10 neighbors of a node scored by
Equation 9. Besides, 4 additional distractors for
each query are also sampled. We also conduct a
post-order traversal starting from the anchor events
to find all the answers of the query, ensuring that
the sampled distractor is not the correct answer.

Verbalization. The sampled logical queries and
answers are verbalized into human-readable text
using a rule-based verbalizer (Fang et al., 2024).
We use conversion rules and pre-defined templates
to compose questions based on the relations in
the queries. Based on the definition of each com-
monsense relation (Sap et al., 2019a; Hwang et al.,
2021), we use the templates in Table 8 to verbal-
ize each relation. In terms of logical queries, we
use the conversion rules in Table 9 to convert the
query to a question. Then we use Vera (Liu et al.,
2023) to filter out low quality queries and answers.
Specifically, we ask Vera for the correctness of the
5 options in MCQA. If all options are incorrect
or multiple answers are correct, then this sample
will be filtered out. Finally, around 8K samples are
retained in application task, and D is expanded to
39K samples in total. Besides the reasoning ques-
tion q(k1,...,kn), all the atomic knowledge it contains

is also verbalized into MCQA pairs.

B KnowCoT Prompting

B.1 Prompt Details
Compared with the standard strategy of directly
prompting the LLMs a question, we impose an
inductive bias upon LLMs by explicitly recalling
atomic knowledge, thus improving the knowledge
comprehension and application. In this way, we
enhance the consistent commonsense reasoning
abilities of LLMs via recalling relevant knowledge.
The complete prompt is shown in Figure 6. In
the end, we extract and obtain the answer a ∈
{A,B,C,D,E} as the final prediction.

B.2 Prompt Examples
In order to verify the rationality of KnowCoT
prompting, which guides the LLMs to extract core
events, recall relevant important knowledge, and ul-
timately solve reasoning problems, we illustrate
the KnowCoT prompting results of Mistral-7B-
Instruct-v0.3 and GPT-4o as examples, as shown
in Figure 7 and Figure 8. The reasoning question
is the same as the question in Figure 3. It can be
observed that although Mistral is difficult to follow
instructions to generate knowledge in triple form,
it describes the same meaning in natural language,
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Step 1) Extract the core event: The core event in the question is PersonX plays a football game.

Step 2) Recall the relevant knowledge: After playing a sport like football, the body can become tired and in need of rest to 

recover from the exertion.

Step 3) Deduce the final result: To recover from the physical fatigue, PersonX wants to take a rest.

Final answer: PersonX wants to take a rest.

Figure 7: An example of KnowCoT prompting response in Mistral-7B.

Figure 8: An example of KnowCoT prompting response
in GPT-4o.

while the powerful GPT-4o can generate triples that
express the same meaning with atomic knowledge.

C Experimental Details

Following the standard practice of prompting
LLMs for QA (Robinson et al., 2023), we initialize
a prompt that takes “[Instruction] [Question] [Op-
tions]” as the input and ask the model to output the
correct option in the QA pair as the prediction. The
input prompt template is shown in Figure 9.

We access proprietary models through offi-
cial API. For open-source models, we use the
checkpoints from Huggingface’s Transformer li-
brary (Wolf et al., 2019). We set the temperature to
zero for greedy decoding in all experiments. Zero-
shot CoT (Kojima et al., 2022) simply concatenates
the input prompt with “Let’s think step by step.” Af-
ter obtaining the reasoning intermediate results, we
use “Therefore, among A through E, the answer
is” for MCQA. And KnowCoT follows the similar
idea as shown in Figure 6. For the correct or incor-
rect judgment of the final output answer of LLMs,
we match the first option that appears in the final

output answer of the LLMs as the predicted option.

D Chain-of-Thought Results

D.1 CoT Analysis

The Chain-of-Thought (CoT) prompting method
demonstrates slight improvements over the vanilla
baseline across all tasks. For memorization, CoT
achieves a small gain (68.26 vs. 67.64), suggesting
that CoT provides marginal benefits in this task but
does not significantly enhance the model’s ability
to recall atomic knowledge. For comprehension,
CoT scores 82.72, slightly higher than the vanilla
score of 82.28, indicating its limited contribution
to improving reasoning over abstract concepts. For
application, CoT achieves 57.38 compared to the
vanilla score of 55.91, showing a more noticeable
improvement in tasks requiring multi-step reason-
ing, though the gap remains modest. These results
suggest that while CoT reasoning aids in structur-
ing the reasoning process, its influence on memo-
rization and fundamental comprehension remains
minimal. However, its impact becomes more pro-
nounced in complex reasoning tasks, particularly
those requiring higher-order thinking, such as ap-
plication and problem-solving.

D.2 KnowCoT Analysis

The KnowCoT prompting method outperforms
both the vanilla and CoT approaches across all
tasks. For memorization, KnowCoT achieves the
highest score (68.44), slightly better than CoT
(68.26) and vanilla (67.64), indicating an enhanced
ability to retrieve and represent atomic knowl-
edge. For comprehension, KnowCoT reaches
83.34, showing incremental improvements over
CoT (82.72) and vanilla (82.28), demonstrating its
effectiveness in reasoning over abstract conceptual
knowledge. For application, KnowCoT achieves a
noticeable improvement (59.4) compared to CoT
(57.38) and vanilla (55.91), highlighting its su-
perior performance in handling complex reason-
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Answer this commonsense reasoning question, where you are supposed to handle a multiple-choice question answering 

task to select the correct answer. Select one correct answer from A to E. 

Question: [Question] 

A: [Option A]. B: [Option B]. C: [Option C]. D: [Option D]. E: [Option E].

Answer:

Figure 9: The input prompt template for multiple-choice question answering.

Figure 10: Performance gap with and without CoT and
KnowCoT prompting. The results are averaged from all
LLMs evaluated in Table 2.

ing tasks involving multiple pieces of knowledge.
Overall, KnowCoT consistently outperforms CoT,
especially in tasks requiring multi-step reasoning
(application), suggesting its potential as a more
robust prompting method for leveraging LLMs’
commonsense reasoning capabilities.

E Correlation of Metrics

To provide a deeper understanding of our metrics,
we evaluate the correlation between these metrics,
as shown in Figure 11. First, MEMSCORE is not
strictly linearly correlated with COMSCORE or
APPSCORE, indicating that memorization alone
does not directly translate to other abilities. How-
ever, the product of MEMSCORE and COMSCORE

exhibits an almost perfect linear correlation with
FAISCORE, suggesting that LLMs’ faithfulness
to knowledge is closely linked to comprehension.
Similarly, the product of MEMSCORE and APP-
SCORE shows a near-perfect linear correlation with
REASCORE, implying that knowledge memoriza-
tion and application together determine overall rea-
soning performance. These findings validate our
metrics and highlight their effectiveness in distin-
guishing and characterizing different abilities.

F Related Work

F.1 Large Language Models
In recent years, there has been rapid progress in the
research of large language models (LLMs) (Zhao

et al., 2023a). They exhibit outstanding perfor-
mance across a multitude of tasks without the need
for fine-tuning (Brown et al., 2020; Wei et al.,
2022; Kojima et al., 2022). Furthermore, they have
achieved astonishing results in complex reason-
ing tasks, such as mathematical reasoning (Cobbe
et al., 2021; Mishra et al., 2022) and logical reason-
ing (Yu et al., 2020; Teng et al., 2023). Moreover,
some studies suggest that the chain-of-thought
prompting (Wei et al., 2022) can further enhance
the model’s capabilities in complex reasoning sce-
narios (Zhang et al., 2023; Chu et al., 2024). While
LLMs are believe to encode various knowledge
during pre-training (Madaan et al., 2022; Jain et al.,
2023; Zhao et al., 2023b), existing commonsense
evaluation works (Zhou et al., 2020; Li et al., 2022;
Cheng et al., 2024) focus on commonsense knowl-
edge assessment in LLMs.

F.2 Commonsense Benchmarks
Commonsense knowledge spans many categories,
such as physical commonsense (e.g., a car is heav-
ier than an apple), social commonsense (e.g., a
person will feel happy after receiving gifts), and
temporal commonsense (e.g., cooking an egg takes
less time than baking a cake). Given this diverse
nature of commonsense knowledge, various bench-
marks have been proposed to test these different
types of knowledge. Commonsense benchmarks
broadly consist of two tasks: (a) multiple-choice
evaluation (Zellers et al., 2019; Sakaguchi et al.,
2021; Sap et al., 2019b; Bisk et al., 2020), where
a model needs to choose the correct answer from
a list of plausible answers; (b) generative evalua-
tion (Boratko et al., 2020; Lin et al., 2020, 2021),
which requires a model to generate an answer given
a question and some additional context. In this
study, we focus on multiple-choice benchmarks,
since they provide a more reliable automatic metric
(i.e., accuracy), whereas automated metrics used
to evaluate language generation (e.g., BLEU (Pap-
ineni et al., 2002)) do not correlate perfectly with
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Figure 11: Correlations of our metrics.

human judgment (Liu et al., 2016; Novikova et al.,
2017). However, unlike the previous works (Zhou
et al., 2020; Li et al., 2022) that used existing com-
monsense benchmarks to directly evaluate LLMs,
we reduce the impact of data contamination and hal-
lucination by assessing consistency between com-
monsense knowledge and reasoning.

F.3 Evaluation for LLMs

Our work may be seen as part of the literature
aimed at evaluating the performance of current
LLMs (Brown et al., 2020; Jiang et al., 2023;
Achiam et al., 2023; Yang et al., 2023; Riviere et al.,
2024; Dubey et al., 2024; Yang et al., 2024), fo-
cusing on understanding their strengths and weak-
nesses. Various studies into the capabilities of
LLMs (Bubeck et al., 2023; Ignat et al., 2023; Qin
et al., 2023; Li et al., 2023) change people’s per-
ception of domains such as education (Rudolph
et al., 2023), medicine (Singhal et al., 2023),
law (Katz et al., 2024), and computational social
science (Ziems et al., 2024). However, most work
evaluates new models on existing datasets from
previously curated large-scale benchmarks (Wang
et al., 2019; Srivastava et al., 2022; Wang et al.,
2022), or human exams (Jin et al., 2022; Katz et al.,
2024) which is becoming increasingly unreliable
due to data contamination. Our work alleviates the
impact of data contamination and hallucination by
evaluating LLM’s knowledge memorization, com-
prehension, and application capabilities from a new
perspective of consistency.

F.4 Correlations of Memorization and Others

There are benchmarks which assess both the knowl-
edge memorization and reasoning capabilities of
the LLMs within specific domains. For instance,
KoLA (Yu et al., 2024) with its focus on world
knowledge, includes tasks related to knowledge
memorization, understanding, applying and creat-
ing. SeaEval (Wang et al., 2024a) emphasizing

cross-language consistency and multicultural rea-
soning, involves tasks for cultural understanding
and complex reasoning. CHARM (Sun et al., 2024)
is built for comprehensive and in-depth evaluation
of LLMs in Chinese commonsense reasoning and
revealing the intrinsic correlation between memo-
rization and reasoning. There are also benchmarks
aimed at specialized fields, like LawBench (Fei
et al., 2024), which include tasks for both memo-
rization and application. However, these methods
heavily rely on human annotation and lack scalable
dataset generation. Due to the vague definition
and granularity of basic knowledge memorization,
it is hard to explain LLM’s reasoning errors and
provide in-depth insights for evaluation processes.
Compared to other methods, CSKG-based LLM
evaluation is more structured, fine-grained, and
interpretable. It distinguishes memorization, com-
prehension, and application while reducing data
contamination. Additionally, it enables automated
and multi-level assessment, making it a powerful
tool for evaluating commonsense abilities.

G Examples in CoCo

As illustrated in Table 1, the number of samples
(question sets) for the memorization, comprehen-
sion, and application tasks are 18,000, 13,060, and
7,942, respectively. These tasks encompass var-
ious relation types from ATOMIC and different
query structures. For the comprehension task, the
1+3 Joint Test consists of one memorization test
and three conceptualization tests. Similarly, for
the application task, the 2+1 (or 3+1) Joint Test
includes two (or three) memorization tests along
with one reasoning test. We present different task
examples in CoCo with different relation types and
query structures in Table 10, Table 11 and Table 12,
respectively.
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Type Question Options Answer

oEffect What is the effect on PersonY after PersonX throws stones at PersonY? A: happy. B: lucky. C: head bleeds. D: to block the
sun from their eyes. E: become experiment subject. C

oReact What does PersonY feel after PersonX plays PersonY’s guitar?
A: thanks PersonX. B: to swallow the liquid in
their mouth. C: the dog takes it. D: positive. E:
interested.

E

oWant What does PersonY want to do after PersonX keeps PersonY’s promises?
A: to understand the subject. B: accept what Per-
sonX decides. C: to thank PersonX. D: good about
themselves. E: knows where PersonY is.

C

xAttr What is PersonX seen as given PersonX watches youtube videos? A: looking for entertainment. B: PersonY goes to
the ocean. C: sad. D: problem. E: gets a new job. A

xEffect What is the effect on PersonX after PersonX sits quietly? A: poor. B: PersonY listens carefully. C: to prevent
breakage. D: surprised. E: stays quiet. E

xIntent What is the intention of PersonX before PersonX props up the bar?
A: to increase income. B: to become intoxicated.
C: To read the book. D: gains stained carpet. E: to
be challenged.

B

xNeed What does PersonX need to do before PersonX climbs onto the bed?
A: Learns a new skill. B: students receive home-
work. C: becomes nervous. D: to put on their
pajamas. E: PersonX’s son thanks them.

D

xReact What does PersonX feel after PersonX begs PersonY to take? A: gets sentenced to 10 years. B: ambitious. C: Per-
sonX gets a walking cast. D: helpful. E: studious. D

xWant What does PersonX want to do after PersonX kicks the ball? A: to score a goal. B: finds something to cheer them
up. C: to rest up. D: tumbles. E: to be noticed. A

Table 10: Examples of the memorization task.
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Type Subquestion Question Options Answer

What is the effect on PersonY after PersonX asks
family elder?

A: cuddle PersonY. B: sympathetic. C: shows love
for PersonX. D: leave their old job. E: responsive. C

oEffect What is the effect on PersonY after
PersonX asks PersonX’s grandma?

What is the effect on PersonY after PersonX asks
grandparent?

A: to submit their checklist. B: shows love for
PersonX. C: gets in line. D: motivated. E: safety. B

What is the effect on PersonY after PersonX asks
family patriarch?

A: mean. B: food burns. C: to go to the beach. D:
to solve his problem. E: shows love for PersonX. E

What does PersonY feel after PersonX argues with
significant other of PersonY?

A: States they don’t believe X. B: They can afford
to buy more things. C: looks into getting a bullet
proof vest. D: hurt. E: to wipe their face.

D

oReact What does PersonY feel after PersonX
argues with PersonY’s boyfriend?

What does PersonY feel after PersonX argues with
romantic partner of PersonY?

A: to enjoy life. B: hurt. C: Hold arm together. D:
professional. E: to cure his problem. B

What does PersonY feel after PersonX argues with
PersonY’s beau?

A: Feed and clothe them. B: study. C: hurt. D: a
job. E: catch personY doing something wrong. C

What does PersonY want to do after PersonX
achieves anticipated impact?

A: PersonY is safe. B: to contact someone. C:
arrested for littering. D: to paint the walls. E: to
see.

E

oWant What does PersonY want to do after
PersonX achieves PersonY’s effect?

What does PersonY want to do after PersonX
achieves desired consequence?

A: updates. B: to figure out solution. C: to see. D:
happy about decision. E: content. C

What does PersonY want to do after PersonX
achieves intended result?

A: well satisfied. B: to see. C: to go back home
and sleep. D: walks away. E: to have a night cap at
the bar.

B

What is PersonX seen as given PersonX agrees to
optimistic behavior?

A: hopeful. B: happy. C: to learn Japanese. D: to
ask a question. E: help accommodate others. A

xAttr What is PersonX seen as given Per-
sonX agrees to a date?

What is PersonX seen as given PersonX agrees to
positive social interaction?

A: happy. B: hopeful. C: in need. D: gets a loan.
E: satisfied. B

What is PersonX seen as given PersonX agrees to
optimistic activity?

A: gives someone a raise. B: to play at the park
with the dog. C: soft-hearted. D: to get medical
help. E: hopeful.

E

What is the effect on PersonX after PersonX adopts
loyal companion?

A: helpful. B: excited. C: PersonX relaxes neck.
D: PersonX names it. E: to call PersonY. D

xEffect What is the effect on PersonX after
PersonX adopts a dog?

What is the effect on PersonX after PersonX adopts
four-legged friend?

A: hopeful. B: to watch how he does. C: PersonX
names it. D: strong. E: unfit. C

What is the effect on PersonX after PersonX adopts
faithful friend?

A: gesture and use body to demonstrate skills. B:
spend his winnings. C: blissful. D: Has no troubles.
E: PersonX names it.

E

What is the intention of PersonX before PersonX
arranges job interview?

A: try to get refund. B: to sign the petition. C: to
analyze. D: to save money. E: opens the door. C

xIntent
What is the intention of Per-
sonX before PersonX arranges
PersonY’s interview?

What is the intention of PersonX before PersonX
arranges applicant evaluation?

A: Waits for a response. B: Nosey. C: skinny. D:
to analyze. E: to know what they want. D

What is the intention of PersonX before PersonX
arranges interview process?

A: to analyze. B: gets energized. C: PersonX sighs
as PersonY’s dog barks loudly. D: bends down the
body. E: to find someone to talk to.

A

What does PersonX need to do before PersonX
accepts into higher education institution?

A: to apply to college. B: to see it succeed. C: to
get a scissors. D: to defend their position. E: to
congratulate PersonY.

A

xNeed What does PersonX need to do before
PersonX accepts into college?

What does PersonX need to do before PersonX
accepts into post-secondary institution?

A: to apply to college. B: to help PersonY. C: very
proud. D: Goal setter. E: To be patient. A

What does PersonX need to do before PersonX
accepts into university?

A: to apply to college. B: donates to charity. C: to
call his friend for playing. D: is no longer confused.
E: good pay.

A

What does PersonX feel after PersonX asks
medical expert?

A: to avoid doing something. B: responsible. C:
Goal setter. D: personX is snuggled by the cat. E:
knowledgable.

E

xReact What does PersonX feel after PersonX
asks PersonX’s doctor?

What does PersonX feel after PersonX asks
knowledgeable professional?

A: gather materials. B: knowledgable. C: to make
friends. D: Wondering. E: remorseful. B

What does PersonX feel after PersonX asks
trusted advisor?

A: appreciative. B: elated that they have proved
their client to be innocent. C: knowledgable. D: to
take some medicine. E: calls principal.

C

What does PersonX want to do after PersonX acts
bizarre demeanor?

A: to have looked at PersonY’s resume. B: to get to
safety. C: Voters think about PersonX. D: finished.
E: anticipating.

B

xWant What does PersonX want to do after
PersonX acts strange?

What does PersonX want to do after PersonX acts
unusual behavior?

A: to be dry. B: to be looked up to. C: Regretful.
D: to go to the 19th hole for a drink. E: to get to
safety.

E

What does PersonX want to do after PersonX acts
odd conduct?

A: to get to safety. B: guilty. C: free-spirited. D: to
reassure PersonY. E: to decide they like pizza. A

Table 11: Examples of the comprehension task.
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Type Subquestion Question Options Answer

2i What is PersonX seen as given Per-
sonX fills PersonY’s glass?

What event or state is both what PersonX is seen as
given PersonX fills PersonY’s glass and also what
PersonX feels after PersonX gets beer?

A: PersonX gets hit on. B: PersonX is
tipsy. C: PersonX sees at school. D:
PersonY they do the dishes. E: Per-
sonX goes camping with PersonX’s
friends.

B

What does PersonX feel after PersonX
gets beer?

2p
What is the effect on PersonX af-
ter PersonX does PersonX’s hair and
makeup?

What event or state is what PersonX needed to do
before the effect on PersonX after PersonX does
PersonX’s hair and makeup?

A: PersonX is tired. B: PersonX curl
hair. C: PersonX smiles. D: PersonX
goes from bad to worse. E: PersonY
communicate with PersonX.

B

What does PersonX need to do before
PersonX looks pretty?

What does PersonX need to do before
PersonX work hard and well?

ip What is PersonX seen as given Per-
sonX is deserving?

What event or state is the effect on PersonX after
both what PersonX needed to do before PersonX
work hard and well, and also what PersonX is seen
as given PersonX is deserving?

A: PersonX finishes the movie. B: Per-
sonX learns a new language. C: Per-
sonX looks at persony. D: PersonX is
sick. E: PersonX orders a cake.

B

What is the effect on PersonX after
PersonX gets promoted?

What is the effect on PersonX after
PersonX asks PersonY out on a date?

pi What is PersonX seen as given Per-
sonX gets a date with PersonY?

What event or state is both what PersonX is seen
as given the effect on PersonX after PersonX asks
PersonY out on a date, and also the effect on Per-
sonX after PersonX loses twenty pounds?

A: PersonX is attractive. B: PersonX
brews PersonX’s own beer. C: Per-
sonX buys all the ingredients. D: Per-
sonX speak out loud. E: PersonY is
angry.

A

What is the effect on PersonX after
PersonX loses twenty pounds?

Table 12: Examples of the application task.
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