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Abstract

Using large language models (LLMs) has a po-
tential risk of privacy leakage since the data
with sensitive information may be used for fine-
tuning the LLMs. Differential privacy (DP)
provides theoretical guarantees of privacy pro-
tection, but its practical application in LLMs
still has the problem of privacy-utility trade-
off. Researchers synthesized data with strong
generation capabilities of closed-source LLMs
(i.e., GPT-4) under DP to alleviate this prob-
lem, but this method is not so flexible in fit-
ting the given privacy distributions without fine-
tuning. Besides, such methods can hardly bal-
ance the diversity of synthetic data and its rel-
evance to target privacy data without access-
ing so much private data. To this end, this pa-
per proposes DPGA-TextSyn, combining gen-
eral LLMs with genetic algorithm (GA) to pro-
duce relevant and diverse synthetic text under
DP constraints. First, we integrate the privacy
“gene” (i.e. metadata) to generate better initial
samples. Then, to achieve survival of the fittest
and avoid homogeneous, we use privacy near-
est neighbor voting and similarity suppression
to select elite samples. In addition, we expand
elite samples via genetic strategies such as mu-
tation, crossover, and generation to expand the
search scope of GA. Experiments show that
this method significantly improves the perfor-
mance of the model in downstream tasks while
ensuring privacy.

1 Introduction

Using large language models (LLMs) in sensitive
textual domains (Schmiedmayer et al., 2024) poses
significant privacy risks, where attackers may hack
the fine-tuned LL.Ms to extract privacy information
in the LLMs’ fine-tuning data (Carlini et al., 2021).
To prevent privacy data from being extracted, re-
searchers apply differential privacy (DP) (Dwork,
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2006) to LLMs, providing a theoretical guarantee
for protection by adding calibrated noises. How-
ever, its core challenge is the privacy-utility trade-
off: While DP offers strong privacy guarantees,
model utility often suffers from overly conserva-
tive noise '. So, enhancing LLMs’ utility under DP
is a key topic.

Researchers explored different ways to imple-
ment DP, mainly in two categories. (1) Model-free
methods add calibrated noise to the input/output to
anonymize text (Feyisetan et al., 2020; Wu et al.,
2023), which does not require model fine-tuning
and can adapt to closed-source LLMs like GPT-4.
However, since the noise must be added to each
sample, the noise scale increases with the length
and number of samples; and the increasing of noise
reduces the model utility. (2) Model-based meth-
ods feed noises into the model training (Abadi et al.,
2016; Yu et al., 2021). The advantage is that once
the model training is accomplished, privacy loss
is fixed (stopping adding additional noise). There-
fore, the strength of privacy protection and utility
does not decrease as the users feed new samples
to the model for inference. However, these meth-
ods require sufficient domain-specific supervised
training samples, which are often hard to obtain
(Breuer et al., 2020) in data-sensitive fields such
as medicine. Additionally, since DP fine-tuning
adds noise to gradients, the privacy cost increases
with more training data. Ensuring reasonable pri-
vacy guarantees requires adding more noise, thus
degrading model utilities.

To further enhance model-based methods, re-
searchers used LLMs’ generative abilities to syn-
thesize training samples under DP. These methods
construct the DP-based generators by supervised
fine-tuning or prompt-tuning LLMs to produce
samples for downstream tasks. According to the
DP post-processing property (Dwork et al., 2014),

'DP always requests noises based on the worst case.
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once synthetic data are generated, no additional
noise needs to be required to account for privacy
loss. So, downstream tasks can use almost infi-
nite samples from the generator without slashing
privacy protection. There are two main categories
of work using DP to synthesize text. (1) Some-
one fine-tune LL.Ms under DP to synthetic data
(Yue et al., 2022; Yu et al., 2023). This method in-
herits DP fine-tuning limitations, including requir-
ing many supervised privacy samples. Moreover,
they require trainable LLLMs, so it is unsuitable for
closed-source LLMs like GPT-4 2. (2) Methods
in the second category use LL.Ms APIs to synthe-
size text similar to privacy data (Song et al., 2024;
Xie et al., 2024). This method does not require
large-scale domain-specific data and is adaptable
to closed-source LLMs. Compared with fine-tuned
LLMs, closed-source LLMs are typically stronger
in synthesizing text but are not so flexible in fitting
the given privacy distributions due to the lack of
direct fine-tuning. It is hard to balance the diversity
of synthetic data and its relevance to target privacy
data. Low relevance leads to a gap between syn-
thetic data and data required by downstream tasks
(i.i.d. with the privacy set); low diversity makes the
model hard to cover the whole privacy distribution
and thus the downstream models may overfit partial
privacy distribution.

To synthesize high-quality samples, we should
ensure the synthesized samples are both diverse and
relevant to the privacy data. Genetic algorithm can
effectively evolve populations, which is suitable
for our scenarios: our model may inherit the “gene”
information from the privacy data and evolve to ob-
tain new data maintaining the “gene” while keeping
the diversity.

In this paper, we propose Differential Privacy
Genetic Algorithm for Text Synthesis method
(DPGA-TextSyn)? to protect the privacy of sensi-
tive data, which imports the idea of genetic evo-
lution to LLMs to generate high-utility synthetic
text under DP constraints. The core innovation is
to synthesize samples according to “gene” of the
privacy data and expand more samples via genetic
evolution mechanism. Specifically, to make syn-
thetic samples consistent with the privacy data, we
extract the “gene” (i.e. metadata) of privacy data

2Some closed-source LLMs offer fine-tuning API, but dp
fine-tuning needs special implementation in model optimiza-
tion. Currently, no model provides custom API.

*The code for our method is available at:
https://github.com/szzhh/DPGA-TextSyn

under DP protection to obtain the initial synthetic
samples (§3.2). To achieve survival of the fittest
and avoid homogeneous per generation, we select
distinct samples to construct an elite set for each
generation. Here, we construct a DP histogram
based on nearest neighbor voting to select elite
samples and employ similarity suppression to avoid
samples being homogeneous (more and more simi-
lar) as iterations (§3.3). To evolve to obtain more
samples, we design three genetic strategies includ-
ing mutation, crossover, and generation, to expand
the elite set, which ensures the quality and diversity
in the next generation. (§3.4). Experiments show
that DPGA-TextSyn excels baselines.

Our contributions are: (1) We propose DPGA-
TextSyn, a method that implements genetic algo-
rithms to synthesize data under DP, it uses LLMs
APIs to iteratively generate synthetic text data that
is close to privacy data, addressing privacy-utility
trade-offs in data-scarce scenarios. (2) We propose
to extract privacy metadata “gene” to generate bet-
ter initial synthetic data with a low privacy cost,
which instantiates SVT to obtain statistics and con-
duct privacy voting to obtain meta descriptions. (3)
Experiments show our model excels strong base-
lines in downstream tasks.

2 Preliminaries and Related work

2.1 Preliminaries

Definition 2.1 (Differential Privacy(Dwork et al.,
2014)). A randomized algorithm M is (g,6)-
differential privacy (DP) if for any pair of neighbor-
ing dataset D and D', and any S C Range(M),

PrM(D) € S] < f PrfM(D') € S] + 6.

€ measures the privacy loss. ¢ allows for a small
probability that the privacy guarantee may fail.

2.2 Related work

DP for LLMs. As LLMs grow more prevalent,
privacy attacks have become increasingly sophis-
ticated, highlighting increasing privacy risks in
LLMs (Li et al., 2023; Kojima et al., 2022). Differ-
ential Privacy (DP) (Dwork, 2011) is used across
machine learning stages, including input, training,
and inference. At the input stage, DP ensures pri-
vacy by perturbing data features. Feyisetan et al.
replaced the sensitive text with semantically simi-
lar words in the embedding space (Feyisetan et al.,
2019). At the training stage, gradient-based DP
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like DP-SGD provides privacy by clipping gradi-
ents and adding Gaussian noise (Abadi et al., 2016).
DP applications in inference focus on privacy pro-
tection in output generation (Lee and Kifer, 2018).
Wau et al. proposed the Report-Noisy-Max mecha-
nism, adding noise to inference results for privacy
(Wu et al., 2023).

DP synthetic text is generated by training mod-
els to produce new text similar to real data while
protecting personal information (Mattern et al.,
2022). Yue and Putta et al. explored using DP-
SGD to fine-tune pre-trained language models like
GPT-2 for generating synthetic text datasets (Yue
et al., 2022; Putta et al., 2022). Mattern and Ku-
rakin et al. demonstrated that training downstream
models on DP synthetic text can achieve perfor-
mance comparable to DP training directly on real
data (Mattern et al., 2022; Kurakin et al., 2023).
However, achieving a good trade-off between fi-
delity and privacy requires large batch sizes and
long training iterations (Anil et al., 2021). The
rise of closed-source LL.Ms like GPT-4 has made
DP fine-tuning infeasible, driving research on API-
based generation methods (Touvron et al., 2023).
A new approach uses API access to pre-trained
models and applies DP to select samples similar
to privacy data (Zhang et al., 2024), generating
variations of these samples (Lin et al., 2023). The
AUG-PE algorithm improves generation and selec-
tion via APIs to produce high-quality DP synthetic
text (Xie et al., 2024).

Some additional related work is added in App. A.

3 Method

3.1 Overview

As Fig. 1, our model consists of three modules:
(1) Initial Sample Synthesizing (§3.2) generates
the initial version of synthetic data according to
the privacy metadata (i.e. statistics and keywords)
under a low privacy cost, where we use sparse vec-
tor technique and keywords selection to obtain the
privacy metadata. (2) Distinct Elite Sample Selec-
tion (§3.3) employs private nearest neighbor voting
and similarity suppression to obtain elite set by se-
lecting synthetic data, ensuring that the diversity
of synthetic data is more like that of privacy data.
(3) Elite Set Expansion (§3.4) constructs three
different genetic operations to expand the elite set
(i.e. mutate, cross, and generate), which balance
the quantity and quality of synthetic data.

To synthesize samples, we first generate initial

synthetic samples (§3.2), vote to select the distinct
elite set over initial samples (§3.3), and then expand
the elite set (§3.4). At the same time, following the
elitist strategy* of GA, we retain the elite set to the
next generation. We repeat the operations in §3.3
and §3.4 for T times and obtain the final samples
for downstream tasks.

3.2 Initial Sample Synthesizing via Privacy
Metadata

We synthesize the initial samples via privacy meta-
data (statistics and key description information of
privacy data), which ensures they better align with
the privacy samples. The privacy cost of access-
ing full privacy data is high, so we obtain the pri-
vacy metadata at a very low privacy loss by adding
Laplace noise’ to the histogram. The histogram
meets the application conditions of parallel com-
bination (see in App. B), thus we can limit the
DP noise within a privacy budget of ¢, even if the
counting result of each bin is added with DP noise
with a privacy budget of £ (Dwork et al., 2014).
The metadata consists of (1) statistical information
(i.e. label distribution and length distribution) of
privacy data for distribution close to privacy data.
(2) key description of privacy data for semantics
close to privacy data. We integrate the informa-
tion mentioned above into the prompt to guide the
LLMs to generate better initial synthetic samples.

3.2.1 Obtaining statistics as metadata

We obtain label and length distribution histograms
through statistics, which are easily accessible, valu-
able, and robust to noise.

Label distribution. According to the label distri-
bution Y = {y1,¥2,...,yr} of privacy data , we
construct a label histogram H = {hq, ho, ..., hi},
where h; represents the count of samples for la-
bel y; . To satisfy DP, we add Laplace noise 7;
to each count, forming a noisy histogram H =
(ﬁl, ha, ..., ﬁk), where h; = h; + n;. Then, we
use H to guide the label distribution of synthetic
data, which makes the synthesized data close to
privacy data distribution with low privacy costs.

Text length distribution. Since the length distribu-
tions of different privacy datasets are different and

*Elitist Strategy in GA preserves the optimal solution from
each generation by copying it unchanged to the next, prevent-
ing loss due to crossover and mutation.

5Laplace noise is common in DP and is more suitable for
SVT, so we add it in all operations that require noise in §3.2.
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Figure 1: DPGA-TextSyn framework. Three black dotted boxes represent the specific implementation of the three

algorithm sub-modules(§3.2, §3.3, §3.4).

are crucial in synthesis, we use the sparse vector
technique (SVT) in DP theory (see in App. B.2)
to get an approximate text length (i.e. number of
tokens) range (i.e. minimum and maximum) of the
privacy dataset. Then, we count the text lengths
of all privacy samples in this range to construct a
length distribution histogram and add calibrated
noise to it. The specific steps for implementing
SVT to get length distribution are as follows: (1)
Set the initial maximum length. We preset the ini-
tial maximum length to 0 because it must be lower
than the true privacy sample length maximum. (2)
Construct the query stream. We gradually in-
crease the preset maximum length with a step size
of 1, and query the privacy dataset at each step un-
der DP (add Laplace noise) to obtain the number of
samples whose text lengths are greater than the cur-
rent maximum length. (3) Get the approximate
maximum length. We set the threshold of SVT
to O (it ensures that no sample length exceeds the
current maximum length), and add Laplace noise
as the noise threshold. For each query result in step
(2), if it is less than or equal to the noise threshold,
we regard the maximum length corresponding to
this step as the approximate maximum length be-
cause it is greater than the length of all samples.
(4) Generate the length distribution histogram.
Similarly, we get the minimum length. Within the
range of the approximate minimum and maximum

lengths, we count the length of the privacy data to
generate the length distribution histogram and add
Laplace noise to this histogram to satisfy DP. SVT
costs a fixed privacy budget for all queries, which
reduces the overall privacy cost.

3.2.2 Obtaining keywords as metadata

To get descriptions as privacy metadata, we employ
LLMs to generate some keywords to describe the
privacy data distribution and sample privacy data
to act as DP-based discriminators to vote for the
keywords. It consists of three steps: (1) We first
generate some keywords from task-related public
information. As we mainly focus on the classifi-
cation task in this paper, we regard the class name
as the public information (Yue et al., 2022) and
prompt LLMs to generate some possible subclass
names (keywords) as more specific information ©
(see prompts in App. I). (2) We then generate a
DP-noised histogram via voting with the privacy
data. Specifically, we use the nearest neighbor to
vote for keywords like §3.3.1, count the votes to
generate the histogram, and add Laplace noise to
this histogram to satisfy DP. (3) Finally, we dis-
criminate keywords via noised histogram. We
apply the softmax function to this noised histogram
to get the percentage of votes for each keyword,

®Qur experiments also involve generation tasks, where no

existing class name are available, we generate the subclass
names directly by prompting LLMs.
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based on which we discriminate to pick out good
keywords for the next initial sample generation.

3.3 Distinct Elite Sample Selection via Privacy
Voting and Similarity Suppression

To ensure that the evolution direction of the syn-
thetic data distribution is gradually moving towards
the privacy data, we propose a distinct elite sample
selection mechanism via genetic algorithm (GA) to
discard synthetic samples that are far from privacy
data and select high-quality synthetic samples to
“reproduce” the next generation. Specifically, (1)
we construct a voting histogram via privacy near-
est neighbors voting and iteratively select samples
according to the number of votes from high to low,
which ensures that the selected samples are relevant
to the privacy data. (2) We use similarity suppres-
sion when selecting to avoid selecting samples that
are very similar to the selected samples.

3.3.1 Privacy nearest neighbor voting

Let D,,; be the privacy dataset. We subsample
Dpri and use it to vote for the synthetic data via
the nearest neighbor method. Specifically, we first
perform Poisson subsampling on D,,; to obtain
a privacy subset D’p,;. Subsequently, we use the
text-embedding-ada-002” embedding model ® to
get the embeddings for D’},,; and the synthetic data
Dgyn. Let € " be the embedding of the i-th sam-
ple in D’p,; and €3 be the embedding of the j-th
sample in D,,,,. Then, each private sample in D’ pri
votes for the closest synthetic sample by calculating
the cosine similarity Cosine(e!"”, e:’") of their em-
beddings. Let v; be the number of votes that the j-
th synthetic sample receives. Finally, we count the
votes of all synthetic samples, i.e., for each j, we
have v; = 3, I(argmax;Cosine(e!"", e;"") = j)
(where I is the indicator function), and add the cal-
ibrated Gaussian noise ® A/(0, o2) to voted results
to meet DP. That is, the final count for the j-th
synthetic sample is vjf tnal v; + N(0,0?).

Note that the privacy voting here can transform
the traditional DP fine-tuning generation paradigm
into a DP selection discrimination paradigm, which
greatly improves the problem of a tight privacy
budget under the premise of ensuring utility be-
cause DP fine-tuning LLMs for generation requires
adding noise to the gradient at the sample level,

"https://platform.openai.com/docs/guides/embeddings/

8Gaussian noise is more suitable for advanced composition
(Yu et al., 2024) (see in §4.2), which costs less privacy over
iterations, so we add it to the votes in §3.3.1.

while DP selecting public samples from LLMs only
requires adding noise to the histogram, which is
simpler and requires less privacy budget.

3.3.2 Selection via similarity suppression

We construct a self-similarity matrix for similarity
suppression, which is combined with the voting
result above to select elite samples. The specific
steps are as follows: (1) Self-similarity matrix
construction. Suppose we have n synthetic sam-
ples, and their embedding vectors are denoted as
x;, where 7 = 1,2,--- ,n. The elements S;; of
the self-similarity matrix S are calculated by the
cosine similarity, here S;; = % Similarly,
we construct the self-similarity matrix P of pri-
vacy data’ and set the similarity threshold 7 to the
noised mean of the non-diagonal elements of the
matrix. (2) Similarity suppression with votes
first. We select synthetic samples in descending
order based on their vote counts and add them to
the elite set. For each selected sample, we exclude
the sample itself and any other samples whose sim-
ilarity to it exceeds 7 in the synthetic sample set by
self-similarity matrix .S. It drops out the synthetic
samples that are highly similar to private ones. (3)
Stepwise selection. If sample numbers are insuf-
ficient, we increase 7 by 0.01 and re-execute step
(2). This process continues until sufficient samples
are selected to form the elite set.

3.4 Elite Set Expansion via Genetic Strategy

To inherit elite samples and generate more diverse
samples, we use genetic strategies to expand syn-
thetic data from the elite set, which broadens the
search scope during algorithm iterations. Specifi-
cally, using the idea of GA, we design three kinds
of genetic operations (i.e. mutate, cross, generate)
which inherit information from existing elite sam-
ples to different degrees to breed new samples via
LLMs. Specifically, mutation inherits the infor-
mation of a single elite sample, crossover inherits
the information of multiple samples, and genera-
tion does not inherit information, that is, generates
completely new samples via metadata and LLMs.

3.4.1 Mutate strategy: editing via LLMs

According to the mutate strategy in GA, which
randomly changes the value of the gene locus on
sample encoding string, we implement two mu-
tate strategies with text rewriting and text filling.

“Privacy data is usually large, so we randomly sample a
portion of it for calculation.
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Specifically, for text rewriting, we instruct LLMs
to rewrite the given samples from the elite set to
achieve sentence structure mutation. For text filling,
we aim to achieve semantic information mutation.
We first assume text X = {z1,2z2...,2,} and em-
ploy encoder'® E to encode text X: T' = F(X) =
{t1,t9,...,tn}. Then, we randomly mask some
tokens: T" = {t;ifi ¢ Melse E(’_") fori =
1,...,n}, where M is randomly selected indices.
Next, we employ decoder D to decode T"7: X' =
D(T") = {«),_,...,z,,}. Finally, we prompt
LLMs to fill in the blanks ’_’. The prompts for
these two mutation strategies are shown in App. L.

3.4.2 Cross strategy: sample textual fusion via
LLMs

Traditional cross strategy in GA swaps chromo-
somes of two samples to reorganize the genes for
looking forward to better samples, but applying
it directly to text will damage the fluency of the
text and destroy the context information. We im-
plement the cross strategy on text by in-context
learning (ICL). Specifically, we randomly select
two samples from the elite set, and then use the
content of these two samples to generate new sam-
ples via the prompt to achieve the crossover of elite
sample information (Specific prompts in App. ).

3.4.3 Generate strategy: creating from
metadata via LLMs

Based on the traditional GA idea, we design a new
generation strategy to generate completely new
samples, which improves the global search ability
of the algorithm. Following the design of the initial
prompt (see in §3.2), we use privacy metadata such
as length distribution to guide LLMs to generate
new samples, which can encourage diversity in the
evolution of the next generation.

4 Privacy Analysis

We defer DP definitions and lemmas to App. B and
only give high-level ideas of the analysis.

4.1 Privacy Analysis for Obtaining Metadata

For the initial prompt design, our privacy is mainly
spent on SVT (App. B.2) and attribute histogram
noise (length, label, keywords), with budgets of
€svt and €444, respectively. Since these are macro
privacy information and the accuracy requirement
is not high, we directly use the Laplace mechanism

https://github.com/openai/tiktoken

(App. B.1) to implement (¢, 0)-DP. For SVT imple-
mented using AboveThreshold (see in App. B.2),
the sensitivity of its query stream is 1. We add
Laplace noise of scale 2/(e4,/2) and 4/(gspt/2)
to the threshold and query result respectively (the
algorithm needs to be executed twice to obtain the
minimum and maximum, and the privacy budget
is (€5pt/2) each time). For length and label dis-
tribution histograms, the sensitivity is 1. For key-
word histograms, we vote according to label divi-
sion. The privacy data of each label only votes
for the keywords corresponding to the label. The
sensitivity of this approach is also 1. Finally, we
add Laplace noise of scale 1/(g441r/3) to the three
types of histograms respectively.

4.2 Privacy Analysis for Privacy Voting

For privacy voting, we need to use the Analytical
Gaussian mechanism (App. B.3) to add Gaussian
noise on the voting histograms generated by T’ it-
erations, and their Lo sensitivity is 1, we can use
an adaptive combination of Gaussian mechanism
sequences to combine these same privacy costs.
Specifically, the adaptive composition (App. B.4)
of a T identical Gaussian mechanism with a noise
multiplier o satisfies the same privacy guarantee of
a single Gaussian mechanism with a noise multi-
plier o /+/T. By fixing privacy parameter d, ¢ and
T, we can calibrate the noise by choosing an appro-
priate o in §3.3. In addition, since we perform Pois-
son subsampling on the privacy data with a sam-
pling rate of q, according to Lemma B.5 (App. B.5),
our actual privacy cost is €yte = In(1 4 g(e® — 1),
and dyote = 0.

4.3 Total Privacy Cost

According to the serial composition theorem
(App. B.6) for (¢, §)-DP (Dwork et al., 2006b), the
part of initial prompt design satisfies (€;,i¢, 0)-DP,
where €;nit = €sut + Eqrtr. The part of Privacy Vot-
ing satisfies (€yote, dvote )-DP. Therefore, our whole
algorithm satisfies (€nit + Evote, Ovote )-DP.

5 Experiments

5.1 Experimental Settings

Datasets. We evaluate our method DPGA-TextSyn
using two datasets. (1) OpenReview (Xie et al.,
2024) Xie et al. crawl the latest reviews for ICLR
2023 submissions from the OpenReview website
to construct this dataset. (2) PubMed (Yu et al.,
2023) This dataset consists of the abstracts of med-
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Method w/oDP e=4
DPSGD+LoRA(8396) 65.1 30.5 30.5 30.5

e=2 =1

DPSGD+LoRA(2000) 55.3 30.5 30.4 6.3
DP-Transforms(2000) 48.3 38.9 40.4 38.6
AUG-PE(2000) 454 435 42.8 41.9
Ours (2000) 47.25 46.14 4521 44.53

Table 1: Results of all baselines on OpenReview. w/o
DP indicates no privacy. Numbers in brackets signify
the number of training samples, with the first row using
all data. The highest accuracy is highlighted in bold.

Method woDP e=4 =2 =1

DPSGD+LoRA(75316) 47.6 34.1 325 30.4

DPSGD+LoRA(2000) 34.6 1.1 0.8 0.6

DP-Transforms(2000) 33.1 31.2 31.1 31.1

AUG-PE(2000) 32.7 32.5 325 32.4

Ours(2000) 3395  33.82 3379 33.58

Table 2: Results of all baselines on PubMed.

ical papers from the National Library of Medicine.
See the App. C for details of the two datasets.
Baseline. We compare with: (1) DPSGD+LoRA
(Yu et al., 2021) uses LoRA to fine-tune models
under DP. (2) DP-Transforms (Yue et al., 2022)
generates synthetic data using fine-tuned GPT-2.
(3) AUG-PE (Xie et al., 2024) uses privacy evolu-
tion to guide LLMs to generate synthetic data.
Metrics. We evaluate synthetic data via down-
stream task accuracy (fine-tuning RoBERTa-base
(Liu et al., 2021) for OpenReview text classifi-
cation, and BERTgman (Micheli et al., 2020) for
PubMed next-token prediction (Yu et al., 2023)).
Implemention Details and Hyperparameters.
We provide them in App. D.

5.2 Overall Performance

Downstream Task Accuracy. Our method outper-
forms three baselines on OpenReview and PubMed
with the same number of training samples for down-
stream tasks under strong privacy protection (Tab. 1
and Tab. 2). It even exceeds the result of using
all privacy data when ¢ = 1,2. When without
privacy concerns, direct fine-tuning outperforms
our method designed for privacy because we just
use little privacy information. Our method outper-
forms the best synthetic data baseline AUG-PE in
both privacy and non-privacy situations, and the
improvements are significant under the t-test with
p < 0.05 (details in App. E). Some good synthetic

samples are shown in App. J.

5.3 Ablation Studies

Ours  w/oLength w/o Keywords w/o SS
Acc (T=1) | 32.56 30.12 31.64 31.78
Acc (T=10) | 33.58 32.08 33.34 32.88

Table 3: Ablation studies on model components. w/o
SS stands for w/o Similarity Suppression.

Privacy Data
010 Synthetic Data w/o Private Length Distribution
B Synthetic Data with Private Length Distribution

Frequency

1000 1200 1400

800
Length

Figure 2: Differences in the length distribution of pri-
vacy data and synthetic data for the OpenReview dataset.

As shown in Tab. 3, we conducted an ablation
study to evaluate the importance of our model com-
ponents. Specifically: (1) w/o Length means we
do not use the length information of privacy data
when synthesizing the initial sample. We can see
that without length information, the effect will be
significantly reduced. Fig. 2 also shows that the dis-
tribution of synthetic data generated by our model
without using privacy length information is very
different from that of privacy data. (2) w/o Key-
words means that we do not use keywords when
synthesizing the initial samples, which leads to per-
formance degradation, indicating the importance of
descriptive metadata for sample synthesis. (3) w/o
Similarity Suppression means that when we select
elite samples, we only select samples with high
votes without considering their similarity. Fig. 3
shows that if the similarity is not suppressed when
executing our method, the self-similarity of syn-
thetic samples will gradually increase with itera-
tions (specific samples can be viewed in App. H).
These result in reduced effects, indicating that sim-
ilarity suppression is essential.

5.4 Additional Analysis of Our Method

Distribution Similarity to Privacy Data. We eval-
uate the relevance of synthetic and privacy data via
MAUVE (Pillutla et al., 2021) and FID (Heusel
et al., 2017) and record these two metrics changes
as our method iterates. Fig. 4 shows the MAUVE
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Figure 3: Changes in self-similarity metric during itera-
tions, with two curves representing whether to suppress
similarity when selecting elite samples.
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Figure 4: MAUVE and FID metrics.

and FID metrics gradually get better over algorithm
iterations, indicating that our synthetic data is be-
coming increasingly similar to privacy data, thus
demonstrating the effectiveness of our method.

Self-Similarity. We use the self-similarity met-
ric to measure the diversity of synthetic samples
from our model. The blue line in Fig. 3 shows that
the self-similarity of our model slowly decreases
with iterations, approaching the self-similarity of
privacy data'!. This shows that our method effec-
tively improves the diversity of synthetic data and
avoids samples that are too similar.

We also conducted inference attack experiments
to verify the privacy protection capabilities of our
method. For details, please refer to App. F.

5.5 Research on Keywords Selection

To verify the role of keyword selection, we synthe-
size the initial samples without and with selecting
keywords. We use t-SNE to reduce the dimension
of the embeddings of initial synthetic data gen-
erated by the above two ways and privacy data,
and then we visualize them. It is shown in Fig. 5,
where blue points on the left and right are for syn-

"The diversity of synthetic data gradually remains consis-
tent with private data with iterations.

Figure 5: The t-SNE visualization of data embeddings.

thetic data without and with selecting keywords,
and green points are for privacy data. We can see
that the left figure shows a large difference between
the distribution of the synthetic samples generated
by unused keyword selection and the privacy data,
but the right figure indicates that the initial syn-
thetic data and privacy data are closer in distribu-
tion. Therefore, it is important that we select the
keywords by privacy voting, which can avoid gen-
erating many irrelevant samples.

5.6 Analysis on Similarity Threshold

-o- Similarity Screening ACC

0.7328
335

Accuracy
w w
& ]
- W

w
N
o

32.7
065 0.69 073 077 081 085 0.89 093 0.97

Similarity Threshold

Figure 6: Impact of similarity threshold changes on
accuracy.

For the similarity threshold, we conducted ex-
periments for our model on PubMed to explore
how different similarity thresholds affect the accu-
racy of synthetic data in downstream tasks. The
results are displayed in Fig. 6. We found that both
too high and too low similarity thresholds result in
poor performance. It only shows the best perfor-
mance when it is close to the self-similarity of the
privacy data, which can also be seen from Fig. 3.

6 Conclusion

In summary, we propose DPGA-TextSyn, a method
for privacy text synthesis under DP based on ge-
netic algorithm and LLMs. First, we integrate pri-
vacy metadata information into the initialization
prompt to generate better initial synthetic samples.
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Then, we construct a DP histogram based on near-
est neighbor voting and a self-similarity matrix
to select distinct elite samples. Finally, we use
three different genetic strategies including muta-
tion, crossover, and generation to expand the elite
set. Experiments show that our method excels in
text synthesis, outperforming all baseline methods.

7 Limitations

Our work proposes DPGA-TextSyn to produce
high-utility synthetic text under DP constraints, but
two key limitations warrant discussion.

First, we used GPT-3.5 in our experiments, not
the latest and SOTA LLMs like OenpAl's GPT-4 or
ol models, which seems to limit the performance
of our model. The main reason is that our baseline
AUG-PE is based on GPT-3.5 for fair comparison.
In addition, compared with GPT-3.5, it is too expen-
sive to obtain the API key of GPT-4 or ol models.
The instruction-following ability of GPT-3.5 is not
as good as the most advanced LLMs at present, and
it is more sensitive to the quality of prompt design.
In the future, we will try to use more advanced
models for effect verification.

This paper aims to mitigate the risk of failing
to balance the quality of private and synthetic data
when leveraging large language models. However,
our method does not provide perfect protection.
We recommend that users employ the process with
caution, avoiding complete reliance on the tool
to prevent potential privacy leakage and address
ethical considerations.

8 Ethical Considerations

We place significant importance on ethical consid-
erations and adhere rigorously to the ACL Ethics
Policy.

(1) Our study proposes a novel method to syn-
thesize text under differential privacy via LLMs,
which does not require consideration of ethical
issues regarding motivation or algorithmic ap-
proaches, as no private information is used.

(2) In general, if the dataset contains privacy in-
formation, it may be leaked during use. All the data
sets used in our experiments have been published,
allowing us to conduct experiments to evaluate the
effectiveness of privacy protection measures.

(3) Moreover, it’s imperative to exercise caution
in utilizing our model and refrain from assuming
its infallibility. One potential unethical application
involves gathering data from users who believe our

model guarantees complete privacy protection, po-
tentially overlooking the actual strength of privacy
safeguards. This oversight could lead to adverse
societal consequences.
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A Additional Related Work

Privacy Synthetic Data

Synthetic data generation is a critical strategy in
the field of data privacy protection (Jordon et al.,
2022). It can generate datasets that mimic real
data’s statistical properties while removing person-
ally identifiable information (Yoon et al., 2023),
thereby safeguarding individual privacy (Osorio-
Marulanda et al., 2024). Liu et al. proposed an inte-
grated method to combine different techniques, im-
proving diversity and utility (Kairouz et al., 2021).
The AIM method uses a select-measure-generate
approach, enhancing the selection phase by greed-
ily choosing the most informative queries to gener-
ate synthetic data (McKenna et al., 2022). For com-
plex data types like text, images, and video, most
methods use generative models, such as Generative
Adversarial Networks (GANs) (Xie et al., 2018).
PATE-GAN explores GAN-based methods (Jordon
et al., 2018) to produce synthetic data through ad-
versarial training. However, traditional synthetic
data often lacks standardized privacy protection
strategies in the de-identification process (CREST,
2023). Thus, conventional synthetic data has sig-
nificant privacy limitations, making strong privacy
guarantees challenging (De Cristofaro, 2023).

DP synthetic data surpasses traditional synthetic
data in privacy protection (Rosenblatt et al., 2020).
DP generates synthetic data resembling the orig-
inal while obscuring individual data points, pre-
venting adversary identification (Lin et al., 2021;
Dwork et al., 2006a; Abadi et al., 2016). This is
achieved by incorporating randomness to reduce in-
dividual data points’ influence on the dataset (Tang
et al., 2023). DP-SGD ensures differential pri-
vacy by bounding gradient sensitivity and injecting
Gaussian noise during training (Abadi et al., 2016).
Dockhorn et al. extended DP-SGD to train Gener-
ative Adversarial Networks and diffusion models
(Dockhorn et al., 2022). Yin and Yu demonstrated
that pre-training on public data and DP-SGD fine-
tuning improve generative models’ privacy-utility
trade-offs (Yue et al., 2022; Yin et al., 2022). DP-
MEPF trains generative models to generate syn-
thetic data that preserves private features’ statistics
while ensuring privacy (Harder et al., 2022). For
deep retrieval systems, DP language models gen-
erate synthetic queries resembling original data,
enabling secure training of deep retrieval systems
while ensuring privacy (Kurakin et al., 2023; Car-
ranza et al., 2023).
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In addition, some work has attempted to use dis-
tillation techniques in the context of privacy (Tian
et al., 2022; Lee et al., 2022). In the future, trans-
fer learning (Zhu et al., 2024) and data augmenta-
tion (Zheng et al., 2023) can also be explored in
combination with privacy.

B Differential Privacy

B.1 The Laplace Mechanism

Definition B.1 (The Laplace Mechanism(Dwork
et al., 2014))). Given any function f
NI*l — R¥, the Laplace mechanism is defined as:
Mp(z, f(-),e) = f(z) + (Y1,...,Yy), where Y;
are i.i.d. random variables drawn from Lap(A /¢).
The Laplace mechanism preserves (&, 0)-DP.

B.2 Sparse Vector Technique (SVT)

Definition B.2 (Sparse Vector Technique(Zhu
and Wang, 2020; Lyu et al., 2016)). The Sparse
Vector Technique (SVT) is designed to identify
queries whose results exceed a certain threshold
while maintaining privacy. In the SVT frame-
work, the input comprises a sequence of queries
q1,G2, -G, ... € Q(A) along with a sequence
of thresholds 71,75, ...,T,.... The algorithm
aims to generate a binary vector { L, T}, where
T indicates the query result exceeds the threshold,
and L indicates it is below. See Alg. 1 for the
algorithm process.

Algorithm 1 Input is a privacy database D, an
adaptively chosen stream of sensitivity 1 queries
fi,-.., and a threshold 7". Output is a stream of
responses ay, . . .

1: AboveThreshold (D, {f;},T,e
2: LetT =T+ Lap (%)
3: for Each query ¢ do

4: Letv; = Lap (g)

5. if fi(D) +v; > T then
6: Output a; = T.

7: Halt.

8: else

9: Output a; = L.

10: end if

11: end for

B.3 Analytical Gaussian mechanism

Lemma B.3 (Analytical Gaussian mechanism
(Balle and Wang, 2018)). For a numeric query

f : X" — R over a dataset D, the random-
ized algorithm that outputs f(D) + Z where Z ~
N(0,021,) satisfies (g, 6(¢))-DP for all ¢ > 0 and
5(e) = @ (£ — ) — @ (—£ — ). Here,
A = AY) = maxp_p | f(D) — F(D')|2 is the
global L, sensitivity of f and & is the CDF func-
tion of N (0, 1).

B.4 Composition of Gaussian mechanisms

Lemma B.4 (Composition of Gaussian mecha-
nisms (Dong et al., 2022)). The adaptive compo-
sition of a sequence of Gaussian mechanisms with
a noise level 01,09, ... and global L9 sensitivity
Ay, Ag, ... satisfies (g,0(g))-DP for all ¢ > 0 and
0(e) < dpm(e) where M is a Gaussian mechanism

with noise multiplier o /A = (3°,(A;/04)?) -2,

B.5 Privacy Amplification by Subsampling

Lemma B.5 (Privacy Amplification by Subsam-
pling(Balle et al., 2018; Abadi et al., 2016)). Pri-
vacy Amplification by Subsampling is a technique
that enhances privacy by operating on a randomly
selected subset of the dataset (Beimel et al., 2010).
In this process, a mechanism that satisfies (e, 9)-
DP for a dataset is applied to a subset sampled
independently with a fixed probability ¢. The re-
sult is that the algorithm achieves stronger privacy
guarantees, typically (In(1+ g(e® —1), ¢d)-DP for
the entire dataset.

B.6 Serial Composition of Privacy

Lemma B.6 (Serial Composition of Pri-
vacy(Dwork et al., 2014)). Let M; : N
R; be an (g;,6;)-DP for ¢ € [k]. Then if
My NI*¥ — [T, Ri is defined to be
M[k](x) = (Ml(x),...,/\/lk(x)), then M[k] is

(Zf:1 €4, Zle 9;)-DP.
C Details of Datasets

OpenReview Dataset: We utilized the dataset
compiled by Xie et al., which was scraped from the
OpenReview website using the overview-py library,
specifically focusing on ICLR 2023 data. In this
dataset, the fields of paper abstracts and reviews
were merged into a single sample. The dataset was
categorized into 12 classes based on the research
domain of the papers. Classes with fewer than 100
samples in the training set were removed. The train-
ing, validation, and test datasets consist of 8,396,
2,798, and 2,798 samples, respectively.
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PubMed Dataset: We utilized the dataset com-
piled by Yu et al., which contains abstracts of med-
ical papers scraped from the U.S. National Library
of Medicine. These abstracts were published be-
tween 2023/08/01 and 2023/08/07. The training set
consists of 75,329 abstracts from 08/01 to 08/05.
The validation set includes 4,453 abstracts from
08/06, while the test set comprises 14,423 abstracts
from 08/07.

D Implemention Details and
Hyperparameters

D.1 Model

We use GPT-4 (Achiam et al., 2023) to generate
keywords (subcategories for OpenReview, medical
professions for PubMed) with a temperature of 1.4
for diversity. For synthetic sample generation, we
use prompt (see in APP. I) to guide GPT-3.5 to
generate initial samples and implement mutation,
crossover, and genetics to expand samples, the tem-
perature is set to 1.2. For the embedding model,
we use text-embedding-ada-002 from OpenAl.

D.2 Downstream Tasks

Following previous work (Xie et al., 2024), for
OpenReview, we finetune the RoOBERTa-base (Liu
et al., 2021) model for text classification tasks (the
label is Area). We set the max sequence length as
512, the batch size as 64, the learning rate as 3e-5,
and the number of epochs as 10. For PubMed, We
fine-tune BERTgan (Micheli et al., 2020) for the
next token prediction task. We implement a causal
language modeling mask, restricting each token to
attend only to its preceding tokens (Yu et al., 2023).
We set the max sequence length as 512, batch size
as 32, learning rate as 3e-4, and the weight decay as
0.01. We finetune 10 epochs. We report the mean
of our method three runs for all privacy budgets.

D.3 Privacy Settings

Following previous work (Yu et al., 2021; Yue et al.,
2022; Xie et al., 2024), we set the overall privacy
parameters ¢ = 1,2,4,00,and § = 1/(N -log N),
which should be smaller than the inverse of the
dataset size N (Hsu et al., 2014; De et al., 2022).
For different privacy budgets, we always allocate
0.5 of the privacy budget to the acquisition of pri-
vacy metadata, 0.2 of which is used to perform
SVT, 0.3 is used to add noise to three different
histograms, and the rest is used for privacy voting
when selecting the elite set.

D.4 Other Hyperparameters

When constructing the length histogram, we set
the number of bins to 100. When voting, we set
the subsampling rate of privacy data to 0.8. When
performing diversity suppression, we increase the
diversity by 0.01 each time. When performing a
text fill mutant operation, we set the probability that
each token is masked to 0.5. For both tasks, we
set the number of initial synthetic data to 10,000,
the number of selected elite sets to 2,000, and then
use two genetic operations to expand 4,000 sam-
ples, use the crossover operation to expand 2,000
samples, and use the generation operation to gener-
ate 2,000 new samples. These expanded samples,
together with the original elite set, form the next
generation of initial 10,000 samples.

E Significance Test Results

We conduct the t-test (Bartlett, 1937) to examine
whether the improvements of our method are sig-
nificant. The p values in Tab. 4 are all smaller
than 0.05, demonstrating the significance of our
improvements.

F Inference Attack Experiment

We used synthetic Openreview data to fine-tune
BERT for membership inference attack (Shokri
et al., 2017) experiments, the result is shown in
Tab. 5. We found that the attack success rate of
the model fine-tuned with synthetic data was lower
than that of the model fine-tuned directly with pri-
vacy data, indicating that our design can effectively
resist privacy inference attacks.

G Research on Subsampling Rate

We also researched the sampling rate during the
subsampling of privacy data in the PubMed dataset.
We found that setting an appropriate subsampling
rate can improve synthetic data’s effectiveness in
downstream tasks to a certain extent. We believe
that although subsampling privacy data reduces
some privacy information, it can involve adding
less noise under a fixed privacy budget. When a
certain balance is achieved, optimal results can be
realized. Fig. 7 displays the results of our experi-
ments. Under the condition that the privacy budget
e is set to 1, the highest accuracy of the synthetic
samples was achieved when the subsampling rate
was 0.8, which was even higher than that of syn-
thetic samples without subsampling.
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Datasets Openreview PubMed

Privacy Budget e=1 e=2 e=4 e=1 e=2 e=4
D 9.04e-7 7.84¢-6 2.45e-5 1.33e-4 7.79e-5 1.35e-4

Table 4: The p values of t-test on our method with baseline AUG-PE. The p values are all smaller than 0.05,
indicating our improvements are significant.

Method Entropy Confidence
w/o DP 0.568 0.561
Ours(e = 1) 0.503 0.496

Table 5: Method and corresponding entropy and confi-
dence.

-O- eps=1, nonsubsample -O- eps=1, subsample0.2 -O- eps=1, subsample(.7
eps=1, subsample0.5 eps=1, subsample0.8 eps=1, subsample0.9
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Figure 7: Accuracy changes with iterations under differ-
ent subsampling rates.

H Examples of High Similarity Samples

Some high-similarity samples appear in the final
synthesized data when similarity is not suppressed
during the selection of elite offspring. The results
are shown in Tab. 6

I APIs Prompt Designs

The specific content of the prompt for each API
of our method can be found in Tab. 7 and Tab. 9.
Some keywords generated for each dataset using
GPT-4 can be found in Tab. 11 and Tab. 8, and the
specific prompts generated are shown in Tab. 10

J Synthetic Data Examples

Some examples of OpenReview and PubMed
datasets generated using our method are shown
in Tab. 12 and Tab. 13.
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Example 1 Example 2 Similarity
Abstract: This study aimed to investi- R . .
gate the potential association between the Abs.t riwt’l T.hls s}‘iud{) 1nvest1nges the po-
ongoing COVID-19 pandemic and the ';entla (rie ations dlph etwe}elznlt N C?VID_
pathogenesis of neurological complica- r(?l(f)zlirclzalencllocmariic;tiZnI)sat ()O?J%Yr:se:recl;;
tions. Our research involved a comprehen- .1.g d P hensi : linical and
sive analysis of clinical and experimen- utilized comprehensive clinical and pa-
tal data to evaluate the impact of severe tient data to evaluate the impact of severe
acute respiratory syndrome coronavirus 2 3?;2;;?3?{2 r2y) Z}r]ln?;:?:n;(;{o&i\:gsz
(SARS-CoV-2) on the central nervous sys- CNS). Th h in-depth analvsi 0.97
tem (CNS). Through literature review and system( . )I rough in-depth ana Y18 9
case studies, we provide compelling evi- anq examination, we present compelling
dence of the’presence of SARS-CoV-2 in ev1denc§ regarding the presence (.)f SAR.S'
the CNS and its ability to induce a range dcl?c\;_f c:iI:/etrhsz r(;ljse 2??161;?0?21?(% ;galnli:
of neurological manifestations. Addition- £ - & &
ally, we explore potential mechanisms un- f:statlonqurthermore, we explore poten-
derlying SARS-CoV-2 neuroinvasion and tzlﬁleggfr}lljgizgs ;&diﬁzmi tSenAtli{a?_ﬁ)(r)lV:
discuss the potential long-term impacts on molicati pl -cal heal hg
neurologic function. term 1mplications on neurological health.
An investigation was conducted to evalu-
ate the efficacy of direct oral anticoagu- An el}elgargistudy was cfo nducfteq to evall-
lants (DOACs) compared to warfarin in pa- uate the el cacy anﬁ safety o dlfieCt ora
tients with non-valvular atrial fibrillation | 2ntceagulants (DO. Cs) compared to war-
(NVAF). In this study spanning from Jan- farlp in patients with non-valvular atrl'al
uary 2015 to December 2019, there was ﬁbql latl'on (NVAI.:)' Over a thorough in-
a significant preference for D,OACsover vestigation spanning from January 2015
warfarin due to lower rates of adverse | June 2019, there was a significant pref-
events in patients with AF. These find- erence for DOACs over warfarin due to
ines indicate the potential f(.)r DOACS to lower rates of adverse events in patients
: nfpmve oo VAR sopula. | With NVAF, These findings indicate the
tion, underscoring the importance of se- potentia} role of DOACs in improving out-
lecting appropriate therapy for optimal pa- comes 1r}11 the NVAF pofp ulla uon, under-
tient outcomes. Further research on vary- scoring the Importance of selecting appro-
ing patient groups and different anticoag- priate anticoagulants for optimal patient
ulants is warranted to enhance our under- | 00 cOmeS, Further. research on varymg pa-

tient groups and different anticoagulants is 0.96

standing of stroke prevention in patients
The utilization of real-world data in the
study adds a layer of insights that can con-
tribute to the prevention of adverse events
and the advancement of anticoagulant ther-
apy. By making treatment decisions based
on individual patient profiles, healthcare
providers can significantly improve the
quality of life and outcomes of patients
with NAF. Considering a personalized per-
spective on individual profiles can lead to
better outcomes for patients, emphasizing
the importance of exploring novel preven-
tion strategies to enhance the well-being
of patients with AF and improve preven-
tion outcomes.

crucial to expanding our understanding of
stroke prevention in patients with NVAF
The real. world data in this study adds
another layer of understanding to the oc-
currence of events and the advancement of
anticoagulation therapy. By making per-
sonalized decisions based on individual
patient characteristics, healthcare profes-
sionals can effectively improve the qual-
ity and outcomes of patients with NVAF.
Personalized and individualized care for
patients underscores the importance of im-
plementing novel prevention strategies to
enhance the well-being and prevention out-
comes of NVAF patients.

Table 6: Some high-similarity samples appear in the final synthesized data when similarity is not suppressed.
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Operators Prompts

"system": "Given the area of the research paper, you will need to provide a sample
review based on the area subcategory, recommendation, and word count requirements
provided, including the following: 1. summarizing the paper in detail; 2. listing the
initialize | strengths and weaknesses of the paper in detail; 3. summarizing the review in detail."
"user": "{label of area} | Subcategory Area: {random_sample_subcategory}
| {random_sample_recommendation}. The generated review must have {ran-
dom_sample_length} words."

"system": "You are a helpful assistant for text rewriting."

"user": "{old sample} The above is a review from the OpenReview website. Please
rewrite this review from a professional perspective in a different style and tone, but
ensure that the area and recommendation do not change. The generated new sample
must have {the length of the old sample} words, please directly generate the new

review without other unnecessary content or reminders."

mutate 1

"system": "You are a helpful assistant for text filling."

"user": "{old sample} The above is a review from the OpenReview website. Please
refer to the style of review in OpenReview, guess the content of the blank "_", and fill
mutate2 | in the blank to generate a new review, but ensure that the area and recommendation
do not change. The generated new sample must have {the length of the old sample}
words, please directly generate the new review without other unnecessary content or
reminders."

"system": "You are a helpful assistant."

"user": "{old samples} The above are reviews on the OpenReview website. Please
refer to the style of the sample reviews provided above, and the area subcategory and
recommendation provided below to generate a new review. {label of area} | Subcat-
Cross egory Area: {random_sample_subcategory} | {random_sample_recommendation}.
Please make sure that the newly generated review is not too similar to the original
review, and the new review must have {the average length of the old samples} words.
Please generate a new review directly without adding other unnecessary content or
reminders."

"system": "Given the area of the research paper, you will need to provide a sample
review based on the area subcategory, recommendation, and word count requirements
provided, including the following: 1. summarizing the paper in detail; 2. listing the
generate | strengths and weaknesses of the paper in detail; 3. summarizing the review in detail."
"user": "{label of area} | Subcategory Area: {random_sample_subcategory}
| {random_sample_recommendation}. The generated review must have {ran-
dom_sample_length} words."

Table 7: Prompts for different types of APIs when synthesizing data using the OpenReview dataset

Medical Careers

Medical Doctor (MD), Surgeon, Pharmacist, Nurse Practitioner, Physician Assistant, Public Health
Researcher, Epidemiologist, Biostatistician, Molecular Biologist, Geneticist, Neuroscientist, Patholo-
gist, Immunologist, Microbiologist, Bioinformatician, Health Policy Expert, Toxicologist, Dentist,
Veterinary Scientist, Physiotherapist, Nutritionist, Dietitian, Healthcare Administrator, Social Worker,
Psychiatrist, Radiologist, Cardiologist, Endocrinologist, Pediatrician, Oncologist, Dermatologist,
Orthopedist, Ophthalmologist, Gynecologist, Anesthesiologist, Rheumatologist, Virologist, Nephrol-
ogist, Clinical Researcher, Principal Investigator, Biomedical Engineer, Psychologist

Table 8: Medical careers keywords generated for the PubMed dataset
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Operators Prompts
"system": "You are a useful assistant for generating abstracts of medical papers."
"user":  "Generate an abstract of a medical research paper for {ran-

initialize

dom_sample_author}, imitating the standard, format, and style of PubMed journal
articles. Please ensure that the abstract is professional and appropriate for a scientific
journal, and utilize diverse sentence structures and advanced grammatical constructs
to enhance readability. The generated abstract must have {random_sample_length}
words, No more, no less. No title and other content are needed, please directly gener-

nn

ate the abstract content without the word "abstract".

mutatel

"system": "You are a helpful assistant for text rewriting."

"user": "{old sample} Above is an abstract of a medical paper from PubMed journal,
please refer to the style of PubMed medical paper abstracts, and rewrite this abstract
provided above to generate a new abstract by modifying its experimental methods,
experimental data, research topic, research subjects, styles, tones, and other related
content. Require the newly generated abstract to have a greater degree of rewriting
compared to the original abstract, and not to be too similar to the original abstract.
Please ensure that the new abstract is professional and appropriate for a scientific
journal, and utilize diverse sentence structures and advanced grammatical constructs
to enhance readability. The generated abstract must have {the length of the old
sample} words, No more, no less. No title and other content are needed, please
directly generate the new abstract content without the word "abstract" and other
unnecessary content or reminders."

mutate?

"system": "You are a helpful assistant for text filling."

"user": "{old sample with blank} Above is an abstract of a medical paper with
blank spaces from PubMed journal, please refer to the style of PubMed medical
paper abstracts, guess the content of the blank "_", and fill in the blank to generate
a new abstract using different styles and tones. If there are no blanks, please output
the original medical abstract. Please ensure that the new abstract is professional
and appropriate for a scientific journal, and utilize diverse sentence structures and
advanced grammatical constructs to enhance readability. The generated abstract must
have {the length of the old sample} words, No more, no less. No title and other
content are needed, please directly generate the new abstract content without the word
"abstract" and other unnecessary content or reminders."

Cross

"system": "You are a helpful assistant."

"user": "{old samples} Above are abstracts of medical papers from PubMed journal,
please refer to the style of PubMed medical paper abstracts, and imitate the format
and related content of the medical paper abstracts provided above to generate a new
abstract. Please ensure that the new abstract is professional and appropriate for a
scientific journal, and utilize diverse sentence structures and advanced grammatical
constructs to enhance readability. The generated abstract must have {the average
length of the old samples} words, No more, no less. No title and other content are
needed, please directly generate the new abstract content without the word "abstract"

and other unnecessary content or reminders."

generate

"system": "You are a helpful assistant."

"user": "Please refer to the style of PubMed medical paper abstracts to generate
a new abstract for {random_sample_author}. Please ensure that the new abstract
is professional and appropriate for a scientific journal, and utilize diverse sentence
structures and advanced grammatical constructs to enhance readability. The generated
abstract must have {random_sample_length} words, No more, no less. No title and
other content are needed, please directly generate the new abstract content without
the word "abstract" and other unnecessary content or reminders."

Table 9: Prompts for different types of APIs when synthesizing data using the PubMed dataset
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Datasets

Prompts

OpenReview

"system": "You are a useful assistant."

"user": "{Label information for OpenReview}, I want to break down the main
categories of ICLR23. The above are some main categories. Please provide me
with a list of possible subcategories for each major category, and try not to duplicate
subcategories for different major categories. Each major category should have at
least 50 subcategories. Output in JSON format, JSON format does not require
numerical sequence numbers, only "Area" and "Subcategories" are needed."

PubMed

"system": "You are a useful assistant."

"user": "Please refer to the PubMed website to generate 50 different medical
professions for me, without too much duplication between them, and output them
in json format."

Table 10: Prompts for getting keywords using GPT-4

Labels

Keywords

Deep Learn-
ing and
represen-
tational
learning

"Convolutional neural networks (CNNs)", "Recurrent neural networks (RNNs)",
"Long short-term memory networks (LSTMs)", "Autoencoders", "Deep belief net-
works", "Generative adversarial networks (GANSs)", "Transformer architectures",
"Capsule networks", "Deep reinforcement learning", "Attention mechanisms",
"Feature learning", "Deep learning optimization techniques", "Neural architecture
search", "Meta-learning in deep architectures"”, "Transfer learning”, "Multi-task
learning", "End-to-end learning", "Layer-wise training techniques", "Represen-
tation learning for text", "Image representation learning", "Audio and speech
representation learning”, "Multimodal learning", "Graph neural networks", "Deep
learning for structured data", "Exploration of learning rates", "Regularization tech-
niques", "Early stopping", "Dropout techniques”, "Batch normalization", "Depth
and width of networks", "Energy-efficient deep learning", "Hardware accelerations
for deep learning”, "Deep learning compilers"”, "Deep learning for embedded sys-
tems", "Quantum deep learning”, "Deep learning in edge devices", "Scalability in
deep learning”, "Robustness in deep models", "Benchmarking deep learning frame-
works", "Deep learning in adverse conditions", "Bias and fairness in deep learning",
"Compression of deep models", "Interpretability of deep representations”, "Adver-
sarial examples in deep learning", "Privacy-preserving deep learning", "Federated
deep learning", "Continual learning", "Synthetic data for deep learning", "Self-

organized deep learning"

Applications
(eg, speech
processing,
computer
vision, NLP)

"Speech recognition", "Speech synthesis", "Speech enhancement”, "Natural lan-
guage understanding", "Natural language generation", "Machine translation", "Se-
mantic analysis", "Sentiment analysis", "Computer vision for medical diagnostics",
"Self-driving car vision systems", "Augmented reality", "Virtual reality", "Facial
recognition”, "Image classification", "Object detection", "Semantic segmenta-
tion", "Instance segmentation", "Pose estimation", "Optical character recognition
(OCR)", "Video analytics", "Surveillance systems", "Remote sensing", "Drone
vision", "Robotics vision systems", "Agricultural monitoring", "Photogramme-
try", "Multimedia systems", "Interactive systems", "Automated customer sup-
port", "Predictive maintenance", "Supply chain automation", "Fraud detection",
"Recommendation systems", "Advertising systems", "Personalization technolo-
gies", "E-commerce systems", "Content moderation", "Human-robot interaction",
"Accessible technologies", "EdTech", "HealthTech", "FinTech", "Energy sector

applications”, "Climate monitoring systems", "Precision agriculture",

Table 11: Keywords generated for the OpenReview dataset example labels
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Examples

Labels

Summary:

The paper focuses on deep learning and representation learning techniques, aiming
to propose a new algorithm to enhance model performance. The authors provide a
thorough explanation of the proposed method and conduct experiments to compare
it with existing approaches. Results indicate a marginal improvement in perfor-
mance compared to baseline models.

Strengths:

1. Clear explanation of the proposed algorithm.
2. Rigorous experimental methodology.

3. Marginal improvement in model performance.

Weaknesses:

1. Lack of comparison with state-of-the-art methods.

2. Limited discussion on the algorithm’s computational complexity.

3. The paper could benefit from more real-world applications or case studies.

Overall, the paper presents a well-defined approach to enhancing deep learning
models. The authors make a solid effort to conduct comprehensive experiments,
although further improvements are necessary to better position the proposed al-
gorithm among state-of-the-art methods. Considering the marginal performance
improvement, the paper is recommended for publication, slightly above the accep-
tance threshold.

Deep Learn-
ing and
represen-
tational
learning

**]. Summary:**

The research paper proposed a novel approach to enhancing image classification
accuracy using variational inference techniques. The authors demonstrated the ef-
fectiveness of their method through extensive experiments on benchmark datasets,
achieving a marginal improvement in classification performance compared to ex-
isting methods. The paper provided a thorough analysis of the proposed approach,
including the mathematical formulation of the variational inference framework
and its implementation in the context of image classification tasks.

**Strengths: **

- The paper addresses an important problem in the field of image classification and
provides a novel solution using variational inference techniques.

- The experimental results demonstrate the efficacy of the proposed approach,
showing a marginal improvement in classification accuracy.

- The mathematical derivations and implementation details are presented, making
it easy for readers to understand and replicate the methodology.

**Weaknesses: **

- The paper could benefit from a more comprehensive discussion of the limitations
of the proposed approach and potential directions for future research.

- The experimental evaluation could be expanded to include more diverse datasets
to further validate the generalizability of the proposed method.

- The significance of the marginal improvement in classification accuracy compared
to existing methods could be better emphasized in the paper.

**3, Review Summary:**

Overall, the research paper makes a valuable contribution to the field of image
classification by introducing a novel approach based on variational inference tech-
niques. While the paper is well-written and the methodology is sound, addressing
the identified weaknesses would further strengthen the paper and justify its recom-
mendation for publication marginally above the acceptance threshold.

Probabilistic
Methods (eg,
variational
inference,
causal
ference,
Gaussian
processes)

in-

Table 12: Some examples of synthetic samples generated using the OpenReview dataset
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Examples

Introduction: Nurse practitioners (NPs) play a vital role in providing patient-centered care, es-
pecially in rural areas with limited access to primary care physicians. Given their increasing
prominence, the literature has recognized the importance of evaluating the educational prepared-
ness of NPs to meet the demands of their role effectively. This quantitative study aims to examine
the relationship between NP’s level of education and patient outcomes. By analyzing a nationwide
sample of 1,000 NPs, the study found a statistically significant positive correlation between higher
levels of education (master’s and doctoral degrees) and improved patient outcomes across various
health indicators. These findings support the need for continued investment in advanced NP
education to optimize patient outcomes.

Pelvic inflammatory disease (PID) is a common cause of morbidity among women of reproductive
age, with substantial healthcare costs and long-term sequelae. The primary goal of this study was
to evaluate the efficacy of prophylactic antibiotic treatment in preventing subsequent episodes of
PID in high-risk women. A randomized, double-blind, placebo-controlled trial was conducted
from January 20XX to December 20XX, recruiting women aged 18-45 years who presented with
symptoms consistent with acute PID. Participants were randomly assigned to receive either a
14-day course of broad-spectrum antibiotics or a placebo. They were followed up for a period
of 12 months, during which they were regularly assessed for clinical symptoms, evaluated for
treatment compliance, and underwent laboratory investigations including pelvic ultrasound and mi-
crobiological testing. Our results demonstrated that prophylactic antibiotic treatment significantly
reduced the incidence of recurrent episodes of PID compared to placebo. Additionally, participants
in the treatment group had a reduced duration of symptoms, improved clinical outcomes, decreased
healthcare utilization, and lower rates of pregnancy complications compared to the placebo group.
Despite a few adverse effects reported, the benefits of antibiotic treatment in terms of reduced PID
recurrence outweighed the associated risks. In conclusion, the findings of this study support the
use of prophylactic antibiotic therapy in high-risk women with PID in order to prevent recurrence
and improve overall clinical outcomes. Further research is needed to assess the long-term effects
of this approach and to explore alternative treatment options for PID.

A high-resolution analysis of the skin in various dermatological conditions remains essential for
accurate diagnoses and improved therapeutic strategies. In this study, we present a novel non-
invasive approach utilizing advanced imaging techniques to characterize tissue microarchitecture
in dermatopathological specimens. By employing multiphoton microscopy coupled with second
harmonic generation and fluorescence lifetime imaging microscopy, we successfully visualized
collagen organization, cellular morphology, and metabolic changes within the dermis. Our findings
reveal distinctive architectural patterns associated with different skin disorders, facilitating the
identification and differentiation of various dermatopathologies. This methodology holds great
promise for enhancing the precision and efficiency of dermatological diagnosis in clinical practice.

This study examines the efficacy of utilizing probiotics as adjuvant therapy in pediatric patients
with acute gastroenteritis (AGE) to reduce symptom duration and severity. A systematic review
and meta-analysis of randomized controlled trials (RCTs) from various databases were conducted.
Thirteen RCTs involving 1626 pediatric patients were included for analysis. The findings reveal
that probiotics administration significantly decreases the duration of diarrhea in pediatric patients
by a mean difference of 17.36 hours (95% confidence interval [CI] -23.10 to -11.63, P < 0.001).
Furthermore, probiotics demonstrate a notable reduction in the risk of diarrhea lasting beyond 48
hours (relative risk [RR] 0.62, 95% CI1 0.51-0.76, P < 0.001). Moreover, the severity of diarrhea
during the first three days of treatment is significantly lower in the probiotics group compared to
controls. No severe adverse events related to probiotics were reported. Therefore, probiotics serve
as a promising adjunctive option in managing AGE in pediatric patients to expedite recovery and
decrease symptom severity.

Table 13: Some examples of synthetic samples generated using the PubMed dataset
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