Enhanced Data Synthesis for LLM through Reasoning Structures
Generated by Hierarchical GFlowNet

Tianpeng Bu*, Minying Zhang * *, Hongtao Duan, Shurui Li, Lulu Hu, Yu Li
Alibaba Cloud Computing, Hangzhou, China
{tianpeng.btp, minying.zmy, hongtao.dht, lishurui.lsr,
chudu.hll, lojze.ly}@alibaba-inc.com

Abstract

Large language models (LLMs) excel in
problem-solving but require training data with
diverse reasoning processes. Existing meth-
ods mainly optimize instruction-response pairs
but lack a systematic design for the underlying
reasoning structure. This paper proposes RSS:
a Reasoning Structure driven data Synthesis
method. We first proactively develop a hi-
erarchical GFlowNet to construct reasoning
structures efficiently through a coarse-to-fine
directed acyclic graph (DAG) growth process.
Then these reasoning DAGs are leveraged to ac-
tively guide the instruction generation via an it-
erative suggester-editor workflow and enhance
response quality using a structure-aware strat-
egy. Experiments show that LLMs trained on
our synthetic datasets achieve 48.50%, 84.00%,
79.90% for AlpacaEval2, GSM8K and Hu-
manEval, outperforming existing data synthesis
methods.

1 Introduction

Large language models (LLMs) have demonstrated
human-like problem-solving abilities across a wide
variety of tasks (OpenAl, 2023; Touvron et al.,
2023; Wei et al., 2021). The reasoning process in
problem-solving is often represented as graph-like
reasoning structures (Besta et al., 2023). Training
LLMs to master diverse reasoning structures is es-
sential to unlock the abilities of LLMs for more
general and complex tasks (Wei et al., 2022; Ope-
nAl, 2024). However, collecting high-quality data
with rich reasoning process is both costly and labor-
intensive (Conover et al., 2023; Kopf et al., 2024).
To address this issue, LLM-driven approaches are
proposed to generate synthetic data (Wang et al.,
2022; Xu et al., 2023, 2024; Taori et al., 2023).
Some approaches leverage LL.Ms to directly aug-
ment seed data using prompts, such as Self-Instruct

Equal Contribution.

¥ Corresponding author: Minying Zhang.

Seed Seed n
o) T
Tags
¥ = a0
LLM \\ / v |_:| PR
v
(|

Q+A Q+A A Q A
(a) (b) (© (d)

Figure 1: Comparison of data synthesis methods. a).
Augment seed questions using prompts. b). Generate
data based on the combination of rags extracted from
the seed pool. ¢). XoT methods use trail-and-error to
optimize solutions of data. d). Our method proactively
generates reasoning structures as direct acyclic graphs
and uses them to synthesize instructions and responses.

and Evol-Instruct (Wang et al., 2022; Xu et al.,
2023). In these methods, the inherent reasoning
structures to response are indirectly altered by aug-
mented questions, as illustrated in Figure 1(a). Sub-
sequently, methods in Figure 1(b) establish a pool
of tags (knowledge points, skills, or personas) and
use LLMs to generate data based on the combi-
nation of these tags (Li et al., 2024; Kaur et al.,
2024; Ge et al., 2024). However, this combina-
tion influences reasoning structures in a passive
manner, as logical connections among tags are not
considered. Additionally, studies in Figure 1(c)
focus on enhancing response quality from exist-
ing data via multi-query prompting frameworks
like tree-of-thoughts (ToT) and Monte Carlo Tree
Search MMCTS) (Yao et al., 2023; Zhang et al.,
2024a). These methods inefficiently use trial-
and-error to find accurate solutions, lacking guid-
ance from the original questions’ reasoning struc-
tures. Therefore, we propose a Reasoning Structure

15931

Findings of the Association for Computational Linguistics: ACL 2025, pages 15931-15958
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

driven data Synthesis method, abbreviated to RSS.
It proactively generate reasoning structures as di-
rect acyclic graphs and uses them to synthesize
instructions and responses, as illustrated in Fig-
ure 1(d). With explicit guidance from reasoning
structures, we can generate logical, real-world-like
questions and high-quality responses efficiently.

Synthesizing diverse reasoning structures with
complex logical connections is challenging due to
the vast combination space created by the diver-
sity of real-world questions (Newell et al., 1972).
To address this, we propose a three-level hierar-
chical cognitive schema (H-Schema), inspired by
the CHC theory (Carroll, 2005), which includes
abstract-level, competency-level, and example-
level cognitive nodes for representing problem-
solving capabilities (see Figure 2(a)). Reasoning
structures are modeled as directed acyclic graphs
(DAGs) at each level, linking cognitive nodes
through logical dependencies. Nodes at higher
levels define candidate child nodes for finer lev-
els, leveraging dependencies to reduce the search
space. These hierarchical relationships provide an
organized framework that enhances efficiency and
effectiveness of the search process.

The GFlowNet excels at generating diverse
DAGs through a stepwise growth process (Ben-
gio et al., 2021a; Deleu et al., 2022), adding nodes
iteratively. We developed a hierarchical GFlowNet
(H-GFlowNet) to sample reasoning DAGs by con-
necting nodes from H-Schema (Figure 2(b)). At
each generation step of H-GFlowNet, three pol-
icy networks corresponding to generating DAG for
each level of H-Schema, sequentially predict the
newly added node under the condition the sam-
pled node at higher level. The policy networks
undergo end-to-end a reinforcement learning train-
ing paradigm with feedback on DAG faithfulness
as evaluated by LLMs, with guidance provided by
the reward prompt.

Starting with reasoning DAGs, we synthesize
instructions and responses as shown in Figure 2(c).
Unlike existing methods, we use a prior-planned
reasoning structure for direct control over the ques-
tion’s reasoning process. For instruction genera-
tion, we parse the DAG into a topological node-
relation sequence and use a suggester-editor work-
flow, similar to (Mitra et al., 2024), that refines
the question step by step to accurately reflect the
reasoning structure and ensure high quality. Rea-
soning structures have proven beneficial for pro-
ducing high-quality responses. Thus, we use a rea-

soning structure-aware strategy for response. By
integrating the reasoning DAG into methods like
Plan-and-Solve (Wang et al., 2023), ToT (Yao et al.,
2023), and MCTS (Zhang et al., 2024a), we reduce
the cost of constructing these structures. Since the
reasoning DAG inherently represents the problem-
solving structure, a straightforward Plan-and-Solve
strategy (Wang et al., 2023) can generate effective
responses guided by our reasoning DAG.

We validate that our method outperforms base-
line methods on mainstream tasks, such as
instruction-following, math, and code. Addition-
ally, we find that starting with complex and rich
reasoning DAGs is an effective way to generate
training data with high-quality.

2 Method

Reasoning Structure as Foundation

The reasoning structure, capturing human cog-
nitive processes during problem-solving (Xiang
et al., 2025), serves as our framework’s corner-
stone. Building upon thought chain formalizations
in GoT (Besta et al., 2023) and DoT (Zhang et al.,
2024b), we formalize reasoning processes as di-
rected acyclic graphs (DAGs) where nodes repre-
sent atomic problem-solving subprocedures and
edges encode stepwise logical dependencies. This
DAG abstraction illustrates the compositional na-
ture of reasoning process. The following sections
describe our methodology for (1) efficiently sam-
pling DAGs from combinatorial spaces and (2) con-
verting these graphs into instruction-response pairs
while preserving logical integrity.

2.1 Hierarchical Cognitive Schema

To tackle the exponentially large space of reason-
ing DAGs for real-world questions, we propose
a three-level hierarchical cognitive schema H to
constrain the sampling space via coarse-to-fine ab-
straction: abstract-level, competency-level, and
example-level cognitive nodes. For each level in H,
we define corresponding nodes, parent-to-child and
child-to-parent relationships extracted by LLMs
from instruction-response pairs in seed data (see
Appendix B.1). After de-duplication and grouping,
the H-Schema organizes cognitive nodes hierarchi-
cally (Figure 2a). For instance, the abstract-level
node utilizing knowledge includes competency-
level nodes like mathematics knowledge and fi-
nance knowledge, with mathematics knowledge
further branching into more example-level nodes.

15932

Abstract

Hierarchical Cognitive Schema

understanding

information

utilizing
knowledge

reasoning | :

Hierarchical Reasoning DAG Generation

" p
&&chb Y
3
()
)
N
\“\,«\5‘-‘) 4
Sa

s
o sP) s
A o sﬁ 50
% ey
y §

Piecewise DAG Growth Process

Example-Level
Reasoning DAG

DAG-driven Synthesis

Synthesis process

Iteratively
Synthesis

T
™
Instruction
with 1 Step

> 8o @ =
o = [
s|15=||22||&88||82|[22 |25 5 e(m)
2llee||EG||ce|l|lse||BE|[BS S
°| B8 E2| 83 |83 S5 |32 s@ s© e
£ SE||86 £8 |£2||828 28 o ?
HIESEEEIE R
o £)) s® e
\»»(WL g R e Y 2 f‘;’({”‘ .
). @ % @2 O = Instruction
Kahn's Algorithm
Hierarchical Single Step Growth S; ~m*(SS;-) cniesie
a g P e) a [T/Y\T] Response
sampling sampling sampling 0,"1,"2 with Steps
.| Abstract Competency &)7y S; B P
T Policyn® Policy ¢ +’ i
i i
t e
Abstract Competency
Si-1{ pAG DAG Parse Reasoning Response
sty sfq DAG into Steps
(a) (b) (c)

Figure 2: Overview of our method. a). The H-Schema shows the coarse-to-fine organization of cognitive nodes
and their relations. b). Top: The illustration of Markov Decision Process for reasoning DAG modeling with
H-GFLowNet. Node S; represents a partial or complete reasoning DAG composed of three-level DAGs. The edge
represents the transition probability among states modeled by policy network 7*. S§, S]] and Sg are terminal nodes
St of MDP and S} receives the high reward marked with a golden cup; Bottom: A hierarchical single step growth of
the DAG with 3 policy networks. c¢). The instruction-response synthesis pipeline driven by reasoning DAGs.

This schema enables efficient reasoning DAG con-
struction through layered sampling: abstract-level
DAGs define high-level connections, competency-
level DAGs refine nodes into domain-specific capa-
bilities, and example-level DAGs instantiate con-
crete reasoning steps. This hierarchical approach
balances diversity and tractability, generating di-
verse reasoning structures while maintaining con-
strained search spaces.

2.2 Hierarchical Reasoning DAG Generation

H-GFlowNet for Reasoning DAG Modeling
The essence of our method is the ability to model
the distribution of reasoning DAGs and generate
novel problem-solving steps. The GFlowNet ex-
cels at generating diverse DAGs through a stepwise
growth process (Bengio et al., 2021a; Deleu et al.,
2022), adding nodes iteratively. To model the dis-
tribution of reasoning DAGs at various H-Schema
levels, we developed a hierarchical GFlowNet (H-
GFlowNet), depicted in Figure 2(b). H-GFlowNet
breaks down each sampling step into three hierar-
chical levels, employing a coarse-to-fine search via
three policy networks. The H-GFlowNet’s stepwise
DAG expansion is treated as a Markov Decision
Process (MDP) trajectory 7 = (So, ..., S1,). Differ-
ent from vanilla GFlowNet, each state here in MDP
Si denotes a set of reasoning DAGs (s?, s§, s) at
different levels: abstract, competency, and example
level step ¢, with Sg as the initial empty state and S,
as the terminal state. Starting from Sy, the model
transits a state by adding cognitive nodes or link-

®
€. o
o

!
w(s® = sflsi-sf)

[
n?(s? 0 silsity)

g 2
£ g
£ &
[forane
T | |
¥ sy ()‘Q‘/Qsic—l "‘.55—1

Figure 3: Hierarchical single-step growth for reasoning
DAG generation of H-GFlowNet. The nodes marked
with dashed-circle correspond to the single-step growth
at step ¢ for each level. This process iterates for L times.

ing existing nodes at each level of H-Schema. The
transition between states S; 1 and S; is expressed
as sampling S; from policy 7*(S|S;_1). Different
from original GFlowNet, H-GFlowNet consists of
three policy networks 7* = (7%, 7€, w¢), which
includes policies for abstract (7%), competency
(7€), and example (7°) levels, aligning with the
H-Schema. Upon reaching the terminal state Sy,
we obtain the final reasoning DAG, which is evalu-
ated by a reward model R(Sy) during training or
used as the target sample during inference.

Hierarchical Single-Step Growth To address
the exponential search space of example-level rea-
soning DAGs in each step, we implement a top-

15933

down three-level growth mechanism coordinated
by hierarchical policies (7%, 7€, 7€), as visualized
in Figure 3. Each iteration progresses through three
constrained sampling stages. 1) Abstract expan-
sion s ~ w(s%s¢_;): ™ evolves abstract-level
DAG s{_; by adding nodes/edges. 2) Competency
refinement s§ ~ 7¢(s¢|sf_,, s¢): 7° refines s§_;
based on sf, focusing on subdomains of newly
added abstract nodes. 3) Example instantiation
s¢ ~ me(s%s5_q,s5): m¢ generates task-specific
s{ from s{_; under s;’s constraints. This layered
progression narrows the sampling space at each
level, enabling tractable construction of complex
reasoning DAGs. The hierarchical constraints en-
sure structural coherence while maintaining diver-
sity through localized exploration at each level. We
formalize the hierarchical process to construct a
complete reasoning DAG with H-GFlowNet in the
following Algorithm 1.

Algorithm 1 The sampling process of H-GFlowNet

Require: Initial state Sg = (s§, s§, s§), Policy net-
work: 7% = (7%, w¢, 7€), H-Schema: H

Ensure: Sampled DAG: Sy, = (s¢,5%,5%)

1: Initialize step: ¢ <— 1, Total step: L

2: while i <= L do

3: Abstract-level: s¢ ~ 7¢(s?|s$_;)
Constraint space: S¢ = H.find_child(s?)
Competency-level: s§ ~ m¢(s§|s$_;, 5¢)
Constraint space: S¢ = H.find_child(s)
Example-level: s§ ~ m¢(sf|s5_,.5¢)

8: 14 1+1

9: end while
10: return Sy, = (s%,5$,5%)

A A

The Training of H-GFlowNet A reinforcement
learning training paradigm is often used to train
GFlowNet (Bengio et al., 2021b; Malkin et al.,
2022), in which a policy network generate roll-
outs, and a reward model provide the feedback
to the policy network. Different from other rein-
forcement learning algorithms where the learning
objective is to optimize the policy network to max-
imize the reward from the reward model, the target
of GFlowNet is to train the policy network to gen-
erate samples with probabilities proportional to the
reward. An overview of GFlowNet for DAG gener-
ation is elaborated in Appendix A.1.

Within the framework of H-GFlowNet, we de-
fine of policy network 7*(7® w¢ 7¢) as three
graph neural networks similar to (Bengio et al.,

2021a). And the reward function R(s) should as-
sign a score to the sampled example-level reason-
ing DAG R(Sy,) to reflect how plausible the DAG
can be used as problem-solving steps to a instruc-
tion. This requires that the reward model should
be both accurate and generalizable to score all pos-
sible outcomes. Thanks to the generalization and
world-knowledge of LLM, we prompt Qwen2.5-
72B-Instruct (Yang et al., 2024a) to rate the sam-
pled DAG a score from 1 to 10. The prompt for
the reward model can be found in Appendix B.2.
Besides, the flow-matching loss proposed in (Ben-
gio et al., 2021a) is used and we replace the vanilla
single policy network 7 and state s with our three-
level policy networks 7* and the state collection S.
Specifically, the flow-matching loss for a sampled
trajectory 7 = (S, ..., Sy) is expressed as follows,

L) =(X (X = (silsin)-

I<i<L S;j-1

2

Zw Si41/8))+ Y 7 (SrlSp-1)~R(S1))
Si+1 Sp—1

An in-depth explanation for this equation is pro-
vided in Appendix A.2. Overall, during training,
the policy network 7* hierarchically and stepwisely
generates multiple reasoning DAGs, and the flow-
matching loss is calculated based on these DAGs,
as formalized in Algorithm 2 in Appendix A.3.

2.3 Reasoning DAG Driven Data Synthesis

Iterative Instruction Generation To synthesize
instruction-question pairs that strictly adhere to
the reasoning DAGs, we implement a collabora-
tive suggester-editor framework inspired by (Mi-
tra et al.,, 2024) (Figure 2c). The process be-
gins by parsing example-level DAGs into ordered
reasoning steps [ro, ..., 7] via Kahn’s algorithm,
where each r; encapsulates parent-child node re-
lationships. We iteratively constructs instructions
through progressive refinement. Starting from the
initial reasoning step ro, at each iteration ¢, the
suggester first analyzes the current instruction and
partial reasoning path [ro, ..., r;] to propose a mod-
ification plan. This plan suggests how to integrate
new reasoning step r; into current instruction. The
editor synthesizes updated instruction based on the
plan, ensuring solvability through the specified rea-
soning path. This dual-phase mechanism propa-
gates across all reasoning steps (rg — rr.), sequen-
tially embedding DAG constraints into the instruc-
tion. By decoupling exploratory suggestion from

15934

validity enforcement, the method constructs instruc-
tions whose reasoning processes mirror the gener-
ated DAGs, ensuring diversity and adherence to rea-
soning structure. Prompt templates (Appendix B.3)
and concrete examples (Table 15) demonstrate how
the framework balances creative question variation
with structural fidelity.

Reasoning Structure Aware Response Gener-
ation Research has illustrated that LLMs can
provide higher-quality responses when informed
by well-defined reasoning structures. These struc-
tures can be introduced through methods such
as prompting, buffer retrieval, and fixed meta-
cognitive prompts (Wang et al., 2023), (Yang et al.,
2024b), and (Wang and Zhao, 2024). Additionally,
frameworks like ToT (Yao et al., 2023) and MCTS
(Zhang et al., 2024a; Qi et al., 2024) are used to
discover optimal reasoning paths. Our approach
leverages a reasoning DAG that can be easily com-
bined with these advanced reasoning techniques
to enhance response generation. Given that our
reasoning DAG maps out the logic needed to re-
sponse an instruction, it naturally aligns with the
Plan-and-Solve strategy (Wang et al., 2023). This
approach entails parsing the DAG into a sequence
of steps, which then serve as a blueprint for crafting
the response. Details of using the reasoning DAG
in response generation are in Appendix B.4.

3 Experiments

3.1 Experimental Setup

Benchmarks and Baselines We focus on eval-
uating our method on instruction-following, math
and code tasks. A detailed introduction for the
benchmarks and baselines is in Appendix C.1.

Dataset Construction and Model Training
First, we collect 40k seed data: 15k from
ShareGPT (Chiang et al.,, 2023), 15k from
Evol-Instruct (Xu et al., 2023), 5k from MWP-
Bench (Tang et al., 2024), and 5k from Code-
Alpaca (Chaudhary, 2023). Using Qwen2.5-72B-
Instruct, we build the H-Schema as described
in Section 2.1. After deduplication and group-
ing, the H-Schema contains 30 abstract-level, 240
competency-level, and 5000 example-level cogni-
tive nodes. We then construct the H-GFlowNet
to perform coarse-to-fine stepwise sampling at
each level. The H-GFlowNet is trained with
Qwen2.5-72B-Instruct as the reward model for
scoring example-level DAGs. From the trained

Base Model

Core Task Dataset Size -
larger size

small size

General IF 40k LLaMA3-8B LLaMA3-70B
Math 20k LLaMA2-7B LLaMA2-13B
Code 20k DeepSeek-Coder-6.7B DeepSeek-Coder-33B

Table 1: Dataset and model statistics. /F is an abbrevia-
tion for Instruction Following.

H-GFlowNet, we sample 40k example-level rea-
soning DAGs to synthesize a dataset for instruction-
following tasks. For math and coding tasks, we
sample the DAGs with filtering by node topics, re-
taining only those related to math or code, resulting
in 20k reasoning DAGs respectively. Using GPT-4
and the pipeline in Section 2.3, we generate in-
structions and responses based on the generated
DAG:Ss to get the synthetic datasets for instruction-
following, math and code tasks. For each task, we
train LLMs of two sizes on the corresponding syn-
thetic datasets via supervised fine-tuning (SFT),
as detailed in Table 1. Further training details
for H-GFlowNet and LLMs are provided in Ap-
pendix C.2. We denote the resulting models as RSS-
IF, RSS-MATH and RSS-CODE for instruction-
following, math and code tasks respectively.

3.2 Main Results

Instruction Following Table 2 shows that
RSS-IF achieves competitive results on general
instruction-following. For smaller models, RSS-
IF-8B achieves 48.50, 62.00 for AlpacaEval2 and
IFEval respectively. These results surpass other
models of similar size which are trained on syn-
thetic datasets for instruction-following. For ex-
ample, based on the same base model, RSS-IF-
8B leads MAGPIE and Instruct-SkillMix +23.42
and +5.74 on AlpacaEval2. For larger models,
despite RSS-IF-70B is trained on only 40k syn-
thetic dataset, it demonstrates comparable perfor-
mances to LLaMA3-70B-Instruct and Qwen2-72B-
Instruct which are trained on large-scale proprietary
datasets. Our method even performs on par with
proprietary models like GPT-4 and Claude3.0.

Math From Table 3, we can see that the our RSS-
MATH can significantly boost the mathematical
reasoning capability of LLMs. Specifically, RSS-
MATH-13B achieves 92.0 on GSM8K, which is
stronger than MathGenieLM-70B that has larger
model size. For more challenging benchmark
MATH, our method also shows its strength. RSS-
MATH-TB surpasses +16.90, +-25.60 and +15.00
compared with MathScale, MetaMath and Math-

15935

Instruction Following Math

Code

Model Data Base Model — oy 5 (%) IFEval (%) GSMBK (%) MATH (%) HumanEval(%) MBPP (%) verage
Proprietary Models
Gemini Pro 24.40 - - 67.70 84.10 72.90 -
Claude-3.0 40.50 81.00 95.00 71.10 92.00 90.50 78.35
GPT-3.5-Turbo 22.70 61.90 74.10 37.80 73.20 70.80 56.75
GPT-4 - 50.00 80.30 92.00 52.90 84.10 80.00 73.22
General Instruction-Tuned Models (Model Size < 13B)
Orca-2-7B Mixed LLaMA2 - - 55.70 10.10 17.10 28.40 -
Mistral-7B-Instruct Mixed Mistral 20.60 54.65 53.20 13.00 40.20 49.50 38.53
Qwen2-7B-Instruct Mixed Qwen2 19.37 54.70 85.70 52.90 79.90 67.20 59.96
LLaMA3-8B-Instruct Mixed LLaMA3 22.90 72.10 84.50 51.90 72.60 72.80 62.80
Tulu3-8B-SFT Mixed LLaMA3.1 12.40 60.10 76.20 31.50 83.90 - -
Evol-Instruct-8B Synthetic LLaMA3 8.52 34.40 4291 38.50 65.30 67.50 42.86
Magpie-Pro-300K-Filtered-8B ~ Synthetic LLaMA3 25.08 38.80 47.92 43.96 70.73 66.93 48.90
Instruct-SkillMix Synthetic LLaMA3 42.76 34.75 78.17 39.62 56.71 68.09 53.35
WizardLM-13B-V1.2 Synthetic LLaMA2 14.50 43.20 46.80 9.00 31.70 47.90 32.18
RSS-IF-8B Synthetic ~ LLaMA3 48.50 (+5.74) 62.00 86.50 (+0.80) 56.18 (+3.28) 76.10 73.20 (+0.40) 67.08 (+4.28)
General Instruction-Tuned Models (Model Size > 70B)

LLaMA2-70B-Chat Mixed LLaMA2 14.70 - 57.50 11.60 25.60 45.00 -
LLaMA3-70B-Instruct Mixed LLaMA3 34.40 77.30 95.10 68.00 80.50 86.00 73.55
Qwen2-72B-Instruct Mixed Qwen2 38.10 77.60 93.20 69.00 86.00 80.20 74.02
RSS-IF-70B Synthetic LLaMA3 49.80 (+1.70) 75.40 94.00 64.00 85.10 83.60 75.32 (+1.30)

Table 2: Results for general instruction-tuned models, grouped by parameter size (<

13B and > 70B) for fair

comparison. We also provide some advanced proprietary models’ performance for reference. We also annotate the
data source and base model of different methods. Best scores are bolded, second-best underlined. RSS-IF achieves

competitive performance among general instruction-tuned models on various benchmarks in both groups. Moreover,
RSS-IF-70B achieves performance comparable to some advanced proprietary models.

Model GSMSK (%) MATH (%) Average Model H Eval (%) MBPP (%) Average
Proprietary Models Proprietary Models
Claude3.0 95.00 7110 7835 Claude-3.0 92.00 90.50 91.25
GPT-4 84.10 80.00 82.05
GPT-4 92.00 — 52.90 7322 Code Specific Models - < 13B
Math Specific Models - 7B CodeLlama-Instruct-7B 34.80 44.40 39.60
WizardMath-7B 54.90 10.70 32.80 CodeLlama-Instruct-13B 42.70 49.40 46.05
MathScale-7B 66.30 31.10 48.70 WizardCoder-Python-7B-V1.0 55.50 56.60 56.05
MetaMath-7B 66.50 19.80 43.15 MagicCoder-7B 7070 68.40 69.55
MathGenieLM-7B 71.70 33.00 5235 SelfCodeAlign-7B 67.10 65.20 66.15
RSS-CODE-6.7B 79.90 (+9.20) 76.40 (+8.00) 78.15 (+8.60)
RSS-MATH-TB 84.00 (+12f.30) 48.00 (-f-15.00) 66.00 (+13.65) Code Specific Models - = 338
Math Specific Models - 13B CodeLlama-Instruct-34B 4150 57.00 4925
WizardMath-13B 63.90 14.00 38.95 DeepSeek-Coder-Instruct-33B 79.30 70.00 74.65
MathScale-13B 71.30 33.80 53.55 WizardCoder-Python-34B-V1.0 73.20 73.20 73.20
MetaMath-13B 72.30 22.40 47.35 WizardCoder-33B-V1.1 79.90 78.90 79.40
MathGeniel.M-13B 80.40 43.80 61.70 RSS-CODE-33B 84.40 (+4.50) 83.50 (+4.60) 73.95 (+4.55)
RSS-MATH-13B 92.00 (+11.60) 58.90 (+15.10) 75.45 (+13.75)

Table 3: Results for math-specific models. Best scores
are bolded, second-best underlined. Our model and com-
pared models are fine-tuned on LLaMA?2 with synthetic
data. Our RSS-MATH outperforms other math-specific
models on both the GSM8K and MATH benchmarks.

Genie on the same model size.

Code As shown in Table 4, RSS-CODE also
demonstrates improvements on coding task.
Among models trained on synthetic dataset, RSS-
CODE-33B achieves +4.5, +4.6 increases on Hu-
manEval and MBPP compared to WizardCoder-
33B-V1.1, which is trained from the same base
model as ours. Furthermore, our results re-
main highly competitive against DeepSeek-Coder-
Instruct-33B, which uses the same base model but
is fine-tuned with a much larger instruction set (ap-
proximately 2B tokens) than ours.

Table 4: Results for code-specific models. Best scores
are bolded, second-best underlined. Our RSS-CODE
model leads in performance on both the HumanEval
and MBPP benchmarks, surpassing other code-specific
models with a notable improvement.

4 Analysis

4.1 Instruction Quality Analysis

To gain insights we analyze the relation between
the quality of reasoning DAGs and the quality of
datasets. Specifically, we randomly sample 2000 in-
structions from our synthetic dataset for instruction
following, Evol-Instruct, MAGPIE and Instruct-
SkillMix. Given the instruction and response of
each dataset, we prompt Qwen2.5-72B-Instruct to
extract the reasoning structures as DAGs.

Relation between Performances and Rewards
of Reasoning DAGs We first score the reason-
ing DAGs of each dataset with the DAG reward
prompt template in Appendix B.2. We then plot the
histogram of rewards for all datasets in Figure 4.

15936

This figure shows that our method can generate rea-
soning DAGs with higher rewards compared with
other methods, and the rewards of reasoning DAGs
have a positive correlation with the model perfor-
mance. This result supports our motivation that
starting from explicit valuable reasoning structures,
we can synthesize datasets of better quality.

Comparison of Reward Distributions

0.5 Evol-Instruct (8.52)
MAGPIE (25.08)
%0-4 Instruct-SkillMix (42.76)
S Ours (48.50)
203
e}
[}
N
©
g 0.2
(=]
=2
0.1
0.05 2 4

Reward Value (0 to 10)

Figure 4: Rewards histogram of reasoning DAGs for
different datasets. The numbers in braces are perfor-
mances on AlpacaEval2 by fine-tuning LLaMA3-8B.

Relation between Performance and metrics of
Reasoning DAGs Besides, the following met-
rics are calculated for these reasoning DAGs: (1)
Node diversity: average number of unique nodes
per data; (2) Reasoning depth: average maximum
depth from root to leaf; (3) In/Out degree: aver-
age number of incoming and outgoing edges per
node. From Table 5, Instruct-SkillMix achieves
high node diversity (0.94) but struggles with rea-
soning depth (5.10) compared to Evol-Instruct and
MAGTPIE, indicating that combining skill tags en-
hances diversity but falls short in deep reasoning.
Evol-Instruct shows greater reasoning depth (5.51)
but performs poorly in node diversity and in/out de-
grees, suggesting increased complexity without im-
proving connectivity. MAGPIE achieves balanced
performance across all metrics, benefiting from
reward filtering and de-duplication. Our method
surpasses these approaches with higher node diver-
sity (0.99), reasoning depth (5.91), and in/out de-
gree (1.21), demonstrating the effectiveness of inte-
grating diverse problem-solving competencies into
generated data. These results highlight richer sub-
procedure interconnections, enabling our dataset to
teach LLMs intricate reasoning structures.

4.2 Response Quality Analysis

In this section, we examine the effectiveness of our
reasoning DAG aware response generation. We ran-
domly select 5k samples from our synthetic dataset

Datasets Node diversity Reasoning depth In/Out degree ~ AlpacaEval2

Evol-Instruct 0.89 5.51 0.84 8.52
MAGPIE 0.91 5.50 1.11 25.08
Instruct-SkillMix 0.94 5.10 1.08 42.76
Ours 0.99 5.91 1.26 48.50

Table 5: The performance correlates with reasoning
DAG metrics. The performances are measured by Al-
pacaEval2 by fine-tuning LLaMA3-8B on each dataset.

Response Type Win-rate (%) 1 Time-cost (min)] GSMS8K (%)1
Direct 50.0 0.53 70.4
PS w/o DAG 57.3 0.71 73.6
ToT w/o DAG 59.3 3.22 74.9
MCTS w/o DAG 59.5 3.65 74.8
PS w/ DAG 60.0 0.56 74.9
ToT w/ DAG 60.2 1.23 75.1
MCTS w/ DAG 60.3 1.54 75.3

Table 6: Comparison of response strategies on Qwen?2.5-
72B-Instruct with and without DAG guidance. Win-rate
(%) indicates answer quality judged by GPT-4 relative to
direct responses. Time-cost (min) measures generation
time per answer. We evaluate performance of models
fine-tuned on datasets generated by each strategy on
GSMSK (%). Plan-and-Solve is abbreviated as PS. Rea-
soning DAGs can improve the performance of different
answer strategies and boost the efficiency.

for math and investigate the response quality of dif-
ferent response generation strategies. We borrow
most of the implementation for ToT and MCTS
from ReST-MCTS (Zhang et al., 2024a). All re-
sponses are generated by Qwen2.5-72B-Instruct
served by vLLM (Kwon et al., 2023a). Due to the
efficiency concern, we restrict the breadth of expan-
sion as 2 for ToT and MCTS. Then we use powerful
GPT-4 as the judge and direct response as refer-
ence to calculate the average win-rate, along with
the time-cost (minute/sample) and performance on
GSMSK after fine-tuning LLaMA2-7B for each
response generation strategy. From Table 6, our
reasoning DAG aware response generation can
boost the efficiency of existing reasoning frame-
work by guiding the reasoning process with our
prior-planned reasoning DAG. For example, we see
0.15 minutes timecost saving and for PS w/ DAG
compared with naive Plan-and-Solve prompting.
This is more significant for search-based methods,
i.e., ToT and MCTS. In terms of the performance,
simple PS w/ DAG achieves competitive response
quality, i.e, 60.0 win-rate compared with direct an-
swering and 74.9 on GSM8K after fine-tuning on
the resulting dataset, costing only 0.56 minutes per
sample, which is used as the answer strategy for
the final dataset construction.

15937

Reward Model Spearman’s corr. Price($)/1k samples

GPT-4 0.94 15.3
Cluade-3.5 0.94 35
LLaMA3.1-70B-Instruct 0.91 self-deployed
Qwen2.5-72B-Instruct 0.93 self-deployed

Table 7: Spearman’s correlation between LLMs and
human annotations as the reward model, along with the
cost (USD) per 1k samples. Higher correlation indicates
better alignment with human preferences.

4.3 Reward Model Selection for GFlowNet

The reward model is crucial in training of our H-
GflowNet, which guides the policy networks to
effectively explore the action space. In this section,
we analyze the effectiveness of using LLMs as the
reward model and the performances of different
LLMs. In specific, we sample 1k reasoning DAGs
from the randomly initialized H-GFlowNet for in-
struction following task. Then we use the prompt
in Appendix B.2 to instruct different LLMs to score
these DAGs. Moreover, we treat educated human
annotations as the golden reward function and ask
annotators to rate these DAGs with scores 1 ~ 10
with the same criteria as LLMs. The agreement
between human and these LLMs is measured by
Spearman’s correlation as shown in Table 7. From
this Table, we can see that the different LLMs per-
form closely and achieve a good alignment with
human for scoring reasoning DAGs. Besides, we
can see that Qwen2.5-72B-Instruct achieves 0.93
correlation with human, slightly lower than GPT-
4 and Cluade-3.5, but it has open-source weights
that can be self-deployed. Therefore, we choose
the open-sourced Qwen2.5-72B-Instruct as the re-
ward model of GFlowNet training which is a cost-
effective and reliable option.

100
S ---- Random Sampling
A 80 B Vanilla GFlowNet
< H-GFlowNet
[%)
2 60
a
-
o
o 40
o
@
o 20
O]
o

10 50 100 200

1000

Figure 5: Comparison of proportion of high reward
DAGs (reward R > 7) sampled from vanilla GFlowNet
and H-GFlowNet that are trained on different number
of example-level nodes.

4.4 Necessity of H-Schema and H-GFlowNet

To study the effectiveness of the H-Schema and H-
GFlowNet, we train GFlowNets with and without
hierarchical setup under different sizes of example-
level nodes for instruct-following. We set the max-
imum sampling depth as 10 and train all models
with 250k iterations for all experiments of this sec-
tion. As shown in Figure 5, we sample reasoning
DAGs from trained GFlowNets and calculate the
percentage of DAGs which have reward larger than
7. From this figure, we can see that as the num-
ber of example-level nodes increases, the vanilla
GFlowNet fails to find DAGs with high rewards and
when the the example-level cognitive node reaches
1000, the number of high-reward DAGs found by
vanilla GFlowNet is similar to random sampling.
However, with the help of hierarchical design of
sampling space in H-Schema, the H-GFlowNet can
consistently discover high percentage of valuable
DAGs, in which about 75% sampled DAGs have
rewards larger than 7 even when there are 1000
nodes in example-level.

4.5 Data Scaling Analysis

We study the impact of scaling the H-Schema
size (number of example-level nodes) and dataset
size by fine-tuning LLaMA3-8B, evaluating model
performance on AlpacaEval2. First, we generate
datasets with 20k samples using H-Schema with
example-level node sizes ranging from 1k to 5k.
As shown in Figure 6(a), performance on AlpacaE-
val2 steadily improves as the H-Schema size in-
creases. Specifically, when the H-Schema size
grows from 1k to 5k, performance rises from 38.62
to 46.34. This indicates that larger H-Schema, cov-
ering a broader scope of human problem-solving
capabilities, enhance dataset quality. Additionally,
we analyze dataset scaling effects in Figure 6(b)
by synthesizing datasets ranging from 10k to 40k
samples. With an H-Schema size of 5k, we observe
a positive scaling effect, with performance increas-
ing from 44.31 to 48.50. This demonstrates that
both large H-Schema and dataset sizes contribute
to improving synthetic dataset performance. How-
ever, no such improvement is observed with smaller
H-Schema. For instance, with an H-Schema size
of 1k, performance saturates at 39.33 for a 30k
dataset and cannot be further improved by generat-
ing more data.

15938

48,5

IS
3
»
3

46,1 46,34 46, 4 46,8

S
>
IS
o

IS

=
»
W

43, —e— H-Schema-1K
—¥— H-Schema-3K
—4— H-Schema-5K

»
S

39,33 39,3

8402 38,
36,

10 15 0 30 35 40
(b) Accuracy vs Dataset Size (x1000)

Performance on AlpacaEval2
IS
S

w
&

w
)

i 2 3 4 5
(a) Accuracy vs H-Schema Size (x1000)

Figure 6: Data scaling effects on AlpacaEval2 for
LLaMA3-8B models trained with instruction-following
data. (a) Scaling curve w.r.t the size of H-Schema. A
Larger sampling space of H-GFlowNet improves perfor-
mance due to increased diversity. (b) Scaling curve w.r.t
dataset size for 3 H-Schema sizes. A larger dataset size
can enhance performance.

4.6 Contamination Test

We conduct contamination test for our synthetic
data as detailed in Appendix D. The results in Ta-
ble 14 show that our synthetic datasets do not suffer
from the data leakage problem.

4.7 Cost Analysis

We leave the cost analysis in Appendix E.

4.8 Case Study

In Appendix F, we showcase a sampled reason-
ing DAG from our H-GFlowNet and the iterative
instruction generation process. Additionally, in
Appendix G, we present some sampled data with
incorrect answers generated by our method to ana-
lyze the main reason of the failures.

5 Related Works

We summarize existing synthetic data generation
approaches as follows: Seed transformation-based
methods, such as Self-Instruct and Alpaca, Evol-
Instruct (Wang et al., 2022; Taori et al., 2023; Xu
et al., 2023), use LLMs to transform seed question-
answer pairs through evolving/rephrasing/back-
translation and related techniques (Xu et al., 2023;
Yu etal., 2023; Lu et al., 2024), yet they face limita-
tions in data diversity due to a constrained number
of prompts. In parallel, research on enhanced re-
sponse generation emphasizes explicit reasoning
processes, with innovations like STaR (Zelikman
et al., 2022) and RFT (Yuan et al., 2023) using
iterative verification and reject sampling to refine
answers. While more recent works actively ex-
plore multiple reasoning paths via searching such
as ToT, ReST-MCTS and rStar (Yao et al., 2023;
Zhang et al., 2024a; Qi et al., 2024). However,

these methods encounter issues with inconsistent
reasoning flows and high computational costs. Ab-
stract representation approaches, such as persona-
based generation (Ge et al., 2024) and hierarchi-
cal taxonomies (Li et al., 2024; Sudalairaj et al.,
2024; Kaur et al., 2024), aim for scalable instruc-
tion synthesis but often produce shallow reasoning
structures due to random combination of represen-
tations. Recently, graph-based solutions such as
MathScale and KPSMath (Tang et al., 2024; Huang
et al., 2024) primarily encode topic statistics or fo-
cus on topic co-occurrence. AlphaGeometry use
theorem-proof DAGs for geometric problem gener-
ation (Trinh et al., 2024). Different from previous
works, our approach is a data synthesis method
driven by general and complex reasoning struc-
tures generated by a hierarchical generative model
called H-GFlowNet.

6 Conclusion

This study addresses the challenge of generating
synthetic data with complex reasoning capabilities
for the fine-tuning of LLM through reasoning struc-
ture design. By shifting from instruction-response
optimization to active reasoning structure construc-
tion, we propose a framework that integrates hier-
archical cognitive modeling and efficient combi-
natorial sampling. Experiments across instruction-
following, mathematical reasoning, and code gener-
ation benchmarks validate that complex reasoning
DAGs significantly enhance the quality and con-
trollability of synthetic data compared to existing
data synthesis strategies.

Limitations

Although our method has shown excellent perfor-
mance in synthesizing high-quality datasets, sev-
eral directions are worth exploring in future work:

(1) The current H-GFlowNet framework primar-
ily relies on the capabilities of large language mod-
els (LLMs) for its reward model. A promising
direction for future work is to train a customized
small language model (SLM) as the reward model.

(2) We use GPT-4 to generate instructions and
responses based on reasoning DAGs. In the future,
we can study the performance of using different
LLMs in this process.

(3) Although we conduct our experiments on
different LLMs such as LLaMA3, LLaMA?2 and
DeepSeek-Coder, we can validate the performance
of training more models on our synthetic datasets

15939

in the future.

Ethics Statement

We have carefully reviewed the H-Schema to en-
sure it does not contain any personally identifiable
information or offensive content. However, since
the seed datasets are sourced from the Internet,
there may still be potential biases or inappropriate
information. Additionally, despite our careful re-
view, the process of instruction generation using
LLMs might inadvertently introduce inappropri-
ate information into the synthetic data. Besides,
we hire annotators to score 1k reasoning DAGs to
study the human agreement of differently LLMs,
in which we ensure that all annotators are well-
informed and well-paid for this annotation task. It’s
also important to note that we train H-GFlowNet
and LLMs on GPUs, which can have an environ-
mental impact.

References

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov,
Doina Precup, and Yoshua Bengio. 2021a. Flow
network based generative models for non-iterative
diverse candidate generation. Advances in Neural
Information Processing Systems, 34:27381-27394.

Yoshua Bengio, Tristan Deleu, J. Edward Hu, Salem
Lahlou, Mo Tiwari, and Emmanuel Bengio. 2021b.
Gflownet foundations. ArXiv, abs/2111.09266.

Maciej Besta, Nils Blach, Ale Kubiek, Robert Gersten-
berger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadom-
ski, Piotr Nyczyk, and Torsten Hoefler. 2023. Graph
of thoughts: Solving elaborate problems with large
language models. In AAAI Conference on Artificial
Intelligence.

Nicola De Cao and Thomas Kipf. 2018. Molgan: An
implicit generative model for small molecular graphs.
ArXiv, abs/1805.11973.

John B Carroll. 2005. The three-stratum theory of cog-
nitive abilities.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following 1llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,

Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm. Company Blog of Databricks.

Tristan Deleu, Ant’onio G’ois, Chris C. Emezue,
Mansi Rankawat, Simon Lacoste-Julien, Stefan
Bauer, and Yoshua Bengio. 2022. Bayesian struc-
ture learning with generative flow networks. ArXiv,
abs/2202.13903.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tat-
sunori B Hashimoto. 2024. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. arXiv preprint arXiv:2404.04475.

Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao
Mi, and Dong Yu. 2024. Scaling synthetic data cre-
ation with 1,000,000,000 personas. arXiv preprint
arXiv:2406.20094.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Edward J. Hu, Moksh Jain, Eric Elmoznino, Younesse
Kaddar, Guillaume Lajoie, Yoshua Bengio, and Niko-
lay Malkin. 2023. Amortizing intractable inference
in large language models. ArXiv, abs/2310.04363.

Yiming Huang, Xiao Liu, Yeyun Gong, Zhibin Gou,
Yelong Shen, Nan Duan, and Weizhu Chen. 2024.

15940

https://api.semanticscholar.org/CorpusID:244270393
https://api.semanticscholar.org/CorpusID:261030303
https://api.semanticscholar.org/CorpusID:261030303
https://api.semanticscholar.org/CorpusID:261030303
https://api.semanticscholar.org/CorpusID:44100802
https://api.semanticscholar.org/CorpusID:44100802
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://api.semanticscholar.org/CorpusID:247158659
https://api.semanticscholar.org/CorpusID:247158659
https://api.semanticscholar.org/CorpusID:263830173
https://api.semanticscholar.org/CorpusID:263830173

Key-point-driven data synthesis with its enhance-
ment on mathematical reasoning. arXiv preprint
arXiv:2403.02333.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Simran Kaur, Simon Park, Anirudh Goyal, and San-
jeev Arora. 2024. Instruct-skillmix: A powerful
pipeline for llm instruction tuning. arXiv preprint
arXiv:2408.14774.

Thomas Kipf and Max Welling. 2016. Variational graph
auto-encoders. ArXiv, abs/1611.07308.

Andreas Kopf, Yannic Kilcher, Dimitri von Riitte,
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stan-
ley, Richard Nagyfi, et al. 2024. Openassistant
conversations-democratizing large language model
alignment. Advances in Neural Information Process-
ing Systems, 36.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023a. Ef-
ficient memory management for large language
model serving with pagedattention. Preprint,
arXiv:2309.06180.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023b. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, et al. 2024. T\" ulu 3: Pushing frontiers
in open language model post-training. arXiv preprint
arXiv:2411.15124.

Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun
Wang, Xingxing Zhang, Haoyang Huang, Shaohan
Huang, Xiaolong Huang, Zeqiang Huang, Dongdong
Zhang, et al. 2024. Synthetic data (almost) from
scratch: Generalized instruction tuning for language
models. arXiv preprint arXiv:2402.13064.

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janard-
han Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel Ward,
and Yi Zhang. 2023. Tinygsm: achieving> 80% on
gsm8k with small language models. arXiv preprint
arXiv:2312.09241.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang,
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. 2024. MathGenie: Generating synthetic
data with question back-translation for enhancing
mathematical reasoning of LLMs. In Proceedings

of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2732-2747, Bangkok, Thailand. Association
for Computational Linguistics.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nak-
ago, and Motoki Abe. 2019. Graphnvp: An invertible
flow model for generating molecular graphs. ArXiv,
abs/1905.11600.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen
Sun, and Yoshua Bengio. 2022. Trajectory balance:
Improved credit assignment in gflownets. In Ad-
vances in Neural Information Processing Systems,
volume 35, pages 5955-5967. Curran Associates,
Inc.

Arindam Mitra, Luciano Del Corro, Shweti Mahajan,
Andres Codas, Clarisse Simoes, Sahaj Agarwal, Xuxi
Chen, Anastasia Razdaibiedina, Erik Jones, Kriti
Aggarwal, et al. 2023. Orca 2: Teaching small
language models how to reason. arXiv preprint
arXiv:2311.11045.

Arindam Mitra, Luciano Del Corro, Guoqing Zheng,
Shweti Mahajan, Dany Rouhana, Andres Codas,
Yadong Lu, Wei-ge Chen, Olga Vrousgos, Corby
Rosset, et al. 2024. Agentinstruct: Toward gener-
ative teaching with agentic flows. arXiv preprint
arXiv:2407.03502.

Allen Newell, Herbert Alexander Simon, et al. 1972.
Human problem solving, volume 104. Prentice-hall
Englewood Cliffs, NJ.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao,
Aditya Grover, and Stefano Ermon. 2020. Permuta-
tion invariant graph generation via score-based gen-
erative modeling. In International Conference on
Artificial Intelligence and Statistics.

OpenAl. 2024. Learning to reason with
IIms. https://openai.com/index/
learning-to-reason-with-1lms/. Accessed:

2024-12-20.

R OpenAl. 2023. Gpt-4 technical report. arxiv
2303.08774. View in Article, 2(5).

Mariya Popova, Mykhailo Shvets, Junier B. Oliva, and
Olexandr Isayev. 2019. Molecularrnn: Generating
realistic molecular graphs with optimized properties.
ArXiv, abs/1905.13372.

15941

https://api.semanticscholar.org/CorpusID:14249137
https://api.semanticscholar.org/CorpusID:14249137
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://doi.org/10.18653/v1/2024.acl-long.151
https://doi.org/10.18653/v1/2024.acl-long.151
https://doi.org/10.18653/v1/2024.acl-long.151
https://api.semanticscholar.org/CorpusID:167217783
https://api.semanticscholar.org/CorpusID:167217783
https://proceedings.neurips.cc/paper_files/paper/2022/file/27b51baca8377a0cf109f6ecc15a0f70-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/27b51baca8377a0cf109f6ecc15a0f70-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:211677799
https://api.semanticscholar.org/CorpusID:211677799
https://api.semanticscholar.org/CorpusID:211677799
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://api.semanticscholar.org/CorpusID:173188423
https://api.semanticscholar.org/CorpusID:173188423

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,
Fan Yang, and Mao Yang. 2024. Mutual reasoning
makes smaller llms stronger problem-solvers. arXiv
preprint arXiv:2408.06195.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Shivchander Sudalairaj, Abhishek Bhandwaldar, Aldo
Pareja, Kai Xu, David D Cox, and Akash Srivas-
tava. 2024. Lab: Large-scale alignment for chatbots.
arXiv preprint arXiv:2403.01081.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and
Furu Wei. 2024. Mathscale: Scaling instruction
tuning for mathematical reasoning. arXiv preprint
arXiv:2403.02884.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Triew H Trinh, Yuhuai Wu, Quoc V Le, He He,
and Thang Luong. 2024. Solving olympiad ge-
ometry without human demonstrations. Nature,
625(7995):476-482.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2609-2634, Toronto, Canada. Associ-
ation for Computational Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

Yuqing Wang and Yun Zhao. 2024. Metacognitive
prompting improves understanding in large language
models. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 1914-1926,
Mexico City, Mexico. Association for Computational
Linguistics.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng
Ding, Naman Jain, Zachary Mueller, Harm de Vries,
Leandro Von Werra, Arjun Guha, and Lingming
Zhang. 2024a. Selfcodealign: Self-alignment for
code generation. arXiv preprint arXiv:2410.24198.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2024b. Magicoder: Empowering
code generation with OSS-instruct. In Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning
Research, pages 52632-52657. PMLR.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Al-
balak, Anikait Singh, Chase Blagden, Duy Phung,
Rafael Rafailov, Nathan Lile, Dakota Mahan, et al.
2025. Towards system 2 reasoning in llms: Learn-
ing how to think with meta chain-of-though. arXiv
preprint arXiv:2501.04682.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-
tian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. 2024. Magpie: Alignment data
synthesis from scratch by prompting aligned 1lms
with nothing. arXiv preprint arXiv:2406.08464.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin
Yang, Mei Li, Min Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru
Zhang, and Zhi-Wei Fan. 2024a. Qwen2 technical
report. ArXiv, abs/2407.10671.

15942

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2024.naacl-long.106
https://doi.org/10.18653/v1/2024.naacl-long.106
https://doi.org/10.18653/v1/2024.naacl-long.106
https://proceedings.mlr.press/v235/wei24h.html
https://proceedings.mlr.press/v235/wei24h.html
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:271212307

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao,
Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
and Bin Cui. 2024b. Buffer of thoughts: Thought-
augmented reasoning with large language models.
Advances in Neural Information Processing Systems.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. ArXiv,
abs/2305.10601.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-

tions for large language models. arXiv preprint
arXiv:2309.12284.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Keming Lu, Chuangi Tan, Chang Zhou, and
Jingren Zhou. 2023. Scaling relationship on learning
mathematical reasoning with large language models.
arXiv preprint arXiv:2308.01825.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. Advances in Neural Information Processing
Systems, 35:15476-15488.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: LIm
self-training via process reward guided tree search.
arXiv preprint arXiv:2406.03816.

Yifan Zhang, Yang Yuan, and Andrew Chi-Chih Yao.
2024b. On the diagram of thought. arXiv preprint
arXiv:2409.10038.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

15943

https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:258762525

A More Details for Methods

A.1 Methods Overview for DAG Generation

Method for DAG Generation There are two
main deep generative approaches for graphs model-
ing. One is training deep neural networks to learn
the distribution of graphs from observations and
then sample new graphs from the learned distri-
bution, such as VAE-(Kipf and Welling, 2016),
normalizing flow- (Madhawa et al., 2019) and
diffusion-based methods(Niu et al., 2020). The
other treats graph generation as a sequence of
decision-making processes and formulates a rein-
forcement learning (RL) paradigm, which trains
a policy network to explore the action space in
order to maximize the rewards from the environ-
ment (Bengio et al., 2021a; Popova et al., 2019;
Cao and Kipf, 2018). Deep generative flow net-
works (GFlowNet) (Bengio et al., 2021a; Deleu
et al., 2022) pertain to this category, which trains a
policy network to generate a sequence of stochastic
actions which construct targets with probabilities
proportional to the defined reward function.

Comparison between GFlowNet and Other
Methods on DAG Generation (1) GFlowNet
can be used to model the sequential process of
thoughts. The nature of sequential probabilistic in-
ference that GFlowNets can perform make it a pow-
erful candidate in to our reasoning DAG modeling.
Similar idea has been practiced in (Hu et al., 2023).
(2) GFflowNet can be trained without reasoning
DAG dataset. Compared with learning a distribu-
tion from a pre-built dataset like the usual objective
for VAE-, normalizing flow- and diffusion-based
generative models, GFlowNet can be sufficiently
trained without pre-built reasoning DAG dataset
as long as the reward model can provide feedback
supervision to the policy network. (3) Better cover-
age of the reasoning DAG distribution. Through
leveraging the world-knowledge and great gener-
alization ability of LLM as a reward model, the
training quality of the policy network can be im-
proved by exploring the action space and request-
ing feedback from the powerful reward model as
many times as possible without concerning with
overfitting. This is the key to generate reasoning
DAGs beyond the distribution defined by current
available instruction datasets. (4) Better diversity
of generated reasoning DAGs. RL-based method
learns the generation policies with the highest re-
ward, which may result in the non-diversity failure

mode. However, our aim is to find diverse modes
with high rewards in the distribution of reasoning
DAGs. Benefit from the property of GFlowNet
that it samples a distribution of trajectories whose
probability is proportional to the given reward, it
has been proven that GFlowNet can discover more
diverse high reward modes than RL-based methods
in molecule design in previous research (Bengio
et al., 2021a). This motivates us to use GFlowNet
as the generative model for reasoning DAGs.

A.2 In-depth Background of H-GFlowNet

The training of H-GFlowNet shares similar
paradigm to traditional reinforcement learning,
where the policy model 7* generates samples Sy,
(terminal state of MDP) and the reward model R
provides the feedbacks R(Sy), but with different
interpretation and loss objectives.

The reason to call GFflowNet "flow" is because
of the analogy to water flowing through pipes with
multiple nodes. The pipes and nodes are structured
as a DAG topology as shown in Figure 2(b), in
which the pipe (7*) connects nodes (S). The
water enters the flow network through initial
state Sg, flowing through multiple intermediate
nodes S;_1, ...S; and finally flowing into different
sinks (terminal nodes) Sy. The percentage of
water reaching a specific terminal node Sy, is
proportional to R(Sr). And the amount of
water flowing from node S;_; to S; is modeled
by the policy network 7*. With this analogy,
one can derive the loss function based on the
following two constraints in (Bengio et al., 2021a):

* Intermediate node does not save water. The
amount of water entering a specific inter-
mediate node S;, i.e., ESZA T (Si|Si=1),
should be equal to the water flowing out of it
280, T (Si1[Si).

* The amount of water flowing into a specific
sink S;, is: ZSL—I 7*(SL|Sp—1) should be
equal to its reward R(S).

These two constraints collectively define the fol-

lowing loss function:

L) =(Y (X sis)-

1<i<L S;—1

2

ZW Si+1/S:))+ Y 7 (SL[Sr-1) R(SL))
Sit1 Sp—1

In the following, we explain this flow-matching
loss term-by-term with an intuitive example.

15944

Clarification to > g 7*(S;[S;—1) : This term
represents the in-flow to S; from all possible previ-
ous state S;_1. The Zsi—l exists because: There
potentially exist more states S;_; that can arrive S;
by performing one-step growth. For example, if S;
is a DAG represented as:

node: [0,1,2, 3]
edge: [(0,1),(0,2),(1,3)]

It is straightforward that S; has two possible
parental states S;_1. One is that removing node_3
and edge (1, 3), which leads to:

node: [0, 1, 2]
edge: [(0,1),(0,2)]

And another is that removing node_2 and edge
(0,2) to have:

node: [0, 1, 3]
edge: [(0,1), (1,3)]

In other words, by performing the policy model 7*
to both these two possible states S; 1 (since the
states are statistical), we can both arrive state S;.
Therefore, to calculate the inflow for S; we should
sum over all possible parental states S;_;, which
can lead to S;.

Clarification to > s, 7"(S;i41[S;) : Similarly,
The DAG S; may also have multiple successive
states S;41, which means that to calculate outflow
for S;, we need to sum over all of its successive
states S;41.

Clarificationto >, _, _;(...) : The sampling of
reasoning DAG is performed stepwisely. Thus we
need to sum over all the difference between the in-
and out-flows for each intermediate state S; before
reaching the final state.

Clarification to ;s 7*(SL|Sz-1) — R(SL)
>s, , T (SL[SL-1) means the total amount of in-
flow to the final state (the final DAG S;). This
term should be optimized to be equal to the reward
R(Sy1).

Overall, by minimizing L(6), we can enforce the
total in- and out-flow for intermediate states being
equal while ensure the probability of the final state
being proportional to the reward.

A.3 The Training Process for H-GFlowNet

We formalize the training process of H-GFlowNet
for reasoning DAG generation in Algorithm 2.

B Prompt Templates

B.1 Prompt for Hierarchical Cognitive Node
Extraction

The prompt for tagging seed data with three-level
cognitive nodes is shown in Table 8.

B.2 Prompt for Reward Model in GFlowNet

The prompt template for reward model of
GFlowNet is demonstrated in Table 9.

B.3 Prompt for Question Generation

The prompt templates for iterative question gen-
eration can be found in Table 10 for editor and
Table 11 for suggester.

B.4 Prompts for Response Generation

The prompt for reasoning structure aware response
generation with a Plan-and-Solve style is shown in
Table 12.

C Experimental Setup Details

C.1 Benchmarks and Baselines

Benchmarks We conduct comprehensive exper-
iments on various benchmarks focusing on the
core capabilities of LLMs, including instruction
following, math and code. For instruction fol-
lowing, we choose AlpacaEval2 (Dubois et al.,
2024) and IFEval (Zhou et al., 2023) as bench-
marks. For math task, we include GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021).
HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) are selected to evaluate code capabili-
ties.

Baselines For each task, we compare our method
with models from various sources. They include:
* Proprietary Models These include lead-
ing LLMs like OpenAI’s GPT-3.5 and GPT-
4 (OpenAl, 2023), Gemini Pro (Team et al.,
2024) and Claude 3.0.

* General Instruction-Tuned Models We com-
pare our methods with popular instruction-
finetuned models such as LLaMA3 (Dubey
et al., 2024), Tulu3 (Lambert et al., 2024) and
Qwen2 (Yang et al., 2024a), Mistral (Jiang
et al., 2023), which are trained on non-
disclosed large scale post-training datasets.
Besides, we also include models in which
synthetic datasets play a role, such as MAG-
PIE (Xu et al., 2024), Orca-2 (Mitra et al.,

15945

Algorithm 2 Training Process of H-GFlowNet with Flow-matching Loss

Require: Policy network: 7* = (7%, w¢ 7€), DAG growth step limits: (Lmin, Lmax), Training iterations:
num_iter, Reward model: R(S)

Ensure: Trained policy network: 7* = (7%, 7€, 7€)

: Iteration counter: iter <— 1

—_

2: while iter < num_iter do > Start training iterations
3 Growth steps: L ~ randint(Lyin, Lmax)

4 Growth step counter: ¢ < 0

5 # Lists for saving intermediate in- and out-flows:

6: current_state_list < [], parent_state_list <— [], reward_list < ||

7 while : < L do > Start to sample one reasoning DAG
8 Sample next state: S; ~ 7*(S;[S;-1)

9 Find all possible parent states of S;: gi_l = find_all_possible_parent_to_s_i(S;)

10: if : == L then

11: reward = R(Sr) > Calculate reward for final state
12: else

13: reward =0 > Intermediate node reward equals to 0
14: end if

15: # Append to lists:

16: current_state_list.append(S;)

17: parent_state_list.append(S;_1)

18: reward_list.append(reward)

19: Increment growth step counter: ¢ <— ¢ + 1

20: end while

21: # Calculate all possible next states for recorded current states (out-flow):
22: next_state_list = 7*(current_state_list)

23: # Calculate total out-flows:

24: total_out_flows = calculate_out_flow(current_state_list, next_state_list)
25: # Calculate total in-flows:

26: total_in_flows = calculate_in_flow(current_state_list, parent_state_list)
27: # Compute loss:

28: loss = (total_in_flows — total_out_flows + R(Sp))?

29: # Backpropagate gradients:

30: loss.backward()

31: Increment iteration counter: iter <— iter + 1

32: end while
33: return 7 = (7%, ¢, 7€)

15946

Prompt template for tagging three-level cognitive node for seed data.

You are give a <question, answer> pair and your task is to identify what capabilities of human are
utilized underlying this <question, answer> pair.
The capabilities in problem solving can be represented by a coarse-to-fine H-Schema of the nodes,
which are defined as abstract-level, competency-level and example-level nodes. In specific,
* abstract-level node: defined as the general cognitive ability of human in problem solving, such
as: perception, understanding, decision_making, verification, utilizing_knowledge, reasoning,
critical_thinking, creativity, planning and so on.

» competency-level node: defined as the more specific abilities within each abstract-level node.
For example, mathematics, physics, programming are competency-level nodes for utiliz-
ing_knowledge.

» example-level node: defined as how a competency-level node is used in the context of a specific
question. For example, the competency-level node mathematics can have addition, multiplication,
bayes_theorem_for_medical_test, law_of_large_number_for_insurance_price_estimation. They
must be related to a specific question.

Overall, the abstract-level node contributes to a general capability of human in problem solving, and
each abstract-level has multiple competency-level nodes that are corresponding to more specific abilities
and knowledge. Furthermore, the example-level node indicates how specific ability is applied in a
specific question.

Your are given the following <question, answer> pair:

Question: <<question>>

Answer: <<answer>>

Steps by Step Guidance:
* First you need have an overall understanding of the given question.
* Second, identify individual steps in the answer to solve the question.

* You need to tag each identified step with an example-level node with lower case phrases joined
with underscores. The example-level nodes should be specific to the question.

* Categorize each example-level node to its corresponding competency-level node and more general
abstract-level node with lower case phrases joined with underscores.

Please think step by step and put these three-level nodes for all steps in a JSON list: [{"example_level":
str, "competency_level": str, "abstract_level": str}].

Give your thinking process and the final answer in this format.
Thought

Stepl:

<understand_question>

Step2:

<identify_steps>

Step3:

<tag_instance_level_nodes>

Step4:

<categorize_competency_and_abstract_level_nodes>

Result

<your_final_json>

Table 8: Prompt for tagging seed data with three-level cognitive nodes. <<question>> and <<answer>> will be
replaced with question and answer from the seed data.

15947

Prompt template for reward model to train GFlowNet.

The reasoning steps required to solve a question can be formulated by Directed Acyclic Graphs (DAGsS).
You are an advanced language model tasked with analyzing DAGs to assess the quality of questions
they represent. Your objective is to evaluate and score the DAG based on the educational and cognitive
value of the question it represents, assigning a score from 0 to 10. A score of 0 implies a low-quality
question, and a score of 10 indicates a high-quality question.

Criteria for Evaluating Question Quality:

* Breadth of Inquiry (Score 0-10): Assess how well the DAG reflects diverse aspects of the question,
showcasing a broad range of concepts or topics.

* Depth of Understanding Required (Score 0-10): Evaluate the complexity and depth of the DAG.
A high-quality question should involve multi-layered reasoning or comprehension.

* Logical Structure and Cohesion (Score 0-10): Consider the clarity and cohesiveness of the
problem-solving steps. A well-structured DAG implies a clear, logical approach to the question.

¢ Critical Thinking and Key Steps (Score 0-10): Analyze the importance and role of pivotal nodes
in the DAG. High-quality questions often require critical thinking at key steps.

¢ Innovative Thinking Potential (Score 0-10): Evaluate the balance between convergent and diver-
gent paths in the DAG. A stimulating question encourages exploration and synthesis of ideas.

* Potential for Insight and Generalization (Score 0-10): Consider whether the DAG suggests patterns
or insights that could be generalized to other contexts, reflecting a question’s broader applicability
or innovation.

* Complex Problem Solving (Score 0-10): Examine opportunities within the DAG for engaging
with complex, parallel processes, reflecting questions that challenge conventional thinking.

Here is the given DAG: <<the_given_dag>>

Step by Step Guidance:
* Stepl: First, you need to understand how the main intent and the logic flows in the given DAG.
* Step2: Based on the understanding, please examine each above criteria one by one and give a
score for each criteria based on the statements in the criteria.
» Step3: Calculate the average score.
Please think step by step and put the final result in a JSON: {"score": float, "summary": <concise
paragraph summarizing the strengths and weaknesses of the question based on the DAG analysis.>}
Formulate your thinking process and the final answer in this format:
Thought
Step1:
<understand_the_dag>
Step2:
<examine_each_criteria_and_score_dag>
Step3:
<calculate_average_score>
Result
<your_final_json>

Table 9: Prompt template for scoring the reasoning DAG for GFlowNet training. <<the_given_dag>> will be
replaced by the nodes and edges of a reasoning DAG.

2023), Instruct-SkillMix (Kaur et al., 2024) Instruction-Tuned Models for Math For
and Evol-Instruct (Xu et al., 2023). math capabilities, we mainly compare the

15948

Editor prompt template for the initial question generation.

Design a question that requires one step of problem solving:

Step: <<steps>>

Requirements:
* First, you need to replace the step with more specific one based on its meaning.
* Generate a question that need only one step to be solved.
 The step information should not explicitly appear in the question.

* You should incorporate specific data in your question if necessary.
Return the question as the following format:
Analysis:
<your_analysis>
Question:
<generated_question>

Editor prompt template for the iterative question generation.

The thinking steps of a LLM for a question can be formulated by a directed acyclic graph (DAG). The
node of the DAG indicates the thought and action in a particular step and the edge of DAG shows the
dependency between nodes.
You are given a question and its corresponding problem-solving step as a DAG as follows:
Question: <<question>>
DAG: <<dag>>
Task:
The user wants to add one more step to the original DAG and the new DAG becomes: <<new_dag>>
Your task is to evolve the original question to a new question which uses the new DAG as the problem-
solving steps. The user give you some suggestion on how to achieve this evolving:
Suggestions: <<suggestion>>
Step by Step Guidance:
* You need to understand original question and original DAG.
* Understand the logic flow of the new DAG and what is the difference between original DAG and
the new DAG.
* Choose the best suggestion based on your above analysis.
» Based on this suggestion, you need to evolve the original question into a new question. The
problem-solving steps of new question should coincide with the new DAG.
Requirements:
* You should incorporate specific data into the question if necessary.
* You can change most content of the original question such that the evolved question should be
exactly solved under the guidance of the logic flow of the new DAG.
* Do not show any DAG’s information or logic flow of the new DAG in the evolved question.
* Try not to make the evolved question too verbose.
Please think step by step and give your thinking process and the final answer in this format.
Thought:
Stepl: <understand_question_and_dag>
Step2: <understand_logicflow_of_new_dag_and_difference>
Step3: <the_best_suggestion>
Step4: <rephraing_the_question>
Result:
<final_evolved_question>

Table 10: Prompt template for the editor for question generation.

15949

Suggester prompt template for the question generation.

The thinking steps of a LLM for a question can be formulated by a directed acyclic graph (DAG). The
node of the DAG indicates the thought and action in a particular step and the edge of DAG shows the
dependency between nodes.
You are given a question and its corresponding problem-solving step as a DAG as follows:
Question: <<question>>
DAG: <<dag>>
Task:
The user wants to add one more step to the original DAG and the new DAG becomes:
<<new_dag>>
Your task is to make suggestions on how to the evolve original question, such that the new DAG can be
used as the problem-solving steps to solve the evolved question.
Step by Step Guidance:

* You need to understand the original question and original DAG.

* Understand the logic flow of the new DAG and what is the difference between original DAG and
the new DAG.

* Based on the differences between previous and new logic flow of DAG, make 3 ~ 5 specific
suggestions on how to evolve the original question such that the problem-solving steps of evolved
question can be represented as the new DAG.

Output Format:

Briefly return the final suggestions in a List: ["<first_suggestion>", "<second_suggestion>", ...].
Please think step by step and give your thinking process and the final answer in this format.
Thought:

Stepl: <understand_question_and_dag>

Step2: <understand_logicflow_of_new_dag_and_difference>

Step3: <evolve_suggestions>

Result:

<your_final_list_without_comments>

Table 11: Prompt template for the suggester for question generation.

Plan-and-Solve style prompt template for the response generation.

Give the question: <<question>>

Here is a plan to solve the question: <<plan>>

Please follow the first understand the question and the plan. Then solve the question step by step, and
show the answer.

Table 12: Generate the response based on the plan derived from the reasoning DAGs.

models especially trained on synthetic math-
ematical reasoning dataset, which includes
MathGenie (Lu et al., 2024), MathScale (Tang
et al., 2024), MetaMath (Yu et al., 2023) and
WizardMath (Luo et al., 2023a). These mod-
els are trained based on LLaMA?2 (Touvron
et al., 2023) with supervised finetuning.

* Instruction-Tuned Models for Code
This series of models include CodeLlama-
Instruct (Roziere et al., 2023) and DeepSeek-

15950

Coder-Instruct (Guo et al., 2024) which
are fine-tuned on large scale coding in-
structions. Besides, we also present the
performance of WizardCoder (Luo et al.,
2023b), MagicCoder (Wei et al., 2024b) and
SelfCodeAlign (Wei et al., 2024a) which are
post-trained on synthetic datasets especially
focusing on programming capabilities.

C.2 Model training details

GFlow Training Details Table 13 presents the
parameters for constructing and training the hi-
erarchical GFlowNet. We train H-GFlowNet on
NVIDIA Tesla A100 GPUs and the reward model
in H-GFLowNet is Qwen2.5-72B-Instruct, which is
deployed on the same cluster through vllm (Kwon
et al., 2023b). We adopt most parameters in vanilla
GFlowNet (Bengio et al., 2021a) with the some
adaptations.

Hyper-parameter Value
Learning Rate 5x107*
Iterations 250k

Maximum Dag Depth 10
Adamw Optimizer Bs = (0.9,0.999)

e=10"%
Batch Size 4
Model-Structures Value
Hidden 256 for each hierarchy
GNN Layers 10 for each hierarchy
Loss € 2.5e7°
Reward T' 10
Reward 3 10
Exploration Prob. 0.05

Leaf loss coeff. A\ 10
Rmin 0.01

Table 13: The detailed parameters for constructing and
training of the H-GflowNet.

LLM Training Details All experiments are con-
ducted on NVIDIA Tesla A100 GPUs. All models
are open-sourced, which are trained through fully
supervised fine-tuning for all these 3 tasks.
¢ Fine-tuning LLaMA3 (Dubey et al., 2024)
Series Models (Instruction following task):
— Optimizer: AdamW
— LR Schedule: Cosine
- LR: 2¢7°
— Maximum Sequence Length: 4096
— Effective Batch Size: 32 for 8B; 4 for
70B
— Training Epochs: 2
* Fine-tuning LLLaMA2 (Touvron et al., 2023)
Series Models (Math task):
— Optimizer: AdamW
— LR Schedule: Cosine
— LR: 2e7, with a 3% learning rate warm-
up
— Maximum Sequence Length: 2048
— Effective Batch Size: 128

Datasets 13-Gram Match 8-Gram Match Total Size
AlpacaEval2 1 4 40k
GSMB8K 5 44 20k
HumanEval 2 32 20k

Table 14: The contamination test of our datasets to
evaluation benchmarks measured by n-gramm matches.

— Training Epochs: 3
* Fine-tuning DeepSeek-Coder (Guo et al.,
2024) Series Models (Code task):
— Optimizer: AdamW
— LR Schedule: Cosine
- LR: 2¢7°
— Maximum Sequence Length: 2048
— Effective Batch Size: 128
— Training Epochs: 3

D Contamination Test

We use the method proposed in (Liu et al,
2023) to measure the 8- and 13-gram matches
between our synthetic datasets and evaluation
benchmarks for instruction-following (AlpacaE-
val2), math (GSM8K) and coding (HumanEval)
tasks. The experimental results are shown in the
Table 14. From this table, we can see that our
synthetic datasets do not suffer from data leakage
problem.

E Cost Analysis

In our data synthesis pipeline, for building the H-
Schema and the reward function for H-GFlowNet
training, we use the self-deployed Qwen2.5-72B-
Instruct, which is cost-effective. Moreover, be-
cause the H-Schema and H-GFlowNet are built
once, we can effectively generate reasoning DAGs
for down-stream tasks with filtering by node names.
Furthermore, we use GPT-4 to generate instructions
and responses, in which we estimate that it costs
$18 for generating 1%k samples.

F Case Study

From Figure 7 we showcase a sampled DAG from
H-GFlowNet. It can be found that the generated
DAG can cover diverse skills in human problem-
solving, such as in mathematics, finance and rea-
soning. Besides, these skills are logically con-
nected with rich divergent and convergent con-
nections. For example, hypothesis testing and
quadratic inequality both contribute to the find
causal pattern in sequence node, which indicates

15951

that find causal pattern in sequence has to digests
the information from both of its parental node and
then conduct corresponding causal pattern recogni-
tion. Moreover, Table 15 shows how the iterative
question construction pipeline is performed based
on this reasoning DAG. For instance, at iteration 4,
we need to append find causal pattern in sequence
after hypothesis testing. The suggester provides 5
specific options, and editor incorporates time-series
data of past allocations into the original question.

15952

‘ understanding information ‘

_— ~
utilizing knowledge \\

utilizing knowledge

e
T~

analyzing information
critical thinking

.

(a) abstract-level (b) competency-level (c) example-level

Figure 7: A case study of sampled DAGs from H-GFlowNet corresponding to the each-level of H-Schema.

15953

Iteration: 0

DAG:

node: ["understanding_financial_terms_and_constraints"], edge: []

Initial
Question

A company has a marketing budget of $50,000 for the next quarter. If they allocate 40%
of this budget to digital advertising, how much money will be left for other marketing
activities?

Iteration: 1

DAG:

node: ["understanding_financial_terms_and_constraints", "modern_portfolio_theory"]
edge: [[0, 1]]

Suggester:

["Add a risk assessment component to the budget allocation process.", "Include expected
ROI for different marketing activities to optimize allocation.", "Introduce the need for di-
versifying marketing efforts across multiple channels.", "Ask how to strategically allocate
the remaining budget among various activities.", "Incorporate scenario analysis affecting
budget decisions."]

Editor:

A company has a marketing budget of $50,000 for the next quarter. After allocating 40%
to digital advertising, they want to distribute the remaining budget across three channels:
social media campaigns (12% risk, 8% ROI), influencer partnerships (18% risk, 10%
ROI), and email marketing (6% risk, 4% ROI). To minimize overall risk while ensuring a
weighted average ROI of at least 6.5%, how much should they allocate to each channel?

Iteration: 2

DAG:

node: ["understanding_financial_terms_and_constraints”, "modern_portfolio_theory",
"quadratic_inequality"] edge: [[O, 1], [0, 2]]

Suggester:

["Include quadratic risk variance minimization alongside linear ROI constraints", "Add a
quadratic constraint on the combined risk variance of allocations", "Introduce a penalty
term in the risk calculation requiring quadratic programming", "Require balancing ROI
and risk with quadratic weighting"]

Editor:

A company has a marketing budget of $50,000 for the next quarter. After allocating
40% to digital advertising, they want to distribute the remaining budget across three
channels social media campaigns (historical risk variance of 0.015, 8% ROI), influencer
partnerships (historical risk variance of 0.025, 10% ROI), and email marketing (historical
risk variance of 0.005, 4% ROI). The covariance between social media and influencer
risks is 0.008, social media and email risks is -0.002, and influencer and email risks is
0.004. To minimize the total risk variance of the allocation while ensuring a weighted
average ROI of at least 6.5%, how much should they allocate to each channel?

DAG:

Iteration: 3
node: ["understanding_financial_terms_and_constraints", "modern_portfolio_theory",
"quadratic_inequality", "hypothesis_testing"] edge: [[0, 1], [0, 2], [1, 3]]

Suggester:

["Add a requirement to statistically validate if the optimal allocation’s risk-return profile
significantly outperforms a previous quarter’s allocation using historical data.", "Introduce
a need to test the significance of the ROI difference between influencer partnerships and
social media campaigns to justify their allocation proportions.", "Require verification that
the covariance assumptions between channels are statistically valid based on historical risk
data before finalizing the allocation.", "Include a step to compare the optimized portfolio’s
risk variance against a benchmark variance (e.g., industry standard) using hypothesis
testing to ensure compliance."]

15954

Editor:

A company has a marketing budget of $50,000 for the next quarter. After allocating
40% to digital advertising, they want to distribute the remaining budget across three
channels social media campaigns (historical risk variance of 0.015, 8% ROI), influencer
partnerships (historical risk variance of 0.025, 10% ROI), and email marketing (historical
risk variance of 0.005, 4% ROI). The covariance between social media and influencer risks
is 0.008, social media and email risks is -0.002, and influencer and email risks is 0.004.
To minimize the total risk variance of the allocation while ensuring a weighted average
ROI of at least 6.5%, how much should they allocate to each channel? Additionally,
the company requires statistical validation at a 95% confidence level that the optimized
allocation’s risk variance is lower than the industry benchmark variance of 0.012.

Iteration: 4

DAG:

node: ["understanding_financial_terms_and_constraints", "modern_portfolio_theory",

"non non

"quadratic_inequality", "hypothesis_testing", "find_causal_pattern_in_sequence"] edge:
([0, 1], [0, 2], [1, 3], [3, 4]

Suggester:

["Require identifying causal relationships between historical allocation sequences and
risk outcomes after hypothesis testing.", "Incorporate time-series analysis of past budget
allocations to detect causal patterns influencing risk and ROL.", "Add a causal inference
step to validate that the optimized allocation strategy directly causes reduced risk vari-
ance.", "Introduce a requirement to analyze sequential quarterly data to find causal drivers
of marketing channel performance.", "Mandate causal discovery from historical data to

ensure allocations’ effects are not merely correlational but causally linked to outcomes."]

Editor:

A company has a marketing budget of $50,000 for the next quarter. After allocating
40% to digital advertising, they want to distribute the remaining budget across three
channels social media campaigns (historical risk variance of 0.015, 8% ROI), influencer
partnerships (historical risk variance of 0.025, 10% ROI), and email marketing (historical
risk variance of 0.005, 4% ROI). The covariance between social media and influencer
risks is 0.008, social media and email risks is -0.002, and influencer and email risks is
0.004. Historical quarterly data shows sequences of past allocations (e.g., 2022-Q1 [25%,
35%, 40%], 2022-Q2 [30%, 30%, 40%]) and corresponding risk variances. To minimize
total risk variance while ensuring a weighted average ROI of at least 6.5%, how much
should they allocate to each channel, and which allocation patterns from past data causally
drive reduced risk?

DAG:

Iteration: 5
node: ["understanding_financial_terms_and_constraints", "modern_portfolio_theory",
"quadratic_inequality", "hypothesis_testing", "find_causal_pattern_in_sequence"] edge:
([0, 11, [0, 2], [1, 3], [3, 4], [2, 4]]

Suggester:

["Require comparing optimized allocations with historical patterns to identify which past
allocations align with the optimal risk-return tradeoff derived from quadratic constraints.",
"Introduce a need to validate if historical allocations satisfy the quadratic inequality condi-
tions derived for the current ROI constraint.”, "Ask to integrate the quadratic optimization
results with causal pattern discovery to filter past allocations that are mathematically feasi-
ble under the new constraints.", "Add a requirement to reconcile discrepancies between
theoretical optimal allocations (via quadratic programming) and empirically successful
historical patterns through causal analysis."]

15955

Editor:

A company has a $50,000 marketing budget, allocating 40% to digital ads first. The
remaining funds go to social media (0.015 risk variance, 8% ROI), influencer partnerships
(0.025 risk variance, 10% ROI), and email marketing (0.005 risk variance, 4% ROI).
Covariances between risks are 0.008 (social-influencer), -0.002 (social-email), and 0.004
(influencer-email). Historical allocations include 2022-Q1 [25%, 35%, 40%], 2022-Q2
[30%, 30%, 40%], and 2023-Q1 [20%, 40%, 40%], with observed risk variances of
0.012, 0.014, and 0.011 respectively. Determine the optimal allocations to minimize
total risk variance while guaranteeing 6.5% ROI. Additionally, identify which historical
allocations satisfy the ROI constraint’s quadratic inequality conditions and explain how
these mathematically compliant patterns causally correlate with lower historical risks.

Iteration: 6

DAG:

node: ["understanding_financial_terms_and_constraints", "modern_portfolio_theory",

non

"quadratic_inequality", "hypothesis_testing", "find_causal_pattern_in_sequence", "dou-
ble_check_question_constraints"] edge: [[0, 1], [0, 2], [1, 31, [3, 4], [2, 4], [4, 5]]

Suggester:

["Introduce an additional constraint requiring verification of budget reallocation limits per
channel post-analysis", "Require cross-validation of ROI constraints against multiple his-
torical periods after identifying causal patterns”, "Add a secondary risk tolerance threshold
that must be confirmed after initial optimization", "Include a regulatory compliance check
step after establishing causal patterns to ensure allocations meet new disclosure laws",
"Introduce a dynamic ROI target adjustment mechanism that needs post-optimization
verification"]

Editor:

A company has a $50,000 marketing budget, allocating 40% to digital ads first. The
remaining funds go to social media (0.015 risk variance, 8% ROI), influencer partnerships
(0.025 risk variance, 10% ROI), and email marketing (0.005 risk variance, 4% ROI).
Covariances between risks are 0.008 (social-influencer), -0.002 (social-email), and 0.004
(influencer-email). Historical allocations include 2022-Q1 [25%,35%,40%], 2022-Q2
[30%,30%,40%], 2022-Q3 [28%,32%,40%], 2023-Q1 [20%,40%,40%], and 2023-Q2
[22%,38%,40%], with observed risk variances of 0.012, 0.014, 0.013, 0.011, and 0.010
respectively. Determine the optimal allocations to minimize total risk variance while
guaranteeing 6.5% ROI. Identify which historical allocations satisfy the ROI constraint’s
quadratic inequality conditions and explain their correlation with lower risks. Finally,
validate whether these compliant patterns consistently hold when cross-referenced against
Q3 2022 and Q2 2023 performance data, specifying any deviations requiring constraint
relaxation.

DAG:

Iteration: 7
node: ["understanding_financial_terms_and_constraints”, "modern_portfolio_theory",
"quadratic_inequality", "hypothesis_testing", "find_causal_pattern_in_sequence", "dou-
ble_check_question_constraints", "balancing_benefits_and_risks"] edge: [[0, 1], [0, 2], [1,

31, [3, 4], [2, 4], [4, 5], [5, 6]]

Suggester:

["'Require maximizing ROI alongside minimizing risk, necessitating a balance between the
two objectives in the optimal allocation.", "Introduce a trade-off parameter between risk
and ROI, asking for allocations that optimize a combined utility function considering both
factors.", "Add a secondary constraint on ROI variability, requiring the solution to balance
between achieving consistent returns and minimizing risk variance.", "Include a scenario
where the company seeks a Pareto-optimal solution, explicitly demanding analysis of
risk-benefit equilibria post-constraint verification."]

15956

Editor:

A company has a $50,000 marketing budget, allocating 40% to digital ads first. The
remaining funds go to social media (0.015 risk variance, 8% ROI), influencer partnerships
(0.025 risk variance, 10% ROI), and email marketing (0.005 risk variance, 4% ROI).
Covariances between risks are 0.008 (social-influencer), -0.002 (social-email), and 0.004
(influencer-email). Historical allocations include 2022-Q1 [25%,35%,40%], 2022-Q2
[30%,30%,40%], 2022-Q3 [28%,32%,40%], 2023-Q1 [20%,40%,40%], and 2023-Q2
[22%,38%,40%], with observed risk variances of 0.012, 0.014, 0.013, 0.011, and 0.010
respectively. Determine Pareto-optimal allocations balancing risk minimization and ROI
maximization. Identify which historical allocations lie on the Pareto frontier and explain
their risk-return trade-offs. Validate if these allocations maintain Pareto efficiency when
cross-verified with Q3 2022 and Q2 2023 performance data, specifying any deviations
necessitating adjustments to the risk-return equilibrium.

Table 15: The example to show the iterative mechanism
of suggester-editor workflow for question generation.
The outputs marked with red color are chosen sugges-
tions which are used to evolve the question by the editor.

G Error Analysis

In this section, we inspect the failures of the an-
swers in our synthetic method and analyze the
causes of errors. Most of the failed cases come
from the subsequent solution-solving steps. Even
with a reasonable question and plan generated by a
high-quality DAG sampled from our H-GFlowNet,
LLM can not solve the question correctly due to its
limited capabilities to solve difficult questions. The
following are two typical examples that provide
insight into the details of errors. Those errors can
be potentially addressed by combining reasoning
DAGs with more advanced inference methods such
as MCTS.

In error Case 1, the plan and the solution have al-
ready divided the question into smaller steps using
the Product Rule, and they further adjust the strat-
egy to use the Chain Rule after realizing that v(z)
is a composition function. However, the response
model still gives an incorrect derivative for v(x),
although our reasoning DAG provides a correct
solution plan.

The error Case 2 generated question asks respon-
dents to compute the probability that an incoming
request is blocked. By examining the plan derived
from our DAG and the intermediate results, we can
verify its correctness to lead to the final solution.
However, the LLM struggles with complex com-
putations, particularly when calculating the exact
value in scientific notation in the final step.

15957

Error Case 1

DAG:

nn

node: ["access_external_resources”,"identifying_patterns_or_series","identify_differen

s","detailing_tasks_into_smaller_steps","replicating_text_without_ alteration" "identif
y_ keywords or_highlights","matching_information_to_question","adjusting_strategy_b
ased_on_new_insights","confirming_accuracy_and_correction","mathematics_calculus

"1,
edge: [[0,1],[1,2],[2,3],[3,4],[4,5].[4,6],[6,71,[4.8],[3,9]1]

Question

Find the derivative of the function f(z) = x> cos **.

Plan

--- we will use the product rule. --- Moreover, for v(x), we need to use the Chain Rule -
We will calculate the derivatives of u(x) and v(x) separately and then apply the product
rule and the chain rule for v(x).

Answer

Certainly! Let’s go through the problem step by step.
Problem: Find the derivative of the function f(x) = 23 - cose
Step by-Step Solution:

2x

Step 4: Apply the Chain rule formula For the function v(z) = cos €2*

rule, - = —2sin(e?®)
Final Answer:
The derivative of f(z) = 23 - cos e?? is: (f(gc)) = —223sin €?® + 322 cos e**

, using the chain

Error Case 2

DAG:

node: ["brainstorm_innovative_designs","apply_advanced_network_troubleshooting_te
chniques","assess_the_problem_statement","utilize_STEM_knowledge_Mathematics","
considering_infrastructure_compatibility","deductive_reasoning","aggregating_data",
matching_information_to_question","follow_and_apply_specific_formats_in_the_answ
ern]

edge: [[0,1],[1,2],[2,3],[3,4],[2,5],[2,6],[2,7],[1,8]]

nn

Question

An online shopping website wants to improve their trading service network. It receives an
average of 1800 trading requests per hour. Each request takes an average of 2 minutes to
process on its CPU servers. The website havs 70 CPUs available. Suppose the trading
service network is an M /M /k/k system. Calculate the probability that an incoming
request is blocked step by step. Provide your answer in scientific notation.

Plan

--- use Erlang B formula to calculating the probability that all servers are busy in such a
system. Erlang B is given by:
Phtock = wlM

> n=o(A™/nl)
where offered traffic A = %, A is the arrival rate and p is the service rate per server. By
substituting the formula with the given value, we can calculate the probability that an

incoming request is blocked.

Answer

Plug these into the Erlang B formula:

calculatlng T > and Zn 0 0(A™/n!) requires handling very large numbers computation-
ally, often ass1sted by specialized software or calculators.
Pyiock = 1.5 x 107°

Table 16: 2 examples to show the error cases in our
generated data. The outputs marked with red color are
where the incorrectness happen.

15958

