TACO-RL: Task Aware Prompt Compression Optimization with
Reinforcement Learning

Shivam Shandilya Menglin Xia Supriyo Ghosh Huiqiang Jiang
Jue Zhang Qianhui Wu Victor Rithle Saravan Rajmohan
Microsoft

{t-shandilyas, mollyxia, supriyoghosh}@microsoft.com

Abstract

The increasing prevalence of large language
models (LLMs) such as GPT-4 in various appli-
cations has led to a surge in the size of prompts
required for optimal performance, leading to
challenges in computational efficiency. Prompt
compression aims to reduce the inference cost
by minimizing input tokens without compro-
mising on the task performance. However, ex-
isting prompt compression techniques either
rely on sub-optimal metrics such as informa-
tion entropy or model it as a task-agnostic to-
ken classification problem that fails to capture
task-specific information.

To address these issues, we propose a novel
and efficient reinforcement learning (RL) based
task-aware prompt compression method. To
ensure low latency requirements, we leverage
existing Transformer encoder-based token clas-
sification model while guiding the learning
process with task-specific reward signals us-
ing lightweight REINFORCE algorithm. We
evaluate the performance of our method on
three diverse and challenging tasks including
text summarization, question answering and
code summarization. We demonstrate that our
RL-guided compression method improves the
task performance by 8% - 189% across these
three scenarios over state-of-the-art compres-
sion techniques while satisfying the same com-
pression rate and latency requirements.

1 Introduction

In recent years, Large Language Models (LLMs)
have experienced a surge in popularity due to their
impressive performance on a wide range of natu-
ral language processing tasks (Brown et al., 2020;
Chowdhery et al., 2023), ranging from question
answering (Ushio et al., 2023) to code genera-
tion (Chen et al., 2021) to incident management
(Ahmed et al., 2023; Zhang et al., 2024; Goel et al.,
2024). To effectively utilize these models, various
prompting techniques have been introduced, such

as In-Context Learning (ICL) (Brown et al., 2020),
Chain-of-Thought (CoT) (Wei et al., 2023), and Re-
trieval Augmented Generation (RAG) (Lewis et al.,
2021). While these techniques improve the perfor-
mance and efficacy of LLMs by providing them
with relevant context and guidance, these lead to
increase in input prompt context length which leads
to higher inference cost and latency requirements.

To address this issue, several prompt compres-
sion techniques (which attempt to reduce the con-
text length without losing essential information)
have been introduced. These existing work can
be broadly categorized into two major threads: (a)
Task-aware compression models (Chuang et al.,
2024), that generally finetune a task-specific de-
coder model that leads to high inference latency
and cost; and (b) Task-agnostic compression mod-
els that either removes tokens/lexical units (Jiang
et al., 2023; Li et al., 2023) based on their informa-
tion entropy or train a supervised binary token clas-
sification model using expert compressed examples
(Pan et al., 2024). Therefore, existing solutions ei-
ther fail to capture task-specific behaviors or lead to
high inference cost and latency. These challenges
lead to two important research questions:

* How can we design a prompt compression
model that effectively leverages bidirectional
context (Devlin et al., 2019) and provides low
inference latency (Q1)?

* To minimize the computational cost needed
for adapting this model to a new task, how can
we efficiently train a model with proper guid-
ance from task-specific reward signals (Q2)?

To address Q1, we build our work on the foun-
dation laid by LLMLingua-2 (Pan et al., 2024)
which trained a task-agnostic (while being infer-
ence latency-aware) encoder-based transformer
model in a supervised setting for binary classifi-
cation of input tokens where the target compressed

1582

Findings of the Association for Computational Linguistics: ACL 2025, pages 1582-1597
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

QA Task

Compression using LLMLingua-2

Question
"How many people per square mile lived in Fresno in 2010?"

Answer
'4,404.5 people"

Task Specific Compression

Original Context

The 2010 United States Census reported that Fresno had a population of 494,665.
The population density was 4,404.5 people per square mile (1,700.6/km?). The racial
makeup of Fresno was 245,306 (49.6%) White, 40,960 (8.3%) African
American, 8,525 (1.7%) Native American, 62,528 (12.6%) Asian (3.6% Hmong, 1.7%
Indian, 1.2% Filipino, 1.2% Laotian, 1.0% Thai, 0.8% Cambodian, 0.7%
Chinese, 0.5% Japanese, 0.4% Vietnamese, 0.2% Korean), 849 (0.2%) Pacific
Islander, 111,984 (22.6%) from other races, and 24,513 (5.0%) from two or
more races. Hispanic or Latino of any race were 232,055 persons (46.9%). Among the
Hispanic population, 42.7% of the total population are Mexican, 0.4% Salvadoran,
and 0.4% Puerto Rican. Non-Hispanic Whites were 30.0% of the population in 2010,
down from 72.6% in 1970.

D
"\
o [ENCODER

Binary Labels

2x compression

LLMLingua Compressed Text

2010 Census Fresno,665 4 245,306 White 40,960.3% African
American 8,525.7% Native American 62,528 Asian (3.6% Hmong
1.7% Indian 1.2% Filipino 1.2% Laotian 1.0% Thai 0.8%
Cambodian 0.7% Chinese 0.5% Japanese 0.4% Vietnamese 0.2%
Korean), Pacific Islander 111,984 other 24,513 two or more
Hispanic Latino,055 42.7% Mexican 0.4% Salvadoran 0.4% Puert
Rican Non-Hispanic 30.0% 72.6% 1970

GPT3.5
)

Original Context

The 2010 United States Census reported that Fresno had a population of 494,665. The
population density was 4,404.5 people per square mile (1,700.6/km?). The racial
makeup of Fresno was 245,306 (49.6%) White, 40,960 (8.3%) African American,
8,525 (1.7%) Native American, 62,528 (12.6%) Asian (3.6% Hmong, 1.7% Indian,
1.2% Filipino, 1.2% Laotian, 1.0% Thai, 0.8% Cambodian, 0.7% Chinese, 0.5%
Japanese, 0.4% Vietnamese, 0.2% Korean), 849 (0.2%) Pacific Islander, 111,984
(22.6%) from other races, and 24,513 (5.0%) from two or more races. Hispanic or
Latino of any race were 232,055 persons (46.9%). Among the Hispanic population,
42.7% of the total population are Mexican, 0.4% Salvadoran, and 0.4% Puerto Rican.
Non-Hispanic Whites were 30.0% of the population in 2010, down from 72.6% in
1970.

Task Specific B
RL Feedback :< ‘®p |ENCODER
o

1
Binary Labels
v

2X compression

Task Aware Compressed Text

2010 Census reported Fresno population 494,665. population
density was 4,404.5 people per square mile (1,700.6/km2). racial
makeup Fresno 245,306 (49.6%) White, 40,960 (8.3%) African
American, 8,525 (1.7%) Native American 62,528.6%) Asian 849
(0 Pacific Islander 111,984.6% 24,513 Hispanic 232,055 (46.9%).
42.7% Mexican 0.4% Salvadoran 0.4% Puerto Rican. Non-
Hispanic Whites were 30.0% in 2010, down from 72.6% in 1970

GPT3.5

"4,404.5 people"

Task Specific RL Feedback

Rewards REINFORCE

Original Context GPT3.5 Metrics
(BLEU, @-
Compressed Context GPT 3.5 Rouge, F1)

Figure 1: Encoder fine-tuning with RL using task specific reward signals on a Q/A task. The RL-guided compression
model is able to understand the specificity of the question and retains the relevant context in the compressed prompt.

prompt is generated using an expensive and effi-
cient LLM model such as GPT-4 (Achiam et al.,
2023). We propose a novel approach, Task-Aware
Prompt Compression Optimization with Reinforce-
ment Learning (TACO-RL), to guide the finetuned
generic encoder model with task-specific reward
signal (to address Q2) using on-policy reinforce-
ment learning technique. As shown in Figure 1,
during the model alignment process, we generate
the task output from both the original and com-
pressed prompt, and compute the task-specific re-
ward signal using the divergence between these
two outputs. These reward signals are then used
to update the base encoder model using on-policy
REINFORCE algorithm (Williams, 1992).

To illustrate the efficacy of our proposed method
against state-of-the-art (SoTA) prompt compres-
sion methods, we conducted extensive experiments
on three diverse and challenging tasks on open-
source benchmark datasets: (a) text summarization
on MeetingBank dataset; (b) question-answering
tasks on Squad dataset and (c) code summarization
on CodeSearchNet dataset. The empirical results
across these tasks demonstrate that our RL-guided
prompt compression method can improve the task
performance by 8% - 189% over LLMLingua-2 and

other benchmark approaches while ensuring same
compression rate and inference cost or latency. To
that end, our key contributions are as follows:

* We introduce a latency-aware encoder based
Transformer model for prompt compression
that is aligned with task-specific objectives
and leads to low inference cost.

* We propose an efficient task-aware prompt
compression model that leverages task spe-
cific reward signals to fine-tune base lan-
guage models using on-policy RL (i.e., REIN-
FORCE algorithm).

* We conduct extensive experiments on three
diverse tasks to evaluate the effectiveness of
our proposed method and demonstrate that
our TACO-RL method provides significant
improvements over SOTA methods. We will
open-source the code upon publication.

2 Related Work

Prompt compression for LLMs. Prompt com-
pression shortens the input prompt to improve the
inference efficiency of LLMs over long context.
The form of the compressed prompts can vary, in-
cluding token pruning, abstractive summarization,

1583

prompt paraphrasing, or soft prompt tuning. For
example, token pruning trims less important tokens
from the prompt (Li et al., 2023), while abstrac-
tive summarization or prompt paraphrasing aims
to condense the semantics into shorter concise text
(Xu et al., 2024). Soft prompt tuning, on the other
hand, converts the original prompt into a vector
(Mu et al., 2024). Among these methods, token
pruning has proven to be particularly effective due
to its flexibility and smaller computational over-
head compared to other methods. Prior work on
prompt pruning, such as Selective Context (Li et al.,
2023) and LLMLingua (Jiang et al., 2023, 2024),
use heuristic metrics to compute token importance
and trim less important tokens. LLMLingua-2 (Pan
et al., 2024) trains a transformer-based classifier on
compression data distilled from GPT-4 to decide
whether to prune a token. While these task-agnostic
prompt compression methods are effective and gen-
eralize to some tasks, they still struggle to model
token importance in specific tasks or domains.

RL-based prompt compression. RL-based
methods have also been applied to prompt compres-
sion. For example, Jung and Kim (2024) leverage
RL to train an MLP classifier conditioned on the
task language model for token pruning. However,
their compressor depends on the hidden representa-
tions of a white-box model, and the prompts they
consider are usually short instructions rather than
long contexts. Chuang et al. (2024) use RL to train
a generative language model to compress prompts,
which typically has a high computational overhead
for compression. They consider classification
tasks where there is a more straightforward signal
for reward. Huang et al. (2024) apply context
pruning to in-context learning (ICL) examples,
training a hierarchical pruner with RL to select
more relevant ICL examples and preserve more
important tokens in the selected examples for
better demonstrations in mathematical reasoning.
In addition to the different design choices and
compression goals, our work demonstrates how we
effectively combine offline and online training to
obtain a task-aware prompt compression model
that can better model token importance with low
inference cost and latency.

3 Background

In this section, we provide an overview of the
prompt compression and reinforcement learning
(RL) framework, which are used as building blocks

for our method.

3.1 Prompt Compression

The goal of prompt compression is to reduce the
context length without losing the essential informa-
tion of the original prompt. To ensure low latency
and inference cost, we build our work on recently
introduced LLMLingua-2 (Pan et al., 2024) frame-
work that translates the problem into a binary to-
ken classification problem using an encoder-based
Transformer model.

A key innovation in our approach is leveraging
bidirectional context to make more informed com-
pression decisions. Unlike unidirectional models,
the encoder model captures contextual information
from both left and right directions, enabling a more
nuanced understanding of each token’s importance.
This bidirectional context is crucial in determining
the relevance of a token within the broader prompt
context.

Given an input prompt X = (z1,22,...,ZN)
with N tokens, the compression process is defined
as:

H = Encoder(X) € RN

where H = [hy,hy,....hy], and h; € R? is the
encoded representation of token x;.

The contextual representation h; captures the to-
ken’s significance by considering its interactions
with surrounding tokens through self-attention
mechanisms. This means the probability of pre-
serving or removing a token is not determined in
isolation, but by its relationship to the entire prompt
context.

For each token, a binary classification probabil-
ity is computed:

pi = softmax(Wh; + b)

where W € R?*? and b € R? are learnable pa-
rameters. The compression decision y; for the i-th
token is determined by:

o 1 ifp;[1] > 0.5
vi= 0 otherwise

The compressed prompt X, is then constructed
by retaining only the tokens where y; = 1. The
compression effectiveness is computed by Com-
pression Rate (17 = | X,|/|X|), while the Compres-
sion Ratio (C.R. = 1/7) represents the factor by
which the prompt is compressed.

1584

3.2 REINFORCE Algorithm

Reinforcement learning (RL) has proven to be ef-
fective for domain alignment of language mod-
els. The seminal work of Ouyang et al. (2022)
demonstrate that the learning of decoder based
Transformer (e.g., GPT) models can be represented
as bandit environment and off-policy RL algo-
rithms such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017) with task specific reward
signals can be an effective tool for domain align-
ment. However, as off-policy RL is generally com-
putationally expensive and sample inefficient, we
primarily focus on guiding our compression model
with on-policy RL method. The REINFORCE algo-
rithm (Williams, 1992) is a popular on-policy pol-
icy gradient method that can be used to optimize a
parameterized policy. Let 7y (a|s) denote a param-
eterized policy with parameters € that given a state
s, can generate the probability of executing action
a. Our goal is to optimize the parameters 6 to max-
imize the expected return: J(0) = E. ., [R(T)],
where R(7) denotes the cumulative rewards ob-
tained for trajectory 7. The gradients used to update
the policy parameters are computed using Eq. 1.

VoJ(0) = Err,[Vologmg(als)R(T)] (1)
4 Methodology

In this work, we combine the power of latency
aware encoder-based Transformer model for token
classification and on-policy RL algorithm for devel-
oping an efficient task-aware prompt compression
model. We now present our proposed method Task-
Aware Prompt Compression Optimization with Re-
inforcement Learning (TACO-RL).

4.1 TACO-RL

Our proposed TACO-RL framework has 3 key com-
ponents: (1) A base encoder policy for action sam-
pling and token classification, (2) Task specific
reward signal computation; and (3) Policy opti-
mization using on-policy RL method.

Encoder Model and Action Sampling. Given
an input prompt sequence x = (Z1,...,%p),
our encoder policy predicts probabilities p =
(p1,-..,pPn), where p; = P(a; = 1 | x;) repre-
sents the probability of preserving token x;. We
sample binary actions a = (a, ..., ay) from these
probabilities:

a; ~ Bernoulli(p;) Vie{l,...,n} (2)

The compressed prompt x. is then constructed
by retaining only the tokens where a; = 1.

Reward Calculation. We leverage an effective
but relatively cheaper LLM model, GPT-3.5-Turbo
model to generate outputs Yorig and Yeomp from
the original and compressed prompts, respectively.
The reward r is then computed based on task-
specific metrics M (see Section 4.2):

- {M(ycomp>yorig), if —L<§d<L 3)

70, otherwise

Here, M(ycomp, yorig) denotes the divergence
metric between the output of original and com-
pressed prompts. g is a negative constant reward
for out-of-range compression. (= |x.| — ¢ - |x])
denotes the divergence from expected compres-
sion. We use two important parameters to con-
trol the learning process, a compression flexibility
controller ¢ and a tolerance threshold L.

Compression Flexibility Controller. The com-
pression flexibility controller c is a tunable hyper-
parameter that represents a baseline proportion for
the number of tokens to be retained in the com-
pressed prompt relative to the original prompt. A
smaller value of ¢ enforces stricter compression
(fewer tokens to be retained), while a larger value
allows more tokens to be preserved. This provides
flexibility in controlling the trade-off between out-
put quality and inference cost.

Tolerance Threshold. As our policy is uncon-
strained, the action sampling may not always sat-
isfy the compression ratio requirements during
training process. Therefore, we define tolerance
threshold parameter, L to control the divergence
from expected number of compressed tokens. Let
¢ denote the divergence between the actual and ex-
pected number of compressed tokens. To ensure a
smooth learning process, we allow the divergence
value § to fall within the range [— L, L] and if this
criteria is met, then the task-specific positive re-
ward signal is propagated. However, to ensure that
the compressed prompt is neither excessively short
nor unnecessarily long, a constant negative reward
ro is applied to penalize extreme deviation. This
mechanism stabilizes the compression process and
guides the model towards generating prompts of
desired lengths. It should be noted that during infer-
ence, we always satisfy the exact compression rate
by sampling 7 - |z| tokens with highest probability.

1585

Policy Optimization. Finally, with the task-
specific reward signals r, we update the en-
coder policy parameters using the REINFORCE
(Williams, 1992) algorithm. The loss function is
defined as:

L=—r) logplai|z;)— AH(p) (4
=1

where H (p) represents Shannon’s entropy regular-
ization (Shannon, 1948) and X balances the tradeoff
between reward and exploration. The gradient of
the loss function with respect to the model parame-
ters 6 is calculated using Eq. 5:

VoL = —Eqp(|z:0) [rVologp(a; | zi;0)]

(5)
—AVgH (p)

By iteratively optimizing this objective, our ap-
proach refines the encoder’s ability to generate com-
pressed prompts that retain essential task-specific
information while minimizing prompt length.

Overall Approach. Algorithm 1 describes the
key steps of TACO-RL. We begin with a task-
agnostic encoder-based Transformer model (Pan
et al.,, 2024) for token classification. In each
epoch, we generate the compressed prompt for ev-
ery training data from the current encoder policy 7y
and compute the output of both original and com-
pressed prompt using GPT-3.5-turbo model. Based
on these outputs, we compute the task-specific out-
put divergence metrics and use that as a positive re-
inforcement if the compression ratio requirements
are met, otherwise we provide a small negative re-
ward to penalize the constraint violation. Finally,
using this reward signal we update the current pol-
icy parameter 6 using Eq. 5. We execute this policy
optimization process for E epochs to generate the
final optimized task-aware compression model 7.

4.2 Task-specific Rewards

This section describes the task-specific reward for-
mulations for summarization and question answer-
ing tasks.

4.2.1 Reward Formulation

For both task types, we generate outputs using the
original prompt x and the compressed prompt x,
through a LLM (e.g., GPT-3.5-turbo):

Yorig = GPT(Xa [Q])v Ycomp = GPT(Xca [Q])

Algorithm 1: TACO-RL
Input: Training set D, initial encoder 7y,
compression controller ¢, tolerance L,
number of epochs F/, Metric M
Output: Optimized encoder policy 7
for epoch = 1 to £ do
for P € Ddo
H+nr 0 (P)
for w; € P do
p; softmax(Wh; + b)
L a; ~ Bernoulli(p;)

P. <+ {w;|a; =1}
Yorigs Ycomp < GPT(P),GPT(FP,)

§ < |Pe| — c|P|

T <
M(ycorn[nyorig)a if |5| <L
0, otherwise

L« —erogp(ailwi) — \H (p)

Compute Vy L using Eq. 5
| 0+ 0+VyL;

return 7, // updated policy

where ¢ is the question for QA tasks.

The divergence metric M (ycomp, yorig) in Equa-
tion 3 defines a generalized reward structure that
can be applied to any task. However, the optimal
reward signal may vary depending on the task. For
example, for summarization, we would like to max-
imize the similarity between the two versions of
summaries while minimizing hallucination in the
summary from the compressed prompt. For ques-
tion answering, the focus is on optimizing the ac-
curacy and completeness of the generated answers.

Based on the generalized structure, we imple-
ment the following task-specific rewards:

4.2.2 Summarization Tasks

For summarization, we utilize the BLEU (Papineni
et al., 2002) score:

MSum = BLEU(ycompv yorig) (6)

As a precision-based verbatim similarity metric,
BLEU effectively captures n-gram overlap between
the summaries of the original and compressed con-
texts to promote content similarity, and minimizes
introduction of inaccuracies and hallucinations.
BLEU’s inclusion of a penalty for extra tokens
helps prevent gaming of the reward system (Skalse

1586

et al., 2022), unlike recall-based metrics such as
Rouge which could be exploited by simply gen-
erating longer outputs. This design choice results
in more stable training through better-calibrated
rewards.

4.2.3 Question Answering Task

For the QA task, we define the following precision
and recall functions to measure the accuracy of the
textual answer compared to the original, and we
use the F1 score as the final divergence metric:

|{yl|yz € Yorig N ycomp}’

Precision = (7
Hyilyi € ycomp}‘
i|Yi € Yorig N
Recall = {wilyi € Yorig N Yeomp} | ®)
‘{yl‘yz S yorig}‘
Maa = Fl(ycomp7 Z/orig) 9

The F1 score balances precision and recall, help-
ing to ensure that the compressed prompt retains
essential context for accurate answer generation.

5 Experiments

Our experimentation spans three different domains,
each presenting unique compression challenges.

5.1 Datasets and Task Diversity

MeetingBank (Hu et al., 2023) is a conversational
summarization dataset with ~44k train examples
and 862 test samples. The dataset challenges our
approach by requiring compression of complex,
non-linear dialogue transcripts where contextual
relevance depends on nuanced speaker interactions.

SQuAD 2.0 (Rajpurkar et al., 2016) presents a
more sophisticated question-answering challenge.
Unlike straightforward summarization, this dataset
requires selective information extraction where
compression must preserve only the most relevant
context for a specific question. Using a represen-
tative subset of ~34k training and 6k test exam-
ples, the dataset tests the model’s ability to perform
context-aware compression. This task is particu-
larly challenging because different questions may
require preserving entirely different segments of
the same context.

CodeSearchNet (Husain et al., 2020) presents
a unique non-natural language compression chal-
lenge in code documentation. From the original
large-scale dataset, we curated a subset of ~25k
training and 1300 test examples focusing on Python
code summarization. Unlike natural language,

code compression demands preserving complex
syntactic structures, algorithmic logic, and domain-
specific semantic nuances. The challenge lies in
distilling code context into meaningful summaries
by identifying key functional components, under-
standing the overall structure and logic flow, and
retaining critical variable names and comments that
convey essential information for comprehensibility.
By selecting datasets spanning summarization,
question-answering, and technical documentation,
we comprehensively assess our prompt compres-
sion technique. Each dataset represents a distinct
real-world information compression scenario: con-
versational summarization, targeted information
extraction, and technical context distillation.

5.2 Base Model Training

Our training process involves two stages: (1) train-
ing a base model using a technique similar to
LLMLingua-2 (Pan et al., 2024), and (2) fine-
tuning this base model using our novel reinforce-
ment learning approach with task-specific rewards.

For each target dataset, we trained a base model
on a distinct dataset with a similar distribution to
ensure domain relevance while avoiding direct over-
lap. Specifically, for MeetingBank and SQuAD
2.0, we utilized the Wikitext dataset (Merity et al.,
2016) for base model training. In the case of Code-
SearchNet (Husain et al., 2020), we employed the
Py150 dataset (Raychev et al., 2016a). To train
our base model, we followed the LLMLingua-2 ap-
proach and created annotated datasets using GPT-4.
Across all experiments, the base models were con-
sistently trained for 10 epochs and the values of
other hyperparameters were set the same.

5.3 Experimental Setup

In our experiments, we employed the same archi-
tecture used in LLMLingua-2, x1m-roberta-
large (Conneau et al., 2020) with 561M param-
eters, as the backbone for our prompt compres-
sion technique. We replace the Im_head with a
classification head on top. The experiments were
performed on a compute instance equipped with
8 NVIDIA V100 GPUs (32 GB variants). For
downstream evaluation of the compressed prompts,
we utilized GPT-3.5-Turbo-1103 as our target lan-
guage model. We fixed the temperature parameter
at zero to guarantee reproducible outcomes and
uniform results in our experiments. During the
fine-tuning phase, we employed a learning rate
of le-6 in conjunction with a Cosine Annealing

1587

Models Bleu Rougel Rouge2 RougeL BertScore F1
0.50 (2x compression)
LLMLingua-2 - MeetingBank 18.68 54.20 29.45 40.14 90.69
LLMLingua-2 - Wikitext 16.71 (-1.97) 52.58 (-1.62) 27.73(-1.72) 39.05 (-1.09) 90.47 (-0.21)
LLMLingua 5.90 (-12.78) 38.22(-15.98) 14.02 (-15.42) 26.49 (-13.65) 87.65 (-3.04)
Selective Context 12.94 (-5.74) 46.30 (-7.90) 24.41(-5.03) 34.56(-5.58) 89.66 (-1.03)
TACO-RL (Ours) 21.35 (+2.67) 55.34 (+1.14) 31.88 (+2.43) 42.17 (+2.03) 90.95 (+0.26)
0.33 (3x compression)
LLMLingua-2 - MeetingBank 15.11 51.67 25.60 37.18 90.17
LLMLingua-2 - Wikitext 12.93 (-2.18) 49.38 (-2.29) 23.32(-2.28) 35.34(-1.83) 89.79 (-0.38)
LLMLingua 398 (-11.13) 32.62(-19.05) 10.58 (-15.02) 22.58 (-14.60) 86.52 (-3.65)
Selective Context 8.80 (-6.31) 4022 (-11.45) 19.28 (-6.32) 29.44 (-7.74) 88.67 (-1.50)
TACO-RL (Ours) 19.36 (+4.26) 53.67 (+1.99) 29.54 (+3.94) 40.01 (+2.83) 90.54 (+0.37)
0.25 (4x compression)
LLMLingua-2 - MeetingBank 12.80 49.40 22.77 34.77 89.78
LLMLingua-2 - Wikitext 10.98 (-1.82) 47.34 (-2.07) 20.68 (-2.09) 33.06 (-1.71) 89.34 (-0.44)
LLMLingua 3.51(-9.29) 3098 (-18.42) 9.64 (-13.13) 21.33(-13.45) 86.20 (-3.58)
Selective Context 6.37 (-6.43) 36.22 (-13.18) 1597 (-6.80) 26.07 (-8.71) 88.00 (-1.78)
TACO-RL (Ours) 17.61 (+4.81) 52.33 (+2.92) 27.84 (+5.07) 38.57 (+3.79) 90.26 (+0.48)
0.20 (5x compression)
LLMLingua-2 - MeetingBank 11.13 47.50 21.01 33.25 89.44
LLMLingua-2 - Wikitext 9.51 (-1.61) 4533 (-2.17) 18.71(-2.30) 31.27(-1.98) 88.90 (-0.54)
LLMLingua 342 (-7.71) 30.53 (-16.98) 9.62 (-11.38) 21.15(-12.09) 86.14 (-3.29)
Selective Context 4.82 (-6.31) 33.15(-14.35) 13.55(-7.46) 23.74 (-9.51) 87.49 (-1.94)
TACO-RL (Ours) 15.85 (+4.73) 50.56 (+3.06) 26.04 (+5.03) 36.81 (+3.56) 89.96 (+0.52)
0.166 (6x compression)
LLMLingua-2 - MeetingBank 9.80 45.82 19.19 31.64 89.12
LLMLingua-2 - Wikitext 8.55 (-1.25) 4344 (-2.38) 17.06 (-2.13) 29.67 (-1.96) 88.53 (-0.59)
LLMLingua 3.19 (-6.62) 29.85(-15.97) 9.47(-9.72) 20.75(-10.89) 86.07 (-3.05)
Selective Context 4.06 (-5.74) 31.34(-14.48) 12.21(-6.97) 22.31(-9.33) 87.12(-2.00)
TACO-RL (Ours) 14.25 (+4.45) 48.60 (+2.78) 24.51 (+5.33) 35.08 (+3.44) 89.68 (+0.56)
Results with Original Prompts 21.50 55.19 33.03 42.90 91.12

Table 1: Performance metrics for different models across various compression rates on the MeetingBank Dataset.
Values in parentheses indicate deltas from the original LLMLingua-2 baseline.

(Loshchilov and Hutter, 2017) scheduler to stabi-
lize the training process. Further details regarding

the experimental setup can be found in Appendix
A.

5.4 Baselines

We use a LLMlingua-2 (Pan et al., 2024) base
model trained on the same datasets as the primary
baseline for all our experiments. We also compare
our method with two other state-of-the-art compres-
sion techniques: Selective Context (Li et al., 2023)
and LLMLingua (Jiang et al., 2023).

5.5 Empirical Results

We conduct experiments on the three datasets over
five different compression ratios. We observe that
models trained at one choice of hyper parameters
(see Table 3 in the appendix) generalize well over
all compression ratios. We also conduct statistical
significance tests on MeetingBank dataset results

(see Table 8) to support our performance enhance-
ment claims.

MeetingBank: Table 1 presents the results for
the meeting text summarization task. We report
BLEU, ROUGE, and BERT Score (Zhang* et al.,
2020). Our approach yields a significant perfor-
mance improvement, with a performance boost
of over 14% in BLEU scores at 2x compression,
which further increases to 45% at 6x compression.
We observe similar trends for other metrics. No-
tably, at 2x compression, our model performance is
close to the results with using the original contexts.

SQuAD 2.0: Figure 2 (left) shows the trend
of the model performance with increasing com-
pression ratios on the QA task. More detailed re-
sults are provided in Table 5 in the appendix. Our
method outperforms the LLMLingua-2 baseline
by 11% and 22% at 2x compression and 43%
and 63% at 6x compression in F1 score and Exact
Match score respectively.

1588

Models Bleu Rougel Rougel. Models QA F1 Score EM Score
LLMLingua-2 - MeetingBank 18.68 54.20 40.14 LLMLingua-2 - Squad 62.70 38.02
TACO-RL - with Rougel 19.89 54.40 4122 TACO-RL - with Token Wise Score 56.67 35.14
TACO-RL - with RougeLL 19.72 54.11 41.20 TACO-RL - with F1 + Token Wise Score 68.03 44.64
TACO-RL - with BLEU 21.35 55.34 42.17 TACO-RL - with F1 69.62 46.32
Results with Original Prompts 21.50 55.19 42.90 Results with Original Prompts 71.40 47.49

Table 2: Ablation study on the effect of different rewards on model performance at 2x compression rate on the
MeetingBank dataset (left) and on the SQuAD dataset (right).

[TACO-RL (ours)
——- Original Context - EM Score

~—~ Original Context - FI Score B LLMLingua-2 - Wikitext

BN LLMLingua-2 - Squad

QA F1 Score

(2x) (3x) (4x)

Compression Ratio

(5%)

B LLMLingua-2 - CodeSearchNet
[LLMLingua-2 - Py150

B LLMLingua
B TACO-RL (Rougel)

[TACO-RL (Blew)

BLEU Score

(2x)

(3x)

(4x)
Compression Ratio

(5%) (6x)

Figure 2: (Left) Comparison of QA F1 Scores and EM Counts across different compression rates for various models
on the Squad Dataset. The bars represent QA F1 Scores, and the dashed lines represent EM Scores. The numbers
on top of the bars represent the EM Counts. The two lines on top represent the scores with Original Context. (Right)
Comparison of BLEU score across different compression rates for various models on the CodeSearchNet dataset.

CodeSearchNet: Figure 2 (right) shows the re-
sults for the code summarization task. Even though
the base model performs poorly, leveraging our
approach, the final fine-tuned model significantly
outperforms all other baselines. Our method shows
gains ranging from 0.91x (91%) at 2x compres-
sion to 1.89x at 5x compression in BLEU scores
compared to the LLMLingua-2 baseline. See Table
6 in the appendix for detailed results. Addition-
ally, Appendix E highlights the differences in the
compression mechanisms between TACO-RL and
LLMLingua-2.

5.6 Ablation Study

We performed an ablation study to assess the im-
pact of different reward metrics on model perfor-
mance. For the text summarization task, we com-
pared the following metrics: ROUGE-1, ROUGE-
L, and BLEU, as shown in Table 2. For a detailed
comparison over various compression ratios, see
Table 7. For the QA task, we evaluated three re-
ward functions: F1 score, token-wise similarity,
and a combination of both, as shown in Table 2
(with additional details in Table 5). The token-wise
similarity score is based on token overlaps between

the question and context sentences, with a detailed
explanation provided in Appendix C. Additionally,
we investigate the effect of the entropy regulariza-
tion term H (p) on the fine-tuned model’s perfor-
mance on the MeetingBank dataset, as detailed in
Table 9.

6 Conclusion

In this paper, we introduce TACO-RL, a novel re-
inforcement learning-based prompt compression
method to address computational challenges in
large language models (LLMs). Our approach
leverages task-specific reward signals to fine-tune a
Transformer encoder-based compression model us-
ing on-policy RL, enabling effective compression
while maintaining performance. Our approach per-
forms consistently well across high compression
ratios (up to 6x) without requiring re-training. We
demonstrate significant performance improvements
of 45%, 63%, and up to 1.89x on the Text Sum-
marization, QA, and Code Summarization tasks re-
spectively, compared to strong baselines. Our work
offers a promising approach to optimizing prompt
compression, paving the way for more efficient and
performant NLP systems.

1589

Limitations

Our approach to prompt compression using rein-
forcement learning and encoder models has few
limitations. Firstly, the fine-tuning process is sensi-
tive to the choice of reward function, base model,
and task-specific prompts. Experiments with dif-
ferent reward metrics, such as BLEU and Rouge
in Tables 2, 6, 7, show that the choice of metric
can significantly impact the performance of the en-
coder model. Additionally, the quality of the base
model, which is trained on a similar dataset, can
significantly affect the fine-tuning results.

Secondly, the intricacies of task complexity and
dataset magnitude significantly influence the fine-
tuning methodology. As illustrated in Figure 2,
fine-tuned models demonstrate enhanced perfor-
mance on code datasets, yet this improvement di-
minishes markedly when transitioning from code
summarization to code-completion tasks (See Ap-
pendix C). Extensive documentation strings within
code contexts can potentially skew the compression
dynamics, as models might develop strategies to
retain doc-string tokens as a form of reward manip-
ulation. Moreover, comprehensive and expansive
datasets are essential for effectively capturing and
learning the nuanced complexities, particularly in
reinforcement learning scenarios.

Finally, the fine-tuning process is computation-
ally expensive, requiring significant resources and
time. Optimizing the computational efficiency of
the fine-tuning process is an important considera-
tion for future work. Addressing these limitations
will be crucial for improving the practicality and
scalability of our approach.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Toufique Ahmed, Supriyo Ghosh, Chetan Bansal,
Thomas Zimmermann, Xuchao Zhang, and Saravan
Rajmohan. 2023. Recommending root-cause and mit-
igation steps for cloud incidents using large language
models. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), pages
1737-1749. IEEE.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, et al. 2020. Language models are few-
shot learners. Preprint, arXiv:2005.14165.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2023. Palm: Scaling lan-
guage modeling with pathways. Journal of Machine
Learning Research, 24(240):1-113.

Yu-Neng Chuang, Tianwei Xing, Chia-Yuan Chang,
Zirui Liu, Xun Chen, and Xia Hu. 2024. Learn-
ing to compress prompt in natural language formats.
Preprint, arXiv:2402.18700.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8440-8451, Online. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Drishti Goel, Fiza Husain, Aditya Singh, Supriyo
Ghosh, Anjaly Parayil, Chetan Bansal, Xuchao
Zhang, and Saravan Rajmohan. 2024. X-lifecycle
learning for cloud incident management using
Ilms. In Companion Proceedings of the 32nd
ACM International Conference on the Foundations
of Software Engineering, pages 417-428.

Yebowen Hu, Tim Ganter, Hanieh Deilamsalehy, Franck
Dernoncourt, Hassan Foroosh, and Fei Liu. 2023.
Meetingbank: A benchmark dataset for meeting sum-
marization. Preprint, arXiv:2305.17529.

Xijie Huang, Li Lyna Zhang, Kwang-Ting Cheng, Fan
Yang, and Mao Yang. 2024. Fewer is more: Boost-
ing llm reasoning with reinforced context pruning.
Preprint, arXiv:2312.08901.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2020. Code-
searchnet challenge: Evaluating the state of semantic
code search. Preprint, arXiv:1909.09436.

Huiqgiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023. LLMLingua: Compressing
prompts for accelerated inference of large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 13358-13376, Singapore. Association for
Computational Linguistics.

1590

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2402.18700
https://arxiv.org/abs/2402.18700
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2305.17529
https://arxiv.org/abs/2305.17529
https://arxiv.org/abs/2312.08901
https://arxiv.org/abs/2312.08901
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825

Huiqgiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2024.
Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression.
Preprint, arXiv:2310.06839.

Hoyoun Jung and Kyung-Joong Kim. 2024. Discrete
prompt compression with reinforcement learning.
IEEE Access, 12:72578-72587.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. Preprint, arXiv:2005.11401.

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua
Lin. 2023. Compressing context to enhance in-
ference efficiency of large language models. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
6342-6353, Singapore. Association for Computa-
tional Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Sgdr: Stochas-
tic gradient descent with warm restarts. Preprint,
arXiv:1608.03983.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2024.
Learning to compress prompts with gist tokens. In
Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS 23,
Red Hook, NY, USA. Curran Associates Inc.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural
information processing systems, 35:27730-27744.

Zhuoshi Pan, Qianhui Wu, Huigiang Jiang, Menglin Xia,
Xufang Luo, Jue Zhang, Qingwei Lin, Victor Riihle,
Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu,
and Dongmei Zhang. 2024. Llmlingua-2: Data distil-
lation for efficient and faithful task-agnostic prompt
compression. Preprint, arXiv:2403.12968.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 311-318, Philadel-
phia, Pennsylvania, USA. Association for Computa-
tional Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. Squad: 100,000+ ques-
tions for machine comprehension of text. Preprint,
arXiv:1606.05250.

Veselin Raychev, Pavol Bielik, and Martin Vechev.
2016a. Probabilistic model for code with decision
trees. SIGPLAN Not., 51(10):731-747.

Veselin Raychev, Pavol Bielik, and Martin Vechev.
2016b. Probabilistic model for code with
decision trees. In Proceedings of the 2016
ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2016, page
731-747, New York, NY, USA. Association for
Computing Machinery.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
Preprint, arXiv:1908.10084.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

C. E. Shannon. 1948. A mathematical theory of com-
munication. The Bell System Technical Journal,
27(3):379-423.

Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krashenin-

nikov, and David Krueger. 2022. Defining
and characterizing reward hacking. Preprint,

arXiv:2209.13085.

Asahi Ushio, Fernando Alva-Manchego, and Jose
Camacho-Collados. 2023. An empirical comparison
of Im-based question and answer generation methods.
arXiv preprint arXiv:2305.17002.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Mach. Learn., 8(3-4):229-256.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2024. RE-
COMP: Improving retrieval-augmented LMs with
context compression and selective augmentation. In
The Twelfth International Conference on Learning

Representations.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Xuchao Zhang, Supriyo Ghosh, Chetan Bansal, Ru-
jia Wang, Minghua Ma, Yu Kang, and Saravan
Rajmohan. 2024. Automated root causing of
cloud incidents using in-context learning with gpt-
4. In Companion Proceedings of the 32nd ACM
International Conference on the Foundations of
Software Engineering, pages 266-277.

1591

https://arxiv.org/abs/2310.06839
https://arxiv.org/abs/2310.06839
https://doi.org/10.1109/access.2024.3403426
https://doi.org/10.1109/access.2024.3403426
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/2403.12968
https://arxiv.org/abs/2403.12968
https://arxiv.org/abs/2403.12968
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://doi.org/10.1145/3022671.2984041
https://doi.org/10.1145/3022671.2984041
https://doi.org/10.1145/2983990.2984041
https://doi.org/10.1145/2983990.2984041
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://arxiv.org/abs/2209.13085
https://arxiv.org/abs/2209.13085
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

A Details of Experiments

All the experiments were conducted on a 8 V100
cluster instance with 32 GB memory each.

Throughout all the experiments the input
prompts were kept at 512 token length due to the
fixed input sequence length of the encoder used.
For training samples larger that this length, we
chunked them into section of 512 tokens and used
each chunk separately. For testing we compressed
each chunk individually and then concatenated
all compressed chunks into a final compressed
prompts.

The time duration for the experiments is heavily
dependent on the rate limits of the APIs employed,
since at each step of training we need to call the
API to get outputs from GPT3.5. Although for the
Original Prompts the output can be obtained once
and then reused for further epochs. We used API
endpoints with max 300k TPM (Token Per Minute)
limit. Despite the large TPM limit, the inference
speed is greatly affected by traffic.

MeetingBank For the base model we used the
WikiText dataset trained on roughly 23k examples
for 10 epochs. This base model was then fine-tuned
on ~44k samples created from the MeetingBank
(Hu et al., 2023) after chunking, for 4 epochs us-
ing our approach. The test set comprised of 862
meeting transcripts.

For this dataset, we used target (reference) sum-
maries generated using GPT-4 instead of the using
the original summaries. This was done to keep
the experiments compatible with the LLMLingua
(Jiang et al., 2023; Pan et al., 2024) baselines.

SQuAD 2.0 The base model for this this dataset
was the same as used in the MeetingBank dataset
due to the similarity in distribution. In both datasets
the context consists of general English language,
making WikiText a good candidate for the base
model.

For the fine-tuning, a subset of the original
SQuAD 2.0 (Rajpurkar et al., 2016) dataset with
~34k samples was used with 15 epochs of train-
ing. This subset was created by removing very
long and very short contexts. We also focused on
having same contexts with different questions to
test out approach more rigorously. The test set
contained ~6k examples. During evaluation, origi-
nal answers present in the dataset were treated as
reference answers.

CodeSearchNet We only used the Python subset
of the entire corpus in our experiments. The base

model for this dataset was trained on a subset of
Py150 (Raychev et al., 2016b) dataset with ~20k
samples for 10 epochs.

We fine-tuned our model on a curated subset of
~25k samples from the CodeSearchNet (Husain
et al., 2020) dataset over 4 epochs. Recognizing
the unique challenges in code context summariza-
tion, we preprocessed the dataset by eliminating
extremely long and short code contexts. This strate-
gic filtering enables the model to focus on learn-
ing the most informative sections of code contexts,
rather than getting distracted by peripheral tokens
or overly verbose implementations.

The evaluation was conducted on a test subset
comprising ~1300 Python code examples. Due to
the lack of usable summaries in the dataset, ref-
erence summaries were generated using complete
original prompts with GPT 3.5.

Table 3 shows the various hyper-parameter val-
ues used across the experiments:

Dataset Epochs | LR c | L A ro
MeetingBank 4 1e75 | 05|30 001 |-0.1
SQuAD 2.0 15 1e=5 05|30 001 |-0.1
CodeSearchNet 4 1e7% 1 0.5 | 30 | 0.001 | -0.1

Table 3: Hyper-parameter choices for the experiments

B Impact of hyper-parameters on
Training

The choice of hyper-parameters is heavily influ-
enced by the datasets. Ours, being a RL based ap-
proach, requires tuning of these hyper-parameters
for best results. We show the variation in results on
the MeetingBank dataset as we tweak there param-
eters in Figure 3.

We notice that for certain values of the hyper-
parameters the performance is maximum and then
decreases on either side of the value. This effect
is more dominant with values of the compression
[fexibility controller ¢c. With L, there is a general
trend of increase in performance with increasing
hyper-parameter values.

C Code Completion Task

We also tried to use the idea of prompt compression
for Python Code Completion task. Given a code
context, we aimed to discard unnecessary tokens

1592

0.18

0.16

BLEU Score

0.12
2x
3

ax
0.10 5x
6x

0.33 0.5
Compression Flexibility (c)

Compression Ratio

0.66

0.20

<
3

0.16

BLEU Score

f:
=

Compression Ratio
2x
; 3x
0.12 ax
5x
6x

5 15 30 45 60
Tolerance Threshold (L)

Figure 3: Impact on downstream task performance by different ¢, L values during training on the MeetingBank

dataset.

and used the compressed context to predict the last
line of the context. Although we achieved improve-
ment over the base model scores, the increase in
performance was very subtle and also not of any
use.

For the reward in this task, apart from the
F1 score, we used a distance based reward that
favoured the tokens close to the end of the context.
This was done since the next line of the context
depends greatly on the last few lines. We evalu-
ated the performance on the same test set of Code-
SearchNet dataset as previously used but with last
line of the context removed. This is shown in Table
4.

Model QA F1 | Best Sub. EM | EM Count | EM Score
Base Model - Py150 | 15.24 99.92 91.00 7.00
Ours 17.73 100.00 116.00 8.92

Table 4: Performance of our approach on Code Comple-
tion Task

D Token-wise Relevance Reward

For the SQuAD QA task, we explored a novel
token-wise reward, distinct from the other single-
value metric rewards. This approach assigns im-
portance to individual tokens, with higher values
indicating better preservation of task-relevant to-
kens in the compressed prompt. This is in contrast
with the earlier reward formulation where a sin-
gle metric value reward was used. The reward is
formulated as follows:

Step 1: Sentence-level Similarity Split the
original context x into m sentences, X =

{s1,82,...,8m}. For each sentence s;, compute
its similarity with the question g:

sim(s;, q) = cos (Emb(s;), Emb(q)) (10)

where Emb(-) denotes sentence embeddings from
Sentence Transformers (Reimers and Gurevych,
2019).

Step 2: Token-level Similarity Assignment As-
sign each token x; € s; its sentence’s similarity

score:
sim(z;) = sim(s;, q)

(11
Step 3: Binary Action Masking Apply the bi-

forz; € s;

nary action vector a = (ay,as,...,a,) to mask
token-wise similarity scores:
Imasked = @ © Tgim (12)

Step 4: Mean Token-wise Reward Calculation
Compute the mean of the masked vector for the
final relevance reward rgjm:

1
/r‘,' = —_-—
s1um z a/Z j:
Step 5: Reward Integration The reward can be

used standalone or combined with the F1 score:

(14)

n

aj - sim(acj) (13)
1

TQA = TF1 + O Tsim

This combined reward aimed to balance accu-
rate question answering with retention of contex-
tually relevant tokens. However, contrary to ex-
pectations, this formulation did not improve perfor-
mance and even degraded the base model’s results,
as evidenced in Table 5. Moreover, when combined
with the F1 score, it diminished the effectiveness
of the F1 score as a standalone reward.

1593

)

20

21

22
23

E Prompt Compression Comparison For
Code Summarization

E.1 Original Code Context

def yixia_download(url, output_dir = '.'
, merge = True, info_only = False,
*xkwargs) :
nunwrapper "
hostname = urlparse(url).hostname
if 'n.miaopai.com' == hostname:

smid = matchl1(url, r'n\.miaopai
\.com/media/([*.1+)")
miaopai_download_by_smid(smid,

output_dir, merge, info_only
)
return
elif 'miaopai.com' in hostname: #
Miaopai

yixia_download_by_scid =
yixia_miaopai_download
site_info = "Yixia Miaopai”
scid = matchl1(url, r'miaopail.
com/show/channel /([*.]1+)\.
htm') or \
match1 (url, r'miaopail\.
com/show/ ([*.]1+)\.htm
"y or \
matchl (url, r'm\.miaopai
\.com/show/channel
/(L*.1+)\.htm') or \
matchl (url, r'm\.miaopai
\.com/show/channel
/(Lr.1+))
'xiaokaxiu.com' in hostname: #
Xiaokaxiu
yixia_download_by_scid =
yixia_xiaokaxiu_download
site_info = "Yixia Xiaokaxiu"”
if re.match(r'http://v.xiaokaxiu

elif

.com/v/.+\.html', url): #PC

scid = matchl(url, r'http://
v.xiaokaxiu.com/v/(.+)\.
html ')

elif re.match(r'http://m.

xiaokaxiu.com/m/.+\.html",

url): #Mobile

scid = matchl(url, r'http://

m.xiaokaxiu.com/m/(.+)\.
html ')
else:
pass

Listing 1: Original Code Context

(O N T N

PN RV R S o)

E.2 Compressed Context - LLMLingua-2

'n.miaopai
(url[™'
‘miaopai.com’
Miaopai
match1 (url.com/show/channel/([*.]+)\.
htm'
match1[*
match1 ([*.]1+) ")
'xiaokaxiu.com'
_download
"Yixia Xiaokaxiu"”
re.match(r'http://v.xiaokaxiu.com/v
/.+\.html",
match1(url r'http://v.xiaokaxiu/v/(.+).
html ')
re.match(r'http://m.xiaokaxiu.com/m
/.+\.html'
match1(url, r'http://m.xiaokaxiu.com/m(
else pass

Listing 2: Compressed Code by LLMLingua-2

E.3 Compressed Context - TACO-RL

def yixia_download(url, output_dir =
, merge = True, info_only = False,
*xkwargs):
wrapper """
hostname =
if 'n.miaopai.com' ==
smid =
return
elif 'miaopai.com'
Miaopai
"Yixia Miaopai”
scid
elif 'xiaokaxiu.com'
Xiaokaxiu
if re #PC
scid
elif
+
pass

nnn

hostname:

in hostname: #

Listing 3: Compressed Code by TACO-RL

1594

Models QA F1 Score Best Subspan EM EM Count EM Score
0.50 (2x compression)
LLMLingua-2 - Squad 62.70 99.83 2246 38.02
LLMLingua-2 - Wikitext 62.71 (+0.01) 99.86 (+0.03) 2231 (-15) 37.77 (-0.25)
LLMLingua 36.62 (-26.09) 98.87 (-0.96) 1108 (-1138) 18.76 (-19.27)
Selective Context 51.39 (-11.32) 98.68 (-1.15) 2042 (-204) 34.57 (-3.45)
TACO-RL - with Token Wise Score 56.67 (-6.03) 99.78 (-0.05) 2076 (-170) 35.14 (-2.88)
TACO-RL - with F1 + Token Wise Score 68.03 (+5.33) 99.90 (+0.07) 2637 (+391) 44.64 (+6.62)
TACO-RL - with F1 69.62 (+6.91) 99.92 (+0.08) 2736 (+490) 46.32 (+8.30)
0.33 (3x compression)
LLMLingua-2 - Squad 53.11 99.58 1838 31.12
LLMLingua-2 - Wikitext 52.86 (-0.25) 99.66 (+0.08) 1848 (+10) 31.28 (+0.17)
LLMLingua 30.57 (-22.54) 97.85 (-1.73) 974 (-864) 16.49 (-14.63)
Selective Context 46.37 (-6.75) 98.26 (-1.32) 1813 (-25) 30.69 (-0.42)
TACO-RL - with Token Wise Score 46.25 (-6.86) 99.31 (-0.27) 1636 (-202) 27.70 (-3.42)
TACO-RL - with F1 + Token Wise Score ~ 62.79 (+9.68) 99.81 (+0.24) 2412 (+574) 40.83 (+9.72)
TACO-RL - with F1 65.84 (+12.73) 99.92 (+0.34) 2592 (+754) 43.88 (+12.76)
0.25 (4x compression)
LLMLingua-2 - Squad 46.37 99.27 1548 26.21
LLMLingua-2 - Wikitext 46.15 (-0.21) 99.61 (+0.34) 1545 (-3) 26.16 (-0.05)
LLMLingua 28.27 (-18.10) 97.58 (-1.69) 918 (-630) 15.54 (-10.67)
Selective Context 40.35 (-6.02) 97.90 (-1.37) 1555 (+7) 26.32 (+0.12)
TACO-RL - with Token Wise Score 39.85 (-6.51) 99.17 (-0.10) 1342 (-206) 22.72 (-3.49)
TACO-RL - with F1 + Token Wise Score 58.37 (+12.01) 99.71 (+0.44) 2195 (+647) 37.16 (+10.95)
TACO-RL - with F1 61.70 (+15.33) 99.88 (+0.61) 2386 (+838) 40.39 (+14.19)
0.20 (5x compression)
LLMLingua-2 - Squad 41.97 99.12 1391 23.55
LLMLingua-2 - Wikitext 41.49 (-0.48) 99.41 (+0.29) 1363 (-28) 23.07 (-0.47)
LLMLingua 26.96 (-15.01) 97.26 (-1.86) 866 (-525) 14.66 (-8.89)
Selective Context 37.37 (-4.61) 97.83 (-1.29) 1417 (+26) 23.99 (+0.44)
TACO-RL - with Token Wise Score 35.20 (-6.77) 98.97 (-0.15) 1167 (-224) 19.76 (-3.79)
TACO-RL - with F1 + Token Wise Score 54.57 (+12.59) 99.78 (+0.66) 2024 (+633) 34.26 (+10.72)
TACO-RL - with F1 57.92 (+15.95) 99.76 (+0.64) 2199 (+808) 37.23 (+13.68)
0.166 (6x compression)
LLMLingua-2 - Squad 38.74 98.98 1268 21.47
LLMLingua -2 - Wikitext 38.78 (+0.04) 99.27 (+0.29) 1259 (-9) 21.31 (-0.15)
LLMLingua 25.96 (-12.78) 97.14 (-1.84) 848.00 (-420) 14.36 (-7.11)
Selective Context 35.53 (-3.21) 97.82 (-1.17) 1323.00 (+55) 22.40(+0.93)
TACO-RL - with Token Wise Score 31.98 (-6.76) 98.93 (-0.05) 1011 (-257) 17.12 (-4.35)
TACO-RL - with F1 + Token Wise Score 51.56 (+12.82) 99.64 (+0.66) 1867 (+599) 31.61 (10.14)
TACO-RL - with F1 55.46 (+16.72) 99.81 (+0.83) 2067 (+799) 34.99 (13.53)
Results with Original Prompts 71.40 99.93 2805 47.49

Table 5: Performance metrics for different models across various compression rates on the Squad Dataset. Values
in parentheses indicate deltas from the LLMLingua-2 baseline model trained on Squad dataset.

1595

Models Bleu Rougel Rouge2 RougeL BertScore F1
0.50 (2x compression)
LLMLingua-2 - CodeSearchNet 18.30 51.57 22.50 37.94 90.27

LLMLingua-2 - Py150
LLMLingua

Selective Context
TACO-RL - with Rougel

19.90 (+1.60) 52.93 (+1.36)
23.58(+5.28) 55.23 (+3.66)

29.97 (+11.67) 59.32 (+7.75)

24.35 (+1.85)
28.64 (+6.14)

33.99 (+11.49)

39.65 (+1.71)
43.41 (+5.47)

47.45 (+9.51)

90.61 (+0.34)
91.12 (+0.85)

91.76 (+1.49)

TACO-RL - with Bleu 35.04 (+16.74) 61.26 (+9.69) 38.83 (+16.34) 50.77 (+12.84) 92.26 (+1.98)
0.33 (3x compression)

LLMLingua-2 - CodeSearchNet 11.98 44.95 15.83 32.07 89.06

LLMLingua-2 - Py150 12.11 (+0.14) 44.94 (-0.01) 15.81 (-0.02) 32.10 (+0.02) 89.10 (+0.04)

LLMLingua 13.40 (+1.42) 46.29 (+1.34) 18.21 (+2.40) 34.49 (+2.42) 89.33 (+0.28)

Selective Context
TACO-RL - with Rougel

2277 (+10.79) 54.39 (+9.44)

27.34 (+11.50)

41.81 (+9.74)

90.83 (+1.77)

TACO-RL - with Bleu 28.81 (+16.84) 57.32 (+12.37) 33.99 (+18.16) 46.90 (+14.82) 91.56 (+2.50)
0.25 (4x compression)

LLMLingua-2 - CodeSearchNet 8.93 41.07 12.30 28.87 88.31

LLMLingua-2 - Py150 9.35 (+0.42) 41.62 (+0.55) 12.81 (+0.51) 29.21 (+0.34) 88.45 (+0.14)

LLMLingua 9.06 (+0.13) 41.51 (+0.44) 13.69 (+1.39) 30.15(+1.28) 88.34 (+0.02)

Selective Context
TACO-RL - with Rougel
TACO-RL - with Bleu

17.59 (+8.66) 50.87 (+9.80)
24.23 (+15.30) 54.89 (+13.82)

23.03 (+10.73)
31.26 (+18.96)

38.48 (+9.61)
44.61 (+15.74)

90.22 (+1.91)
91.14 (+2.83)

0.20 (5x compression)

LLMLingua-2 - CodeSearchNet 7.31 38.88 10.56 27.21 87.87
LLMLingua-2 - Py150 7.76 (+0.46) 39.09 (+0.21) 11.00 (+0.45) 27.46 (+0.26) 88.00 (+0.13)
LLMLingua 6.57 (-0.73) 38.63 (-0.25) 11.13 (+0.58) 27.81 (+0.60) 87.74 (-0.13)
Selective Context - - - - -
TACO-RL - with Rougel 14.15 (+6.84) 47.94 (+9.06) 20.20 (+9.65) 36.10 (+8.89) 89.76 (+1.89)
TACO-RL - with Bleu 21.13 (+13.82) 52.67 (+13.79) 29.14 (+18.58) 42.84 (+15.63) 90.81 (+2.94)
0.166 (6x compression)

LLMLingua-2 - CodeSearchNet 6.54 37.28 9.58 26.20 87.64
LLMLingua-2 - Py150 6.79 (+0.25) 37.63 (+0.35) 9.95 (+0.37) 26.49 (+0.29) 87.69 (+0.05)
LLMLingua 5.31(-1.23) 36.62 (-0.66) 9.76 (+0.18) 26.38 (+0.18) 87.36 (-0.29)
Selective Context - - - - -
TACO-RL - with Rougel 12.38 (+5.84) 46.07 (+8.79) 18.73 (+9.15) 3493 (+8.73) 89.53 (+1.89)
TACO-RL - with Bleu 18.46 (+11.92) 50.99 (+13.71) 27.33 (+17.75) 41.34 (+15.14) 90.52 (+2.88)
Results with Original Prompts 87.89 92.87 88.69 91.25 98.61

Table 6: Performance metrics for different models across various compression rates on the CodeSearchNet Dataset.
The scores for Selective Context are not added as it struggles to compress code data.

1596

Models Bleu Rougel Rouge2 RougeLl BertScore F1

0.50 (2x compression)

LLMLingua-2 - MeetingBank 18.68 54.20 29.45 40.14 90.69
Ours - with Rougel 19.89 (+1.21) 54.40 (+0.20) 30.55 (+1.11) 41.22 (+1.08) 90.82 (+0.13)
Ours - with RougeL 19.72 (+1.04) 54.11(-0.10) 30.56 (+1.12) 41.20 (+1.06) 90.79 (+0.10)
TACO-RL - with Bleu 21.35 (+2.67) 55.34 (+1.14) 31.88 (+2.43) 42.17 (+2.03) 90.95 (+0.26)
0.33 (3x compression)
LLMLingua-2 - MeetingBank 15.11 51.67 25.60 37.18 90.17
TACO-RL - with Rougel 17.40 (+2.29) 52.50 (+0.83) 27.39 (+1.79) 38.75 (+1.57) 90.34 (+0.18)
TACO-RL - with RougeLL 17.64 (+2.53) 52.48 (+0.81) 27.90 (+2.30) 39.03 (+1.85) 90.38 (+0.21)
TACO-RL - with Bleu 19.36 (+4.26) 53.67 (+1.99) 29.54 (+3.94) 40.01 (+2.83) 90.54 (+0.37)
0.25 (4x compression)
LLMLingua-2 - MeetingBank 12.80 49.40 22.77 34.77 89.78
TACO-RL - with Rougel 15.73 (+2.93) 51.01 (+1.60) 25.53 (+2.76) 36.90 (+2.13) 90.02 (+0.24)
TACO-RL - with RougeLL 15.68 (+2.88) 50.77 (+1.36) 25.82 (+3.05) 37.04 (+2.27) 90.03 (+0.25)
TACO-RL - with Bleu 17.61 (+4.81) 52.33 (+2.92) 27.84 (+5.07) 38.57 (+3.79) 90.26 (+0.48)
0.20 (5x compression)
LLMLingua-2 - MeetingBank 11.13 47.50 21.01 33.25 89.44
TACO-RL - with Rougel 13.82 (+2.69) 49.19 (+1.68) 23.58 (+2.57) 35.27 (+2.03) 89.69 (+0.25)
TACO-RL - with RougeLL 13.98 (+2.86) 48.73 (+1.23) 24.10 (+3.09) 35.35 (+2.10) 89.71 (+0.28)
TACO-RL - with Bleu 15.85 (+4.73) 50.56 (+3.06) 26.04 (+5.03) 36.81 (+3.56) 89.96 (+0.52)
0.166 (6x compression)
LLMLingua-2 - MeetingBank 9.80 45.82 19.19 31.64 89.12
TACO-RL - with Rougel 12.78 (+2.98) 48.08 (+2.26) 22.49 (+3.30) 34.24 (+2.61) 89.49 (+0.36)
TACO-RL - with RougeLL 13.22 (+3.42) 47.62 (+1.79) 22.83 (+3.64) 34.33 (+2.69) 89.50 (+0.38)
TACO-RL - with Bleu 14.25 (+4.45) 48.60 (+2.78) 24.51 (+5.33) 35.08 (+3.44) 89.68 (+0.56)
Results with Original Prompts 21.50 55.19 33.03 42.90 91.12

Table 7: Performance metrics for different models trained using different rewards across various compression rates
on the MeetingBank Dataset. Values in parentheses indicate deltas from the original LLMLingua-2 baseline.

Metric Mean Std 95% CI P-value

BLEU 21.2461 0.0991 [21.1230, 21.3692] 1.0000
ROUGE1 55.2168 0.0728 [55.1265,55.3071] 1.0000
ROUGE2 31.7949 0.0387 [31.7469, 31.8430] 1.0000
[]
[]

ROUGEL 41.9159 0.0309 [41.8775,41.9542 1.0000
BERTScore 90.9349 0.0060 [90.9274,90.9424] 1.0000

Table 8: One-sample t-test results for 2x compression over 5 runs on the MeetingBank Dataset for TACO-RL. The
results show mean scores, standard deviation, 95% confidence intervals, and p-values for various evaluation metrics.

Method BLEU ROUGE!l ROUGE2 ROUGEL BERTScore
LLMlingua-2 - Wikitext 16.71 52.58 27.73 39.05 90.47
Original Prompts 21.50 55.19 33.03 42.90 91.12
TACO-RL - with entropy term 21.35 55.34 31.88 42.17 90.95
TACO-RL - without entropy term 17.62 53.39 28.59 39.49 90.57

Table 9: Performance comparison of TACO-RL with and without the entropy term AH (p) on MeetingBank dataset
at 2x compression ratio. Best results are shown in bold.

1597

