
Findings of the Association for Computational Linguistics: ACL 2025, pages 1548–1581
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

RTADev: Intention Aligned Multi-Agent Framework for Software
Development

Jie Liu1,2, Guohua Wang1,2, Ronghui Yang1,2,
Jiajie Zeng1,2, Mengchen Zhao1,2*, Yi Cai1,2*

1Key Laboratory of Big Data and Intelligent Robot (SCUT), MOE of China
2School of Software Engineering, South China University of Technology

Correspondence:{zzmc, ycai}@scut.edu.cn

Abstract

LLM-based Multi-agent frameworks have
shown a great potential in solving real-world
software development tasks, where the agents
of different roles can communicate much more
efficiently than humans. Despite their effi-
ciency, LLM-based agents can hardly fully un-
derstand each other, which frequently causes
errors during the development process. More-
over, the accumulation of errors could easily
lead to the failure of the whole project. In order
to reduce such errors, we introduce an inten-
tion aligned multi-agent framework RTADev,
which utilizes a self-correction mechanism to
ensure that all agents work based on a con-
sensus. RTADev mimics human teams where
individuals are free to start meetings anytime
for reaching agreement. Specifically, RTADev
integrates an alignment checking phase and a
conditional ad hoc group review phase, so that
the errors can be effectively reduced with mini-
mum agent communications. Our experiments
on various software development tasks show
that RTADev significantly improves the quality
of generated software code in terms of exe-
cutability, structural and functional complete-
ness. The code of our project is available at
https://github.com/codeagent-rl/RTADev.

1 Introduction

Large Language Models (LLMs) have been demon-
strated to be effective in various code generation
tasks and become efficient assistants to human de-
velopers (Austin et al., 2021; Chen et al., 2021b).
However, single LLM performs poorly when fac-
ing complex software development projects, where
the logical relationships of different modules could
be super complicated. A natural extension is to
mimic human software development by introduc-
ing multiple role-playing LLM-based agents, so
that a complex software development task can be
decomposed into a sequence of tasks, including

*These authors are co-corresponding authors.

requirement analysis, architecture design and code
generation. Benefiting from the fast speed of con-
tent generation and communication, LLM-based
multi-agent systems have become promising solu-
tions to automated software development.

Despite their efficiency, LLM-based agents of-
ten misunderstand the goal of the task as well as
the intentions of other agents, causing consider-
able errors during the development process. For
example, the architect agent might ignore some re-
quirements generated by the product manager and
draw an incomplete architecture diagram. Also,
the programmer agent might misunderstand some
functional dependencies in the architecture diagram
and write erroneous codes. Even worse, the errors
at the early stages could accumulate and signifi-
cantly influence the final outputs of the project. We
summarize these errors as misalignment-oriented
errors, since the agents’ understandings of the task
are not aligned with each other. Figure 1 gives a
concrete example to illustrate how the errors accu-
mulate and result in the failure of a project.

One straightforward way to reduce the
misalignment-oriented errors is to improve the
reasoning ability of the agents, so that they
understand the context more accurately. However,
it is still hard to ensure alignment between agents
given that even humans misunderstand each other
frequently. Another possible solution is to design
effective multi-agent frameworks that encourage
communication between agents. For example,
MetaGPT encodes Standardized Operating Pro-
cedures into prompt sequences for a streamlined
workflow, where a test engineer is employed at the
end of development process (Hong et al., 2024).
ChatDev introduces a chat-powered software
development framework, in which several assistant
agents are employed for code reviews (Qian et al.,
2023). Unfortunately, these frameworks adopt
fixed local communication protocols, which do not
guarantee the alignment of all agents.

1548

https://github.com/codeagent-rl/RTADev

 Develop a Sticker interface
 Users can select an image,

zoom in and zoom out the
size of the sticker

 ……

Product
Manager

 Library
tkinter, PIL

Architect

 Function descriptions
 main.py: contains the main entry…
 gui.py: create sticker interface, with

buttons to adjust shapes…
 sticker_editor.py: Adjust the

sticker to a suitable size

Project
Manager

 File
 main.py
 Sticker_editor.py

 Class
 GUI
- [function]…
 Sticker_Editor
- adjust_sticker()

 def adjust_sticker()
shape = “circle”
size = (300,300)
adjusted_sticker = self.sticker(
shape,size)
……

Programmer

zoom out Fixed size=(300,300)
What we want What we get

Figure 1: An example illustrating the misalignment during the software development process. The original require-
ment is a sticker that can be zoom in and zoom out by users. Unfortunately, the project manager misunderstands the
requirement and writes a misleading function description (shown in red). Consequently, the programmer assigns a
fixed size to the sticker in her codes.

In this paper, we introduce a flexible multi-agent
framework called RTADev, which aims to align
the intentions of all agents so that they can work
based on a consensus. Following existing works
(Adetokunbo and Adenowo, 2013; Hong et al.,
2024), RTADev employs five role-playing LLM-
based agents, who work collaboratively to develop
specific software. Specifically, given a descrip-
tion of requirements, the product manager outputs
a detailed and numerated requirement document.
Then, the architect translates the requirement docu-
ment into an architecture diagram. Hence, a project
manager sets out a task plan for the programmer to
execute. Finally, a test engineer will verify whether
the program meets the original requirements.

To address the misalignment during the devel-
opment process, RTADev introduces an effective
real-time alignment (RTA) mechanism, inspired
by human development teams where people can
start meetings anytime to reach an agreement.
Specifically, RTADev maintains a Shared Certified
Repository (SCR) to store the certified deliverables,
which represent agents’ consensus on the target
software. Whenever a new deliverable is generated,
it will go through an alignment checking phase
before being added to the SCR. The alignment
checking fails when at least one agent believes
that the newly generated deliverable violates the
certified consensus. In such cases, the agents who
vote for violation will form an ad hoc team and
solve the issues together with the agent responsible
for the current deliverable. The above processes
will repeat until the newly generated deliverable
passes the alignment checking. Note that RTADev
can effectively reduce errors in the development
process while requires minimum agent communi-

cations, thus it successfully balances the quality
and the efficiency. Our contributions can be
summarized as follows:

• We propose a novel and flexible LLM-based
multi-agent framework RTADev, which ensures
that all agents work based on common understand-
ings of the target software. Compared with existing
LLM-based software development frameworks,
RTADev is more robust to errors caused by LLMs
and requires minimum agent communications.

• We propose a checkpoint-based prompting
method for alignment checking, which efficiently
guides different agents to check if the current
deliverable aligns with the certified consensus. We
standardize all the prompt sequences and provide
them in Appendix A.7 for reproduction of RTADev.

• We construct a functionality-driven benchmark
FSD-Bench to evaluate RTADev, which contains
120 realistic software development tasks from var-
ious domains. Experimental results show that
RTADev largely improves the quality of generated
codes in terms of different metrics.

2 Related Works

2.1 Human Software Development
frameworks

Through decades of practice, people have devel-
oped many mature software development frame-
works regarding to various scenarios. For example,
the Waterfall model is a sequential and linear soft-
ware development process that breaks down the
software development lifecycle into distinct, dis-
crete phases (Adetokunbo and Adenowo, 2013).

1549

The V-model is an evolution of the traditional Wa-
terfall model, which introduces parallelism and
feedback loops between development and testing
activities (Sundramoorthy and Murugaiyan, 2012).
The Agile model is a flexible and iterative approach
that emphasizes rapid delivery of high-quality soft-
ware through close collaboration and continuous
improvement (Samar et al., 2020). In practice,
the implementation of these models heavily de-
pends on human intelligence, with the assumption
that humans could understand each other through
various ways of communication. Therefore, these
models do not directly apply to LLM-based agents.
Our framework RTADev fills this gap by designing
an effective real-time alignment mechanism, un-
der which the LLM-based agents could cooperate
based on common understandings.

2.2 LLMs for Code Generation

Large Language Models (LLMs) have shown sur-
prising performance across a wide range of natural
language processing tasks (Radford et al., 2019;
Ouyang et al., 2022; Achiam et al., 2023; Touvron
et al., 2023; Yuan et al., 2023, 2025). LLMs also
significantly boost the performance of code genera-
tion tasks and demonstrate promising potential to
be applied at scale. For example, Codex achieves
a success rate of 28.8% in solving a set of 164
hand-written programming problems (Chen et al.,
2021a). Copilot, a code generation tool powered by
Codex, has captured the interest of over 1 million
professional developers (Microsoft, 2023). Other
models, including Incoder (Fried et al., 2023),
CodeRL (Lea et al., 2022), Code Llama (Roziere
et al., 2023) and ChatGPT (OpenAI, 2022), also
achieve human-level performance in various code
generation tasks. However, these works focus only
on code generation ability of single LLMs, ignor-
ing the collaboration and communication between
multiple agents, which is crucial to complex soft-
ware development tasks.

2.3 Multi-Agent Frameworks for Software
Development

The key challenge in multi-agent software develop-
ment is to efficiently coordinate with diverse roles
of agents while ensuring consistent understanding
of the outcomes (Unterkalmsteiner et al., 2015;
Bjarnason et al., 2019). Several multi-LLM soft-
ware development frameworks have been proposed
to enhance collaboration between agents. For ex-
ample, the Self-Collaboration framework assigns

different roles to LLMs and encourages them to
finish sub-tasks collaboratively (Dong et al., 2024).
MetaGPT proposes the first concrete and standard-
ized software development framework, where mul-
tiple LLM-based agents complete different tasks
following a linear workflow (Hong et al., 2024).
However, the linear nature of Self-Collaboration
and MetaGPT prohibits the agents to communicate
with previous agents, thus the errors can easily ac-
cumulate. ChatDev introduces a set of assistant
agents to verify if the generated codes are compli-
ant with original requirements (Qian et al., 2023).
EvoMAC introduces a self-evolving multi-agent
framework where the feedback can back propagate
to each working agent (Hu et al., 2024). How-
ever, these frameworks follow fixed feedback pro-
cedures, thus are usually inefficient dealing with
frequently occurring errors.

3 Methodology

In this section, we present the details of our frame-
work RTADev. Generally, RTADev comprises a
general workflow and a real-time alignment mecha-
nism, which includes an alignment checking phase
and a conditional ad hoc group review phase.

3.1 General Workflow

For simplicity, our general workflow follows a
typical software development process, where
several important roles of agents work in a linear
manner. Such a Waterfall-like model has also
been employed in many LLM-based software
development frameworks (Hong et al., 2024; Qian
et al., 2023). Note that although our general
workflow is linear, the real-time alignment (RTA)
mechanism requires participation of previous
agents, which makes RTADev actually a non-linear
model. Also, the RTA mechanism is compatible
with non-linear workflows such as Agile (Samar
et al., 2020), because the alignment checking phase
can be flexibly placed in any workflows. As shown
in Figure 2, RTADev employs the following five
role-playing LLM-based agents.

Product Manager. The Product Manager agent
performs requirement analysis based on the raw
functional description of some target software
(Arora et al., 2024; Jin et al., 2024). In our frame-
work, we ask the Product Manager agent to output
the Product Requirement Document (PRD) as a
list of numerated requirements that describe the

1550

Product

Manager

Architect

Project

Manager

Test Engineer

General Workflow

PRD

Programmer

User

Alignment Checking

Alignment Checking

Call for checking…

Case1: Aligned Case2: Misaligned

Ad Hoc Group Review

Reviews

Reviews

Regenerate

Inner loop: Each agent

analyzes other agents’

reviews and modifies her

own reviews. Repeat until

iteration limit reached.

Shared Certified Repository (SCR)

Codes added to the SCR Further discussions

Architecture

Alignment Checking

Plans

Alignment Checking

Codes

Alignment Checking

= ?

Outer loop: Codes are regenerated and sent back

to the alignment checking. Repeat until alignment

checking passed or iteration limit reached.

...
= ?

User requirement

1

2

3

4

Figure 2: The overall framework of RTADev. The left part shows the general workflow, where five LLM-based
agents work in a sequential manner to accomplish requirements inputted by the user. The middle part shows the
alignment checking phase, in which all previous agents need to check if the newly generated deliverable is consistent
with previous ones stored in the SCR. The right part shows a conditional ad hoc group review phase, depending on
whether the newly generated deliverable passes the alignment checking. After the group review, the current agent
regenerates deliverable for another round of alignment checking. The outer loop continues until the regenerated
deliverable passes the alignment checking or the limit of iterations is reached. We only showcase the alignment
checking and the ad hoc group review initiated by the Programmer agent due to space limitation.

functionalities of the target software.
Architect. The Architect agent analyzes the PRD
and determines the general architecture of the soft-
ware, including the technology stack, the relation-
ships between classes and the Graphical User In-
terface (GUI) if necessary. In our framework, the
Architect agent writes the architecture in JSON for-
mat, which can be converted to Unified Modeling
Language (UML) diagrams using the Mermaid tool
(Sveidqvist and Contributors to Mermaid, 2014).
Project Manager. This Project Manager agent
schedules a code plan based on the PRD and the
architecture diagram. For simplicity, the code plan
is represented by a list of files to be created. We
also ask the Project Manager agent to explicitly
match all the requirements in the PRD with the
files in the code plan, in order to ensure that all the
requirements are considered.
Programmer. Unlike GPT-Engineer (Osika.,
2023) and ChatDev (Qian et al., 2023) where the
agent generates code solely based on the raw de-
scription of requirements, our Programmer agent
generates code based on the PRD, the architecture
diagram and the code plan outputted by previous
agents. Benefiting from task decomposition and
scheduling, the Programmer agent can generate
code for much more complex software.

Test Engineer. Existing works have explored using
LLMs for software testing from various perspec-
tives, including unit test case generation (Li and
Yuan, 2024) and GUI testing (Liu et al., 2024). In
our framework, the Test Engineer agent focuses on
general metrics such as structural completeness, ex-
ecutability and functional completeness. Detailed
testing procedures are elaborated in Section 5.
Shared certified repository. Our framework main-
tains a shared certified repository (SCR) to store
intermediate deliverables, including PRD, architec-
ture diagrams, task plans and codes. Each newly
generated deliverable will go through an alignment
checking procedure before being added to the SCR.
In this way, SCR actually represents the agents’
common understandings of the software and pro-
vides basis for subsequent activities. At each phase
in the general workflow, the working agent retrieves
all items in the SCR and generate new deliverable
based on them. At the alignment checking and the
ad hoc group review phases, each agent only re-
trieves the item generated by herself, so that each
agent could concentrate on a specific perspective.

3.2 Real-Time Alignment Mechanism

It is very common in real-world software devel-
opment that team members have different under-

1551

Product Manager Architect

Project Manager

Programmer

•Whether the PRD is aligned with the requirements.

•Whether the Arch is

aligned with the

requirements.

•Whether the task plan is aligned

with the requirements.

•Whether the

code is

aligned with

the

requirements.

•Whether all functionalities

in the PRD are matched in

the architecture.

•Whether each functionality in the

PRD is described by task plan.

•Whether the technology stack used in

the task plan conforms to the architecture;

•Whether the relationships between files

are consistent with the architecture design.

•Whether the code attempts

to implement all specified

functionalities in PRD;

•Whether the code can fully

meet the functional

requirements of PRD in

implementation.

•Whether tech stack compliance with

architecture;

•Whether data structures and interfaces

are correctly implemented;

•Whether file and class references

adherence to architecture;

……

•Whether the code in each

file fully implements all the

functions or descriptions

defined in the task plan.

PRD
Arch

Plans

Codes

User

User Product Manager Architect

User Product Manager

User Product Manager Architect Project Manager

Alignment Checking ①

Alignment Checking ②

Alignment Checking ③

Alignment Checking ④

Figure 3: Illustration on the alignment checking phase initiated by the Programmer agent. The horizontal arrow
indicates the order of agents to be queried and the vertical arrows indicate the order of checkpoints in the querying
prompts. Illustrations of other alignment checking phases are shown in Appendix A.7. Note that the user involvement
is optional, depending on whether human instructions are allowed in practice.

standings of the task, which might significantly
impede the development process. Through decades
of practice, people have developed many solutions
to address the misalignment of understanding. For
example, a quick group meeting can help team
members to align their opinions when some prob-
lems arise. Such an alignment mechanism in team-
work is key to software development since the
misalignment-oriented errors frequently occur dur-
ing the development process.

The design of our real-time alignment (RTA)
mechanism follows two principles. First, each
newly generated deliverable should be checked be-
fore being used, thus any occurring errors can be
reduced in real time. Second, for the sake of effi-
ciency, we should keep the minimum number of
participants in reviews and discussions. This is ex-
tremely important when more agents are included
to solve more complex tasks.

3.2.1 Alignment Checking
The goal of alignment checking is to ensure that the
newly generated deliverable correctly realizes the
requirements and is consistent with the intermedi-
ate deliverables in the SCR. As shown in Figure 2,
our framework includes four alignment checking
phases. In each alignment checking phase, we call
the agent responsible for the current generation
phase initiator, and all the previous agents supervi-
sors. For example, in the third alignment checking
phase, the Project Manager serves as the initiator,
while the Product Manager and the Architect serve
as supervisors. Note that the user can optionally
participate in the alignment checking, depending
on the practical constraints.

During each alignment checking phase, the ini-
tiator sends the newly generated deliverable to all

supervisors. Then, each supervisor retrieves their
outcomes from the SCR and checks whether the
newly generated deliverable is consistent with their
previous outcomes. Note that the alignment check-
ing requires sophisticated logical reasoning, which
is still a big challenge for even most advanced
LLMs. Therefore, if we directly ask an LLM if
multiple files are logically consistent, we probably
cannot get a reliable result.

To this end, we propose a checkpoint-based
prompting method to guide the alignment checking
process, inspired by the Chain-of-Thought (CoT)
method (Wei et al., 2022). The key idea of our
checkpoint-based method is to decompose each
checking task into several important checkpoints.
In each alignment checking phase, the supervisors
are queried sequentially following the horizontal
arrow. When a supervisor is being queried, she will
retrieve the deliverable generated by herself from
the SCR and check if it is consistent with the query-
ing deliverable following the checkpoints along the
vertical arrow. The supervisor will approve the
querying deliverable only when all the checkpoints
along the vertical arrow are met. Figure 3 gives
an example of alignment checking initiated by the
Programmer agent. If all supervisors approve the
querying deliverable, it will be added to the SCR.
Otherwise, an ad hoc group review phase will be
initiated to resolve the misalignment.

A concrete prompt includes the querying deliver-
able, the deliverable retrieved by the supervisor, the
necessary checking points and a counter-example
explaining failures on meeting the checkpoints.
More details on the structure of the prompts can be
found in Appendix A.7.

1552

3.2.2 Ad Hoc Group Review
In human development teams, a quick discussion
or meeting is perhaps the most efficient way to
align with each other. Existing works have shown
that discussions in LLM-based multi-agent com-
munities also help resolve conflicts and accelerate
teamwork (Park et al., 2023; An et al., 2024). Note
that in the above alignment checking process, each
supervisor checks the initiator’s deliverable only
from their own perspectives. Since there might be
conflicts in the supervisors’ reviews, the initiator
would be confused when regenerating their deliver-
able. Therefore, a group review phase can help to
form clearer feedback to the initiator.

We call it an ad hoc group review because only
supervisors who vote for misalignment will partici-
pate in the group review, thus the group is formed
in an ad hoc manner. There are two motivations be-
hind this design. First, we try to keep the minimum
number of participants in the discussion, which
also accords with efficiency principles of human
meetings. Second, if the group incorporates too
many agents, it is hard to reach a consensus. Note
that our framework can be extended by employing
more agents to play each role, in which cases the
ad hoc design could largely improve the efficiency.

Specifically, there are two loops in the ad hoc
review phase, as shown in Figure 2. In the inner
loop, each agent analyzes other agents’ reviews
and modifies their own reviews. In the outer loop,
the initiator regenerates their deliverable based on
the final reviews outputted by the supervisors after
discussion, until the regenerated deliverable passes
the alignment checking or the maximum number
of iterations is reached. We will show how to de-
termine the maximum number of iterations of both
inner and outer loops in Appendix A.4.

3.3 Adaptation to Agile Frameworks

Although we adopt a Waterfall-like development
process as the general workflow, the RTA mech-
anism can also be adapted to Agile frameworks
such as Scrum (Samar et al., 2020). The extension
can be done by performing alignment checking and
group review on milestone deliverables. In fact, the
RTA itself reflects the spirits of Agile.

4 FSD-Bench: Functionality-Driven
Software Development Benchmark

Existing work has proposed some software devel-
opment datasets based on simple instructions, such

as SRDD (Qian et al., 2023), 50days50projects
(Zhang et al., 2024), and SoftwareDev (Hong et al.,
2024). These datasets provide a comprehensive
corpus of textual software requirements. However,
we thoroughly reviewed the description of each
software requirement and noticed several issues.
Firstly, many descriptions are incomplete, ending
with ellipses. Secondly, some tasks are almost im-
possible for current LLM-based software develop-
ment, such as the creation of a video game. Third,
these datasets lack effective test cases for evalua-
tion. To this end, we develop a new Functionality-
driven Software Development Benchmark (FSD-
Bench), which covers three types of tasks: Website,
Desktop Application and Game development.

4.1 Benchmark Construction

FSD-Bench contains 120 realistic tasks selected
from SRDD and 882 pieces of functional descrip-
tions of the tasks. In addition, we design 1195 test
cases to comprehensively verify if the developed
software accomplishes the functionalities.

User Requirements. The requirements for each
software consist of four key components, including
Software Description, Core Features, Programming
Language, and Data Storage. Software Description
describes an overview of the task, outlining the ob-
jectives and expected software. The Core Feature
lists the feature that the software must contain in the
form of sub-points. The Programming Language
describes the user’s high-level technical require-
ments, indicating whether the software will be a
website, desktop application, or game. Finally, the
Data Storage briefly describes the manner in which
the software’s data will be stored, with the use of
local files specified as a compromise to facilitate
batch automated testing.

Test Cases. Each user requirements document is
paired with a test cases document. We design sev-
eral test cases for each feature using Step-Expected
format, where Step denotes the sequence of opera-
tions and Expected denotes the expected result of
each sequence of operations. We combined man-
ual design and LLM generation to create each test
case document, where we first manually design
test cases for the most critical core features and
then prompt the LLM (GPT-4o) with the software
requirements to generate additional test cases for
other core features. More details about the FSD-
Bench can be found in Appendix A.3.

1553

FSD-Bench HumanEval
(%)SC (%) Exec. (%) FC (%) Tokens Time (s)Paradigm Method

Website Desktop Game Average Pass@1

Single-Agent
GPT-4o-Mini 89.17 88.33 39.14 38.57 33.98 37.23 1953.23 14.806 87.20
GPT-Engineer 75.83 80.00 29.14 38.57 29.13 32.28 5919.57 23.044 88.41

AutoGen 84.17 85.83 42.57 37.67 27.83 36.02 6345.60 24.559 85.36

Multi-Agent
MetaGPT 77.50 85.83 19.71 48.43 35.92 34.69 44122.05 67.582 87.20
ChatDev 81.67 95.83 30.57 49.78 42.71 41.02 39318.98 389.118 86.59

90.00 97.60 55.14 62.78 73.54 63.83 70652.60 143.770 91.46
RTADev +0.93 +1.85 +29.53 +26.11 +72.18 +55.61 - - +3.45

Table 1: Overall performance of RTADev and baselines. Performance metrics are averaged for all tasks. The
best results are shown in bold. Red values represent the relative improvement in percentage brought by RTADev,
compared with the second-best results.

5 Experiments

5.1 Experimental Settings

Datasets. Our experiments cover both the
proposed FSD-Bench and the widely used
HumanEval dataset, which comprises 164
Python function completion tasks based on given
requirements (Chen et al., 2021b).

Baselines. We select GPT-4o-Mini and four
open-sourced agent-based methods as baselines:
GPT-Engineer (Osika., 2023), AutoGen (Wu
et al., 2023), MetaGPT (Hong et al., 2024),
and ChatDev (Qian et al., 2023). These meth-
ods represent a diverse set of single-agent and
multi-agent frameworks for LLM-based software
development. To ensure a fair comparison, all
baselines and our RTADev framework are powered
by the GPT-4o-Mini. More implementation details
can be found in Appendix A.1.

Metrics. We use various metrics to evaluate the
code generated by different methods. Specifically,
experiments on HumanEval adopt the pass@1
metric following existing works (Chen et al.,
2021b). For experiments on FSD-Bench, the
executability metric calculates the percentage of
tasks whose code run successfully in the compiling
environment. Structural completeness (SC) is a
statistical metric that measures the completeness
of code structures. SC is measured by a script
that matches unexpected placeholders (e.g., PASS,
TODO) using a regular expression. To evaluate
how the functionalities in the PRD are imple-
mented, we introduce a new metric functional
completeness (FC), which is calculated as the
ratio of implemented requirements to the total
number of requirements. In fact, executability and
SC focus on evaluating code quality from a lower

level, while FC focuses on a higher functionality
level. We believe that FC is more suitable for
complex software development tasks. In addition,
we report the total number of tokens and time con-
sumed during the entire generation process. More
details about metrics can be found in Appendix A.2

5.2 Main Results

As shown in Table 1, RTADev performs better
than all baseline methods in all metrics, which
demonstrates the superiority of our framework. In
terms of SC, RTADev achieves the best results
because our real-time alignment mechanism
can effectively detect codes that are not fully
implemented or have placeholders. Also the
multi-agent discussion greatly improves structural
completeness of regenerated codes. In terms
of executability, RTADev also achieves the best
results, potentially due to the feedback from
the Test Engineer so that the low-level bug can
be fixed in real time. FC is the most important
metric as it comprehensively measures whether the
code meets the functional requirements. ChatDev
achieves the second-best result in terms of average
FC among the multi-agent methods, benefiting
from its code completion phase which involves
multiple rounds of code improvement. RTADev
outperforms ChatDev by 55.17% in terms of
average FC, indicating that the real-time alignment
mechanism indeed ensures that all agents work
towards the same goal. Moreover, RTADev has
significantly improved the FC metric of three types
of software development tasks compared with all
baselines, which shows that the RTA mechanism is
effective and can be used for a variety of software
development tasks. We provide some case studies
to show the quality of software developed by
RTADev in Appendix A.5.

1554

Architect Project Manager Programmer
SC (%) Exec. (%) FC (%)

Website Desktop Game Average
a) - - - 71.67 81.67 32.62 48.21 41.67 40.83
b) - ✓ ✓ 83.33 91.67 57.22 67.16 57.74 60.71
c) ✓ - ✓ 85.00 85.00 48.12 63.43 55.36 55.64
d) ✓ ✓ - 66.67 83.33 39.57 59.21 49.40 49.06
e) ✓ ✓ ✓ 88.33 100 65.24 70.83 79.10 71.72

Table 2: Ablation study on three important agents with/without RTA. Best performances are in bold.

5.3 Computational Cost Analysis
We can see from Table 1 that RTADev consumes
more time and tokens than single-agent approaches
and MetaGPT, but less than ChatDev. This result
is under expectation because RTADev incorporates
more agent communications than MetaGPT. Mean-
while, RTADev significantly outperforms all base-
lines in all metrics. We believe that spending more
time to achieve better results is worthwhile, espe-
cially considering that the time consumption is still
much lower than that of the human developers. Fur-
thermore, in the real-time alignment phase, there
are two hyper-parameters that control the maxi-
mum number of rounds for alignment checking
and ad hoc group review. These parameters allow
for balancing between performance and time con-
sumption in practice. We show how to determine
these parameters in Appendix A.4.

5.4 Ablation Study
To further evaluate the improvements brought by
the RTA mechanism, we implement four variants
of RTADev (indexed by a-d in Table 2) by skipping
some alignment checking phases. And 60 tasks
are selected from FSD-Bench for ablation exper-
iments. We can find that these variants perform
worse than RTADev (indexed by e) in all metrics,
demonstrating the effectiveness of the RTA mech-
anism for each agent. Additionally, variant d per-
forms worse than all other variants except variant a,
which shows that the RTA mechanism initiated by
the programmer is very critical and may have the
greatest impact on the quality of the final generated
software.

5.5 Misalignment Analysis
As the motivation of RTADev is to reduce the mis-
alignment between agents, we report the number
of misaligned deliverables, which is counted by
running alignment checking procedures. For exam-
ple, the blue bar in Figure 4 represents the number

Architecture
Code Plan

Code
0

20

40

60

M
is

al
ig

nm
en

t C
ou

nt
s ChatDev

Architecture
Code Plan

Code
0

20

40

60

MetaGPT

Architecture
Code Plan

Code
0

20

40

60

RTADev

Misalignment with PRD Misalignment with Architecture Misalignment with Code Plan

Figure 4: Comparison of misalignment counts.

of cases where the codes are not aligned with the
PRD. To make a fair comparison, for MetaGPT and
RTADev, we count the number of misalignments
across three phases: architecture design, code plan-
ning and code writing. Considering that ChatDev
only generates code, we only show the number of
misalignments between the PRD and the code.

Compared to the baselines, RTADev effectively
reduces the misalignment at most phases, indicat-
ing that by incorporating the RTA mechanism can
efficiently resolve misalignment during the whole
process. The only exception is a slight increase
(5.6%) in misalignment between architecture and
code plan comparing with MetaGPT. This is be-
cause that MetaGPT hard encodes a strict corre-
spondence between architecture and code plan,
which reduces misalignment manually. Note that
the misalignment cannot be completely reduced,
possibly due to the hallucination of LLMs.

6 Conclusion

LLM-based multi-agent frameworks have a great
potential for automated software development, yet
they suffer from misalignment between agents. In
this paper, we introduce a novel and flexible multi-
agent framework RTADev, which introduces an ef-
fective real-time alignment (RTA) mechanism to en-
sure that all the agents work based on a consensus.
We construct a realistic FSD-Bench with extensive
unit test cases to evaluate the functional complete-
ness of software. Benefiting from the RTA mech-
anism, RTADev significantly outperforms strong
baselines, demonstrating its superiority and poten-
tial in complex software development tasks.

1555

Limitations

Our work faces following limitations. First, al-
though RTADev reduces the misalignment-oriented
errors from a mechanism design perspective, such
errors may still exist. We hypothesis that it is due to
the limitation of the agents’ reasoning ability. Per-
haps a stronger base model than the GPT-4o-Mini
we used would mitigate this issue. Second, there is
still a gap between the FSD-Bench we constructed
and industrial development tasks. However, we
believe that FSD-Bench is suitable for evaluating
current LLM-based code generation methods, since
even the best method achieves less than 75% in
terms of functional completeness, as is shown in
Table 1. Third, in our experiments, each role in
RTADev is played by a single agent. A natural ex-
tension is to employ more agents to perform each
development tasks. However, employing more
agents might increase the computational cost.

Acknowledgments

This research is supported by the Science and Tech-
nology Planning Project of Guangdong Province
(2020B0101100002), the Fundamental Research
Funds for the Central Universities, South China
University of Technology (x2rjD2240100), Guang-
dong Provincial Fund for Basic and Applied Ba-
sic Research—Regional Joint Fund Project (Key
Project) (2023B1515120078), Guangdong Provin-
cial Natural Science Foundation for Outstanding
Youth Team Project (2024B1515040010), Guang-
dong Basic and Applied Basic Research Foun-
dation (2025A1515010247), and the Fundamen-
tal Research Funds for the Central Universities
(2024ZYGXZR069).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Denowo Adetokunbo and Basirat Adenowo. 2013. Soft-
ware engineering methodologies: a review of the
waterfall model and object-oriented approach. Inter-
national Journal of Scientific Engineering Research,
pages 427–434.

Zhang An, Yuxin Chen, Leheng Sheng, Xiang Wang,
and Tat-Seng Chua. 2024. On generative agents in
recommendation. In Proceedings of the 47th inter-
national ACM SIGIR conference on research and

development in Information Retrieval, pages 1807–
1817.

Chetan Arora, John Grundy, and Mohamed Abdelrazek.
2024. Advancing requirements engineering through
generative ai: Assessing the role of llms. In Gener-
ative AI for Effective Software Development, pages
129–148. Springer.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Elizabeth Bjarnason, Helen Sharp, and Björn Regnell.
2019. Improving requirements-test alignment by pre-
scribing practices that mitigate communication gaps.
Empirical Software Engineering, 24:2364–2409.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
and Greg Brockman. 2021a. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021b. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024.
Self-collaboration code generation via chatgpt. ACM
Transactions on Software Engineering and Method-
ology.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder:
A generative model for code infilling and synthesis.
In International Conference on Learning Representa-
tions.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jürgen Schmidhuber. 2024. MetaGPT: Meta pro-
gramming for a multi-agent collaborative framework.
In The Twelfth International Conference on Learning
Representations.

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu,
Zijie Yu, Yuchen Hou, Shuo Tang, and Siheng Chen.
2024. Self-evolving multi-agent collaboration net-
works for software development. In arXiv preprint
arXiv:2410.16946.

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan,
Bo Li, and Huaming Chen. 2024. From llms to
llm-based agents for software engineering: A sur-
vey of current, challenges and future. arXiv preprint
arXiv:2408.02479.

1556

https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o

Hung Lea, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:
Mastering code generation through pretrained mod-
els and deep reinforcement learning. In Advances
in Neural Information Processing Systems, pages
21314–21328.

Kefan Li and Yuan Yuan. 2024. Large language models
as test case generators: Performance evaluation and
enhancement. arXiv preprint arXiv:2404.13340.

Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo
Chen, Boyu Wu, Xing Che, Dandan Wang, and
Qing Wang. 2024. Make llm a testing expert: Bring-
ing human-like interaction to mobile gui testing via
functionality-aware decisions. In Proceedings of the
IEEE/ACM 46th International Conference on Soft-
ware Engineering, pages 1–13.

Microsoft. 2023. Microsoft attracting users
to its code-writing generative ai software.
https://www.euronews.com/next/2023/01/25/microsoft-
results-ai.

OpenAI. 2022. Chatgpt: Optimizing language models
for dialogue. https://openai.com/index/chatgpt/.

Anton Osika. 2023. Gpt-engineer.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S. Bern-
stein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th an-
nual acm symposium on user interface software and
technology, pages 1–22.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. 2023. Communicative agents for software de-
velopment. arXiv preprint arXiv:2307.07924.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, and Jer´ emy Rapin. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Al-Saqqa Samar, Samer Sawalha, and Hiba AbdelNabi.
2020. Agile software development: Methodologies
and trends. International Journal of Interactive Mo-
bile Technologies.

Balaji Sundramoorthy and Sundararajan Murugaiyan.
2012. Waterfall vs. v-model vs. agile: A comparative
study on sdlc. International Journal of Information
Technology and Business Management, pages 26–30.

Knut Sveidqvist and Contributors to Mermaid. 2014.
Mermaid: Generate diagrams from markdown-like
text.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Michael Unterkalmsteiner, Tony Gorschek, Robert
Feldt, and Eriks Klotins. 2015. Assessing require-
ments engineering and software test alignment—five
case studies. Journal of Systems and Software,
109:62–77.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Li Yuan, Yi Cai, Jin Wang, and Qing Li. 2023. Joint
multimodal entity-relation extraction based on edge-
enhanced graph alignment network and word-pair
relation tagging. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 37, pages
11051–11059.

Li Yuan, Yi Cai, Jingyu Xu, Qing Li, and Tao Wang.
2025. A fine-grained network for joint multimodal
entity-relation extraction. IEEE Transactions on
Knowledge and Data Engineering, 37(1):1–14.

Sai Zhang, Zhenchang Xing, Ronghui Guo, Fangzhou
Xu, Lei Chen, Zhaoyuan Zhang, Xiaowang Zhang,
Zhiyong Feng, and Zhiqiang Zhuang. 2024. Em-
powering agile-based generative software develop-
ment through human-ai teamwork. arXiv preprint
arXiv:2407.15568.

A Appendix

A.1 Implementation Details

In order to reduce human factors in the experimen-
tal results, we skip the steps in alignment checking
where human inputs are required. Although ef-
fective human feedback may help to improve the
performance of our methods, we believe that re-
moving human factors leads to a fairer comparison.

1557

https://github.com/AntonOsika/gpt-engineer
https://github.com/mermaid-js/mermaid
https://github.com/mermaid-js/mermaid
https://doi.org/10.1016/j.jss.2015.07.018
https://doi.org/10.1016/j.jss.2015.07.018
https://doi.org/10.1016/j.jss.2015.07.018
https://doi.org/10.1109/TKDE.2024.3485107
https://doi.org/10.1109/TKDE.2024.3485107

In addition, we set the maximum number of iter-
ations as 1 for the inner loop, and 3 for the outer
loop in the real-time alignment mechanism. We
use GPT-4o-Mini with a temperature of 0.2. All
baselines in the experiments share the same hyper-
parameters and settings.

A.2 Metrics Details

Following existing works (Qian et al., 2023; Hong
et al., 2024), we use structural completeness (SC)
and executability to evaluate RTADev. In addition,
we propose a new metric called functional
completeness (FC) to evaluate how the developed
software meets the functional requirements. The
metrics are elaborated as follows.

• Structural Completeness (SC) is a statistical
metric that measures the completeness of code
structures. In practice, codes generated by LLMs
are usually incomplete, where some important
classes and functions are replaced by placeholders
(e.g., PASS, TODO). For each software develop-
ment task, we flag it as structural complete if the
generated codes do not contain any placeholders,
and incomplete otherwise. The SC of a set of
tasks is calculated as the percentage of structurally
complete tasks. A higher SC score of a framework
indicates a better ability to generate complete
code. SC is measured by a script that matches
placeholders using a regular expression.

• Executability measures whether the generated
codes could run successfully within the compiling
environment, regardless of whether the functional
requirements are met. In other words, the
executability focuses on checking if there are
low-level bugs in the code. We calculate this
metric as the percentage of tasks that compile and
run successfully. A higher score indicates better
ability of the framework to generate bug-free code.

• Functional Completeness (FC) measures how the
software meets the functional requirements. The
FC of a task is calculated as the percentage of the
implemented requirements to total requirements.
Compared with SC and executability metrics, FC
is a more advanced metric because it measures the
quality of generated code from a higher level. We
perform unit testing for generated software accord-
ing to the test cases in the FSD-Bench to verify
whether functionalities are implemented.

A.3 Benchmark Details

The Software Requirement Description Dataset
(SRDD) introduced by ChatDev represents
a comprehensive corpus of textual software
requirements, specifically curated to facilitate
agent-driven software development. The dataset
comprises 1,200 discrete software tasks, which are
classified into five principal domains: Education,
Work, Life, Games, and Creation. The dataset
incorporates software descriptions from major
platforms, including Ubuntu, Google Play, Mi-
crosoft Store, and Apple Store, thereby providing
a diverse and representative sample of software
requirements across various domains. However,
we thoroughly reviewed the description of each
software requirement and noticed several issues.
Firstly, many descriptions are incomplete, ending
with ellipses. Secondly, some tasks are almost
impossible for current LLM-based software
development, such as the creation of a video
game. Third, SRDD lacks effective test cases
for evaluation. To this end, we develop a new
Functionality-driven Software Development
Benchmark (FSD-Bench), which covers three
main types of software development: Website,
Desktop Application and Game development.
FSD-Bench contains 120 realistic tasks selected
from SRDD and 882 pieces of functional descrip-
tions of the tasks. We also provide an overview of
website, desktop application, and game in Table 3,
4, and 5 respectively. In addition, we design 1195
test cases to comprehensively verify if the software
accomplish the functionalities.

Part 1: User Requirements. As shown in Figure 5,
the requirements for each software consist of four
key components, including Software Description,
Core Features, Programming Language (Technol-
ogy Stack), and Data Storage. The first compo-
nent is the Software Description, which describes
an overview of the task, outlining the objectives
and expected software. The Core Feature, on the
other hand, lists the feature that the software must
contain in the form of sub-points. The Program-
ming Language (Technology Stack) describes the
user’s high-level technical requirements, indicating
whether the software will be a website, desktop
application, or game. Finally, the Data Storage
section briefly describes the manner in which the
software’s data will be stored, with the use of local
files specified as a compromise to facilitate batch

1558

automated testing.
Part 2: Test Cases. As shown in Figure 6, each
user requirement document is paired with a test
case document. We design several test cases for
each feature using Step-Expected format, where
’Step’ denotes the sequence of operations and ’Ex-
pected’ denotes the expected result of each se-
quence of operations. We combined manual design
and Large Language Model (LLM) generation to
create each test case document, where we first man-
ually design test cases for the most critical core
features and then prompt the LLM(GPT-4o) with
the software requirements to generate additional
test cases for other core features.
Part 3: Unit Testing. As shown in Figure 7, upon
completion of the code generation task, the test
cases and codebase are provided to the LLM (GPT-
4o) to generate unit test code. We then manually re-
view and correct the generated unit test code to ad-
dress any potential errors. The LLM is prompted to
generate unit test functions on a feature-by-feature
basis, with features containing multiple test cases
written into the same unit test function. If a feature
is not implemented by the software, a unit test func-
tion that simply returns a failure will be generated.
Finally, we execute the unit test code in batches to
evaluate the completeness of the software’s core
features.

1559

Website

DailyJournalApp EcoFriendlyLivingTips FreelancerMarketplace
GreenLivingGuide OnlineShoppingCenter OnlineVintageMarket
ParentingAdviceForum RemoteJobBoard TaskManager

Table 3: 9 Website Software in FSD-Bench.

Desktop Application

BookshelfManager DataSummarizer ExpensePlanner
InvestmentTracker OfficeStockManager PhotoStickerMaker
ScienceLibrary ShapeMaster ShoppingPlanner

Table 4: 9 Desktop Applications Software in FSD-Bench.

Game

Balls BlockConnect Gomoku Brick ColorLinkPuzzle
2048 JigsawMania TilePlacer Tank NumberMystery

Table 5: 10 Game Software in FSD-Bench.

Software Description

Objective

Image Enhancer is a photo software application for enhancing the quality and appearance of images. It provides a range of editing

tools, including brightness, contrast, and saturation adjustment, along with filters and effects to enhance colors and tones. Users can

also perform basic cropping and resizing. The software aims to provide a simple yet powerful tool to enhance and improve photos.

Core Features

1. Import and select a image.

2. Adjust brightness of images.

3. Adjust contrast of images.

4. Adjust saturation of images.

5. Apply filters to images.

6. Apply effects to enhance colors and tones.

7. Crop images.

8. Resize images.

Language

Use python to develop a application. You can use tkinter library to build graphical user interfaces.

Data Storage

Data will be stored in local files.

User Input

Figure 5: User requirement of Image Enhancer.

1560

Functionality 1. Import and Select an Image

Step
Import a valid image file (e.g., JPEG, PNG).

Expectation
The image loads successfully and is displayed in the editor.

Functionality 2. Adjust Brightness of Images

Step
Increase the brightness of an image to maximum.

Expectation
The image becomes brighter, with visible changes in luminance.

Step
Decrease contrast to minimum.

Expectation
The image appears flat with reduced distinction between light and dark areas.

Functionality 3. Adjust Contrast of Images

Step
Increase contrast to maximum.

Expectation
The difference between light and dark areas becomes more pronounced.

Step
Decrease saturation to minimum.

Expectation
The image becomes grayscale.

Functionality 4. Adjust Saturation of Images

Step
Increase saturation to maximum.

Expectation
Colors in the image appear more vivid and intense.

Functionality 7. Crop Images

......

Functionality 8. Resize Images

......

Test Image File
Relative path:
./lena.jepg

Functionality 6. Apply Effects to Enhance Colors and Tones

......

Step
Increase the brightness of an image to maximum.

Expectation
The image becomes brighter, with visible changes in luminance.

Step
Apply multiple filters sequentially.

Expectation
Filters are layered, and the image reflects combined effects.

Functionality 5. Apply Filters to Images

Step
Select and apply a predefined filter (e.g., “Sepia”).

Expectation
The filter is applied, and the image reflects the changes.

Figure 6: Test cases for each feature of Image Enhancer in step-expected format.

1561

import unittest

from unittest.mock import patch

from PIL import Image

import os

from main import Main

from image_enhancer import ImageEnhancer

class TestImageEnhancer(unittest.TestCase):

 def setUp(self):

 """Set up the initial conditions for testing."""

 self.app = Main()

 self.enhancer = self.app.enhancer

 self.test_image_path = "./lena.jpeg"

 # Ensure test image exists

 if not os.path.exists(self.test_image_path):

 raise FileNotFoundError(f"Test image {self.test_image_path} not found.")

 # Load the test image

 self.enhancer.load_image(self.test_image_path)

 def test_adjust_brightness(self):

 """Test brightness adjustment."""

 # Test increasing brightness

 initial_image = self.enhancer.image.copy()

 self.enhancer.adjust_brightness(2.0) # Max brightness

 self.assertNotEqual(

 initial_image, self.enhancer.image, "Brightness adjustment failed."

)

 # Test decreasing brightness

 initial_image = self.enhancer.image.copy()

 self.enhancer.adjust_brightness(0.0) # Min brightness

 self.assertNotEqual(

 initial_image, self.enhancer.image, "Brightness adjustment failed."

)

 def test_adjust_contrast(self):

 """Test contrast adjustment."""

 # Test increasing contrast

 initial_image = self.enhancer.image.copy()

 self.enhancer.adjust_contrast(2.0) # Max contrast

 self.assertNotEqual(

 initial_image, self.enhancer.image, "Contrast adjustment failed."

)

 def test_adjust_saturation(self):

 def test_apply_filter(self):

 def test_apply_grayscale_effect(self):

 def test_apply_sepia_effect(self):

 def test_resize_image(self):

 @patch("builtins.input", return_value="100")

 def test_crop_interactive_input(self, mock_input):

 @patch("builtins.input", return_value="400")

 def test_resize_interactive_input(self, mock_input):

 def test_save_image(self):

if __name__ == "__main__":

 unittest.main()

Figure 7: Unit testing code generated by GPT-4o.

1562

A.4 Grid Search for Optimal
Hyper-parameters

The maximum numbers of inner and outer loop it-
erations are two key hyper-parameters in RTADev.
Increasing the numbers of iterations might lead to
better performance, but it also brings more costs.
Therefore, we need to find a balance between per-
formance and efficiency. In practice, we randomly
sample 20 tasks from the FSD-Bench and run a
grid search procedure to find the optimal hyper-
parameters. In order to reduce the number of hyper-
parameters, we skip the first three alignment check-
ing phases and only run the alignment checking
and multi-agent discussion phases initiated by the
Programmer agent, as the last alignment checking
phase involve all the agents. We set the maximum
number of outer loop iterations (A in Figure 8) as
1,2,3,5,7 and the maximum number of inner loop
iterations (M in Figure 8) as 1,2,3, resulting in 15
sets of experiments in total.

	�
	�
	�
	�
	�
��!�� ��� ��������� ���������
���������

����

����

����

����

�
��
���

��
���

��
��
��
��
��
�

�	�
�	�
�	�

Figure 8: The Functional Completeness performance of
RTADev under different hyper-parameter settings in 20
tasks.

As shown in Figure 8, overall, with the increase
of the maximum number of outer loop iterations,
the FC performance also improves clearly. By av-
eraging over M, we find that the performance on
FC increases gradually from A = 1 to A = 7. This
also aligns with out intuition that more rounds of
regeneration and alignment checking help to im-
prove the quality of code. Note that the number
of alignment checking in our work refers to the
maximum allowable number of checking, so the
outer loop is possibly finished before reaching the
limit. This termination often happens for simpler
projects, therefore increasing the number of align-
ment checking is more suitable for addressing com-

plex projects. In our experiments, we choose A=3
since it provides a balance.

Regarding to the number of inner loop iterations,
the intuition is that more discusses between super-
visors could lead to better results. However, as
shown in Figure 8, we do not find a clear trend
of improvement by increasing M, especially when
A is small. As the number of alignment checking
increases, the benefits of discussion start to mani-
fest. Overall, the increase on the number of inner
loop iterations shows a slight improvement, which
is less important than that of the outer loop.

A.5 Case Study
We selected a set of software in the FSD-Bench as
examples and compared the effects of the software
generated by MetaGPT, ChatDev and RTADev,
which intuitively demonstrated the superiority of
RTADev in software development.

As illustrated in Figure 9, the requirement for
this software is described as: A software that al-
lows users to create customized stickers using their
own photos. Users can select an image, choose
the desired shape and size of the sticker, and add
text or decorative elements. The software provides
easy-to-use tools for cropping, resizing, and adding
effects to the photos. Once the sticker is created,
users can save it as a transparent PNG file to use
in messaging apps or social media platforms. The
software generated by RTADev implements all the
functionalities mentioned in the software descrip-
tion, while the software generated by ChatDev does
not implement functionalities such as cropping,
resizing, and adding special effects. In addition,
when implementing the functionality where users
can choose the desired shape and size of the sticker,
the software generated by ChatDev could only se-
lect stickers of a fixed size. Figure 10,11,12 ,13
show four more examples, these examples show
that RTADev can reduce the misalignment in the
software development process after the real-time
alignment mechanism, and generate more compre-
hensive and accurate software that meets the re-
quirements.

1563

Figure 9: An example of software generated by ChatDev(left) and RTADev(middle and right). In the left picture,
we uploaded an image and selected the sticker shape as a circle, and then we cannot change the sticker size. In the
middle picture, we uploaded an image and selected the sticker shape as a circle. In the right picture, we set the
desired sticker size.

Figure 10: Investment Tracker. From left to right, generated by MetaGPT, ChatDev, and RTADev. The software
requires five core functionalities: 1. Input investment details. 2. Categorize investments into different portfolios. 3.
Provide visualizations showing investment performance over time. 4. Generate reports on investment performance.
5. Set investment goals. RTADev implements all functionalities, while MetaGPT lacks the function of setting
investment goals, and ChatDev only implements the functionalities of input investment and generating reports.

1564

Figure 11: Medical Health Tracker. From left to right, generated by MetaGPT, ChatDev, and RTADev. The software
requires six core functionalities: 1. Input daily activities. 2. Record exercise routines. 3. Log sleep patterns. 4. Track
nutrition intake. 5. Monitor stress levels. 6. Provide visualizations for health trends analysis. RTADev implements
all functionalities, while MetaGPT lacks the function of monitoring stress levels and viewing visualizations, and
ChatDev only implements the functionalities of input daily activity and viewing visualizations.

Figure 12: Balls. From left to right, generated by MetaGPT, ChatDev, and RTADev. A requirement for this game
is described as: when the player’s ball collides with a smaller enemy ball, the player’s ball grows in size, and the
smaller ball is consumed. In the left picture, the green ball can continuously capture the red ball, which does not
meet the user’s requirement that each ball can only be captured once. In the middle and right pictures, the game is
played according to the user’s requirements.

Figure 13: Gomoku. From left to right, generated by MetaGPT, ChatDev, and RTADev. In the left picture, only the
chessboard is shown, and neither the black nor the white pieces can be placed. In the middle picture, even though
the five black pieces are connected in a line, the software determines that the white pieces win. In the right picture,
both the black and white pieces can be placed normally, and the black pieces are correctly determined to win.

1565

A.6 A Concrete Example

Product

Requirement

Document

Alignment Checking

Architecture

Alignment Checking

Plans

Alignment Checking

Codes

Alignment Checking

User requirement

User requirement

Software Description

Objective

ExpensePlanner is a user-friendly software application that allows individuals to plan and track their expenses

efficiently. It provides a simple and intuitive interface for users to input and categorize their expenses. Users can

set budget goals, track their spending, and receive notifications when they exceed predefined limits.

ExpensePlanner also offers visual representations of budget breakdowns and generates reports to help users

analyze their financial habits. With ExpensePlanner, individuals can effectively manage their expenses and make

informed financial decisions.

CoreFeatures

 1. Input expenses.​

 2. Categorize expenses into predefined categories.​

 3. Set budget goals.​

 4. Track spending against budget goals.​

 5. Provide visual representations of budget breakdowns.​

 6. Generate reports to analyze financial habits.

Language

Use python to develop an application. You can use tkinter library to build graphical user interfaces.

Data Storage

Data will be stored in local text files.

= ?

We provide an example of gradually generating ExpensePlanner software project using RTADev. We

first show a framework diagram, then demonstrate each phase with corresponding agent’s prompt and

output.

General Workflow

User

User needs to input the initial user requirement, typically in natural language.

The generated Expense Planner software

Figure 14: Middle:framework diagram. Bottom:user requirement given by user.

1566

You are an excellent Software Requirements Analyst, and your task is to analyze an
initial project description, generate the functional requirements section of the
Software Requirements Specification (SRS) document (non-functional requirements are
not required). Aim to achieve functional requirements, only require to implement
demo.

Context
system description
{user_requirement}

Format Example
[OUTPUT]
general overview of the project
software functional requirements here...
[/OUTPUT]

Instruction
- general overview of the project: copy the system description here.
- software function requirements: based on the system description, output system's
function requirements

Constraint
Format: output wrapped inside [OUTPUT][/OUTPUT] like format example, nothing else.

Action
follow Instruction, Carefully ouput only functional requrirement based on the
original system description.
Aim to achieve functional requirements, only require to implement demo.
do not output ```plaintext or other ``` in the start and the end, output directly.
User Authentication, register, login is not needed.

role definition

INPUT OUTPUT

User Requirement Product Requirement Document(PRD)

Prompt for generating PRD

general overview of the project
ExpensePlanner is a user-friendly software application that allows individuals to
plan and track their expenses efficiently. It provides a simple and intuitive
interface for users to input and categorize their expenses. Users can set budget
goals, track their spending, and receive notifications when they exceed predefined
limits. ExpensePlanner also offers visual representations of budget breakdowns and
generates reports to help users analyze their financial habits. With ExpensePlanner,
individuals can effectively manage their expenses and make informed financial
decisions.

software functional requirements
1. The system shall allow users to input expenses.
2. The system shall allow users to categorize expenses into predefined categories.
3. The system shall allow users to set budget goals.
4. The system shall allow users to track spending against budget goals.
5. The system shall provide visual representations of budget breakdowns.
6. The system shall generate reports to analyze financial habits.

Product Requirement Document

Product manager performs requirement analysis based on the user requirement and generate Product

Requirement Document(PRD).

Product Manager

Figure 15: Top: prompt for product manager to generate PRD. Bottom: Generated PRD.

1567

You are a Architect, your goal is design a concise, usable, complete software
system. the constraint is make sure the architecture is simple enough and use
appropriate open source libraries. Aim to achieve functional requirements, only
require to implement demo.

Context
functional requirements
{prd}

format example
[CONTENT]
"Implementation approach": "We will ...",
"File list": ["main.py","game.py"],
"Data structures and interfaces": "
classDiagram
 class Main {
 -SearchEngine search_engine
 +main() str
 }...
 Main --> SearchEngine
 SearchEngine --> Index",
"UI design":"- A canvas for... with ..."
[/CONTENT]

Nodes: "<node>: <type> # <instruction>"
- Implementation approach: <class 'str'> # Analyze the difficult points of the
requirements, select the appropriate open-source framework. If require GUI, you
must also choose a GUI framework (e.g., in Python, you can implement GUI via
tkinter, Pygame, Flexx, PyGUI, etc,)
- UI design:<class 'str’> # ...
- Data Storage:
- File list: typing.List[str] # Only need relative paths. ALWAYS write a main.py
here
- Data structures and interfaces: <class 'str'> # Use mermaid classDiagram code
syntax...

Constraint
Language: Please use the same language as Human INPUT.
Format: output wrapped inside [CONTENT][/CONTENT] like format example, nothing else.

Attention
1. If a feature of software requires a GUI, you also need to carefully consider...
Action
Follow instructions of nodes and Attention, generate output and make sure it
follows the format example.

role definition

INPUT OUTPUT

Product Requirement Document(PRD)

Prompt for generating Architectural diagram

Architectural diagram

Architect analyzes the PRD and determines the general architecture of the software.

Architect

Figure 16: prompt for architect to generate architectural diagram.

1568

"Implementation approach": "We will use Python with the Tkinter library for the
graphical user interface. The application will allow users to input and categorize
expenses, set budget goals, and track spending. Data will be stored in local text
files, ensuring simplicity and ease of access."
"UI design":"- The main window will contain input fields for expenses, categories,
and budget goals. There will be buttons for adding expenses, viewing reports, and
visualizing budget breakdowns. A separate window will display charts for visual
representation of expenses."
"Data Storage":"Data will be stored in local text files. We will have separate
files for expenses, budget goals, and categories. The files will be named
'expenses.txt', 'budget_goals.txt', and 'categories.txt'. Each file will store data
in a simple, human-readable format.“
"File list": ["main.py", "dietary_planner.py", "database.py", "ui.py"],
"Data structures and interfaces":

class ExpensePlanner {
 -List<Expense> expenses
 -List<BudgetGoal> budget_goals
 -List<Category> categories
 +add_expense(amount: float,
category: str) void
 +set_budget_goal(amount: float)
void
 +track_spending() float
 +generate_report() str
 +visualize_budget() void
}

class Expense {
 float amount
 -str category
 +__init__(amount: float, category: str)
}

INPUT

Product Requirement Document(PRD)

Architectural Diagram

OUTPUT

Architectural diagram

class BudgetGoal {
 -float amount
 +__init__(amount: float)
 }

class Category {
 -str name
 +__init__(name: str)
 }

ExpensePlanner --> Expense
ExpensePlanner --> BudgetGoal
ExpensePlanner --> Category

Figure 17: Generated architectural diagram.

1569

You are a Project Manager, named Eve, your goal is break down tasks according to
functional requirement/architecture, generate a task plan, and analyze task
dependencies to start with the prerequisite modules. the constraint is use same
language as user requirement.

Context
functional requirement:
{prd}
architecture:
{architecture}

Nodes: "<node>: <type> # <instruction>"
- Required packages: typing.List[str] # Provide required packages in requirements.txt
format.
- Required Other language third-party packages: typing.List[str] # List down the

required packages...
- Logic Analysis: typing.List[typing.List[str]] # Provide a list of files with the
classes/methods/functions to be implemented, including dependency analysis and imports.
- Task list: typing.List[str] # Break down the tasks into a list of filenames...
- Shared Knowledge: <class 'str'> # Detail any shared knowledge, like common utility
functions...

Constraint
Language: Please use the same language as Human INPUT.
Format: output wrapped inside [CONTENT][/CONTENT] like format example, nothing else.

Action
Follow instructions of nodes, generate output and make sure it follows the format
example.

role definition

OUTPUT

Code Plan

Prompt for generating Code Plan

Architectural Diagram

"Required packages": ["tkinter","matplotlib"],
"Required Other language third-party packages": ["No third-party dependencies
required"],
"Logic Analysis": [
 ["main.py",
 "Contains the main application logic and GUI setup."],
 ["expense.py",
 "Contains the Expense class for managing individual expenses and includes methods
to track spending against budget goals."],
 ["budget_goal.py",
 "Contains the BudgetGoal class for managing budget goals and includes methods to
interact with the Expense class."],
 ["category.py",
 "Contains the Category class for managing expense categories."],
 ["report.py",
 "Contains functions for generating reports and visualizations."]
"Task list": [
 "category.py",
 "expense.py",
 "budget_goal.py",
 "report.py",
 "main.py"
],
"Shared Knowledge": "`category.py`, `expense.py`, and `budget_goal.py` contain classes
that are used in `main.py` for managing expenses, categories, and budget goals, with
explicit interactions defined between Expense and BudgetGoal classes."

Code Plan

INPUT

Product Requirement Document(PRD)

Project Manager schedules a code plan based on the PRD and the architectural diagram.

Project Manager

Figure 18: Top: prompt for project manager to generate code plan. Bottom: Generated code plan.

1570

You are a professional engineer; the main goal is to write google-style, elegant,
modular, easy to read and maintain code.
Output format carefully referenced "Format example".

Context

Design
{architecture}
Task Plan
{task_plan}

Format Example
main.py
```python
...
```

ui.py
```python
...
```

Instruction: Based on the context, follow "Format example", write code. .

ATTENTION
1. Use '###' to SPLIT CODE SECTIONS, neither '#' and not '##'. do not forget ``` in
each file, refer the example. Output format carefully referenced "Format example".
2. Follow design: YOU MUST FOLLOW "Data structures and interfaces". DONT CHANGE ANY
DESIGN. Do not use public member functions that do not exist in your design.
3. Follow task: YOU MUST write Comprehensive codes to complete task of each file in
task list.
4. CAREFULLY CHECK THAT YOU DONT MISS ANY NECESSARY CLASS/FUNCTION IN THIS FILE.
5. You must import the third-party libraries used in your code
6. Determine the order of writing the files based on your understanding of the project.
7. Write out EVERY CODE DETAIL, DON'T LEAVE TODO,PASS,PLACEHOLDER.
8. Only write code result, do not output any other content in the start or in the end.

role definition

OUTPUT

Code Plan

Prompt for generating Code

Architectural Diagram

INPUT

Code

Programmer generates code file based on the architectural diagram and code plan.

Programmer

Figure 19: Prompt for programmer to generate code.

1571

OUTPUT

Code Plan

Code

Architectural Diagram

INPUT

Code

expense.py
```python
from category import Category

class Expense:
    def __init__(self, amount: float, category: str):
        self.amount = amount
        self.category = category

    @staticmethod
    def track_spending(expenses: list, budget_goals: list) -> dict:
        spending_summary = {}
        total_spent = sum(exp.amount for exp in expenses)
        for goal in budget_goals:
            spending_summary[goal.amount] = total_spent - goal.amount
        return spending_summary
```

main.py
```python
import tkinter as tk
from tkinter import messagebox
from expense import Expense
from budget_goal import BudgetGoal
from category import Category
from report import generate_report, visualize_budget

class ExpensePlanner:
    def __init__(self):
        self.expenses = []
        self.budget_goals = []
        self.categories = []

        self.load_data()

        self.root = tk.Tk()
        self.root.title("Expense Planner")

        self.setup_ui()

    def setup_ui(self):
        tk.Label(self.root, text="Amount:").grid(row=0, column=0)
        self.amount_entry = tk.Entry(self.root)
        self.amount_entry.grid(row=0, column=1)

        tk.Label(self.root, text="Category:").grid(row=1, column=0)
        self.category_entry = tk.Entry(self.root)
        self.category_entry.grid(row=1, column=1)

        tk.Button(self.root, text="Add Expense", command=self.add_expense).grid(row=2, 
column=0, columnspan=2)
        tk.Button(self.root, text="Set Budget Goal", 
command=self.set_budget_goal).grid(row=3, column=0, columnspan=2)
        tk.Button(self.root, text="Track Spending", 
command=self.track_spending).grid(row=4, column=0, columnspan=2)
...

```

Figure 20: Generated code.

1572

OUTPUT

Test Report

INPUT

Code

Test Report

Error: Traceback (most recent call last):

 Traceback (most recent call last):
 File "C:\Users\25929\.conda\envs\mfg\Lib\tkinter__init__.py", line 1967, in __call__
 return self.func(*args)
 ^^^^^^^^^^^^^^^^
 File "d:\02-Project\ExpensePlanner\review_code\main.py", line 37, in add_expense
 amount = float(self.entry.get())
 ^^^^^^^^^^
AttributeError: 'ExpensePlanner' object has no attribute 'entry'

main.py
```python
import tkinter as tk
from tkinter import messagebox
from expense import Expense
...
def setup_ui(self):
        tk.Label(self.root, text="Amount:").grid(row=0, column=0)
        self.amount_entry = tk.Entry(self.root)
        self.amount_entry.grid(row=0, column=1)

        tk.Label(self.root, text="Category:").grid(row=1, column=0)
        self.category_entry = tk.Entry(self.root)
        self.category_entry.grid(row=1, column=1)
def add_expense(self):
        amount = float(self.entry.get())
        category = self.category_entry.get()
        expense = Expense(amount, category)
        self.expenses.append(expense)
        messagebox.showinfo("Success", "Expense added successfully!")

def set_budget_goal(self):
        goal_amount = float(self.amount_entry.get())
        goal = BudgetGoal(goal_amount)
        self.budget_goals.append(goal)
...

OUTPUTINPUT 

Code 

Test Report
Code 

Tester test the project and provide feedback to programmer. If error occurs, the programmer needs 

to fix the error and revise codes

Tester

Figure 21: Top: Test report. Bottom: The code revised according to the test report.

1573



A.7 Standardized Prompt Sequences

Figure 22: Illustration on the alignment checking phase. The horizontal arrow indicates the order of agents to be
queried and the vertical arrows indicate the order of checkpoints in the querying prompts.

1574



You are a Product Manager.
This is a Requirement Document:
{prd}

This is a Architecture:
{architecture}
-----
-----
Example:
## example for not match
Requirement Document:
---
2.3. The system shall allow users to choose the shape of the sticker (e.g., 
circle, square, custom shape).

Architecture:
class ImageEditor {
    +upload_image(file_path: str) Image
    +add_decorative_elements(image: Image, element: str, position: tuple) 
Image
    +save_image(image: Image, file_path: str) void
  }
# Not match. The architecture does not explicitly mention the function of 
selecting shapes. need to add relevant methods in the ImageEditor class and add 
a shape selection menu in the GUI class.
---
......

final Summary: [NOTMATCH]

## example for match
Requirement Document:
---
2.5. The system shall allow users to add text to the sticker.

Architecture:
+add_text(image: Image, text: str, position: tuple, font: str, size: int, color: 
str) Image
# match. add_text() mention requirement of add text to the sticker.
---
....

**final summary: [MATCH]**

------

# Action
Analyze whether all the functions in the requirements are match in the 
architecture(such as Class and Function).
Add a summary for each analysis, whether it is match or not. use --- to 
separate each requirement check.
In the final summary, output whether it is MATCH or NOTMATCH(warpped in [], 
[MATCH] for MATCH summary and [NOTMATCH] for NOTMATCH summary).
Only output [MATCH] or [NOTMATCH] in final summary based on your analysis.
Follow Example and output your result.

INITIATOR

Product Manager

SUPERVISOR

Architect

Architecture

Alignment Checking

Figure 23: Prompt of alignment checking between PRD and architectural diagram.

1575



You are a Product Manager.
This is a Requirement Document:
{prd}
This is a Code Plan:
{code_plan}
------
# Example
## example for not match
---
The system shall allow users to create 3 tools include pencil, brush and spray 
gun.
"brush.py","Contains various brushes to let user select."
...
# Not match. Requirement to create three types of brushes lost, need to point 
out the various brush types include pencil, brush, spary gun. 
---

**final Summary: [NOTMATCH]**

## example match
---
The system shall allow users to create 3 tools include pencil, brush and spray 
gun.
"brush.py","Contains 3 types of brushes(pencil, brush, spary gun) to let user 
select."
...
# match.
---

**final Summary: [MATCH]**
------
# Instruction
(1)Each file name in the Logic Analysis is followed by the description that the 
file is responsible for. These files do not have code yet, so you only need to 
judge from these functional descriptions.
(2)File description in the Task List must accurately and completely match the 
requirement it is responsible for. Otherwise it's summary is NOTMATCH.

# Action
Carefully analyze whether each feature in the requirements is correctly and 
accurately described by Logic Analysis in task plan.
Add a summary after each analysis, whether it is match or not. use --- to 
separate each requirement check.
In the final summary, output whether it is MATCH or NOTMATCH(warpped in [], 
output [MATCH] for MATCH summary and [NOTMATCH] for NOTMATCH summary).

INITIATOR

Product Manager

SUPERVISOR

Project Manager

Code Plan

Alignment Checking

Figure 24: Prompt of alignment checking between PRD and code plan.

1576



You are a software Architect.
# Architecture
{architecture}
# Code Plan
{code_plan}
-----
# example for match case
## Architecture
class StickerCreator {{
    ...
    +resize_photo(new_size: tuple) None
    +apply_effect(effect: str) None
    ...
  }}

## Task Plan

"sticker_creator.py",
"Contains StickerCreator class with methods for uploading photos, selecting 
shapes, setting sizes, adding text and decorative elements, rezize and 
apply_effect...

# match, sticker_creator.py in task plan contains the appropriate classes and 
functions in architecture...
---
final summary: [MATCH]

# example for not match case
## Architecture
...
---
class StickerCreator {{
    ...
    +resize_photo(new_size: tuple) None
    +apply_effect(effect: str) None
    ...
  }}

## Task Plan
...
"sticker_creator.py",
"Contains StickerCreator class with methods for uploading photos, selecting 
shapes, setting sizes, adding text and decorative elements, cropping,...

# Not match, sticker_creator.py in task plan omit the function of apply_effect 
in architecture
---
final summary: [NOTMATCH]

# Action
Carefully analyze whether the technology stack used in the task Plan conforms 
to the architecture, and whether the relationships between files are consistent 
with the architecture design.
In the final summary, output whether it is MATCH or NOTMATCH(warpped in [], 
output [MATCH] for MATCH summary and [NOTMATCH] for NOTMATCH summary).

INITIATOR

Architect

SUPERVISOR

Project Manager

Code Plan

Alignment Checking

Figure 25: Prompt of alignment checking between architectural diagram and code plan.

1577



Verify that the code implements the intended functionality without omissions or 
errors.
Perform logical checks to ensure the code is correct and sound.

# Context
## functional requirement
{prd}
## Code
{code}
-----
# Format Example 1
Let's evaluate the provided code against the specified functional requirements:

1. Users can select their own photo as the base image for the sticker):
Implemented: Yes, the upload_image method allows users to select and upload an 
image.
Meets Requirements: Yes, it fully meets the requirement by enabling image 
upload.
...

**[SUMMARY:MATCH]**

# Format Example 2
Let's evaluate the provided code against the specified functional requirements:

1. Users can select their own photo as the base image for the sticker):
Implemented: No, the upload_image method is not ...
Meets Requirements: Partially, it doesn't meets the requirement that enabling 
image upload.
...

**[SUMMARY:NOTMATCH]**
-----

# Instructions
above content is a functional requirements of a software and the code of this 
software. 
Carefully judge whether the software has implemented these functions one by one 
according to the key points of the functional requirements. 
step by step to judge whether the functions are implemented, first, whether the 
code has tried to implement these functions. Second, if it has tried to 
implement these functions, whether the code can fully meet the functional 
requirements in implementation.
if a function's code contain pass, placeholder, or leave for future 
implementation, consider it "not match" and explain reason.

output a final summary in last, [SUMMARY:MATCH] for all match result, 
[SUMMARY:NOTMATCH] for not match or partilly match result.

# Action
Follow instruction, generate review output and make sure follows one of the 
format example.

INITIATORSUPERVISOR

Code

Alignment Checking

Product Manager Programmer

Figure 26: Prompt of alignment checking between PRD and code.

1578



You are a software Architect.
# Context
## Architecture
{architecture}
## Code
{code}
------
# Example
## example for not match
technology stack: ...
class & function check: ....
GUI design: ...
file relationship: ...

**final Summary: [SUMMARY:NOTMATCH]**
--
## example for match
technology stack: ...
class & function check: ....
file relationship: ...
UI design: ...

**final Summary: [SUMMARY:MATCH]**

-----
# Action
(1)Carefully review whether the technology stack used in each code file belongs 
to the architecture.
(2)Carefully review whether each item in "Data structures and interfaces" have 
correctly code implementations(code cannot contain pass, placeholder, cannot be 
left for future implementation).
(3)Carefully review whether the reference relationship between files and class, 
functions and variables is consistent with architecture.
(4)If the system has a GUI, Carefully check whether there are corresponding GUI 
components for the functions that use the GUI, and whether these components are 
appropriately shown in UI.
In the final summary, output whether it is MATCH or NOTMATCH(warpped in [], 
output [SUMMARY:MATCH] for MATCH summary and [SUMMARY:NOTMATCH] for NOTMATCH 
summary).

INITIATORSUPERVISOR

Code

Alignment Checking

ProgrammerArchitect

Figure 27: Prompt of alignment checking between architectural diagram and code.

1579



You are a software Project Manager.
# Context
# Code Plan
{code_plan}
## Code
{code}

# Example
## example for not match
---
Task:
"health_profile.py",
"Contains HealthProfileManager class with methods to create, update, and 
retrieve health profiles."
Code:
Implemented: no, the create method in healthy_profile.py is not implement by 
code. 
Implemented: no, the create method need a button to trigger but no code 
implementation.
---
...

**final Summary: [SUMMARY:NOTMATCH]**
---
...

## example for match
---
Task:
"health_profile.py",
"Contains HealthProfileManager class with methods to create, update, and 
retrieve health profiles."
Code:
Implemented: yes, the create method in healthy_profile.py is implement by code, 
user can input their profile. 
(optional if required ) GUI Implemented: Yes, the main UI has a button to 
trigger create function.
---
...

**final Summary: [SUMMARY:MATCH]**

-----
# Action
step by step, Carefully analyze whether each file in the code contains code 
that fully implements the all functionality or description defined by the file 
with the same name in the Logic Analysis in Task Plan.
output [SUMMARY:NOTMATCH] because code can not contain pass, placeholder, can 
not be left for future implementation.
In the final summary, summary previous result and output whether MATCH or 
NOTMATCH(warpped in [], output [SUMMARY:MATCH] for MATCH summary and 
[SUMMARY:NOTMATCH] for NOTMATCH summary).

INITIATORSUPERVISOR

Code

Alignment Checking

ProgrammerProject Manager

Figure 28: Prompt of alignment checking between code plan and code.

1580



A.8 Multi Agent Discussion

You are {role}, You are reviewing a Code based on your content.
You have generated your review result, and others have also generated 
review result, All of you are in a team.

---
# Context
## {role_own_content}
{roles_own_content} # such as PRD, architecture, plan, for 
corresponding roles.

## Code
{code}

# Review Result
## Your result
{role_alignment_checking_result}
## other's review result
{others_alignment_checking_result}

# Action
First, you need to carefully analyze other's review result of Code and 
your review result.
Second, Using other's review result as reference, based on your 
functional requirement document, you need to regenerate a new review 
result of the Code.

# Constraint
(1)format of Regenerated result must carefully follow your original 
review result' format.
(2)no need to copy others' opinions directly.
(2)Do not need to explain in the start and end.

Multi Agent Discussion

Prompt for Multi Agent Discussion

We provide a multi-agent discussion prompt during the code alignment process as an example.

Figure 29: Prompt for Multi-Agent Discussion during the code alignment process.

1581


