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Abstract

Large language models (LLMs)-based query
expansion for information retrieval augments
queries with generated hypothetical docu-
ments with LLMs. However, its performance
relies heavily on the scale of the language
models (LMs), necessitating larger, more ad-
vanced LLMs. This approach is costly, com-
putationally intensive, and often has limited
accessibility. To address these limitations, we
introduce GOLFer - Smaller LMs-Generated
Documents Hallucination Filter & Combiner
- a novel method leveraging smaller open-
source LMs for query expansion. GOLFer
comprises two modules: a hallucination filter
and a documents combiner. The former de-
tects and removes non-factual and inconsistent
sentences in generated documents, a common
issue with smaller LMs, while the latter com-
bines the filtered content with the query using
a weight vector to balance their influence. We
evaluate GOLFer alongside dominant LLM-
based query expansion methods on three web
search and ten low-resource datasets. Ex-
perimental results demonstrate that GOLFer
consistently outperforms other methods us-
ing smaller LMs, and maintains competitive
performance against methods using large-size
LLMs, demonstrating its effectiveness. The
code for our method is publicly available at
https://github.com/liuliuyuan6/GOLFer.

1 Introduction

Information retrieval (IR) is crucial for extract-
ing relevant information from large repositories,
serving as a key component in modern search en-
gines (Wang et al., 2019; Karpukhin et al., 2020).
Query expansion, a key technique for enhancing IR
performance, improves the precision and expres-
siveness of user queries (Azad and Deepak, 2019).
Traditional methods use hand-built knowledge re-
sources like WordNet and Thesaurus ((Pal et al.,
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2014; Gong et al., 2005) or external text collec-
tions (Roy et al., 2016; Diaz et al., 2016). However,
these methods are limited by the quality of external
data sources and show limited success on popular
datasets (Azad and Deepak, 2019). More adaptable
query expansion approaches are needed to meet
diverse requirements across different contexts.

LLMs like GPT-4 (Ouyang et al., 2022) and
LLaMA 3 (Dubey et al., 2024) have shown im-
pressive abilities in generating fluent and realistic
responses. Pre-trained on extensive corpora, these
models excel in natural language understanding
and generation. Ouyang et al. (2022) indicates
that LLMs can be fine-tuned with minimal data
to align with human intent, enabling them to gen-
eralize to diverse instructions in a zero-shot man-
ner. This adaptability has spurred interest in using
LLMs for query expansion in IR, where queries
are often brief or ambiguous (Mitra and Craswell,
2017; Zhao et al., 2024). LLMs can generate hy-
pothetical documents based on various prompts
to enhance query expansion. For example, HyDE
uses zero-shot instructions to generate a hypotheti-
cal document (Gao et al., 2022), and Query2Doc
employs few-shot examples to create hypothetical-
documents (Wang et al., 2023). These methods
enhance the performance of retrievers such as Con-
triever and BM25 across a variety of tasks, includ-
ing web search, question answering, and fact verifi-
cation.

However, existing LLM-based query expansion
methods face several critical challenges. Empir-
ical experiments, such as those involving HyDE,
indicate that the performance of LLM-based query
expansion heavily depends on the scale of the LLM
employed (Gao et al., 2022). Wang et al. (2023)
suggest that smaller LMs tend to produce shorter
outputs with more factual errors, posing a signifi-
cant obstacle to building trustworthy systems. This
tendency to hallucinate facts has been widely ob-
served, where models can confidently generate fic-

153

Findings of the Association for Computational Linguistics: ACL 2025, pages 153-162
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics


https://github.com/liuliuyuan6/GOLFer

@ © Query

- Who is Taylor Swift ?

.1

Input Input
AR
, Hallucination |
= iqi i Filter = i i
Original Hypothetical Documents : s B : Filtered Hypothetical Documents
> 0.8
- - | 1 - Taylor Alison Swift was born December 13, 1989.

:;Tz:?; :,I‘I?;izﬁt?:;‘:_’:;;:z:::rh:'"::ss 1 0.05 [ - She is an American singer-songwriter, having

started in country music and transitioning to pop. ! 0.31 1 _s'l;':,:fe'" country musio and transitioning to pop.

- She has won a total of 11 Grammy Awards. 1 0.88 1

] 1
/ ] [
1 1 v
- Taylor Swift is like the queen of catchy tunes ] 1 - Taylor Swift is like the queen of catchy tunes .
o) and relatable Iyrics: ) 0.28 and relatable lyrics. Input oZN
Output - She's been rocking the music scene for over I 0.93 1 - Delete XD
=P twenty years. "\ ‘—’

- Her accolades include 14 Grammy Awards, and , 0.32 i - Her accolades include 14 Grammy Awards, and R0
Instruct-LLM 40 American Music Awards. | i 40 American Music Awards. Ja
e.g., LLaMa 3 ! 1 Retriever

A ) i g e.g., BM25,
) .

- The birthday of Taylor Swift was 12-12-1989. . o. : - Delete Contriever

- Swift has experimented with various genres 0.38 - Swift has experimented with various genres

such as pop, country, rock, and even some 1 M ¢ such as pop, country, rock, and even some

elements of electronic music in her songs. 1 ! elements of electronic music in her songs.

- Swift has won a total of fourteen Grammys | 0.26 I - Swift has won a total of fourteen Grammys

and has been nominated for 52 different Grammy | . [ and has been nominated for 52 different Grammy

awards, according to People. N e awards, according to People.

“Documents \
Combiner !
ece : i oo
! [3.79, 7.92, ...]e-02
: | | |
1
1 0.15, [0.12,-4.12, ...]e-02 Output
[5.37,-3.23, ...]e-02 4_: I ®
" 1 . . ceo]e-
Expanded Query Embedding ] .13 [1.23, 2.57, le-02
1
1
! 1

Sparse or Dense Embeddings

? I\\ﬁ/e_igbf Vecf_or/'
GOLFer

Figure 1: Overview of GOLFer. Given a query, GOLFer generates n passages using an Instruct-smaller LM, which are then
processed through a hallucination filter to produce filtered hypothetical documents. These filtered documents are combined
with the original query using a weight vector by the documents combiner module to create the expanded query embedding for

retrieval.

titious information. Consequently, current LLM-
based query expansion methods often advocate for
using large-scale, advanced LLMs like GPT-3.5
(175B) and GPT-4 to mitigate these inaccuracies
and enhance query expansion performance in IR.
However, in practice, employing such large-scale
models is costly, computationally intensive, and
regionally restricted. For instance, the API costs
for GPT-3.5 and GPT-4 are $1.50 and $2.50 per
million tokens, respectively *, making widespread
use financially prohibitive for small and private
institutions. Additionally, quota limits often re-
strict the practical application of these models, and
their token-by-token autoregressive decoding can
significantly reduce retrieval efficiency, potentially
taking over 2000 ms to generate hypothetical doc-
uments (Wang et al., 2023). Furthermore, access
to large-scale LLMs like GPT is restricted in cer-
tain regions, such as China, further limiting their
applicability. These factors collectively constrain
the practical deployment of existing LLM-based
query expansion methods.

To overcome these limitations, we introduce a
new method, GOLFer, i.e., smaller LMs—generated
documents hallucination filter & combiner for

“Refer to https://openai.com/api/pricing/.

query expansion in IR (See Fig. 1). Unlike ex-
isting LLM-based query expansion methods, our
method focuses on smaller open-source LMs, such
as LLaMA-3-8B-Instruct, to assist in query expan-
sion, thereby mitigating some of the limitations
associated with using large-scale models. How-
ever, smaller LMs often introduce hallucinations,
such as non-factual content and inconsistent con-
texts, when generating hypothetical documents. If
these flawed documents are directly utilized by re-
trievers, they can introduce irrelevant, noisy, or
erroneous data, jeopardizing the quality of the ex-
panded query embeddings and thus affecting query
expansion performance in IR. To address this issue,
GOLFer is designed to detect and filter out non-
factual and inconsistent sentences from the hypo-
thetical documents, ensuring that only relevant and
accurate information is incorporated. Additionally,
to balance the influence of the query and hypotheti-
cal documents, our method combines these filtered
documents with the original query based on factu-
ality by setting a weight vector. The inner product
of the weight vector and the embedding vectors for
the original query and filtered documents forms a
new, refined query for IR. GOLFer is a lightweight,
versatile query expansion method that can be in-
tegrated into any Transformer-based LM without
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requiring additional training, fine-tuning, or prompt
engineering.

We comprehensively evaluate GOLFer using
LLaMA-3-8B-Instruct as the smaller LM, along-
side three types of retrievers: sparse retriever (e.g.,
BM25), dense retriever (e.g., ANCE (Xiong et al.,
2020)), and advanced dense retriever (e.g., Aggre-
triever_v1 (Lin et al., 2023)). Under consistent ex-
perimental conditions, we compare GOLFer with
existing LLM-based query expansion methods, in-
cluding HyDE (Gao et al., 2022) and query2doc
(Wang et al., 2023), across three web search
datasets from MS MARCO (Bajaj et al., 2016) and
ten low-resource datasets from the BEIR bench-
mark (Thakur et al., 2021). The results demon-
strate that GOLFer outperforms other methods us-
ing smaller LMs on all datasets across nearly all
evaluation metrics, highlighting its effectiveness.
Notably, GOLFer remains competitive even against
methods utilizing large-scale LL.Ms like GPT-3.5
(175B). In summary, the contributions of our paper
are as follows:

* We propose a novel smaller LMs-driven query
expansion method: GOLFer. It can i) detect
and filter out non-factual and inconsistent sen-
tences in the original hypothetical documents
generated by smaller LMs, and ii) combine
these filtered hypothetical documents with the
original query by a weight vector to form a
expanded query for IR, enhancing factuality.

* We evaluate GOLFer alongside dominant
query expansion methods on MS MARCO
dev, TREC DL19 and DL20 and nine low-
resource datasets form BEIR. Experimental re-
sults demonstrate the efficacy of our method.

2 Related Work
2.1 LLM-based Query Expansion

Query expansion improves retrieval systems by
broadening query terms to include synonyms or
related concepts, enhancing document matching.
Leveraging LLMs’ generative capabilities, some
studies generate hypothetical documents for query
expansion. For instance, HyDE uses an instruction-
following LLM to create a hypothetical docu-
ment (Gao et al., 2022), which is then encoded
into an embedding vector for retrieval. Sim-
ilarly, Query2Doc generates hypothetical docu-
ments through few-shot prompting of LLMs (Wang
et al., 2023), combining them with the original

query to boost retrieval performance. Addition-
ally, various prompting strategies to generate hypo-
thetical documents for query expansion, including
zero-shot, few-shot, and Chain-of-Thought, have
been explored (Jagerman et al., 2023), with Chain-
of-Thought particularly effective. These advances
suggest that knowledge distillation from LLMs can
transfer their capabilities to smaller models, ad-
vancing LLLM-based query expansion.

2.2 Hallucination Detection in
LLM-Generated Documents

LLM-generated documents often suffer from hal-
lucinations, producing nonsensical or inaccurate
text (Raunak et al., 2021), which degrades sys-
tem performance (Welleck et al., 2019). Recent
research has focused on identifying these halluci-
nations through three primary approaches: white-
box, grey-box, and black-box methods. White-box
methods leverage LLM internal states to assess
response factuality (Azaria and Mitchell, 2023), re-
quiring labeled data for supervised training. Grey-
box methods evaluate factuality using output distri-
butions, employing intrinsic uncertainty metrics to
identify uncertain segments (Yuan et al., 2021; Fu
et al., 2023). Black-box methods, like SelfCheck-
GPT (Manakul et al., 2023), fact-check responses
by comparing multiple sampled outputs for con-
sistency. Each approach addresses hallucinations
in different contexts, enhancing the reliability of
LLM-generated content.

3 Methodology

In this section, we provide a detailed explanation
of the GOLFer method. GOLFer is composed
of two main components: the hallucination filter
and the documents combiner, as shown in Fig. 1.
Within the GOLFer method, n passages generated
by an Instruct-smaller LLM from a given user query
are treated as original hypothetical documents for
query expansion. Initially, these documents are pro-
cessed through the hallucination filter to produce
filtered hypothetical documents. Subsequently, the
expanded query embedding for query expansion
is obtained by combining embedding vectors with
a weight vector, which is determined by the doc-
uments combiner module in the GOLFer method.
The configuration of the weight vector varies be-
tween sparse and dense retrieval methods. The
hallucination filter is detailed in section 3.1, while
the documents combiner is discussed in section 3.2.
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Notation Suppose n passages for query expan-
sion are generated by an instruction-following
smaller LM, such as LL.aMa-3-8B-Instruct, given
a user query ¢q. Let d’ refer to the i-th smaller
LM-generated document, where i € {1,2,...,n}.
Each document d’ contains m,; sentences, denoted
by 33'- for the j-th sentence in document d’, where
j € {1,2,...,m;}. Furthermore, each sentence s?
consists of oé tokens, with t;(l) representing the
[-th token in the j-th sentence of the ¢-th smaller
LM-generated document, where [ € {1,2, ..., o;

3.1 Hallucination Filter

The hallucination filter module can evaluate the de-
gree of hallucination for each sentence in a smaller
LM-generated passages based on consistency and
factuality, and then, can filter these sentences out
based on their hallucination degree.

Hallucination degree is based on the idea that
factual sentences generated by a smaller LLM tend
to contain tokens with higher likelihood and lower
entropy, whereas hallucinated sentences are charac-
terized by tokens with flat probability distributions
and high uncertainty. What’s more, each token
has a different influence on the subsequent con-
text. Thus, we define the factuality score of the
hypothesis documents by evaluates the uncertainty
of tokens and their impact on subsequent tokens.
Our method begins by quantifying the uncertainty
of each token, t;- (1). This is achieved by recording
the entropy of the token’s probability distribution
across the vocabulary. For any token (1), the
entropy 7—[;1 is computed as follows:

ijl

vEV

) log p}, (v (D

where pj-l (0) denotes the probability of generating
the token v over all tokens in the vocabulary V at
position [ of the j-th sentence in document .

In addition to uncertainty, GOLFer leverages the
self-attention mechanism inherent in Transformer-
based LLMs to assign weights to tokens, reflecting
their impact on the subsequent context. Specif-
ically, for any given token #}(1), we quantify its
influence by recording the average attention value
Avg(Aj), which captures the average attention
from all following tokens. The attention scores
are taken from the last Transformer layer of the
smaller LM. The attention value .A;l’v between two
tokens t;- (1) and t}(v) for any [ < v is computed
as follows:

A = sofmes <Q]l/di ’ ) : @)
k

where Q;l represents the query vector of token
t;-(l), K;v is the key vector of token t; (v), and dy,
denotes the dimensionality of the key vector. The
softmax function is applied to the dot product of

" and K , normalized by the square root of dy.
The average attention value Avg(.A;l) for token

t(1) is then identified by averaging A} for all
v >
) Al
A'Ug(A;,) _ Z’U +1Y Y0 ) (3)
' o] —1

Combining uncertainty and significance, GOLFer
computes a comprehensive factuality score for each
token t;-(l ). Specifically, the factuality score 9;1
is calculated by multiplying the entropy Hj, of the
token by its average attention value Avg(A} ):

F; =H;, - Avg(A}). )

This token-level factuality score serves as the basis
for evaluating the overall factuality of a sentence.
The sentence-level factuality score .% (s;) is then
derived by averaging the factuality scores of all
tokens within the sentence:

: " 7
F(s5) = 721‘02 L. ®)
J

And the fundamental idea behind detecting hal-
lucination in terms of consistency is rooted in the
premise that if a smaller LLM possesses genuine
knowledge of a concept, its sampled responses will
likely be similar and factually consistent. Con-
versely, hallucinated facts often lead to divergent
and contradictory responses when multiple outputs
are drawn from the same query. By comparing
multiple responses generated from the same query,
we can assess information consistency and deter-
mine the factuality of statements (Manakul et al.,
2023). Natural Language Inference (NLI) has been
utilized to measure faithfulness in hallucination de-
tection (Manakul et al., 2023), demonstrating com-
petitive performance. Inspired by this approach,
we employ a fine-tuned NLI classifier, DeBERTa-
v3-large (He et al., 2021), to compute the NLI con-
tradiction score for each sentence across different
documents. Only the logits associated with the en-
tailment and contradiction classes are considered,
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and the NLI contradiction score € for the sentence

s% in document d*7? is computed as follows:

exp(we)
exp(we) + exp(we)’

€ (s5,d"7"") = (6)

where exp(w,) and exp(w,) are the logits of the
contradiction and entailment classes, respectively.
In GOLFer, the consistency score for a sentence 5§-
is the mean value of its NLI contradiction scores
across all documents that do not contain s; This

can be formulated as:

i gk
_ Zk€{1,2 ..... n}\{i} ¢(s5,d")
n—1 ’

% (s))

@)

We calculate the filter score 7#°(s}) as follows:
H(sy) = F(53) - C(s)- ®

If the filter score 77 (33) is beyond than a certain
number, we will delete it since it could be highly
hallucinatory. We have empirically found that 0.8
is a generally good value and do not tune it on a
dataset basis.

3.2 Documents Combiner

The documents combiner module can merge the
original query with filtered hypothetical documents
to form an expanded query for IR. This combina-
tion process is tailored based on the type of re-
trieval—sparse or dense—and the generation confi-
dence of the documents. The subsequent sections
elaborate on the specific operations for sparse and
dense retrievers, respectively.

Sparse Retrieval In the case of sparse retrieval,
we enhance the query term weights by repeating
the query 20 times when combining 5 hypothesis
documents. This repetition aims to balance the
relative weights of the query and the hypothetical
documents before merging them. The expanded
query g™ for sparse retrieval is then formulated as
follows:

¢t =20-q+> d', ©
i=1

where n = 5. This formulation ensures an effec-
tive balance between the original query and the
augmented content for improved retrieval perfor-
mance.

Dense Retrieval For dense retrieval, the docu-
ment combiner module takes into account the gen-
eration confidence of smaller LM-generated hypo-
thetical documents. These documents, with vary-
ing degrees of generation confidence, exhibit dif-
ferent levels of factual information and relevance

patterns concerning the real documents we aim to
retrieve. Consequently, we posit that hypotheti-
cal documents with higher generation confidence
should contribute more significantly to the query
expansion process for IR.

Specifically, we estimate the generation confi-
dence, w(d’) of a filtered document by averag-
ing the generation probabilities, pgl, of each to-
ken within the filtered documents. This can be
expressed as follows:

i
m; % i
o Zj:l Zl:l bj,
=TS
=19

w(d’) 10)
Subsequently, we encode both the generated docu-
ments and the original query into embedding vec-
tors using the dense retriever, denoted as f(-). The
expanded query embedding for IR, V, +, is then for-
mulated by combining the embedding vectors for
the filtered hypothetical documents and the original
query with their corresponding weights. This can
be expressed as follows:

Ve =B f(a) + Z%f(d) - ;ww")ﬂdi), (11

where [ represents the contribution rate of the orig-
inal query in forming the expanded query for IR.
And we find that 5 = 0.6 is an effective values
for combing 5 hypothesis documents , which we
do not tune on a dataset-specific basis. For dense
retrieval, the inner product is computed between
Vg+ and the set of all document vectors, and the
most similar documents are subsequently retrieved.

4 Experiments

4.1 Setup

Implementation We implement Meta-LLaMA-
3-8B-Instruct (Dubey et al., 2024), a smaller open-
source LM, to generate hypothetical documents for
given queries. We sample documents with a tem-
perature setting of 0.6, top-p of 0.9 and max tokens
of 128 for open-ended generation. Retrieval experi-
ments are conducted using the Pyserini toolkit (Lin
et al., 2021).

Datasets and Evaluations We evaluate our
method using two types of datasets relevant to in-
formation retrieval tasks. The first type includes
web search datasets: MS MARCO dev (Bajaj
et al., 2016), TREC-DL-2019 (Craswell et al.,
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MS MARCO dev

TREC DL 19 TREC DL 20

Model Fine-wning | \irr@10  R@Ik | MAP nDCG@10  R@IK MAP nDCG@10  R@IK

Sparse retrieval

BM25 (Robertson et al., 2009) X 18.4 85.7 30.1 50.6 75.0 286 48.0 786
+query2doc (Wang et al., 2023) X 19.0 86.9 36.3 539 78.7 38.4 56.1 83.6
+GOLFer X 199715 gg5t28 | 391190  595+9.0  g39+7.9 | 455170 g ot14.9 g6 +7-4

Dense retrieval w/o distillation

ANCE (Xiong et al., 2020) Vv 33.0 95.9 37.1 64.5 755 40.8 64.6 776
+HyDE (Gao et al., 2022) Vv 332 963 453 68.2 80.5 442 678 81.6
+query2doc (Wang et al., 2023) Vv 329 96.0 450 69.9 778 44.6 675 82.0
+GOLFer N 333103 964705 | 441170 713168 79143.6 | 447139 67.913:3 812136

Dense retrieval w/ distillation

Colbert_v2 (Santhanam et al., 2021) Vv 34.4 96.7 41.0 68.4 81.3 452 69.3 83.9
+HyDE (Gao et al., 2022) Vv 34.1 96.7 415 72.0 83.7 46.8 69.5 84.4
“+query2doc (Wang et al., 2023) Vv 339 96.6 46.0 713 81.3 474 69.8 85.6
+GOLFer Vi 345101 971104 | 4g0+7:3 734449 84.613:3 | 474122 70.010-7 857118

Aggretriever_v1 (Lin et al., 2023) Vv 34.1 96.0 430 68.2 80.2 433 673 83.5
+HyDE (Gao et al., 2022) Vv 33.8 963 473 68.9 85.7 448 68.0 84.4
+query2doc (Wang et al., 2023) Vv 34.0 96.2 47.5 69.5 81.9 455 68.1 87.0
+GOLFer Vv 343702 969108 | 4g3+5.3  703+2.1 853151 | 453+2.0 67.910-7 86.6131

Aggretriever_v2 (Lin et al., 2023) vV 36.2 97.4 43.5 68.4 80.8 47.1 69.7 85.6
+HyDE (Gao et al., 2022) v 36.1 975 483 735 85.4 49.2 72.0 86.6
+query2doc (Wang et al., 2023) VA 36.1 97.4 46.4 72.1 81.8 475 71.1 88.0
+GOLFer Vv 363101 978104 | 484149  730+4.7 864156 | 490t1-9 722125 883128

Table 1: Results for web search on MS MARCO dev and DL19/20. Best performing systems are marked bold. All
the hypothetical documents used in this table are generated by LLaMA-3-8B-Instruct.

Dataset nDCG@10
BM25 BM25+G. BM25+Q. Cont. Cont.+G. Cont.+H. Cont.+Q.
NQ 30.5 47.6 423 49.8 51.2 S51.1 50.8
FiQA-2018 23.6 239 23.6 24.5 26.5 24.5 21.3
TREC-COVID 59.5 69.9 72.1 27.1 574 53.1 51.5
Signal-1M 33.0 36.5 347 27.8 299 29.1 294
TREC-NEWS 39.5 50.5 49.1 34.8 41.1 40.1 38.7
Robust04 40.7 46.8 43.1 47.3 47.7 47.5 474
Touche 2020 44.2 45.8 453 20.4 21.1 20.7 21.8
CQADupStack 30.2 314 30.0 34.5 344 342 339
DBPedia 31.3 34.1 32.8 41.3 46.5 423 43.2
SciFact 67.9 70.8 70.3 67.7 69.4 67.9 66.2
Recall@100

NQ 76.0 89.7 85.3 82.1 83.1 82.9 82.8
FiQA-2018 53.9 56.9 56.0 56.2 61.8 59.3 56.8
TREC-COVID 49.8 56.7 51.5 17.2 32.0 30.4 30.4
Signal-1M 37.0 39.8 38.1 322 344 33.6 33.1
TREC-NEWS 447 52.8 51.5 423 49.7 46.1 432
Robust04 37.5 38.3 37.7 39.2 42.6 40.3 41.1
Touche 2020 53.8 56.7 56.8 442 46.0 444 45.8
CQADupStack 60.6 61.7 60.5 66.3 59.7 59.1 58.7
DBPedia 39.8 47.0 42.1 54.1 58.1 46.2 45.1
SciFact 92.5 95.4 95.1 92.6 96.6 96.1 94.1

Table 2: Results for Low resource tasks from BEIR. Best performing systems are marked bold. G. represents
GOLFer, Q. represents query2doc, and H. represents HyDE, and Cont. represents Contriever that are fine-tuned
on MS MARCO training data. All the hypothetical documents used in this table are generated by LLaMA-3-8B-

Instruct.

2020), and 2020 (Craswell et al., 2021). The sec-
ond type consists of low-resource datasets from
the BEIR benchmark (Thakur et al., 2021), such
as NQ, FiQA-2018, TREC-COVID, Signal-1M,
TREC-NEWS, Robust04, Touche2020, CQADup-
Stack, DBPedia, and Scifact. We use the fol-
lowing evaluation metrics: M AP, nDCGQ10,
and Recall@1k for TREC DL 2019 and 2020,
MRR@10 and Recall@Qlk for MS-MARCO
datasets, and nDC'G@10 and Recall@100 for the
BEIR datasets. We employ distinct instructions for
each dataset, maintaining a similar structure but
varying quantifiers to control the form of the gen-
erated hypothetical documents. These instructions
are detailed in Appendix A.1.

Compared Systems In our experiments, for the
web search task, we use BM25 (Robertson et al.,
2009) as the baseline for sparse retrieval and ANCE
(Xiong et al., 2020), fine-tuned on MS-MARCO
datasets, as the baseline for dense retrieval. Ad-
ditionally, we consider three advanced dense re-
trievers enhanced by distillation and pre-training
techniques: Colbert_v2 (Santhanam et al., 2021),
Aggretriever_v1 trained with distillation (Lin et al.,
2023), and Aggretriever_v?2 trained with distillation
and pre-training (Gao and Callan, 2021). For the
low-resource retrieval task, BM25 is again used as
the baseline for sparse retrieval, while Contriever
(Izacard et al., 2021) serves as the baseline for
dense retrieval. Retrievers within GOLFer share
the same embedding spaces as these baselines, with
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the primary difference being in how the query vec-
tor is constructed.

This setup allows us to effectively assess the
impact of GOLFer. Furthermore, we compare
our method with two other query expansion ap-
proaches: HyDE, designed for dense retrieval sys-
tems, and query2doc, applicable to both sparse and
dense retrieval systems. HyDE and query2doc use
the same original hypothesis documents as we do.

4.2 Web Search

The results, summarized in Table 1, present the per-
formances of various retrieval models enhanced by
GOLFer. For sparse retrieval, GOLFer consistently
outperforms the query2doc approach across all met-
rics, demonstrating its superior effectiveness in im-
proving retrieval performance. In dense retrieval
without distillation, ANCE combined with GOLFer
shows significant improvements across most met-
rics compared to other methods. For dense re-
trieval with distillation, GOLFer enhances the per-
formance of Colbert_v2, Aggretriever_v1 and v2,
with notable gains in metrics such as nDCG@Q10
and R@1k. This consistent improvement across
both sparse and dense retrieval models highlights
the robustness and reliability of GOLFer in enhanc-
ing retrieval systems.

4.3 Low Resource Retrieval

The performance for low-resource tasks is sum-
marized in Table 2. For sparse retrieval using
BM25, GOLFer generally outperforms query2doc
across nearly all datasets. Notably, GOLFer im-
proves nDCG@10 and Recall@100 significantly
on datasets such as NQ, TREC-COVID, and TREC-
NEWS. The only exception is a slight under-
performance in Recall@100 on the Touche2020
dataset, where the difference is minimal (0.4 dif-
ference). This consistent performance highlights
the robustness of GOLFer in enhancing sparse re-
trieval tasks. For dense retrieval using Contriever,
GOLFer consistently surpasses other query expan-
sion approaches across all low-resource datasets
and metrics. Specifically, it shows substantial im-
provements in nDCG@10 and Recall@100 on
datasets like NQ, FiQA-2018, and DBPedia. These
results demonstrate the effectiveness of GOLFer in
enhancing query expansion performance, signifi-
cantly contributing to the improvement of retrieval
tasks.

5 Analysis

Ablation Study To better understand the utility
of GOLFer, we use Aggretriever_v2 as a backbone
model to conduct various experiments on the TREC
DL 19/20 datasets, analyzing the impact and effec-
tiveness of each component within this architecture
as follows:

Necessity of Individual Components: We es-
tablish two variants to investigate the necessity of
each component: a) w/ Filter Only: Our proposed
framework with only the hallucination filter mod-
ule. b) w/ Combiner Only: Our proposed frame-
work with only the document combiner module.

Model TREC DL 19
MAP nDCG@10 R@IK
Aggretriever_coCondenser 43.5 68.4 80.8
w/ filter only 47.3 68.6 86.0
w/ combiner only 479 72.1 85.9
w/ filter + combiner 48.4 73.0 86.4
TREC DL 20
Aggretriever_coCondenser 47.1 69.7 85.6
w/ filter only 45.7 64.6 87.4
w/ combiner only 48.9 71.9 87.9
w/ filter + combiner 49.0 722 88.3

Table 3: Ablation results of GOLFer on TREC DL
19/20

From Tabs 3, the following conclusions can be
drawn: a) The performance of GOLFer on the
TREC DL 19/20 datasets surpasses these variants
lacking components, affirming the effectiveness
and necessity of both the hallucination filter mod-
ule and the document combiner module. The hallu-
cination filter module reduces the degree of hallu-
cination in smaller LM-generated passages, while
the document combiner module balances the in-
fluence of the original query and the hypothetical
document. These modules function independently
yet complement each other, amplifying the perfor-
mance of smaller LM-based query expansion. b)
Among the different variants, the variant w/ Com-
biner Only shows high performance, highlighting
the critical role of balancing the influence of the
original query and the hypothetical document in
enhancing query expansion. By further incorpo-
rating the hallucination filter module, irrelevant or
erroneous information generated by smaller LMs
is reduced, thus enhancing the overall performance
of the GOLFer framework.

Compare to Large size Generative Models In
this experiment, we explore the potential of
GOLFer using a smaller LM by comparing it with
existing dominant query expansion methods with
LLMs. Previous studies have shown that the scale
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GPT-40 LLaMA-3 (8B)
w/ Contriever
w/ HyDE w/ GOLFer
Scifact 69.2 69.4
TREC-NEWS 44 41.1
FiQA 27.6 28.1
DBPedia 371 35.7

Table 4: Results for effect of different combination of
instruction LMs and query expansion approaches. Hy-
pothesis documents for GOLFer are generated using
LLaMA-3-8B-Instruct, while those for Hyde are gen-
erated by GPT-40. Best systems are marked bold.

of the generative LLM significantly impacts the
quality of query expansion (Wang et al., 2023; Gao
et al., 2022). We compared our performance to
HyDE in BEIR datasets. It is important to note that
the hypothesis documents for GOLFer are gener-
ated using LLaMA-3-8B-Instruct, while those for
Hyde are generated by GPT-4o.

As shown in Table 4, GOLFer with LLaMA-3-
8B outperforms HyDE with GPT-40 on the SciFact
and FiQA datasets in terms of nDCG @ 10, although
it falls behind on the TREC-NEWS and DBPedia
datasets. Those results show that GOLFer with
smaller LMs is competitive with, and sometimes
outperforms, other query expansion methods with
LLMs across various low-resource retrieval tasks.
GOLFer is potential as a viable alternative to LLM-
based query expansion methods in information re-
trieval.

Generalizability We applied GOLFer to another
LM, Deepseek-r1-distill-qwen-7b, across DL19/20
datasets. The results of DL.19/DL20 are shown in
the table, proving the generalizability of GOLfer.

6 Conclusion

In this work, we introduce GOLFer, a novel method
designed to leverage smaller open-source LMs for
query expansion, aiming to enhance both sparse
and dense retrieval systems. The core idea is to
distill the smaller LM outputs through effective
hallucination detection and mitigation techniques.
GOLFer identifies and filters out non-factual and
inconsistent sentences in smaller LM-Generated
documents, ensuring that only reliable documents
are used as hypothetical documents for query ex-
pansion. The expanded query embeddings for in-
formation retrieval are then obtained by computing
the dot product of the embedding vectors of the
filtered hypothetical documents and the original
query with a weight vector. Experimental evalua-

tions demonstrate that the effectiveness of GOLFer
in filtering and combining smaller LM-Generated
texts contributes significantly to the improvement
of query expansion performance in information re-
trieval.

7 Limitations

We acknowledge several limitations in this paper.
One significant limitation is the dependency on
the self-attention mechanism of Transformer-based
LLMs for evaluating factuality scores within the
hallucination detection module. Although self-
attention scores are available for all open-source
LLMs, our method cannot be applied directly to
certain APIs that do not offer access to these scores.
Consequently, our future work will focus on devel-
oping alternative approaches to address this limita-
tion.
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A Appendix

A.1 Instructions

TREC DL19 Instruction message = "Please
write a passage to answer the question. [ques-
tion_text]".

TREC DL20 Instruction message = "Please
write a passage to answer the question. [ques-
tion_text]".

MS MARCO dev Instruction message = "Please
write a passage to answer the question. [ques-
tion_text]".

NQ Instruction message = "Please write a pas-
sage to answer the question. [question_text]".

FiQA-2018 Instruction message = "Please write
a financial article passage to answer the question.
[question_text]".

TREC_COVID Instruction message = "Please
write a scientific paper passage to answer the ques-
tion. [question_text]".

Signal-lm Instruction message = "Please write
a passage to answer the question. [question_text]".

TREC_NEWS Instruction message = "Please
write a news passage about the topic. [ques-
tion_text]".

Robsut04 Instruction message = "Please write a
news passage about the topic. [question_text]".

Touche2020 Instruction message = "Please write
a counter argument for the passage. [ques-
tion_text]".

CQADupStack Instruction message = "Please
write a passage to answer the question. [ques-
tion_text]".

DBPedia Instruction message = "Please write a
passage to answer the question. [question_text]".

SciFact Instruction message = "Please write a
scientific paper passage to support/refute the claim.
[question_text]".
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