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Abstract

Anomaly detection (AD) is an important ma-
chine learning task with many real-world uses,
including fraud detection, medical diagnosis,
and industrial monitoring. Within natural lan-
guage processing (NLP), AD helps detect is-
sues like spam, misinformation, and unusual
user activity. Although large language models
(LLMs) have had a strong impact on tasks such
as text generation and summarization, their
potential in AD has not been studied enough.
This paper introduces AD-LLM, the first bench-
mark that evaluates how LLMs can help with
NLP anomaly detection. We examine three key
tasks: (i) zero-shot detection, using LLMs’ pre-
trained knowledge to perform AD without task-
specific training; (ii) data augmentation, gener-
ating synthetic data and category descriptions
to improve AD models; and (iii) model selec-
tion, using LLMs to suggest unsupervised AD
models. Through experiments with different
datasets, we find that LLMs can work well in
zero-shot AD, that carefully designed augmen-
tation methods are useful, and that explaining
model selection for specific datasets remains
challenging. Based on these results, we outline
six future research directions on LLMs for AD.

1 Introduction

Anomaly detection (AD) is an important topic in
machine learning (ML) that identifies samples dif-
fering from the general distribution (Zhao et al.,
2019; Liu et al., 2024c). This ability is critical
for many practical applications, such as fraud de-
tection (Abdallah et al., 2016), medical diagnosis
(Fernando et al., 2021), software engineering (Sun
et al., 2022), and industrial system monitoring (Sun
et al., 2023). Within natural language processing
(NLP), AD is also important for finding unusual
text instances, which is needed for detecting spam

∗Equal contribution.

(Rao et al., 2021), misinformation (Islam et al.,
2020), or unusual user behavior (Xue et al., 2023).

In the current era of large language models
(LLMs), we ask how AD can make use of their
capabilities and what the current level of integra-
tion looks like. While LLMs have brought large
improvements to areas such as text generation, sum-
marization, and translation, their possible benefits
for AD, especially in NLP, have received some at-
tention (Li et al., 2024a; Xu and Ding, 2024) but
have not been studied in detail.

This work presents the first comprehensive
benchmark, called AD-LLM, to study the roles
and potential of LLMs in NLP anomaly detection.
Our analysis focuses on three key tasks that are
central in AD research and in practice (Figure 1):
• (i) LLM for Anomaly Detection (§3): Many

AD tasks lack enough labeled data, making it
hard to train models from scratch (Han et al.,
2022). LLMs, with their pre-trained knowledge,
can perform zero-shot AD (Xu and Ding, 2024).

• (ii) LLM for Data Augmentation (§4): AD
tasks often suffer from unbalanced or limited
data (Yoo et al., 2024; Li et al., 2023). For ex-
ample, only a few insurance fraud samples may
be available (Bauder and Khoshgoftaar, 2018).
Generative LLMs may produce synthetic data to
strengthen AD cost-effectively.

• (iii) LLM for Model Selection (§5): Picking a
good AD model usually needs many trials and
domain insights (Jiang et al., 2024a), and current
choices in practice are often random (Zhao et al.,
2021). LLMs, with the prior knowledge and
ability to reason, may be able to suggest suitable
AD models and save human effort.
Collectively, these three tasks tackle fundamen-

tal AD challenges from multiple angles: rapidly de-
tecting anomalies with minimal supervision, enrich-
ing limited datasets for more robust learning, and
guiding model selection without extensive domain
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Figure 1: AD-LLM examines how LLMs contribute to three key AD tasks: (Task 1, §3) Zero-shot detection (left),
where LLMs directly identify anomalies and provide explanations without task-specific training data; (Task 2, §4)
Data augmentation (center), where LLMs generate synthetic samples and produce category descriptions to alleviate
data scarcity and improve semantic reasoning; and (Task 3, §5) Model selection (right), where LLMs analyze
dataset attributes and model descriptions to recommend suitable AD models along with justifications.

expertise. As a result, AD-LLM not only improves
individual AD components but also demonstrates
how LLMs can streamline the entire process—from
raw data to reliable, actionable insights.

Key Takeaways. Our results reveal several note-
worthy insights: (i) LLMs can achieve superior
zero-shot AD performance, often outperforming
conventional methods without relying on task-
specific data. (ii) Enriching LLM inputs with ad-
ditional context, such as anomaly category names
or descriptive prompts, further boosts detection
quality. (iii) Employing LLM-driven data augmen-
tation enhances AD performance, though the ef-
fectiveness varies with model features and dataset
properties. (iv) LLM-based model selection can
approach top-performing baselines, but improving
interpretability and providing dataset-specific ra-
tionales remains an open area. These suggest fu-
ture work that systematically integrates external
knowledge, refines prompt engineering, and devel-
ops strategies to ensure more transparent, context-
aware LLM recommendations in AD tasks.

Contributions. This paper makes the following
key contributions:

• The First Comprehensive LLM-based AD
benchmark. We introduce AD-LLM, a unified
evaluation framework that examines how LLMs
address three core AD tasks—detection, data aug-
mentation, and model selection.

• Systematic and In-depth Experimental Analy-
sis. Through extensive experiments across multi-
ple datasets, we show that LLMs can achieve

strong zero-shot AD performance, boost AD
methods by generating synthetic data or descrip-
tive prompts, and recommend effective AD mod-
els w/o relying on historical performance data.

• Reproducibility and Accessibility. We release
AD-LLM under the MIT License at https://
github.com/USC-FORTIS/AD-LLM, providing a
platform for the community to explore advanced
applications of LLMs in AD.

2 Preliminaries on AD-LLM

2.1 Related Work
Recent studies have explored the role of LLMs
in AD, highlighting both opportunities and chal-
lenges. Xu and Ding (2024) proposes a taxonomy
categorizing LLMs as either detection or genera-
tive tools, but their work lacks experimental bench-
marks. Similarly, Jiang et al. (2024b) presents
MMAD, a benchmark designed for industrial AD,
focusing on image datasets yet limiting its appli-
cability to other modalities. Liu et al. (2024b)
evaluates LLMs like Llama for out-of-distribution
(OOD) detection, demonstrating the effectiveness
of cosine distance detectors with isotropic embed-
dings achieved from LLMs. However, their study
does not explore advanced LLM capabilities like
data augmentation and zero-shot detection.

Our work, AD-LLM, bridges these gaps by intro-
ducing a comprehensive benchmark for evaluating
LLMs in anomaly detection across diverse tasks.
This makes AD-LLM a significant step toward ad-
vancing LLM-driven anomaly detection.
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2.2 Datasets and Traditional Baselines
Our experiments encompass five NLP AD datasets
sourced from Li et al. (2024c), derived from classifi-
cation datasets. Each dataset contains text samples
from multiple categories, with one designated as
the anomaly category. The training data includes
only normal samples. See the detailed information
on datasets in Appx. A.1

We compare LLM-based AD with 18 traditional
training-based unsupervised methods evaluated in
Li et al. (2024c) and leverage LLMs to enhance
them. These baselines can be categorized into two
groups: (1) end-to-end algorithms that directly pro-
cess raw text data to produce AD results and (2)
two-step methods that first create text embeddings
using language models and then apply traditional
AD techniques to those embeddings. See a com-
plete list of methods in Appx. A.2.

2.3 Common Experimental Settings
Evaluation Metrics. We evaluate the AD perfor-
mance using two commonly used metrics (Han
et al., 2022): (1) the Area Under the Receiver Op-
erating Characteristic Curve (i.e., AUROC) and (2)
the Area Under the Precision-Recall Curve (i.e.,
AUPRC). Both are the higher, the better.
LLMs and Hardware. We select three LLMs
as main backbones: (1) Llama 3.1 8B Instruct
(referred to as Llama 3.1) (Dubey et al., 2024),
(2) GPT-4o (OpenAI, 2024a), and (3) DeepSeek-
V3 (Liu et al., 2024a). Llama 3.1 represents an
open-source model with accessible size and cost,
GPT-4o serves as a closed-source model with ad-
vanced capabilities, and DeepSeek-v3 represents
the Mixture-of-Experts (MoE) architecture.

Llama 3.1 runs on one NVIDIA RTX 6000 Ada
GPU with 48 GB RAM. GPT-4o and DeepSeek-V3
are accessed through official APIs. Seed is set = 42
for reproducibility. Specific experimental settings
are highlighted separately in each subsequent task.

3 Task 1: LLM for Zero-shot Detection

3.1 Motivation
Classical AD methods often require extensive train-
ing data—either labeled for supervised methods or
unlabeled for unsupervised ones—which is time-
consuming and costly (Han et al., 2022). In addi-
tion, setting up and tuning these models for real-
world scenarios can be challenging and slow.

LLMs offer a practical alternative (Xu and Ding,
2024). With their broad pre-trained knowledge,

they can perform zero-shot detection without addi-
tional training data. Their ability to understand lan-
guage context and semantics makes them suitable
for recognizing anomalies by logical reasoning.
They can also explain their predictions, improving
interpretability and trustworthiness (Huang et al.,
2024b), which is important in sensitive domains
such as healthcare, finance, and cybersecurity.

3.2 Problem Statement and Designs
Problem 1 (Zero-shot AD via LLMs) Given a
test set Dtest = {x1, x2, . . . , xn} of text samples,
where each sample xi belongs to either a normal
category or an anomaly category, the objective
is to identify the anomalous samples using a
pre-trained LLM fLLM in a zero-shot setting
without any task-specific training data.

Evaluation Protocol. We consider two settings,
each reflecting different levels of prior knowledge:
• Normal Only: We provide only the normal cat-

egory name(s) Cnormal. This matches scenarios
where normal behavior is known but anomalies
are uncertain or emerging.

• Normal + Anomaly: We provide both nor-
mal and anomaly category names, Cnormal and
Canomaly. This setting reflects situations where
some information on anomalies is available, help-
ing the LLM reason about what is anomalous.

The detection process is defined as:

P = T
(
xi, Cnormal, C∗

anomaly
)

(r, s) = fLLM (P)
(1)

Here, T (·) constructs the prompt P for a test sam-
ple xi, including known category information. The
anomaly category is included only in the “Normal
+ Anomaly” setting, denoted as C∗

anomaly. The LLM
fLLM processes the prompt to produce a verbal
anomaly score s and an explanation r that describes
the reasoning. This setup allows a systematic eval-
uation of LLMs in zero-shot AD, using prompt-
based inference to handle different levels of prior
knowledge. See details in Appx. B.

3.3 Results, Insights, and Future Directions
We select Llama 3.1, GPT-4o, and DeepSeek-V3
as zero-shot detectors. Temperature is set as = 0
for stable outputs.
LLMs are effective in zero-shot AD, surpassing
existing training-based AD algorithms. We com-
pare LLM-based zero-shot detectors with top base-
lines across five datasets in Table 1. GPT-4o and
DeepSeek-V3 consistently outperform baselines;
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Table 1: Performance comparison of LLM-based detectors and baseline methods across five datasets, evaluated
under two settings as described in §3.2 with AUROC and AUPRC as the metrics (higher (↑), the better). Complete
results are provided in Appx. A2. The best results are highlighted in bold, and the second-best results are underlined.

Settings
AG News BBC News IMDB Reviews N24 News SMS Spam

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

Llama 3.1 8B Instruct
(1) with Cnormal 0.8226 0.4036 0.7910 0.3602 0.7373 0.3474 0.6267 0.1130 0.7558 0.2884
(2) with Cnormal, Canomaly 0.8754 0.3998 0.8612 0.3960 0.8625 0.4606 0.8784 0.3802 0.9487 0.6361

GPT-4o
(1) with Cnormal 0.9332 0.7207 0.9574 0.8432 0.9349 0.7823 0.7674 0.3252 0.7940 0.5568
(2) with Cnormal, Canomaly 0.9293 0.6310 0.9919 0.9088 0.9668 0.8465 0.9902 0.9009 0.9862 0.8953

DeepSeek-V3
(1) with Cnormal 0.9104 0.6442 0.8206 0.5604 0.8544 0.6808 0.8207 0.4495 0.8797 0.5963
(2) with Cnormal, Canomaly 0.9273 0.7817 0.9581 0.8972 0.9626 0.8569 0.9514 0.7730 0.9535 0.7914

Best Baselines
OpenAI + LUNAR OpenAI + LUNAR OpenAI + ECOD OpenAI + LUNAR DATE
0.9226 0.6918 0.9732 0.8653 0.7366 0.5165 0.8320 0.4425 0.9398 0.6112

Second-best Baseline
OpenAI + LOF OpenAI + LOF OpenAI + DeepSVDD OpenAI + LOF OpenAI + LOF

0.8905 0.5443 0.9558 0.7714 0.6563 0.3278 0.7806 0.2248 0.7862 0.2450

Llama 3.1 shows competitive performance when
anomaly information is available. Despite operat-
ing with limited prior information, LLMs exhibit
significant potential for anomaly detection tasks.
These results highlight the strength of LLMs in
zero-shot AD scenarios.
Additional context helps. Table 1 shows that LLM-
based detectors achieve improved AUROC and
AUPRC when transitioning from setting “Normal
Only”, which uses only Cnormal, to setting “Nor-
mal + Anomaly”, which includes both Cnormal and
Canomaly. These results indicate that richer contex-
tual information improves the LLMs’ ability to
distinguish anomalous samples and enhances de-
tection performance.
Future Direction 1: Improve Context Integration.
Providing additional context improves detection, as
seen in “with Cnormal, Canomaly.” Future work may
involve more systematic ways to integrate domain-
specific details, such as prompt design or retrieval-
augmented methods (Gao et al., 2023).
Future Direction 2: Optimize for Real-world De-
ployment. Despite their effectiveness, LLM-based
zero-shot AD is inherently time-consuming and
costly during the inference (Sinha et al., 2024). Re-
ducing computational overhead is important for de-
ploying LLMs in real settings, especially for AD ap-
plications, which are often time-critical. Methods
like quantization (Dettmers et al., 2023; Xiao et al.,
2023), pruning (Sun et al., 2024; Fu et al., 2024),
and knowledge distillation (Wang et al., 2024b; Fu
et al., 2023) can help reduce the model size and in-
ference time while maintaining good performance.

4 Task 2: LLM for Data Augmentation

4.1 Motivation

Data augmentation (DA) in AD aims to produce ad-
ditional samples to improve model training under
data scarcity (Yoo et al., 2023). However, tradi-
tional methods often struggle to capture the com-
plexity of natural language, potentially causing a
shift in domain characteristics (Feng et al., 2021).
LLMs offer a solution, using their broad pre-trained
knowledge and autoregressive learning objectives
to generate contextually relevant data with better
semantic understanding (Xu and Ding, 2024).

In addition, LLMs can generate textual descrip-
tions (Xu and Ding, 2024) that assist the LLM-
based detectors in §3. For example, by producing
descriptions of known categories, LLMs help de-
tectors establish distant associations between nor-
mal and anomalous samples (Menon and Vondrick,
2022; Zhu et al., 2024).

Thus, We examine two approaches that address
data scarcity and improve semantic reasoning:
1. (§4.2) generates synthetic samples to improve

training-based AD models.

2. (§4.3) produces category descriptions to refine
prompts and enhance LLM-based detectors.

4.2 Generating Synthetic Samples for
Training-based AD Models

Problem 2 (Synthetic DA via LLMs) Given a
small training set Dsmall_train = {x1, x2, . . . , xm}
of normal samples, the goal is to produce a
synthetic dataset Dsynth = {x̃1, x̃2, . . . , x̃n}
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using a pre-trained LLM fLLM. The combined
dataset DDA = Dsmall_train ∪ Dsynth is used to
train an unsupervised AD method M , improving
performance compared to using Dsmall_train alone.

Evaluation Protocol. To evaluate the impact of
LLM-generated synthetic data, we set unsupervised
AD baselines listed in Appx. A.2 in a scenario with
limited training data. LLMs are then utilized to gen-
erate a synthetic training dataset. However, direct
prompting often leads to highly repetitive outputs,
even with high decoding temperatures (Long et al.,
2024). Additionally, LLMs face constraints such
as token limits and challenges in processing long
contexts (Gao et al., 2024). To address these issues,
we adopt a multi-step strategy:
• Step1: Keyword Generation: Generate groups of

keywords in one inquiry. Each group contains
three keywords with a different level of granular-
ity: broad/general, intermediate, or fine-grained.

• Step2: Sample Generation: For each keyword
group, generate one synthetic sample x̃i.
Separating keyword generation from sample cre-

ation and enforcing different granularity levels en-
sures controlled variability and prevents overly
long or repetitive outputs. This results in more
contextually rich and diverse synthetic samples.

To scale up further, we generate synthetic data
in multiple rounds. In each round, we adjust the
random seed, decoding temperature, and prompt
template to ensure diversity. Further details are
provided in Appx. C.1
Results, Insights, and Future Directions. We
use GPT-4o with temperature varying from 0.7 to
1.0 in multi-round synthetic generation. Table A6
presents the complete results.
LLM-generated synthetic data effectively im-
proves AD performance. Our results show that
LLM-generated synthetic data significantly en-
hances AD performance for several detectors. As
illustrated in Figure 2(a), models like AE, ECOD,
LUNAR, and VAE achieve substantial AUROC and
AUPRC improvements when synthetic samples are
included alongside limited real data. Notably, these
models often close the gap between limited-data
performance and full-data performance, demon-
strating that synthetic generation can effectively
compensate for data scarcity.
Performance impact varies across models. The
effectiveness of synthetic generation is not consis-
tent across all models. Methods relying on fixed
geometric assumptions—such as DeepSVDD, iFor-
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Figure 2: Average performance over five datasets of
AD baselines trained on limited data, w/ or w/o LLM-
generated synthetic data, and on full datasets across five
datasets. (a) Detectors that benefit from augmentation.
(b) Detectors that degrade with augmentation.

est, and LOF—often degrade after augmentation
(Figure 2(b)). The variance introduced by syn-
thetic data may expand DeepSVDD’s hypersphere,
perturb iForest’s isolation statistics, or blur LOF’s
local-density estimates, weakening the separation
between normal and anomalous points. Similarly,
SO_GAAL’s adversarial training objective may
become unstable as the variance may widen the
definition of normal data, complicating discrimi-
nator convergence. In contrast, models like AE,
ECOD, LUNAR, and VAE substantially benefit
from synthetic data. Their reconstruction (AE,
VAE), empirical-distribution (ECOD), or graph-
aggregation (LUNAR) objectives may leverage the
enriched embedding manifold, leading to more ro-
bust representations and improved detection perfor-
mance. In short, synthetic generation effectively
enhances detectors that learn flexible representa-
tions but can impair those reliant on fixed geometric
criteria or unstable adversarial objectives.
Future Direction 3: Balance Diversity and Align-
ment in Synthetic Data. Future work should in-
vestigate techniques to balance the diversity of syn-
thetic samples with their semantic alignment to
real-world distributions. Excessive diversity risks
producing samples that deviate too far from the
target domain, while insufficient diversity may fail
to address data scarcity and limit generalization
(Guo and Chen, 2024). Potential strategies in-
clude adjusting the prompt engineering process, us-
ing retrieval-augmented LLMs, embedding-based
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Table 2: Performance (and △ changes) of LLM-based detectors with augmented descriptions under two settings
in §3.2. The description generators and LLM-based detectors adopt the same backbone. Values in brackets indicate
changes compared to the results in Table 1. Green denotes for improvements and red for declines. Changes below
0.03 are not colored for better visualization, also reflecting minor fluctuations.

Settings
AG News BBC News IMDB Reviews N24 News SMS Spam

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

Llama 3.1 8B Instruct

(1) with Cnormal
0.8081 0.3588 0.7802 0.3006 0.9039 0.6272 0.6651 0.1383 0.7456 0.2225

(-0.0145) (-0.0448) (-0.0108) (-0.0596) (+0.1666) (+0.2798) (+0.0384) (+0.0253) (-0.0102) (-0.0659)

(2) with Cnormal, Canomaly
0.9046 0.5097 0.9089 0.6531 0.9351 0.6369 0.7900 0.2396 0.9413 0.7018

(+0.0292) (+0.1099) (+0.0477) (+0.2571) (+0.0726) (+0.1763) (-0.0884) (-0.1406) (-0.0074) (+0.0657)

GPT-4o

(1) with Cnormal
0.9255 0.6985 0.9611 0.8162 0.9572 0.8307 0.8792 0.5399 0.8365 0.4765

(-0.0077) (-0.0222) (+0.0037) (-0.0270) (+0.0223) (+0.0484) (+0.1118) (+0.2147) (+0.0425) (-0.0803)

(2) with Cnormal, Canomaly
0.9331 0.6659 0.9849 0.8998 0.9855 0.9219 0.9895 0.8680 0.9800 0.8889

(+0.0038) (+0.0349) (-0.0070) (-0.0090) (+0.0187) (+0.0754) (-0.0007) (-0.0329) (-0.0062) (-0.0064)

DeepSeek-V3

(1) with Cnormal
0.8791 0.5180 0.8800 0.6170 0.9612 0.7888 0.8261 0.3949 0.9262 0.6128

(-0.0482) (-0.1262) (+0.0594) (+0.0566) (+0.1068) (+0.1080) (+0.0054) (-0.0546) (+0.0465) (+0.0165)

(2) with Cnormal, Canomaly
0.9231 0.6492 0.9577 0.9106 0.9793 0.9241 0.9591 0.8072 0.9522 0.8697

(-0.0042) (-0.1325) (-0.0004) (+0.0134) (+0.0167) (+0.0672) (+0.0083) (+0.0342) (-0.0013) (+0.0783)

filters to steer generation (O’Neill et al., 2023),
and incorporating human-in-the-loop interventions
(Chung et al., 2023) to refine synthetic data quality
and improve downstream AD performance.

4.3 Generating Category Descriptions for
LLM-based Detectors

Problem 3 (Description DA via LLMs) Given
category names Cnormal and, optionally, Canomaly,
the objective is to generate comprehensive
textual descriptions dnormal and danomaly using a
pre-trained LLM fLLM. These descriptions are
then incorporated into the prompts of LLM-based
detectors, aiming to improve their performance
compared to using category names alone.

Evaluation Protocol. Extending the zero-shot de-
tection from §3, we employ LLMs to produce cate-
gory descriptions that offer richer semantic signals
beyond simple category names. Specifically, for
each normal and anomaly category, we generate
dnormal and danomaly based on the category names
and the dataset’s context. These descriptions can
highlight distinctive features, typical lexical pat-
terns, or behavioral characteristics that define nor-
mal or anomalous classes. By incorporating these
descriptions into the prompt, we update Eq. (1) as:

P = T

(
xi,

(
Cnormal, dnormal

)
,

(
Canomaly, danomaly

)∗) (2)

where (Canomaly, danomaly)
∗ applies only in the “Nor-

mal + Anomaly” setting (see §3.2). By enriching
category names with descriptions (highlighted with
blue boxes), we enhance the LLM’s ability to rea-
son about subtle category distinctions. More details
are provided in Appx. C.2.
Results, Insights, and Future Directions. We
utilize Llama 3.1, GPT-4o, and DeepSeek-V3 to
generate category descriptions. We set the temper-
ature = 0.5 to balance the diversity and precision.
Augmented descriptions improve LLM-based AD.
As shown in Table 2, incorporating category de-
scriptions increases performance in most datasets.
This suggests that the added semantic information
helps LLM-based detectors discriminate anoma-
lous samples more effectively. For example, in the
“IMDB Reviews” dataset, providing richer textual
representations of classes translates to noticeable
gains in both metrics across LLMs.
Future Direction 4: Select Representative Sam-
ples. An effective way to refine enhanced informa-
tion is to ground it in representative samples from
the dataset. Sampling strategies based on cluster-
ing (Axiotis et al., 2024) or diversity maximization
(Moumoulidou et al., 2020) can identify prototype
examples that guide LLMs to produce more tai-
lored and context-aware descriptions. By referenc-
ing these representative samples, future methods
may generate more refined information that better
distinguishes between normal data and anomalies,
ultimately improving AD performance.
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Figure 3: Model selection results across five datasets.
We display the average AUROC and AUPRC of models
recommended by querying each reasoning LLM five
times (duplicates allowed). “Best Performance” marks
the highest performance achieved by any baseline model
for each dataset, while “Average Performance” denotes
the mean performance across all baseline models.

5 Task 3: LLM for AD Model Selection

5.1 Motivation

Unsupervised model selection (UMS) is critical for
identifying the most suitable AD model by aligning
its features with the attributes of a given dataset and
the task’s requirements. Given the diverse range
of AD models available and the absence of a uni-
versal solution, effective UMS is essential to en-
sure optimal performance. Traditional UMS meth-
ods often rely on historical performance data or
domain-specific expertise; however, such data may
be unavailable or irrelevant for novel or evolving
datasets (Zhao et al., 2021; Zhao, 2024).

Inspired by recent research (Qin et al., 2024;
Chen et al., 2024; Wei et al., 2025), LLMs offer a
promising zero-shot alternative by utilizing their ex-
tensive pre-trained knowledge to analyze datasets
and recommend suitable models without relying
on past performance metrics. They can streamline
the model selection process, reducing manual over-
head and domain knowledge requirements while
also improving adaptability to novel data scenarios.

5.2 Problem Statement and Designs

Problem 4 (Zero-shot UMS via LLMs) Given a
dataset D = {x1, x2, . . . , xn} and a set of AD
models M = {M1,M2, . . . ,Mm}, the task is to
identify a suitable model M∗ ∈ M using a pre-
trained LLM fLLM, based solely on provided infor-
mation about the dataset and the candidate models.

Evaluation Protocol. To enable LLM-based zero-
shot UMS, we provide structured, detailed informa-
tion of both the dataset and the candidate models:

Table 3: The top 2 frequent picks made by each LLM.
Counts are aggregated over 25 queries (5 per dataset).

LLMs Top-2 Picks (counts)

OpenAI-o1-preview OpenAI+LUNAR (13), OpenAI+ECOD (8)
DeepSeek-R1 OpenAI+ECOD (16), OpenAI+LUNAR (6)
OpenAI-o1 OpenAI+DeepSVDD (11), OpenAI+iForest (7)
OpenAI-o3-mini BERT+DeepSVDD (10), OpenAI+ECOD (6)

• Dataset Description: dataset name, size, back-
ground, normal and anomaly categories, text-
length statistics (average, maximum, minimum,
and standard deviation), and representative sam-
ples of both normal and anomalous data. These
attributes help the LLM understand the dataset’s
structure, complexity, and potential challenges,
and are generally easy to obtain for new datasets.

• Model Description: abstracts from published
AD papers describing each candidate model.
These abstracts highlight key model features, un-
derlying assumptions, and targeted use cases. By
examining these summaries, the LLM can align
dataset attributes with model strengths, improv-
ing the relevance of its recommendations.
We then construct prompts that combine these

datasets and model descriptions, asking the LLM to
select and justify a recommended model. Further
details about the prompt format and implementa-
tion can be found in Appx. D.

5.3 Results, Insights, and Future Directions

The UMS scenario requires sophisticated reasoning.
We select recent enhanced reasoning models, in-
cluding OpenAI-o1-preview and OpenAI-o1 (Ope-
nAI, 2024c), OpenAI-o3-mini (OpenAI, 2025), and
DeepSeek-R1 (Guo et al., 2025).
LLM recommendations demonstrate strong poten-
tial. Figure 3 presents the model selection perfor-
mance of four reasoning LLMs across five datasets,
compared against two reference baselines: (i) the
best result achieved by any baseline model, rep-
resenting the performance upper bound; and (ii)
the average performance of all baseline models, re-
flecting random model selection. In most cases, the
AD performance of LLM-recommended models
surpasses the average baseline and even approaches
the best-performing model. These results highlight
the strong potential of LLM-based reasoning to
identify effective AD models using only public
information, without reliance on historical perfor-
mance or domain specialists.
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Table 4: Selections by each LLM without any dataset or
model context. Each LLM was queried five times.

LLMs Context-Free Picks (counts)

OpenAI-o1-preview OpenAI+LUNAR (3), OpenAI+VAE (2)
DeepSeek-R1 OpenAI+LUNAR (3), OpenAI+ECOD (2)
OpenAI-o1 OpenAI+VAE (4), OpenAI+LUNAR (1)
OpenAI-o3-mini OpenAI+VAE (4), OpenAI+DeepSVDD (1)

LLMs exhibit inherent yet context-sensitive se-
lection biases. The aggregated selection re-
sults in Table 3 highlight distinct model-selection
preferences among the four LLMs. For exam-
ple, OpenAI-o1-preview often recommends Ope-
nAI+LUNAR, a consistently strong model in our
benchmarks. In contrast, OpenAI-o3-mini prefers
Bert+DeepSVDD, a generally weaker option. To
investigate whether these biases arise from inter-
nal priors or context-specific information, we con-
ducted a selection experiment without any dataset
or model details (Table 4). Although each LLM
still favors a distinct, limited set of models even
without context, their specific preferences notably
shift when introducing the context. This indicates
that while LLMs possess intrinsic biases from their
pretraining or tuning phases, their selections are
also influenced by provided context information.
Context information improves selections, but justi-
fications remain generic. When comparing model
selection results with and without context (Table 3
- Table 4), we notice a clear shift in model recom-
mendations that generally better align with bench-
mark results. Despite this improved selection accu-
racy, its explanations often remain generic and do
not clearly link model selection to specific dataset
characteristics. For example, in the “AG News”
dataset, the OpenAI-o1-preview alternated between
recommending “OpenAI + LUNAR” and “Ope-
nAI + ECOD,” justifying choices with broad state-
ments like “effective for high-dimensional data”
or “parameter-free scalability.” Such non-specific
rationales diminish interpretability and user trust,
especially when understanding the rationale behind
model choice is important.
Future Direction 5: Refine Input Specificity and
Alleviate Biases. Future work should explore how
to provide more dataset-specific details and miti-
gate potential LLM biases. Ambiguous or incom-
plete input information may cause the LLM to fa-
vor well-known models or those frequently encoun-
tered during training. Ensuring detailed and bal-
anced inputs, and exploring how inherent biases
in LLMs affect recommendations, will be impor-

tant steps to improve the fairness and reliability of
LLM-based UMS (Dai et al., 2024).
Future Direction 6: Enhancing Interpretability.
Improving LLMs’ capacity to produce transparent,
dataset-tailored justifications for model selection
decisions is key (Huang et al., 2024a). Techniques
such as fine-tuning with richly annotated explana-
tions or using prompt engineering to explicitly re-
quest structured reasoning can encourage the LLM
to articulate clear, context-sensitive arguments.

6 Conclusion

In this work, we presented AD-LLM, the first com-
prehensive benchmark that integrates LLMs into
three core aspects of anomaly detection in NLP:
detection, data augmentation, and model selection.

Our results show that LLMs exhibit promising
capabilities in zero-shot AD without task-specific
training. LLM-generated synthetic data signifi-
cantly boosted performance for models that learn
flexible representations, while it may negatively
impact models that rely on rigid geometric as-
sumptions. Additionally, LLM-driven model se-
lection frequently exceeded baseline performance,
though explanations for these selections often
lacked dataset-specific detail.

Future Directions

Future research should focus on improving contex-
tual prompts to enhance zero-shot AD capabilities
while considering the cost, developing methods
to balance diversity and domain alignment in syn-
thetic data generation, and increasing the speci-
ficity and interpretability of LLM-generated model
selection justifications. Expanding the AD-LLM
benchmark to include additional tasks and appli-
cations in different fields (Huang et al., 2024b; Li
et al., 2024b) also represents a valuable direction
for broadening its impact.

Broader Impact Statement

AD-LLM explores the use of LLMs in enhancing
AD through zero-shot detection, data augmentation,
and model selection. These contributions have the
potential to significantly improve real-world AD
systems in critical areas such as healthcare, finance,
and cybersecurity. By enabling robust, adaptable,
and efficient solutions for AD tasks, this research
empowers practitioners to deploy systems respon-
sive to novel challenges while reducing reliance on
labeled data and extensive domain expertise.
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Ethics Statement

This study adheres to ethical guidelines, emphasiz-
ing considerations around fairness, transparency,
and privacy in developing and applying LLM-based
AD systems. We emphasize the importance of eval-
uating and mitigating biases in LLM recommen-
dations, ensuring that outputs are equitable and
unbiased. Moreover, privacy is preserved by re-
lying on public data and avoiding the collection
of sensitive information. Also, note that we used
ChatGPT exclusively to improve minor grammar
in the final manuscript text.

Limitations

Despite promising results, several limitations re-
main. First, our evaluation is constrained to a
narrow set of datasets with clear normal-anomaly
distinctions, and our settings in AD and category
descriptions in DA follow the structure of these
datasets, limiting applicability to various domains
with ambiguous anomaly definitions. Second,
UMS depends on simplistic input data and match-
ing mechanisms. Furthermore, biases in LLM rec-
ommendations, such as favoring well-documented
or familiar models, need further investigation. Ad-
ditionally, we do not explore few-shot learning or
fine-tuning, which are widely adopted techniques
for enhancing LLM performance and could offer
valuable complementary insights for AD tasks.
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Supplementary Material for AD-LLM

A Additional Details for Preliminaries

A.1 Datasets Details

As briefly discussed in §2.2, we select five NLD
AD datasets with high quality and a proper size
sourced from (Li et al., 2024c): AG News, BBC
News, IMDB Reviews, N24News, SMS Spam.
These datasets are originally intended for NLP
classification tasks and contain text samples cat-
egorized into multiple groups, with one designated
anomalous. The training data comprises only nor-
mal samples. Table A.1 provides a summary of
dataset attributes, and Table A1 presents the statis-
tics of datasets that will be utilized in our tasks.

Dataset Avg. Max. Min. Std.

AG News 190.1 959 35 61.7

BBC News 2,293.5 25,367 685 1,506.4

IMDB Reviews 1,289.2 12,498 65 980.5

N24 News 4,633.3 28,616 4 3,069.5

SMS Spam 78.7 790 4 60.8

Table A1: Statistics of datasets including average, maxi-
mum, minimum, standard deviation of text length.

A.2 Traditional Baselines Details
This study utilizes 18 traditional methods as base-
lines. We compare the performance of LLM-based
anomaly detection methods with these baselines in
§3 and further enhance the baselines with LLM-
generated synthetic data, demonstrating the effec-
tiveness of augmentation in §4.2.

These methods are categorized into two groups:
• End-to-end Methods. These methods directly

process raw text data to generate AD results:
– CVDD: Context Vector Data Description (Ruff

et al., 2019). CVDD uses embeddings and self-
attention to learn context vectors, detecting
anomalies via deviations.

– DATE: Detecting Anomalies in Text via Self-
Supervision of Transformers (Manolache et al.,
2021). DATE trains self-supervised transform-
ers to identify anomalies in text.

• Two-Step Methods. These approaches first gen-
erate text embeddings using BERT (Kenton and
Toutanova, 2019) or OpenAI’s text-embedding-3-
large (OpenAI, 2024b) and then apply traditional
AD techniques to the embeddings.
– AE: AutoEncoder (Aggarwal, 2015). AE uses

high reconstruction errors to detect anomalies.

– DeepSVDD: Deep Support Vector Data De-
scription (Ruff et al., 2018). DeepSVDD iden-
tifies anomalies outside a hypersphere that en-
closes normal data representations.

– ECOD: Empirical-Cumulative-distribution-
based Outlier Detection (Li et al., 2022).
ECOD flags point in distribution tails using
empirical cumulative distributions.

– IForest: Isolation Forest (Liu et al., 2008).
IForest isolates anomalies with fewer splits in
random feature-based partitions.

– LOF: Local Outlier Factor (Breunig et al.,
2000). LOF detects anomalies by comparing
the local density of a point to its neighbors.

– SO_GAAL: Single-Objective Generative Ad-
versarial Active Learning (Liu et al., 2019).
SO_GAAL generates adversarial samples to
uncover anomalies in unsupervised settings.

– LUNAR: Unifying Local Outlier Detection
Methods via Graph Neural Networks (Goodge
et al., 2022). LUNAR unifies and improves lo-
cal outlier detection via graph neural networks.

– VAE: Variational AutoEncoder (Kingma and
Welling, 2014). VAE uses reconstruction prob-
abilities to detect anomalies.

B Additional Details for Task 1
B.1 Prompt Details
Prompt design is crucial for zero-shot LLM-based
detection, as the performance heavily relies on its
instructiveness and clarity. As discussed in §3.2
about LLM-based zero-shot AD, we evaluate two
settings based on varying levels of prior knowledge
in the real world: “Normal Only” and “Normal +
Anomaly.” The LLM prompt template for setting
“Normal Only” is provided in Table A9, and the
prompt template for setting “Normal + Anomaly”
is presented in Table A10. The prompt templates
of the two settings are different in the definition of
anomaly, marked in red in Table A10.

We utilize a series of prompt engineering tech-
niques, including:
• Task Information (Cao et al., 2023). It is essential

to provide clear task information. We carefully
define the detection scenario, the anomaly defini-
tion, and the rules to reduce hallucinations.

• Chain-of-Thought (CoT) (Wei et al., 2022). CoT
prompting encourages LLMs to decompose their
reasoning into sequential intermediate steps and
organize information logically. We explicitly pro-
vide a completed chain of thoughts in the prompt.
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Table A2: Detailed information of five datasets used in AD-LLM, including the original task, normal category(ies),
anomaly category, the size of the training set, the size, and the anomaly ratio of the test set.

Dataset Original Task Normal Category(ies) Anomaly Category # Train # Test % Anomaly

AG News AG news topics classification Sports, Business, Sci/Tech World 66,098 32,109 11.77%

BBC News BBC news topics classification Business, Politics, Sport, Tech Entertainment 1,206 579 10.71%

IMDB Reviews binary sentiment classification Positive Negative 17,417 8,952 16.61%
of IMDb movie reviews

N24 News New York Times news Television, Your Money, Food 40,569 19,227 9.51%
classification Automobiles, Science,

Economy, Dance, Travel,
Technology, Sports, Movies,
Music, Real Estate, Books,
Education, Art & Design,
Theater, Media, Style,
Global Business, Well,
Health, Fashion & Style,
Opinion

SMS Spam mobile phone SMS spam Non-spam (Ham) Spam 3,162 1,510 10.20%
messages detection

• Explanation and Implicit CoT . We require an ex-
planation r generated before the anomaly score s
for each inquiry as shown in Eq. (1). When gen-
erating the explanation, LLMs implicitly create
the CoT in the background (Liu et al., 2024d).
This approach aligns with the auto-regressive na-
ture of decoder-only LLMs, encouraging them to
think carefully and logically before determining
the anomaly score, thereby enhancing reliability.
In our experiments, we discovered that Llama

3.1 requires implicit CoT. Presenting the anomaly
score s before the explanation r causes the Llama
3.1-based detector to crash and consistently out-
puts s = 0. This issue does not impact GPT-4o
and DeepSeek-V3. We attribute this to their sig-
nificantly larger parameter count, which grants it a
stronger resilience to prompt changes.

B.2 Complete Baseline Results

In addition to the top two baseline results in §3.3,
we provide the complete results for all 18 base-
line methods in Table A8. We observe that Llama
3.1 outperforms most of these baselines, further
supporting the efficacy of zero-shot AD via LLMs
shown in Table 1. The baseline results presented in
this study are derived from Li et al. (2024c).

B.3 Error Analysis

In our experiments, LLMs occasionally encoun-
tered errors. Llama 3.1 sometimes entered infinite
loops, repeatedly generating the same sentence un-
til reaching the token limit, as illustrated in the AG

News example shown in Text Box B.3, where the
repetitive nonsensical response is highlighted in
italics. However, the underlying causes of such be-
havior remain underexplored. DeepSeek-V3 some-
times struggles to follow instructions, resulting
in incorrect JSON formatting or failing to return
any output. Additionally, it occasionally experi-
ences internal server errors. For GPT-4o, outputs
were sometimes restricted by OpenAI’s safety fil-
ters when addressing potentially harmful content,
such as politically sensitive topics.

An infinite loop example in Llama 3.1

Text sample: “This week’s TravelWatch column profiles
Anangu Tours, an Aborigine owned tour company in Aus-
tralia’s Red Center.”
Response: {"reason": "The text sample is about a tour
company in Australia, which relates to travel and geogra-
phy, making it most closely align with the Sports category
is not the best fit, but it does not fit into the Business or
Sci/Tech categories, but it does fit into the Sports category
is not the best fit, but it does fit into the category of travel
which is related to Sports, but more closely related to the
category of travel which is not listed, but the closest is
Sports, but it is more closely related to the category of
travel which is not listed, but the closest is Sports, but it
is more closely related to the category of travel which is
not listed, but the closest is Sports, but it is more closely
related to the category of travel which is not listed, but the
closest is Sports...

We exclude these errors from our results but pro-
vide the error counts in both “Normal Only” and
“Normal + Anomaly” settings for reference in Ta-
ble A3 for Llama 3.1, Table A4 for GPT-4o, and Ta-
ble A5 for DeepSeek-V3. Notably, the error counts
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Dataset “Normal Only” “Normal + Anomaly”

AG News 552 48
BBC News 0 3
IMDB Reviews 21 29
N24 News 299 898
SMS Spam 0 2

Table A3: Error count in Llama 3.1

Dataset “Normal Only” “Normal + Anomaly”

AG News 1 0
BBC News 0 0
IMDB Reviews 1 9
N24 News 0 0
SMS Spam 0 0

Table A4: Error count in GPT-4o

vary between the two settings, suggesting that the
triggers for errors, such as Llama’s infinite loop
or GPT-4o’s safety filters, are sensitive to prompt
variations. This occurs even though the prompts in
both settings have similar semantic meanings.

B.4 Verbal Score

In the zero-shot AD task, we utilize LLM-
generated verbal anomaly scores as a signal for
detection. Verbalization methods are widely used
because they offer an intuitive and straightforward
estimation (Xia et al., 2025). However, LLMs can
often be overconfident in their responses due to the
influence of reinforcement learning from human
feedback (RLHF) (Kadavath et al., 2022).

C Additional Details for Task 2

C.1 Generating Synthetic Samples Details

C.1.1 Evaluation Protocol and Prompt Details
As discussed in §4.2, we set a scenario with lim-
ited training data Dsmall_train = {x1, x2, . . . , xm}.
Specifically, Dsmall_train contains v samples for
each normal category Cj

normal ∈ Cnormal ={
C1

normal, . . . , Ck
normal

}
, where k is the number of

normal categories.
We employ a multi-step strategy with multiple

rounds to mitigate repetitive outputs, token limit
constraints, and difficulties in handling long con-
texts. The detailed pipeline is outlined below:
1. Keywords Generation. To ensure a consistent

synthetic data distribution compared with the
original training data, t groups of keywords
are generated for each normal category Cj

normal.
We construct the prompt Pkeywords using a tem-
plate Tkeywords(·) as shown in Table A11. This
template utilizes {name} and {original_task}

Dataset “Normal Only” “Normal + Anomaly”

AG News 14 15
BBC News 3 1
IMDB Reviews 206 16
N24 News 138 252
SMS Spam 5 0

Table A5: Error count in DeepSeek-V3

information from Table A.1. The prompt
Pkeywords is processed by the LLM fLLM(·)
to produce t × k groups of keywords K =
{K1,K2, . . . ,Kt×k}. Each keyword group Ki

contains three keywords with increasing levels
of granularity from coarse to fine.

2. Synthetic Sample Generation. We iterate the
groups of keywords, constructing Psynth ={
P1

synth,P2
synth, . . . ,Pt×k

synth

}
using a template

Tsynth(·) as displayed in Table A12. Each
prompt Pj

synth is fed into the LLM fLLM(·) to
generate a corresponding synthetic sample x̂j .
Finally, we obtain a synthetic dataset Dsynth =
{x̃1, x̃2, . . . , x̃t×k}.

The pipeline is formally summarized as follows:

Pkeywords = Tkeywords({name}, {original_task})

K = fLLM
(
Pkeywords

)
= {K1, . . . ,Kt×k}

Psynth =
{
Tsynth (K1) , . . . , Tsynth (Kt×k)

}

Dsynth =
{
fLLM

(
P1

synth
)
, . . . , fLLM

(
Pt×k

synth

)}

The prompt templates Tkeywords and Tsynth lever-
age the prompt techniques, including task informa-
tion and CoT, as discussed in §B.1.

C.1.2 Experiments Details and Challenges
We set the number of samples from each normal cat-
egory Cj

normal in the limited training set Dsmall_train
to v = 10. Similarly, the number of synthetic sam-
ples generated for each normal category Cj

normal in
the synthetic set Dsynth is t = 50 for the “AG New”,
“BBC News”, “IMDB Reviews”, and “SMS Spam”
datasets. For the “N24 News” dataset, we set v = 3
and t = 30 due to its numerous normal categories.

We use GPT-4o for synthetic data generation.
We observed that increasing t occasionally causes
them to terminate the keyword generation process
before reaching the token limit. A similar issue
occurs with Llama 3.1, even for smaller values of
t. As a result, Llama 3.1 is excluded from this
task. We presume these issues stem from the in-
herent challenges LLMs face in processing long
contexts. We also exclude DeepSeek-V3 due to its
unsatisfactory results.
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Table A6: Performance comparison of AD baselines with and without LLM-generated synthetic data across five
datasets. We also show the average performance ± its standard deviation over five datasets. The better results for
each detector are highlighted in bold. The performance may vary due to the embedding changes.

Training Set
AG News BBC News IMDB Reviews N24 News SMS Spam Average Performance

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

OpenAI + AE
without Dsynth 0.5054 0.1189 0.6016 0.1309 0.5014 0.1665 0.7119 0.1681 0.5000 0.1020 0.5641±0.0834 0.1373±0.0262

with Dsynth 0.8097 0.3290 0.8434 0.3936 0.8097 0.3290 0.8097 0.3290 0.4341 0.0852 0.7413±0.1542 0.2932±0.1069

OpenAI + DeepSVDD
without Dsynth 0.5171 0.1237 0.6127 0.1415 0.5667 0.1969 0.6278 0.1511 0.6398 0.1479 0.5928±0.0453 0.1522±0.0243

with Dsynth 0.5554 0.1365 0.5867 0.1267 0.5554 0.1365 0.5554 0.1365 0.3086 0.0681 0.5123±0.1026 0.1209±0.0267

OpenAI + ECOD
without Dsynth 0.5014 0.1180 0.5623 0.1208 0.5000 0.1661 0.6202 0.1311 0.4078 0.0789 0.5183±0.0709 0.1230±0.0279

with Dsynth 0.6709 0.1954 0.7660 0.3210 0.6709 0.1954 0.6709 0.1954 0.3351 0.0708 0.6228±0.1485 0.1956±0.0791

OpenAI + IForest
without Dsynth 0.6120 0.1620 0.7102 0.1903 0.5788 0.1947 0.5331 0.1010 0.6386 0.1467 0.6145±0.0594 0.1589±0.0340

with Dsynth 0.6759 0.2159 0.6655 0.2107 0.6759 0.2159 0.6759 0.2159 0.2700 0.0649 0.5926±0.1614 0.1847±0.0599

OpenAI + LOF
without Dsynth 0.6404 0.1661 0.7128 0.2565 0.6759 0.2485 0.7179 0.2061 0.7582 0.2445 0.7010±0.0400 0.2243±0.0339

with Dsynth 0.5469 0.1411 0.6513 0.2075 0.5469 0.1411 0.5469 0.1411 0.8150 0.2602 0.6214±0.1049 0.1782±0.0484

OpenAI + SO_GAAL
without Dsynth 0.5657 0.1324 0.3240 0.0770 0.5388 0.1659 0.3351 0.0654 0.3953 0.0823 0.4318±0.1017 0.1046±0.0383

with Dsynth 0.4461 0.0976 0.2787 0.0703 0.4461 0.0976 0.4461 0.0976 0.0698 0.0637 0.3374±0.1487 0.0854±0.0151

OpenAI + LUNAR
without Dsynth 0.6527 0.2035 0.8554 0.4670 0.6546 0.2315 0.7879 0.2473 0.1506 0.0573 0.6202±0.2475 0.2413±0.1314

with Dsynth 0.8651 0.4228 0.9330 0.7332 0.8651 0.4228 0.8651 0.4228 0.1375 0.0568 0.7332±0.2990 0.4117±0.2143

OpenAI + VAE
without Dsynth 0.6857 0.1842 0.7143 0.1816 0.5031 0.1670 0.6932 0.1698 0.5000 0.1020 0.6193±0.0966 0.1609±0.0302

with Dsynth 0.7905 0.3654 0.7674 0.2654 0.7905 0.3654 0.7905 0.3654 0.0696 0.0545 0.6417±0.2862 0.2832±0.1207

We repeat the generation of keywords four times,
with different temperatures [1.0, 0.9, 0.8, 0.7] and
different seeds [42, 43, 44, 45]. To further avoid
repetition, we add additional sentences to the end
of the prompts, including:
•“This is the first time you do this task, good luck!"
•“You’ve completed this task before, and you’re

improving at it."
•“After doing this task twice, you have a better

understanding of it."
•“You have done this task three times, you are now

an expert at it."
We carefully examine and remove duplicate key-
word groups. Out of 200 generations, there are
typically fewer than 5 repeated groups, with a max-
imum of 15. It shows that our method is effective.

C.1.3 Complete Results
The detailed results are provided in Table A6.
These additional experiments on baselines follow
the settings used in Li et al. (2024c), except that
the “batch_size” is set = 4 due to the amount of
Dsmall_train in AE, VAE, and DeepSVVD.

C.1.4 Edges over LLM-based Zero-shot AD
At first glance, LLM-based zero-shot AD could
eliminate the need to generate synthetic datasets for

traditional models. However, they address different
needs and offer complementary advantages. LLM-
based zero-shot detection requires no task-specific
training, offering easy deployment, adaptability
across scenarios, and real-time inference—ideal
for dynamic environments. However, its high com-
putational cost can limit scalability for long-term
or large-scale use.

In contrast, LLM-generated synthetic data en-
ables the training of traditional models, signifi-
cantly reducing inference costs for long-term or
high-frequency detection tasks. Moreover, syn-
thetic data can be a valuable resource for fine-
tuning LLMs (Xu et al., 2024; Mitra et al., 2023).
This dual utility highlights the importance of syn-
thetic data generation as both a complementary and
cost-efficient solution in the AD ecosystem.

C.2 Genarating Category Description Details

C.2.1 Prompt Details

As discussed in §4.3, we generate category descrip-
tions to enhance LLM-based zero-shot AD. The
prompt template used for generating category de-
scriptions is shown in Table A13. It leverages the
prompt techniques, including task information and
CoT, as discussed in §B.1.
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Table A7: Complete model selection results across five datasets. We display the average AUROC and AUPRC of
models recommended by querying each reasoning LLM five times (duplicates allowed). "Best Performance" marks
the highest performance achieved by any baseline model for each dataset, while "Average Performance" denotes the
mean performance across all baseline models.

Settings
AG News BBC News IMDB Reviews N24 News SMS Spam

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

OpenAI-o1 0.7132 0.3199 0.6798 0.2831 0.6563 0.3278 0.7091 0.2419 0.3647 0.0752
OpenAI-o1-preview 0.8908 0.6193 0.6992 0.2214 0.6652 0.2787 0.7706 0.3422 0.5774 0.1220
OpenAI-o3-mini 0.6455 0.2401 0.7329 0.3132 0.5358 0.2521 0.4870 0.0952 0.5758 0.1169
DeepSeek-R1 0.8273 0.4744 0.7224 0.2424 0.7009 0.3976 0.7733 0.3113 0.5090 0.1022

Baseline Average 0.6924 0.2685 0.7178 0.3574 0.5298 0.2038 0.6004 0.1585 0.5565 0.1277
Best Performance 0.9226 0.6918 0.9732 0.8653 0.7366 0.5165 0.8320 0.4425 0.7862 0.2450

C.2.2 A Universal Component
LLM-generated category descriptions serve as a
universal component that can be integrated into
prompts to enhance any LLM-based task requir-
ing category-specific information. In our study, we
demonstrate its effectiveness in improving LLM-
based zero-shot AD as shown in Table 2. Ad-
ditionally, these descriptions can enhance LLM-
based synthetic data generation similarly. This ap-
proach aligns with the Native Chain-of-Thought
(NCoT) process (Wang et al., 2024a) used in Ope-
nAI o1 (OpenAI, 2024c). Extending this idea, other
datasets with distinct structures could inspire the
development of task-specific universal components,
enabling tailored augmentation strategies for di-
verse LLM-based applications.

D Additional Details for Case Study 3

D.1 Evaluation Protocol and Prompt Details

As discussed in §4.3, we utilize the information of
both dataset and candidate models to achieve UMS.
The prompt template used for generating category
descriptions is shown in Table A13.

Importantly, we restrict our selection to two-step
methods mentioned in §A.2, as the structural dif-
ferences between end-to-end and two-step meth-
ods introduce additional complexities to an already
challenging task.

D.2 Failures on Popular LLMs

Despite the promising results achieved with GPT-
o1-preview, widely used LLMs like GPT-4o and
Llama 3.1 struggle with zero-shot UMS, fre-
quently recommending the same model regardless
of dataset context. This limitation highlights the
need for enhanced reasoning abilities to better ana-
lyze dataset-specific requirements, model strengths
and weaknesses, and their overall compatibility.

D.3 Complete Results
The detailed results with precise numerical values
are provided in Table A7 for reference.
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Table A8: Performance comparison of LLM-based detectors and baseline methods across five datasets. LLM-based
detectors are evaluated under two settings as described in §3.2 with AUROC and AUPRC as the metrics (higher
(↑), the better). The best results are highlighted in bold, the second-best results are double-underlined, and the
third-best results are single-underlined.

Settings
AG News BBC News IMDB Reviews N24 News SMS Spam

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

Llama 3.1 8B Instruct
(1) with Cnormal 0.8226 0.4036 0.7910 0.3602 0.7373 0.3474 0.6267 0.1130 0.7558 0.2884
(2) with Cnormal, Canomaly 0.8754 0.3998 0.8612 0.3960 0.8625 0.4606 0.8784 0.3802 0.9487 0.6361

GPT-4o
(1) with Cnormal 0.9332 0.7207 0.9574 0.8432 0.9349 0.7823 0.7674 0.3252 0.7940 0.5568
(2) with Cnormal, Canomaly 0.9293 0.6310 0.9919 0.9088 0.9668 0.8465 0.9902 0.9009 0.9862 0.8953

Methods Baselines
CVDD 0.6046 0.1296 0.7221 0.2976 0.4895 0.1576 0.7507 0.2886 0.4782 0.0712
DATE 0.8120 0.3996 0.9030 0.5764 0.5185 0.1682 0.7493 0.2794 0.9398 0.6112

BERT + SO-GAAL 0.4489 0.1033 0.3099 0.0849 0.4663 0.1486 0.4135 0.0837 0.3328 0.0714
BERT + AE 0.7200 0.2232 0.8839 0.4274 0.4650 0.1479 0.5749 0.1255 0.6918 0.1914

BERT + DeepSVDD 0.6671 0.2160 0.5683 0.1328 0.4287 0.1387 0.4366 0.0798 0.5859 0.1178
BERT + ECOD 0.6318 0.1616 0.6912 0.2037 0.4282 0.1374 0.4969 0.0928 0.5606 0.1156
BERT + LOF 0.7432 0.2549 0.9320 0.6029 0.4959 0.1621 0.6703 0.1678 0.7190 0.1837

BERT + LUNAR 0.7694 0.2717 0.9260 0.5943 0.4687 0.1497 0.6284 0.1436 0.6953 0.1817
BERT + VAE 0.6773 0.1878 0.7409 0.2559 0.4398 0.1405 0.4949 0.0957 0.6082 0.1360

BERT + iForest 0.6124 0.1559 0.6847 0.2131 0.4420 0.1412 0.4724 0.0872 0.5053 0.0994
OpenAI + SO-GAAL 0.5945 0.1538 0.2359 0.0665 0.6201 0.3005 0.5043 0.0963 0.5671 0.1213

OpenAI + AE 0.8326 0.4022 0.9520 0.7485 0.6088 0.1969 0.7155 0.1984 0.5511 0.1030
OpenAI + DeepSVDD 0.4680 0.1062 0.5766 0.1288 0.6563 0.3278 0.6150 0.1297 0.3491 0.0721

OpenAI + ECOD 0.7638 0.3294 0.7224 0.2424 0.7366 0.5165 0.7342 0.2238 0.4317 0.0821
OpenAI + LOF 0.8905 0.5443 0.9558 0.7714 0.6156 0.2133 0.7806 0.2248 0.7862 0.2450

OpenAI + LUNAR 0.9226 0.6918 0.9732 0.8653 0.6474 0.2193 0.8320 0.4425 0.7189 0.1640
OpenAI + VAE 0.8144 0.3659 0.7250 0.2424 0.4515 0.1486 0.7418 0.2537 0.4259 0.0812

OpenAI + iForest 0.5213 0.1278 0.6064 0.1376 0.5064 0.1724 0.4944 0.0913 0.3751 0.0772
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Table A9: LLM prompt template used for zero-shot AD in “Normal Only” setting discussed in §3.2.
{normal_category_x} refers to the name of xth normal category. {text} represents the test sample to be detected.

You are an intelligent and professional assistant that detects anomalies in text data.
## Task:
- Following the rules below, determine whether the given text sample is an anomaly. Provide a brief explanation
of your reasoning and assign an anomaly confidence score between 0 and 1.

## Categories:
- **{normal_category_1}**
- **{normal_category_2}**
- ...

## Rules:
1. **Anomaly Definition**:

- A text sample is considered an **anomaly** if it does **not** belong to **any of the categories** listed
above.
2. **Scoring**:

- Assign an anomaly confidence score between 0 and 1.
- Use higher scores when you are highly confident in your decision.
- Use lower scores when you are uncertain or think the text sample is **not** an anomaly.

3. **Step-by-step Reasoning** (Chain of Thought):
- **Step 1**. Read the entire text sample carefully and understand it thoroughly.
- **Step 2**. Analyze the text sample by comparing its content to each category listed in the "Categories"

section above, considering factors such as main topics, meanings, background, sentiments, etc.
- **Step 3**. Determine which category the text sample **most closely aligns with**.

- If it aligns with any category, it is **not** an anomaly.
- If it does **not** align with any category, it is an anomaly.

- **Step 4**. Assign an anomaly confidence score based on how confident you are that the text sample is
an anomaly.
4. **Additional Notes**:

- A text sample may relate to multiple categories, but it should be classified into the **most relevant** one
in this task.

- If you are uncertain whether the text sample **significantly aligns** with **any of the anomaly
category(ies)**, assume that it does **not**, which means it is **not** an anomaly.
5. **Response Format**:

- Provide responses in a strict **JSON** format with the keys "reason" and "anomaly_score."
- "reason": Your brief explanation of the reasoning in one to three sentences logically.
- "anomaly_score": Your anomaly confidence score between 0 and 1.

- Ensure the JSON output is correctly formatted, including correct placement of commas between key-value
pairs.

- Add a backslash (\) before any double quotation marks (") within the values of JSON output for proper
parsing (i.e., from " to \"), and ensure that single quotation marks (’) are preserved without escaping.
Text sample:
"{text}"

Response in JSON format:
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Table A10: LLM prompt template used for zero-shot AD in “Normal + Anomaly” setting discussed in §3.2.
{normal_category_x} refers to the name of xth normal category and {anomaly_category} refers to the name of
anomaly category. {text} represents the test sample to be detected. The different part compared with the prompt in
the “Normal Only” setting is marked in red.

You are an intelligent and professional assistant that detects anomalies in text data.
## Task:
- Following the rules below, determine whether the given text sample is an anomaly. Provide a brief explanation
of your reasoning and assign an anomaly confidence score between 0 and 1.

## Categories:
### Normal Category(ies):
- **{normal_category_1}**
- **{normal_category_2}**
- ...
### Anomaly Category(ies):
- {anomaly_category}

## Rules:
1. **Anomaly Definition**:

- A text sample is considered an **anomaly** if it belongs to the **anomaly category(ies)** rather than
**any of the normal category(ies)** listed above.
2. **Scoring**:

- Assign an anomaly confidence score between 0 and 1.
- Use higher scores when you are highly confident in your decision.
- Use lower scores when you are uncertain or think the text sample is **not** an anomaly.

3. **Step-by-step Reasoning** (Chain of Thought):
- **Step 1**. Read the entire text sample carefully and understand it thoroughly.
- **Step 2**. Analyze the text sample by comparing its content to each category listed in the "Categories"

section above, considering factors such as main topics, meanings, background, sentiments, etc.
- **Step 3**. Determine which category the text sample **most closely aligns with**.

- If it **most closely aligns with** **any of the anomaly category(ies)**, it is an **anomaly**.
- If it **most closely aligns with** **any of the normal category(ies)** instead, it is **not** an anomaly.

- **Step 4**. Assign an anomaly confidence score based on how confident you are that the text sample is
an anomaly.
4. **Additional Notes**:

- A text sample may relate to multiple categories, but it should be classified into the **most relevant** one
in this task.

- If you are uncertain whether the text sample **significantly aligns** with **any of the anomaly
category(ies)**, assume that it does **not**, which means it is **not** an anomaly.
5. **Response Format**:

- Provide responses in a strict **JSON** format with the keys "reason" and "anomaly_score."
- "reason": Your brief explanation of the reasoning in one to three sentences logically.
- "anomaly_score": Your anomaly confidence score between 0 and 1.

- Ensure the JSON output is correctly formatted, including correct placement of commas between key-value
pairs.

- Add a backslash (\) before any double quotation marks (") within the values of JSON output for proper
parsing (i.e., from " to \"), and ensure that single quotation marks (’) are preserved without escaping.
Text sample:
"{text}"

Response in JSON format:
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Table A11: LLM prompt template used for keyword generation, which is the first step of generating synthetic
samples as discussed in §4.2. {normal_category_x} refers to the name of xth normal category. {name} and
{original_task} can be found in Tab. A.1. {num_keyword_groups} set the number of keyword groups that LLM
needs to generate for each category.

You are an intelligent and professional assistant that generates groups of keywords for given categories in a
dataset.
## Task:
- Following the rules below, generate **exactly** {num_keyword_groups} unique keyword groups for **each
given category** according to your understanding of the category (and its description).
- Each keyword group will be used to generate synthetic data for the corresponding category.

## Rules:
1. **Keyword Group Generation**:

- For **each given category**, generate **exactly** {num_keyword_groups} keyword groups. Each
group should contain exactly three keywords, with different levels of granularity: one broad/general, one
intermediate, and one fine-grained.

- Ensure that the three keywords in each group are thematically related to each other and align with the
category’s description.

- Avoid redundancy or overly similar keywords across different groups.
- Ensure that each group is unique and relevant to the key topics described in the category.

2. **Granularity**:
- The first keyword should be broad/general, representing a high-level or overarching topic.
- The second keyword should be intermediate, more specific than the first, but not overly narrow.
- The third keyword should be fine-grained and specific, related to detailed subtopics or precise aspects of

the category.
3. **Response Format**:

- For each given category, provide the keyword groups as a list, where each entry is a group of three
keywords (broad, intermediate, fine-grained).

- Structure the response so that the key is the category name, and the value is a list of generated keyword
groups.

- Ensure the JSON output is properly formatted, including correct placement of commas between key-value
pairs and no missing brackets.

- Add a backslash (\) before any double quotation marks (") within the values of JSON output for proper
parsing (i.e., from " to \"), and ensure that single quotation marks (’) are preserved without escaping.

The "{name}" dataset’s original task is {original_task}. It contains the following category(ies):
{normal_category_1}
{normal_category_2}
...

Response in JSON format:
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Table A12: LLM prompt template used for sample generation, which is the second step of generating synthetic
samples as discussed in §4.2. We generate a single synthetic sample per keyword group. {keyword_group[i]}
refers to (i+ 1)th granularity level’s keyword in this keyword group. {category} represents the name of the
corresponding category for this keyword group.

You are an intelligent and professional assistant that generates a synthetic text sample based on a group of 3
keywords with different levels of granularity.
## Task:
- Generate a synthetic text sample that incorporates the provided group of 3 keywords (broad, intermediate,
and fine-grained) listed below.
- The generated sample should align with the meanings and themes suggested by the keywords provided.

## Rules:
1. **Sample Characteristics**:

- Generate a synthetic text sample that naturally incorporates the three provided keywords (broad, interme-
diate, and fine-grained).

- Ensure that the text sample is coherent and contextually relevant to the themes suggested by the keywords.
2. **Keyword Usage**:

- The three keywords must appear naturally within the content.
- Ensure that the broad keyword sets the overall context, the intermediate keyword refines the discussion,

and the fine-grained keyword offers more detailed insight into a specific subtopic.
3. **Response Format**:

- Provide the generated sample as a single string response representing the text sample.
- Ensure the output is in a readable format.
- Do not include any additional messages or commentary.
- Add a backslash (\) before any double quotation marks (") within the values of JSON output for proper

parsing (i.e., from " to \"), and ensure that single quotation marks (’) are preserved without escaping.

The "{name}" dataset’s original task is {original_task}. The category is "{category}", and the group of
keywords to use is:
- Broad: {keyword_group[0]}
- Intermediate: {keyword_group[1]}
- Fine-grained: {keyword_group[2]}

Response in JSON format:
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Table A13: LLM prompt template for generating category descriptions discussed in §4.3. {normal_category_x}
refers to the name of xth normal category and {anomaly_category} refers to the name of anomaly category.
{name} and {original_task} can be found in Tab. A.1.

You are an intelligent and professional assistant that generates descriptions for given categories in a text
dataset.
## Task:
- Following the rules below, generate detailed textual descriptions that explain the main characteristics, typical
topics, and common examples for each given category.

## Rules:
1. For each category, provide a continuous, coherent description in a single paragraph that includes:

- **Definition or overview**: Start by briefly defining or describing the category in one to two sentences. If
you list multiple aspects or features in the definition (such as related fields or industries), ensure you append
expressions like "etc." or "and so on" to indicate that the list is not exhaustive.

- **Main topics or subjects**: Highlight the typical topics or subjects covered by this category. Ensure that
you use phrases like "etc." or "and so on" at the end of each list to indicate that the list is not exhaustive.
- **Relevant examples**: Mention examples of content that belong to this category. Also, use expressions
like "etc." or "and so on" at the end of the list to show that these are illustrative, not exhaustive.
2. Use **step-by-step reasoning** to ensure the descriptions are logical and clear.
3. Each description should be clear, coherent, and helpful for someone unfamiliar with the dataset and the
task.
4. Always append phrases like "etc." or "and so on" to lists or enumerations of examples, topics, or aspects,
**including the definition part**.
5. Response Format:

- Provide a response where each key is the category name, and the value is the corresponding description as
a continuous paragraph.

- Ensure the JSON output is correctly formatted, including correct placement of commas between key-value
pairs.

- Add a backslash (\) before any double quotation marks (") within the values of JSON output for proper
parsing (i.e., from " to \"), and ensure that single quotation marks (’) are preserved without escaping.

The "{name}" dataset’s original task is {origianl_task}. It contains the following categories:
{normal_category_1}
{normal_category_2}
...
{anomaly_category}

Response in JSON format:
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Table A14: LLM prompt template used for UMS discussed in §5. {normal_category_x} refers to the name of xth

normal category and {anomaly_category} refers to anomaly one. We randomly select examples from the training
set for both normal and anomaly data, denoted as {normal_text} and {anomaly_text}. {name}, {size} (i.e., #
of test set), and {original_task} can be found in Tab. A.1. {avg_len}, {max_len}, {min_len}, and {std_len}
are statistics of datasets as shown in Tab. A1. {abstract} is the abstract in the published paper of each model.

You are an expert in model selection for anomaly detection on text datasets.

## Task:
- Given the information of a dataset and a set of models, select the model you believe will achieve the best
performance for detecting anomalies in this dataset. Provide a brief explanation of your choice.

## Dataset Information:
- Dataset Name: {name}
- Dataset Size: {size}
- Background: This dataset is originally for {original_task}.
- Data Structure: Textual data with multiple categories. One category is considered anomalous, while the
others are normal.

- Normal Category(ies): {normal_category_1}, {normal_category_2}
- An Example: {normal_text}

- Anomaly Category: {anomaly_category}
- An Example: {anomaly_text}

- Text Length Statistics:
- Average Length: {avg_len}
- Maximum Length: {max_len}
- Minimum Length: {min_len}
- Standard Deviation: {std_len}

## Model Information:
- Models utilize language models to generate embeddings and feed the embeddings into the models.
- We provide the abstracts of the papers that introduce the models for your reference.
### Model Options:
- AutoEncoder (AE): {abstract} (Aggarwal, 2015)
- Deep Support Vector Data Description (DeepSVDD): {abstract} (Ruff et al., 2018)
- Empirical-Cumulative-Distribution-Based Outlier Detection (ECOD):{abstract} (Li et al., 2022)
- Isolation Forest (IForest): {abstract} (Liu et al., 2008)
- Local Outlier Factor (LOF): {abstract} (Breunig et al., 2000)
- Unifying Local Outlier Detection Methods via Graph Neural Networks (LUNAR): {abstract} (Goodge
et al., 2022)
- Single-Objective Generative Adversarial Active Learning (SO-GAAL): {abstract} (Liu et al., 2019)
- Variational AutoEncoder (VAE): {abstract} (Kingma and Welling, 2014)
### Embedding Options:
- Bidirectional Encoder Representations from Transformers (BERT): {abstract} (Kenton and Toutanova,
2019)
- "text-embedding-3-large" from OpenAI (referred to as OpenAI): {abstract} (OpenAI, 2024b)

## Rules:
1. Availabel options include "BERT+AE", "BERT+DeepSVDD", "BERT+ECOD", "BERT+iForest",
"BERT+LOF", "BERT+LUNAR", "BERT+SO-GAAL", "BERT+VAE", "OpenAI+AE", "Ope-
nAI+DeepSVDD", "OpenAI+ECOD", "OpenAI+iForest", "OpenAI+LOF", "OpenAI+LUNAR",
"OpenAI+SO-GAAL", "OpenAI+VAE."
2. Treat all models equally and evaluate them based on their compatibility with the dataset characteristics and
the anomaly detection task.
3. Response Format:

- Provide responses in a strict **JSON** format with the keys "reason" and "choice."
- "reason": Your explanation of the reasoning.
- "choice": The model you have selected for anomaly detection in this dataset.

Response in JSON format:
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