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Abstract

There have been attempts to utilize linear probe
for detoxification, with existing studies relying
on a single toxicity probe vector to reduce toxi-
city. However, toxicity can be fine-grained into
various subcategories, making it difficult to re-
move certain types of toxicity by using a single
toxicity probe vector. To address this limita-
tion, we propose a category-specific toxicity
probe vector approach. First, we train multi-
ple toxicity probe vectors for different toxic-
ity categories. During generation, we dynam-
ically select the most relevant toxicity probe
vector based on the current context. Finally,
the selected vector is dynamically scaled and
subtracted from model. Our method success-
fully mitigated toxicity from categories that the
single probe vector approach failed to detox-
ify. Experiments demonstrate that our approach
achieves up to a 78.52% reduction in toxicity on
the evaluation dataset, while fluency remains
nearly unchanged, with only a 0.052% drop
compared to the unsteered model.

1 Introduction

Pre-trained Language Models (LMs) possess strong
language understanding and problem-solving ca-
pabilities. However, since these models are pre-
trained on large-scale web datasets, they are likely
to inherit bias and toxicity from their training data
(Sheng et al., 2019; Gehman et al., 2020). As a
result, there is growing interest in techniques for
steering the generated output of LMs to ensure
safety.

A linear probe refers to a classifier that uses a
language model’s intermediate activations as in-
put (Alain, 2016), and it is originally developed
for XAl Recently, it has been utilized for steering
LM generation in various aspects, such as toxic-
ity (Lee et al., 2024), appropriateness (von Riitte
et al., 2024), and truthfulness (Li et al., 2023). In
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Prompt: And while I'll be the first to admit | can be a real ... ‘

GPT-2 + Single (Basline): pain in the a**. I'm
a very picky eater, and I'm not a big ...

=)
GPT-2 + DAPI (Ours): fan of the "The
Walking Dead" TV show. I've been watching it
since Iwas a ...

=]

Figure 1: Continuations of the same non-toxic prompt
from GPT-2 Large, generated with (red) single toxicity
probe vector and with (blue) Domain-Adaptive Toxic-
ity Probe Vector Intervention (DAPI). Without DAPI,
the model produced toxic content despite the non-toxic
prompt. In contrast, our method successfully prevented
toxicity while maintaining fluency.

WARNING: THESE EXAMPLES ARE HIGHLY OF-
FENSIVE

detoxification, Lee et al. (2024) has demonstrated
that intervening during the generation process ef-
fectively suppresses toxic outputs with the toxicity
probe vector, which is obtained from toxic and non-
toxic statements. The method to steer pre-trained
LMs using the linear probe can significantly re-
duce the required computational resources when
compared to conventional methods, such as weight
adjustment-based or external model-guided meth-
ods.

Existing detoxification methods based on linear
probe typically suppress toxic outputs using a sin-
gle toxicity probe vector. However, toxicity can
be fine-grained into various types, such as insults,
sexually explicit content, hate speech, and racial
slurs. In this case, using a single probe vector may
result in ineffective toxicity mitigation for certain
types of toxicity, as its performance depends on the
training environment of the probe vector. As shown
in Figure 1, detoxification using a single probe vec-
tor struggles to effectively mitigate specific types
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of toxicity. We hypothesize that this issue arises
due to dataset imbalance. Training a probe vec-
tor requires a labeled dataset, but publicly available
datasets often have category imbalances, which can
cause the over-representation of certain categories.
As a result, while toxicity in majority categories
can be successfully mitigated, detoxification for cat-
egories with a relatively smaller number of samples
may fail. Furthermore, previous approach adjusts
the intensity of toxicity suppression using a fixed
intervention strength and this rigid adjustment may
lead to unnecessary modifications even when the
model is already safe, and it can ultimately degrade
the fluency of the generated texts.

To address these challenges, we proposes Do-
main Adaptive toxicity Probe vector Intervention
(DAPI). First, multiple probe vectors are precom-
puted for each toxicity category through multi-class
classification. During the generation process, the
probe vector for intervention is dynamically se-
lected based on its cosine similarity with the hidden
states before the Feed-Forward Network (FFN) in
the last Transformer decoder layer. The similarity
is computed using the average hidden state across
all token positions at each generation step. The
selected probe vector is then dynamically scaled
based on the steering state of the generation and
subtracted from the last hidden state at last token
in the last layer. Experiments demonstrate that our
approach achieves up to 78.52% toxicity reduction
on the RealToxicityPrompts (Gehman et al., 2020)
dataset, while fluency measured on the Wikitext-2
(Merity et al., 2016) dataset remained nearly un-
changed, with only a 0.052% drop compared to the
unsteered model.

To verify whether the distribution of the training
dataset influenced the probe vector, we conducted
a Category-wise experiment. Experimental results
showed that using multiple probe vectors instead of
a single probe vector improved toxicity reduction
not only in majority categories but also in cate-
gories with relatively fewer samples. These find-
ings demonstrate that using multiple probe vectors
instead of a single one can prevent the probe vector
from being biased toward a specific toxicity cate-
gory. Furthermore, we conducted an analysis to
assess whether the acquired multiple probe vectors
capture distinctions between fine-grained toxicity
categories. Additionally, through the ablation study
on each component contribution, we observed that
applying the dynamic scaling method instead of
fixed scaling not only eliminated residual toxicity

but also improved text quality.
This paper makes the following three contribu-
tions:

* We propose DAPI to utilize multiple category-
specific toxicity probe vectors for domain
adaptive toxicity reduction

* We propose a cosine similarity regulariza-
tion loss to acquire category-specific toxicity
probe vectors.

* Experiments demonstrate that the proposed
method outperforms all baseline models in
toxicity reduction, while fluency remained
nearly unchanged compared to the unsteered
model.

2 Related Work

Linear Probe The linear probe method involves
training a linear layer on a specific intermediate
activation from LM to extract directional vectors
that encode desired attributes. This method iden-
tifies inherent attribute representations within the
model and leverages them to guide controlled text
generation. There are two main applications of
this method. First application is truthfulness con-
trol (Li et al., 2023). To encourage pre-trained
LMs to generate factually accurate responses, they
analyze the differences in activation distributions
between true and false statements. By training a
binary classifier to distinguish between truth and
falsehood, they obtain a linear probe. The accuracy
of this linear probe is then used to identify which
attention heads encode truthful information. This
allows targeted interventions to adjust specific at-
tention heads, ensuring the model produces more
truthful outputs. Second application is detoxifica-
tion (Lee et al., 2024; Wang et al., 2024). They
trained a linear layer on a toxicity binary classifica-
tion task using the language model’s intermediate
activations as input, resulting in a toxicity probe
vector that captures activation patterns associated
with toxicity. Although their intervention method
is differ, they all intervene in the model using this
toxicity probe vector, to suppress toxic language in
generated outputs without modifying the model’s
weights.

Interpreting Value Vectors in Vocabulary Space
Attempts to interpret the internal mechanisms of
Transformer-based language models have been con-
tinuously explored (Geva et al., 2020). In particular,
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Figure 2: An overview of DAPI. It consists of three steps: Stepl: Extracting Probe Vector: A linear classifier is
trained using the last hidden state of the model to obtain probe vectors that represent distinct directional attributes
for each toxicity category. Step2: Probe Vector Selection: At every time step ¢ during inference, among the
acquired probe vectors W, the one most similar to the averaged hidden states before FFN, X, is selected. Step3:
Detoxification Using Probe Vector: The selected probe vector is then scaled by a dynamic scaling factor and
subtracted from the last hidden state X, in the model’s last layer.

Geva et al. (2022) conducted an in-depth analysis
of the role played by the FFN layers in the model’s
prediction process. They interpreted the decoder
weights of FFN as factors that either promote or
suppress the likelihood of a specific tokens. Lee
et al. (2024) leveraged this directional property
by projecting the acquired probe vector onto the
vocabulary space to identify which tokens be pro-
moted. Inspired by this method, we aim to analyze
how probe vectors for different toxicity categories
would affect token generation and show they align
with our predefined toxicity categories.

3 Methodology

Domain Adaptive toxicity Probe vector Interven-
tion (DAPI) attempts to use the category-specific
toxicity probe vectors to suppress toxic output.

3.1 Extracting Probe Vector
3.1.1 Multiple Toxicity Probe Vectors

In this work, we utilize category-specific multiple
toxicity probe vectors instead of a single toxicity
probe vector. To extract probe vectors, we use the
averaged last hidden states X avg as input. The clas-

sification task is then extended from binary toxicity
classification to multi-class classification to dis-
tinguish between fine-grained toxicity categories.
Thus, we leverage the four specific toxicity cate-
gories labeled in the dataset. The trained probe
vectors achieved 76% accuracy on the validation
set.

3.1.2 Other Category Toxicity Probe Vector

The dataset for probe training contains sentences
labeled as toxic that do not belong to any specific
toxicity category. This subset consists of 5,707
sentences, which were used to train an other cat-
egory toxicity probe vector. As a result, we uti-
lize five category-specific probe vectors: (1) Insult,
(2) Identity-Hate, (3) Obscene, (4) Threat, and (5)
Other.

3.1.3 Cosine Similarity Regularization Loss

We needed to verify whether the acquired multiple
probe vectors were effectively distinguished ac-
cording to their respective toxicity categories. First
we measured the cosine similarity between probe
vectors. As shown in Table 1, the average similar-
ity between probe vectors was approximately 36%,
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Category Pair Similarity (%) Change (%)
w/o cos-reg  w cos-reg

insult, identity 43.8 30.6 -30.14%
insult, obscene 75.6 70.5 -6.75%
insult, threat 25.1 2.0 -92.03%
insult, other 45.8 44.1 -3.71%
identity, obscene 32.4 21.1 -34.88%
identity, threat 34.1 15.1 -55.72%
identity, other 25.4 22.8 -10.23%
obscene, threat 18.1 1.0 -94.48%
obscene, other 432 434 +0.46%
threat, other 15.4 0.8 -94.81%

Table 1: Result of reduction in similarity between probe
vectors after applying Cosine Similarity Regularization
Loss. The "Change" column indicates the percentage
change in similarity before and after applying regular-
ization loss. The term "identity" refers to the "identity-
hate" category.

with the insult and obscene categories exhibiting
particularly high similarity, close to 76%.

Second, as mentioned in Section 2, we applied
vocabulary space projection to further analyze the
how probe vectors for different toxicity categories
would affect token generation and show they align
with our predefined toxicity categories. Following
the method proposed by Geva et al. (2022), we
first extract the token embeddings from GPT-2’s
embedding layer. Then, we compute the cosine
similarity between the probe vector and all token
embeddings. The top-k tokens with the highest
similarity are decoded into actual text tokens using
the tokenizer. This allowed us to visually inspect
whether each probe vector captured semantically
distinct directions. As shown in Table 2, some
probe vectors overlapped with specific word clus-
ters, indicating that they primarily captured general
toxicity rather than category-specific distinctions.
Through the validation process above, we identified
that the multi probe vectors exhibited high similar-
ity and lacked sufficient differentiation across toxic-
ity categories. To address this issue, we introduced
Cosine Similarity Regularization Loss:

2o 2 Tl Tyl
Etotal = ['C + /\,CR 2)

where L is the total loss, L~ and Lg are the
classification and regularization loss, respectively,
and A € R is the regularization strength. Lp is
the Cross Entropy loss obtained with a linear layer

Probe Vector
Single

Multiple w/o cos-reg
insult

identity

Top Tokens
fi Kk, a**hole, c**t, b**ch, s**t, d**k

f**k, a**hole, c**t, b**ch, s**t, god**mn
gays, homosexuals, homophobia, Jews
obscene fi*k, a**hole, c**t, b**ch, s**t, wh**e
threat murdering, decap, oreAnd, Thumbnaillmage
other fi+k, a**hole, c**t, b**ch, id***s, wh**e
Multiple w cos-reg
insult

f**k, b**ch, dumb, Ni*, Stupid, vomit

identity homosexuals, gays, lesbians, LGBT
obscene f**k, pu**y, a**hole, scr*w, smoke, a**
threat kill, stabbing, murdering, deaths, fatalities
other f*k, c**t, disgusting, filthy, bastard

Table 2: Top tokens identified from probe vectors
through vocabulary space projection, illustrating their
alignment with predefined toxicity categories. The term
"identity" refers to the "identity-hate" category. Tokens
that appear redundantly are highlighted in bold.
WARNING: THESE EXAMPLES ARE HIGHLY OF-
FENSIVE

on top of the last layer of language model as a
multi-label classification head. Lp is the Cosine
Similarity Regularization Loss, which incorporated
absolute sum of cosine similarities between multi-
ple probe vectors. Let W = {wy, wa, ..., wy} be
the set of probe vectors, where each w; € R rep-
resents the trained vector corresponding to one of
the IV toxicity categories. [V denotes the total num-
ber of categories, and each w; is L2-normalized
before computing the pairwise cosine similarity. In-
tuitively, a lower regularization loss value indicates
that the probe vectors have learned more differen-
tiated directional properties. The absolute sum of
similarities was used to ensure that the common
toxicity attribute remains intact, while enforcing
distinctiveness across categories. Experimentally,
the final classification accuracy of the multiple
probe vectors reached 75%.

3.2 Probe Vector Selection

Based on the multi probe vectors trained in the
previous stage, this step selects the most relevant
probe vector for each token generation step. To
achieve this, we compute the cosine similarity be-
tween each probe vector and the averaged hidden
states before FFN, X, in the last layer. The probe
vector with the highest similarity is then selected
for the current generation step. However, if the
highest similarity value is negative, it is considered
that no toxicity needs to be removed at this step,
and no probe vector is selected. Cases where a
probe vector is selected even when the max simi-
larity is negative can be observed in Table 7.
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Additionally, instead of selecting only the probe
vector with the max similarity, we also considered
an approach that utilizes all category-specific probe
vectors based on computed similarity. As shown in
Table 8, we experimentally confirmed that selecting
only the probe vector with the max similarity is
more effective in toxicity reduction.

3.3 Detoxification using Probe Vector

This stage performs probe vector intervention by
applying the probe vector selected in the previous
stage for detoxification. The selected probe vector
is scaled by a factor o and subtracted from the in-
termediate layer of the model. However, Scalena
et al. (2024) has shown that applying additional vec-
tor interventions to already-controlled text results
in diminishing improvements in toxicity reduction
while potentially degrading fluency. To address
this, we apply a dynamic scaling factor that adjusts
at each token generation step, instead of using a
fixed scaling factor.

The existing dynamic scaling method computes
the scaling factor for each generation step based on
the KL-Divergence between the controlled and un-
controlled model’s probability distributions, which
requires an additional forward pass. However,
since our approach performs vector subtraction at
the last hidden state X; from last layer instead of
an intermediate layer, we can complete all compu-
tations within a single forward pass.

This approach is not only intended to reduce
computational overhead but is also more suitable
because our probe vectors were trained using the
hidden states from the last layer as input. Exper-
imental results on layer-wise performance can be
found in Appendix A. This step consists of four
stages. First, the probability distributions of the
steered and unsteered models are computed using
the LM head with the last-layer hidden state, with a
fixed scaling factor of 12.5. Next, Top-p Sampling
(nucleus sampling, Holtzman et al. 2019) is applied

Vie{l,...,N}.

to each probability distribution, creating a vocabu-
lary subset for each model, and their union is taken.
Then, the probability distributions of both models
are recomputed using the newly formed vocabu-
lary subset. Finally, the KL-Divergence between
the probability distributions is adjusted to match
the desired scaling factor range, determining the
optimal scaling value.

4 Experiments

In this study, we validate the effectiveness of the
proposed method through both automatic evalu-
ation and human evaluation. Additionally, we
conducted a category-wise evaluation to compare
the effectiveness of using multiple probe vectors
against a single probe vector in an imbalanced
dataset environment. To assess the balance between
toxicity reduction and generation quality, we de-
sign our experiments based on metrics commonly
used in previous research (Geva et al., 2022). More-
over, distinct metrics were measured to evaluate the
diversity of the model.

4.1 Dataset
4.1.1 Probe Training Dataset

We use the Toxic Comment Classification Chal-
lenge dataset (cjadams et al., 2017), released by
Jigsaw on Kaggle, consists of Wikipedia discussion
comments labeled by human evaluators for toxic be-
havior. It includes six columns: toxic, severe toxic,
obscene, threat, insult, and identity attack, allowing
multi-label classification. The dataset consists of
159,571 English comments, including 15,294 toxic
comments and 144,277 non-toxic comments, with
478 threats, 7,877 insults, 8,449 obscene comments,
and 1,405 identity attacks, reflecting an imbalanced
distribution. We use a 90:10 split for training and
validation.

4.1.2 Evaluation Dataset

REALTOXICITYPROMPTS To assess toxic-
ity reduction performance, we utilize the ‘“chal-
lenge” subset of the REALTOXICITYPROMPTS
dataset (Gehman et al., 2020). This subset con-
sists of 1,199 prompts designed to elicit highly
toxic outputs from language models. We evaluate
the toxicity of generated text using the Perspec-
tive API', an automated toxicity detection tool.
For each prompt, the model generates up to 20

1https: //github.com/conversationai/
perspectiveapi

15063


https://github.com/conversationai/perspectiveapi
https://github.com/conversationai/perspectiveapi

Model Toxicity (}]) Fluency ({) Diversity (1)
Perplexity Dist-1 Dist-2 Dist-3
GPT-2 Large 0.4153 18.7715  0.8280 0.9256 0.9490
ActAdd 0.3318 223115  0.7641 0.8766 0.9177
DExperts 0.1493 58.1782  0.8350 0.9181 0.9412
Single Probe Vector ~ 0.2241 20.1101  0.8450 0.9434 0.9655
DAPI (ours) 0.0892 18.7813  0.8040 0.9096 0.9350

Table 3: Main results of detoxifying generations using GPT-2 Large as the base LM. We evaluate toxicity, fluency,
and diversity metrics. Lower toxicity and fluency (Perplexity) indicate better performance, while higher diversity

(Dist-1, Dist-2, Dist-3) is preferred.

tokens, and the Perspective API assigns a toxicity
score to the generated output. Additionally, we
assess generation diversity using the REALTOXI-
CITYPROMPTS dataset by computing the number
of distinct n-grams in generated responses, scaled
by the total number of generated tokens (Li et al.,
2015). Distinct-n quantifies generation diversity by
computing the average number of unique n-grams,
normalized by the total text length. We report Dist-
1, Dist-2, and Dist-3, corresponding to unigram,
bigram, and trigram diversity, respectively.

Wikitext To evaluate text generation quality, we
measure Perplexity (PPL) using the Wikitext-2
dataset (Merity et al., 2016). We compute sentence-
level perplexity by iterating over the test set in
fixed-length overlapping windows. A lower PPL
value indicates better fluency, meaning the model
generates more natural and coherent text.

4.2 Baselines

We evaluate our method on two model scales: GPT-
2 Large and GPT-2 XL (Radford et al., 2019), with
different sets of baseline methods for each.

For experiments using GPT-2 Large as the base
language model, we compare against three base-
lines.

Activation Addition (ActAdd; Turner et al.
2023) A method that steers generation via ac-
tivation addition, using the difference in activations
from semantically paired prompts.

Decoding-time Experts (Dexperts; Liu et al.
2021) A decoding-time detoxification method
that combines a pretrained LM with both toxic and
non-toxic expert models.

Single Probe Vector (Lee et al. 2024) This
method trains a linear probe on a binary toxicity

classification task. The input vector is obtained
by averaging the last hidden states chg of all to-
ken positions in a sentence. The Jigsaw dataset
(cjadams et al., 2017) is used for probe training
with a 90:10 train-validation split. The trained toxi-
city probe achieved 91% accuracy on the validation
set.

For experiments using GPT-2 XL as the base
language model, we compare against two baselines.

Single Probe Vector As above, but all probe ex-
traction and intervention steps are applied to GPT-2
XL instead of GPT-2 Large.

Rectification Model (RECT; Cao et al. 2023) A
decoding-time detoxification method that adjusts
token probabilities based on the estimated risk that
a token will lead to toxic completions. The hyper-
parameter € controls the strength of filtering, with
higher values imposing stronger detoxification at
the cost of potential fluency degradation.

4.3 Setup

During multiple probe vector training, the weight
for regularization loss is set to 0.01, and fixed scal-
ing factor «v is set to 17. When applying dynamic
scaling, the average « value is measured at 16.8

4.4 Automatic Evaluation

According to the automatic evaluation metrics in
Table 3, our method (DAPI) outperforms all base-
line methods in toxicity reduction while maintain-
ing text generation quality and diversity. Compared
to DExperts, DAPI achieved higher toxicity reduc-
tion, while significantly outperforming in terms
of PPL. Moreover, DAPI requires training only a
linear classifier, while DExperts necessitates fine-
tuning two additional LMs, which makes our ap-
proach substantially more cost-efficient. Compared
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Model Toxicity (}]) Fluency (|) Diversity (1)
Perplexity  Dist-1 Dist-2  Dist-3
GPT-2 XL 0.4827 169648  0.8118 0.9076 0.9341
RECT (e = 0) 0.3184 17.4 0.8412 0.9170 0.9572
RECT (e =0.3) 0.1402 21.6 0.7278 0.8233 0.9128
Single Probe Vector ~ 0.3354 17.5461  0.8246 0.9244 0.9507
DAPI (ours) 0.1031 17.0027  0.8001 0.9141 0.9419

Table 4: Results of detoxifying generations using GPT-2 XL as the base LM.

Less Toxic 045 002 —_——
Equal
More Natural 060 01s GPT-2
l T T T T T
Less Toxic 071 010 = DAP
Equal
More Natural 052 021 DExperts

Less Toxic

More Natural 012 0.15

Less Toxic 0.72 0.06 oAl
Equal
More Natural 043 016 single Prove Vector
f T T

T T T
0.0 0.2 0.4 0.6 0.8 10

= DAPI
Equal
Actadd

0.0 0.2 0.4 0.6 0.8 10

Figure 3: Results of human evaluation. ’Less toxic’ means continuation is less toxic, "More natural’ means

continuation is more natural and contextually coherent.

to ActAdd, DAPI achieves superior performance
in both toxicity reduction and text quality preser-
vation. Furthermore, compared to Single Probe
Vector, which also utilizes a linear probe, DAPI
achieves better performance in both toxicity reduc-
tion and text quality. This result shows that dy-
namically selecting and scaling category-specific
probe vectors is more effective in preserving text
quality while detoxifying, rather than applying a
fixed scaling factor to a single probe vector.

4.5 Evaluation on Larger Model

To assess the scalability of our approach, we apply
DAPI to GPT-2 XL, a larger language model with
1.5B parameters—approximately twice the size of
GPT-2 Large (774M). Despite the increased model
capacity, DAPI continues to perform effectively in
reducing toxicity while preserving fluency and di-
versity. As shown in Table 4, DAPI outperforms the
Single Probe Vector baseline even when retrained
on GPT-2 XL. It also achieves stronger detoxifi-
cation performance than RECT across various e
values. While RECT must balance detoxification
strength and fluency through its threshold param-
eter, DAPI consistently performs well without re-
quiring such tuning. These results demonstrate that
DAPI generalizes effectively to larger-scale models
without degradation in performance.

Toxicity ()
Obscene Identity Threat Insult
GPT-2 0.4552  0.4650 0.5336 0.3779
Single 0.2355 0.3153 0.3130 0.2018
Multiple  0.2125  0.1394 0.1481 0.1078

Table 5: Result of category-wise experiment. ’Single’
means using single probe vector. And "Multiple’ means
using multiple probe vectors without dynamic scaling.
The term "Identity" refers to the "Identity-Hate" cate-

gory.

4.6 Human Evaluation

We conducted human evaluation on 100 random
prompts sampling from the challenge subset of
REALTOXICITYPROMPTS by four NLP expert
evaluators. For each prompt, we compare four pairs
of models: DAPI versus GPT-2 Large, DExperts,
ActAdd, Single Toxicity Probe Vector. Each com-
parison pair is rated by four NLP expert evaluators,
who select which of the two continuations is: (1)
Less toxic: Continuation is less toxic, (2) More nat-
ural: Continuation is more natural and contextually
coherent. According to human evaluations, DAPI
is rated as less toxic more often than all baseline
methods, as shown in Figure 3. In particular, it
is rated equally natural compared to non-steeered
GPT-2 model, yet less toxic.
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Model Toxicity (}]) Fluency ({) Diversity (1)
Perplexity Dist-1 Dist-2 Dist-3
GPT-2 Large 0.4153 18.7715  0.8280 0.9256 0.9490
DAPI 0.0892 18.7813  0.8040 0.9096 0.9350
w/o dynamic scaling 0.1398 18.7826  0.8141 0.9212 0.9466
w/o regularization loss 0.1403 18.7826  0.8142 0.9211 0.9466
w/o other probe vector 0.2742 18.7715  0.8301 0.9343 0.9581

Table 6: Results showing the contribution of each component. The table sequentially presents performance results
starting from the base LM (GPT-2 Large), followed by the full method (DAPI), and then results without dynamic
scaling, without regularization loss, and using the multiple probe vector without the other probe vector.

Method Toxicity ()  Fluency ({) Method Toxicity (])  Fluency (1)
Perplexity Perplexity

Use Neg Cos 0.1453 21.8967 Weighted Sum 0.1061 18.7992

Pass Neg Cos 0.0892 18.7813 Only Max 0.0892 18.7813

Table 7: Results of the negative cosine similarity exper-
iment. ‘Use Neg Cos’ indicates that the probe vector
is applied even when the highest cosine similarity is
negative, while ‘Pass Neg Cos’ means that the case is
skipped.

5 Category-wise Evaluation

In the probe vector training environment, when us-
ing a dataset with category imbalances, we aimed
to verify whether a single probe vector could suc-
cessfully mitigate toxicity in majority categories
while failing to detoxify categories with relatively
fewer samples. To examine this, we additionally
evaluated toxicity reduction performance for each
category. For details on the Jigsaw dataset used for
probe training, please refer to Appendix B.

Although REALTOXICITYPROMPTS does not
have explicit category labels, each prompt is as-
signed category-specific toxicity scores measured
by Perspective API. Based on this, we categorized
each prompt according to the category with the
highest toxicity score and conducted the evalua-
tion accordingly. For this evaluation, we used the
‘threat’, ‘insult’, and ‘identity-attack’ categories as
they are, while ‘profanity’ was grouped under ‘in-
sult’, and ‘flirtation’ and ‘sexually-explicit’ were
categorized as ‘obscene’. We also generates up to
20 tokens, and the Perspective API assigns a toxic-
ity score to the generated output for each prompt.
As shown in Table 5, a single probe vector success-
fully mitigated toxicity in majority categories (Ob-

Table 8: Experimental results based on different probe
vector selection methods. ‘Weighted Sum’ indicates
a method where softmax is applied based on similar-
ity scores, allowing the use of all probe vectors in a
weighted sum. In contrast, ‘Only Max’ means that only
the probe vector with the highest similarity is selected.

scene, Insult) but failed to detoxify categories with
relatively fewer samples (Identity, Threat). This
demonstrates that a fine-grained approach to detox-
ification is more effective.

6 Analysis

6.1 Case of Negative Cosine Similarity

As we stated in Section 3.2, during the probe vec-
tor selection step, if the highest similarity value is
negative, it is considered that no toxicity needs to
be removed at this step. To validate this assump-
tion, we conducted an experiment comparing cases
where the probe vector is applied even when the
highest cosine similarity is negative. As shown in
Table 7, applying the probe vector in such cases
not only failed to effectively mitigate toxicity but
also significantly degraded text quality. Based on
these findings, we determined that in such cases,
no probe vector should be selected.

6.2 Weighted Sum Selection Method

We experimented with an approach that utilizes
all category-specific probe vectors by computing a
weighted sum of multiple probe vectors based on
their similarity scores instead of selecting only the
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Model Toxicity (}]) Fluency ({) Diversity (1)
Perplexity Dist-1 Dist-2 Dist-3
GPT-2 Large 0.2302 18.7715  0.8937 0.8763 0.8170
Single Probe Vector ~ 0.1832 20.1101  0.8818 0.8795 0.8209
DAPI 0.1461 18.7813  0.8911 0.8839 0.820

Table 9: Evaluation results on FairPrism

probe vector with the max similarity (Table §). We
found that selecting only the probe vector with the
max similarity is more effective in toxicity reduc-
tion and also shows slightly better performance in
fluency and diversity.

6.3 Each Component Contribution

We also conducted experiments to analyze the
contribution of each component in the proposed
method to toxicity reduction performance (Table
6). The significant performance difference with
and without the other probe vector suggests that
human-defined categories may not fully capture the
complexity of toxicity, indicating the possibility of
further fine-grained toxicity categorization.

While applying the regularization loss did not
lead to a significant performance difference, as
shown in Table 1, the cosine similarity between
probe vectors decreased after applying the reg-
ularization loss, reducing the average similarity
from approximately 36% to 25%. Furthermore,
as shown in Table 2, each probe vector became
better aligned with pre-defined toxicity categories
and showed reduced overlap with specific word
clusters.

Additionally, the effectiveness of dynamic scal-
ing in removing toxicity more efficiently suggests
that a fixed scaling value was insufficient to fully
mitigate toxicity in previous approaches. These
results collectively demonstrate that each compo-
nent of the proposed method contributes to both
effective toxicity mitigation and text quality im-
provement.

6.4 Evaluation on FairPrism Dataset

To examine whether DAPI generalizes beyond the
RealToxicityPrompts dataset, we additionally con-
ducted experiments using the FairPrism (Fleisig
et al., 2023). Among the 5,000 total entries, we ex-
cluded samples with the ‘Reply’ response type and
retained only those labeled as ‘Continuation’, re-
sulting in 2,500 samples for evaluation. As shown

in the results, DAPI effectively reduces toxicity on
this dataset as well, outperforming the Single Probe
Vector baseline.

7 Conclusions

We reveal that existing detoxification methods
using a single steering vector fail to effectively
mitigate certain categories of toxicity because
they rely on a linear probe trained on an imbal-
anced dataset. To address the limitations of single
probe vector approaches, we proposed Domain-
Adaptive Toxic Probe Vector Intervention (DAPI),
a three-stage framework that dynamically selects
and adjusts category-specific probe vectors. Auto-
matic evaluation experiments on the REALTOXI-
CITYPROMPTS dataset demonstrated that DAPI
reduces toxicity by up to 78.52% and outperforms
existing activation engineering and linear probe
techniques in detoxification while maintaining gen-
eration quality, as indicated by Perplexity (PPL)
and Distinct-n scores. This study highlights the
effectiveness of fine-grained detoxification and sug-
gests future research directions for extending this
approach to other controlled text generation tasks.

Limitations

While this study proposes and experimentally vali-
dates DAPI, it has several limitations that warrant
further investigation. First, DAPI’s effectiveness
beyond toxicity reduction remains unverified. Al-
though our approach demonstrates success in detox-
ification, its applicability to other controllable text
generation tasks, such as sentiment control, has
not been explored. Further analysis is needed to
determine whether this method can be generalized
to a wider range of attribute control tasks. Second,
applying the proposed method to other attributes
requires a labeled dataset with category-specific
annotations. Third, while we hypothesized that
the limitations of existing single steering vector
approaches stem from imbalanced datasets and
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proposed a method to address this issue, we did
not fundamentally resolve the dataset imbalance it-
self. Addressing these limitations in future research
would enhance DAPI’s generalizability and enable
its application to a broader range of controllable
text generation tasks.
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A Implementation Details

For extracting probe vectors, we use GPT-2 Large
as the frozen language model, while a linear clas-
sifier is trained on the training dataset. The probe
model is trained for 20 epochs with a batch size of
128 and a learning rate of Se-4. We apply weight
decay of 0.01, set the warmup ratio to 0.1, and use
a regularization loss weight of 0.01. For text gener-
ation, all methods utilize greedy search, generating
a maximum of 20 tokens per sequence. All experi-
ments are conducted on a single NVIDIA Quadro
RTX 8000 GPU.

Category Count Percentage (%)
Insult 7,877 43.18
Obscene 8,449 46.54
Identity-Attack 1,405 7.65
Threat 478 2.63

Table 10: Category distribution of the Jigsaw dataset.

Layer Toxicity (|) Fluency (]) Diversity (1)

Perplexity  Dist-1  Dist-2  Dist-3
1 layer (start) 0.3561 18.7715 0.8304 0.9337 0.9587
12 layer (inter) 0.3086 18.7715 0.8304 0.9337 0.9587
24 layer (inter) 0.1639 18.7715 0.8304 0.9337 0.9587
36 layer (last) 0.0892 18.7813 0.8040 0.9096 0.9350

Table 11: Results of layer-wise experiments.

B Category Distribution of the Jigsaw
Dataset

The category distribution of the Jigsaw dataset,

which was used for training the probe vectors, can
be found in Table 10.

C Layer-wise Ablation Study

We conducted layer-wise experiments to determine
the optimal layer position for performing the Detox-
ification using Probe Vector step. The results of
these experiments can be found in Table 11.
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