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Abstract

As large language models (LLMs) grow in pa-
rameter size and context length, computation
precision has been reduced from 16-bit to 4-
bit to improve inference efficiency. However,
this reduction causes accuracy degradation due
to activation outliers. Rotation-based INT4
methods address this via matrix calibration,
but they introduce multi-hour overheads and
leave key computations in full precision. Mi-
croscaling (MX) floating-point (FP) formats
offer fine-grained representation with a shared
scale, enabling fully quantized matrix multi-
plications through direct casting without cali-
bration. However, existing research shows un-
satisfactory empirical results for MXFP4 in-
ference, and the robustness of MX formats re-
mains largely unexplored.

In this work, we uncover the fundamental trade-
offs of the MX format: while it effectively sup-
presses activation outliers, it does so at the cost
of increased group-wise asymmetry. To address
this, we propose AMXFP4, a 4-bit asymmet-
ric FP format that handles both issues using
asymmetric shared scales, without requiring
calibration. Our custom MAC engine adds neg-
ligible hardware cost while improving accu-
racy: AMXFP4 outperforms MXFP4 by 3%
on VQA and exceeds rotation-based methods
by 1.6% on CSQA. It also surpasses recently
deployed commercial MXFP4 variants. Code:
https://github.com/aiha-lab/MX-QLLM

1 Introduction

Multi-modal Large Language Models (LLMs) are
widely used in advanced natural language pro-
cessing tasks, including chatbots, long-document
question-answering, and visual graph interpreta-
tion (Bai et al., 2023; Liu et al., 2023a). To en-
hance their capabilities, LLMs have been signifi-
cantly scaled in both parameter size and context
length (Chung et al., 2022; Chowdhery et al., 2022).

† Corresponding author.

For example, LLaMA3 (AI@Meta, 2024) now fea-
tures 405 billion parameters and supports context
lengths of up to 128K tokens. As shown in Fig. 1(a),
this scaling results in peta-FLOP-level computa-
tional demands during the prefill phase, where the
model processes user context before inference.

Leading computing platforms have focused on
bit-precision scaling to meet the computational de-
mands of LLMs (Andersch et al., 2022; Nvidia,
2024; AzureAI, 2024). Reducing operand bit-
widths improves area and energy efficiency in arith-
metic operations (Horowitz, 2014), enabling higher
computation density in accelerators. As shown
in Fig. 1(b), NVIDIA’s Tensor Cores double com-
putation speed by lowering multiply-accumulate
(MAC) precision from FP16 to FP8 (Andersch
et al., 2022) and from INT8 to INT4 (Nvidia, 2020).

Recent research explores activation and weight
quantization to improve LLM inference efficiency
by leveraging hardware precision scaling. How-
ever, quantizing both weights and activations
to INT4 often degrades accuracy due to activa-
tion outliers (Dettmers et al., 2022; Xiao et al.,
2022). Rotation-based transformations mitigate
this by making activations more quantization-
friendly (Ashkboos et al., 2024; Liu et al., 2024b),
with approaches like QuaRot (Ashkboos et al.,
2024) significantly reducing LLM perplexity in
INT4 inference (Fig. 1(c)). Despite these benefits,
rotation-based methods require extensive calibra-
tion, leading to overfitting risks (Lee et al., 2023;
Lin et al., 2023) (cf. Table 2), and are impractical
for user-specific model deployments that demand
frequent recalibration (Bang et al., 2024). Addi-
tionally, they leave Softmax outputs unquantized,
forcing FP16 multiplications with value vectors,
which account for 41% of total FLOPs in 8B LLMs
with 128K-token inputs (cf. Fig. 8).

An alternative approach to quantization in-
troduces reduced-precision formats that enable
calibration-free data-type conversion (i.e., direct

14993

https://github.com/aiha-lab/MX-QLLM


PF
LO

PS
● 8B
● 70B
● 405B

Context Length(a)

*Supports Microscaling (MX) formats

INT4

FP4
INT8, FP8

●Amphere
● Hopper
● Blackwell*

TO
PS

NVIDIA Tensor Core Bit-Preicision(b)

P1
FP8 (E5M2, E4M3), FP4 (E2M1), INT4, ...

P2 ... PGSSShared
Scale

PoT, FP8, ...
⋅

GEMM
Precision

FP16

INT4†

MXFP4

LLaMA2-7B
Wikitext-2 Perplexity (PPL)

16-bit Baseline

INT4

Asymmetric INT4

INT4 + QuaRot

MXFP4

MXFP4 + QuaRot

AMXFP4

NaN

473.16

Decrease PPL
Increase PPL

Lowest PPL

5.47

8.28

11.15

13.82Elements

(d) (c)
6.22

N
or

m

Q-Proj
K-Proj
V-Proj SA ⋅ V

Q⋅KT Softmax

O-Proj
+

N
or

m

FFN2
FFN1

Gate-Proj 𝜎
Q

Q
Q
Q

Q

Q
Q Q +

(e)

Q MX Quantization
MX Tensor Core
GEMM
FP16 Operation

†QuaRot does not 
quantize Query and 
Softmax output

Figure 1: (a) FLOPS across context length and model sizes. (b) Precision scaling in NVIDIA Tensor Cores. (d)
Impact of bit-precision and data rotation on perplexity. (d) MX format. (e) LLM inference with MX Tensor Core.

casting). For instance, the latest NVIDIA Ten-
sor Core (Nvidia, 2024) supports the microscal-
ing (MX) format, introduced by the Open Com-
pute Project (OCP) (Rouhani et al., 2023a), which
groups low-precision elements under a shared scale
to mitigate dynamic range limitations (Fig. 1(b),
(d)). As shown in Fig. 1(c), (e), MXFP4 achieves
full matrix quantization with minimal perplexity
degradation compared to INT4, without requiring
data rotation. This is due to its fine-grained quanti-
zation, which enhances value representation preci-
sion. However, MXFP4 still lags behind the 16-bit
baseline in perplexity and performs worse when
combined with data rotation, and the root causes of
this destructive interaction are mainly unexplored.

This work uncovers a key trade-off in the MX
format: while it effectively suppresses activation
outliers, it increases group-wise asymmetry. Group-
ing activation tensors into small micro-scaled units
mitigates outliers, similar to rotation methods,
but enables direct-cast inference. However, this
grouping amplifies data asymmetry, necessitating
an asymmetric numerical representation. To ad-
dress this, we propose AMXFP4, a microscal-
ing floating-point format designed for robust 4-
bit LLM inference, which effectively handles ac-
tivation outliers through micro-scaled asymmetric
data representation. By employing an FP8 shared
scale for both weights and activations, AMXFP4
achieves quantization error rates close to ideal
Lloyd-Max quantization. To validate its broad ap-
plicability, we evaluate AMXFP4 across multi-turn
conversation, long-context inference, and visual
question-answering (VQA) tasks on decoder-only
LLMs, vision-language models, and an encoder-

decoder model. Results show that AMXFP4 en-
ables calibration-free, direct-cast 4-bit inference,
outperforming MXFP4 and leading rotation-based
quantization methods. Additionally, AMXFP4 per-
forms better than the recently deployed commercial
MXFP4 format (NVFP4) (NVIDIA, 2024).

Our contributions can be summarized as follows:

• We examine the MXFP4 format, finding that
microscaling effectively reduces activation
outliers without calibration but introduces
asymmetry, necessitating asymmetric numeri-
cal representation.

• We propose AMXFP4, a novel format that
combines FP4 elements with shared asymmet-
ric FP8 scales, significantly suppressing quan-
tization error.

• We evaluate AMXFP4 across diverse applica-
tions, including multi-turn conversation, long-
context inference, and VQA, across multiple
model types, demonstrating consistently supe-
rior accuracy to MXFP4.

2 Background and Related Work

2.1 Bit-Precision Scaling for Accelerators
Reduced-precision formats are vital for enhanc-
ing scalability and computational efficiency in
deep learning accelerators, conserving area and
energy in direct proportion to bit-width reduc-
tion (Horowitz, 2014). This scaling enables higher
floating-point operations per second (FLOPS) with
lower power usage, thereby increasing accelerator
throughput. For instance, NVIDIA’s Tensor Cores
have progressed from FP16 in Volta (Nvidia, 2017)
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to FP8 in Hopper (Andersch et al., 2022) and FP4
in Blackwell (Nvidia, 2024), boosting computa-
tional speeds from 112 tera to 20 peta FLOPS, as
shown in Fig. 1(b). Similar advancements by other
computing platform companies in scaling preci-
sion from 16-bit to 4-bit are crucial for managing
the growing complexity of LLMs (AMD, 2024;
AzureAI, 2024).

Recently, the microscaling (MX) for-
mat (Rouhani et al., 2023a; Darvish Rouhani et al.,
2023; Rouhani et al., 2023b) has been developed
from Block Floating Point (BFP) (Drumond
et al., 2018; Darvish Rouhani et al., 2020) by
incorporating a shared scale across a block of
reduced-precision elements, thus mitigating
quantization error due to limited dynamic range.
While the original BFP format allows flexibility
in design parameters-exponent (E) and mantissa
(M ) for the element (Pi) and the shared scale (S),
and the group size (GS), MX prescribes specific
MX-compliant configurations (cf. Table 11):
MXFP8 (Pi:E4M3, S=E8, GS:32) and MXFP4
(Pi:E2M1, S=E8, GS:32), as shown in Fig. 1(d).

However, MXFP4’s robustness for LLM infer-
ence remains uncertain, with significant perfor-
mance degradation in 4-bit inference due to acti-
vation quantization (Rouhani et al., 2023b). More-
over, MXFP4 lacks validation on practical tasks
such as multi-turn chatbot interactions, raising con-
cerns about its real-world applicability. While
MXFP4 models generate coherent answers, they of-
ten yield unhelpful responses, consistent with find-
ings that quantization can impair conversational
quality (Lee et al., 2024) (e.g., Fig. 11). These re-
sults underscore the need for new data formats to
enable robust 4-bit inference.

2.2 Quantizing LLM’s Activation and Weight
Recent research highlights the difficulty quanti-
fying LLM activations due to outliers extending
the activation dynamic range, leading to increased
quantization error (Xiao et al., 2022; Ashkboos
et al., 2024). Prior studies propose rescaling
weights and activations to reshape their distribu-
tions for better quantization compatibility while
preserving mathematical equivalence (Xiao et al.,
2022; Shao et al., 2024; Lee et al., 2023). However,
such methods often experience accuracy degrada-
tion in 4-bit inference (Lin et al., 2024). Data
rotation strategies, including QuaRot (Ashkboos
et al., 2024) and SpinQuant (Liu et al., 2024b),
use orthogonal matrices to redistribute concen-

trated channel information (represented as R in
Fig. 8(a)). QuaRot applies a randomized Hadamard
matrix, while SpinQuant uses learned rotation ma-
trices. DuQuant further enhances this approach by
combining per-channel permutation and rotation,
achieving state-of-the-art accuracy in 4-bit infer-
ence (Lin et al., 2024).

However, these rotation-based methods exclude
quantization for the Softmax output, leaving matrix
multiplications in the self-attention calculation to
be computed in FP16. Since self-attention com-
putation scales quadratically with context length
during the prefill phase, the partial quantization
of rotation methods significantly reduces overall
computational efficiency in long-context inference.
Additionally, these techniques require extensive
calibration, such as GPTQ (Frantar et al., 2022) or
training rotation matrices, to improve model accu-
racy. However, calibration introduces the risk of
overfitting, as models may become overly tailored
to the calibration dataset, limiting their adaptability
across broader applications (Table 2). Further dis-
cussions on limitations of calibration-based meth-
ods are provided in the Appendix A.

These challenges highlight the need for a gener-
alizable quantization approach that minimizes cali-
bration dependence and applies uniformly across
computations. Although MXFP4, a previously
explored reduced-precision format, applies to all
matrix multiplication without calibration, it com-
promises model accuracy. This work analyzes
MXFP4’s strengths and limitations, and proposes
AMXFP4, a superior 4-bit format that enables
direct-casting with improved model accuracy.

3 Microscaling for Taming Outliers

We systematically analyze activation outliers across
various LLMs using representative statistical mea-
sures—kurtosis and mean—to understand the ef-
fects of microscaling (i.e., reducing a quantization
group to 32 elements). Kurtosis, the fourth stan-
dardized moment, is commonly used to assess the
prevalence of outliers (Liu et al., 2024b), while the
mean reflects asymmetry within each group. We
use box plots of kurtosis and mean to examine the
value distribution within groups, which are subject
to quantization using a shared scale.

3.1 Analysis of LLM’s Activation Outliers

Fig. 2(a) and (b) present the kurtosis box plots
for the OPT (Zhang et al., 2022) and LLaMA-like
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Figure 2: Data characteristics based on (a-d) types of
LLM, layer and (e-f) data rotation across group sizes.

models (LLaMA, Qwen, Mistral (Touvron et al.,
2023; AI@Meta, 2024; Bai et al., 2023; Jiang et al.,
2023)). In cases of row-wise grouping (typically
GS ≫ 1024), the OPT models exhibit high kurto-
sis in FFN1 activations, indicating many outliers
that challenge quantization. Additionally, outlier
prevalence increases with model size, aligning with
previous findings that larger models are more af-
fected by quantization (Dettmers et al., 2022). Con-
versely, LLaMA-like models use the Gated Linear
Unit (GLU) activation function, involving extra
matrix multiplication; thus, data passing through
FFN1 undergoes element-wise multiplication be-
fore FFN2, further amplifying outliers—a phe-
nomenon observed in recent studies (Yang et al.,
2024; Fishman et al., 2024). Notably, outlier dom-
inance is reduced as group size decreases in both
model types. At GS=32, kurtosis nearly disap-
pears, suggesting the activation dynamic range
within groups becomes more suitable for quantiza-
tion. This observation helps explain the preliminary
success of MXFP8 in direct-casting for selected
LLMs (Rouhani et al., 2023b), but it does not ex-
plain the disappointing performance of MXFP4.

To assess the trade-offs in the MX format’s han-
dling of outliers, we examine the box plots of
group means, which reflect distribution asymmetry.
Fig. 2(c) and (d) show the mean values for FFN1
and FFN2 input activations as group size decreases
from an entire row to 32. Notably, with large group
sizes, group means center around zero, but as group
size decreases, the means scatter significantly. This

scattering indicates that the symmetric data repre-
sentation typically used in the MX format is sub-
optimal for microscaled activation quantization. In
other words, microscaling addresses activation out-
liers at the cost of data symmetry. Thus, simply
reducing group size (as in the MX format) may not
adequately minimize quantization error; instead, an
asymmetric data representation becomes essential.

3.2 Data Rotation vs. Microscaling
We then examine how data rotation reduces outliers
alongside microscaling and assess its effectiveness
as group size decreases. Fig. 2(e) shows the kur-
tosis before and after applying data rotation using
a random Hadamard transform (Ashkboos et al.,
2024) across decreasing group sizes. When the
group size spans an entire row, activation rotation
substantially lowers kurtosis, demonstrating its ef-
ficacy in 4-bit activation quantization. However,
as group size decreases, the original activation’s
kurtosis also drops, reaching levels comparable to
those achieved with rotation. Thus, the benefit of
data rotation in outlier reduction diminishes with
smaller group sizes.

On the other hand, Fig. 2(f) shows the group
means of the activation before and after apply-
ing data rotation. As with the original activation,
the group means scatter more as group sizes de-
crease, but this scattering is even more pronounced
with rotated activations. This indicates that rota-
tion introduces an additional asymmetry in group
distributions, which complicates quantization with
MXFP4’s symmetric representation (cf. Table 1).
In other words, data rotation and microscaling lack
synergy, as both focus on outlier suppression with-
out addressing asymmetry. Thus, a microscaling
data format that effectively handles group distribu-
tion asymmetry presents a compelling alternative.

3.3 Multi-modal LLM’s Activation Outlier
To further understand activation outliers under mi-
croscaling in multi-modal LLMs, we examine the
popular vision-language model LLaVA (Liu et al.,
2023a). LLaVA combines a visual encoder and a
language model backbone: an image is processed
by a vision transformer-based encoder (Dosovit-
skiy et al., 2021) to generate vision tokens, which
are then input to the language model along with
language tokens from the user prompt.

As shown in Fig. 3(a), both vision and language
tokens exhibit outliers within the same hidden di-
mension of the activation, though their distribu-
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tions differ. Language tokens typically concen-
trate around larger magnitudes, while only some
vision tokens reach high magnitudes, a trend ob-
served consistently across layers. In Fig. 3(c), these
differences result in varying kurtosis distributions
for row-wise group quantization: language tokens
have clustered outliers, while vision tokens show a
sparser outlier distribution. However, this distinc-
tion fades as group size decreases, illustrating the
effectiveness of microscaling in suppressing out-
liers. Similar to LLMs, LLaVA’s group means scat-
ter as group size decreases, indicating increased
asymmetry in exchange for outlier suppression.
This suggests microscaling could better handle di-
verse outlier patterns from vision and language
tokens if designed to support asymmetric data rep-
resentation.

4 Asymmetric Microscaling Format

The findings from Sec. 3 motivate the development
of a new microscaling format that inherently sup-
ports asymmetric data representation. In this sec-
tion, we explore the design space of the microscal-
ing data format (Pi and S) alongside considerations
for asymmetric quantization schemes.

4.1 Selecting Element-Wise Data Format

We first examine the design space of the element-
wise data format Pi. To evaluate the benefits of
asymmetric formats, we compare the mean-square
error (MSE) on activation samples from LLaMA2-
7B’s QKV-Proj at layer 5 across four symmetric
formats (INT4, FP4, NF4 (Dettmers et al., 2023),
SF4 (Dotzel et al., 2024)) with two asymmetric
formats:
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Figure 4: Cluster-wise Lloyd-Max quantization and
quantization error across data formats (LLaMA2-7B
layer 5 QKV-Proj input activation). Detailed cluster-
wise error statistics and results from other layers are
provided in Table 19 and 20.

• Asymmetric INT (AsymINT): INT quantiza-
tion applies asymmetry through a zero-point,
shifting the data range from zero-centered to
span between the minimum and maximum
values (Dettmers et al., 2022).

• Asymmetric FP (AsymFP): FP quantization
introduces asymmetry by applying separate
scales to positive and negative values due
to FP’s inherently zero-centered representa-
tion (Zhang et al., 2024b).

We compare the MSE of each format on acti-
vation samples from LLaMA2-7B’s QKV-Proj at
layer 5. Fig. 4(a) characterizes these activations
by group mean (x-axis) and kurtosis (y-axis). As
a reference, we cluster groups based on mean and
kurtosis similarity, then apply the Lloyd-Max algo-
rithm (Lloyd, 1982) for near-optimal quantization
(100 iterations, with 16 clusters, as further cluster-
ing yields no additional MSE reduction).

Fig. 4(b) presents the MSE of various element-
wise data formats. Compared to Lloyd-Max quanti-
zation (used as a reference), all symmetric data for-
mats show a significant MSE increase, with INT4
experiencing the most notable degradation. In
contrast, AsymINT4 and AsymFP4 achieve lower
MSE, with AsymFP showing MSE closest to Lloyd-
Max (a consistent trend across models and layers).
This finding supports the selection of AsymFP4 as
the element-wise format, further validated empiri-
cally in Table 1.

4.2 Selecting Shared-Scale with Asymmetry

With AsymFP4 selected as the preferred element-
wise data representation, its original design for
weight-only quantization (Zhang et al., 2024b)
requires high-precision dequantization before
multiplication with activations. To integrate
AsymFP into reduced-precision GEMM, we re-
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define AsymFP such that an exponent-bit-shifted
mantissa represents a value, which is then scaled
by a shared factor with sign-dependent polarity:

xq =

{
(−1)s · 2E+eb ·M · (2sebp · M̂p) if s = 0,

(−1)s · 2E+eb ·M · (2sebn · M̂n) if s = 1,

(1)

where s, E, eb, and M represent an element’s sign,
exponent, exponent bias, and mantissa, respectively.
As described in Fig. 5(a), the terms 2sebp · M̂p

and 2sebn · M̂n represents the positive and negative
scales shared within a quantization group.

PoT. When M̂p = M̂n = 1, the dynamic range
for positive and negative values can be adjusted by
modifying the exponent. However, we observe that
MXFP4’s PoT frequently triggers max clamping
in small group sizes, causing significant perfor-
mance degradation. To address this, we propose
an advanced PoT that mitigates max clamping by
modifying the PoT decision rule (see Appendix B.2
for details). As shown in Fig. 5(a), the proposed
PoT shared scale reduces LLaMA2 perplexity by
approximately 4.

FP8. Although proposed PoT scale prevents
clamping errors, its limited resolution still causes
accuracy loss. To mitigate this issue, we propose
using FP8 scales to leverage additional mantissa
bits for finer rounding. However, as shown in
Fig. 5(a), a 4-bit exponent results in a narrower
dynamic range, which in turn increases perplexity
compared to PoT. Therefore, we select FP8 with
a 5-bit exponent (E5M2) as the shared scale, as
these scales largely mitigate accuracy degradation
caused by the limited resolution and narrower dy-
namic range (see Table 18 for ablation studies).

4.3 Asymmetric Microscaling Floating-Point
Based on our exploration of the MX design space,
we propose AMXFP4 (asymmetric microscaling 4-
bit floating-point), which utilizes asymmetric FP8

shared scales. During multiplication, the shared
scale is selected based on the signs of the two num-
bers. As shown in Fig. 5(b), this overhead remains
minimal because the mantissa of the shared scale
is only 2 bits, and the scale is computed once and
shared within a group. To evaluate AMXFP4 on
real hardware, we implement an AMXFP4 MAC
unit via hardware synthesis by modifying the exist-
ing MX MAC unit (Darvish Rouhani et al., 2023).
Our evaluation shows that AMXFP4 incurs only
about a 10% overhead compared to MXFP4 (details
are in Appendix 5.5).

5 Experiments

In this section, we compare AMXFP4 with other
formats and rotation-based methods. Unless oth-
erwise specified, all experiments use the proposed
FP8 shared scale across all formats (including
INT4, MXFP4, and AMXFP4) for a fair compar-
ison and quantize input operands for all decoder-
layer matrix multiplications. Further details on
quantization settings and benchmark descriptions
are provided in Appendix C.

5.1 Impact of Microscaling and Data Rotation

Microscaling vs. Data Rotation. We empirically
validate the findings discussed in Sec. 3.2, con-
firming that data rotation effectively mitigates acti-
vation outliers in configurations with large group
sizes but has limited compatibility with microscal-
ing. Table 1 presents the impact of data rotation
(randomized Hadamard transform) on Wikitext-
2 (Merity et al., 2016) perplexity, with group sizes
ranging from an entire row to 32. When the group
size spans an entire row, data rotation provides the
best solution for MXFP4, outperforming asymmet-
ric data representations. However, as the group size
decreases, data rotation increases perplexity across
all models with MXFP4, whereas AMXFP4 con-
sistently reduces perplexity, achieving a 0.6-point
reduction in LLaMA3-8B. This result further sup-
ports that outlier handling becomes less effective
as group size decreases.

INT4 vs. FP4. We extend our analysis to mi-
croscaling INT (MXINT) to assess whether the
adverse effects of data rotation stem from FP’s non-
uniform data representation. Similar to MXFP4,
MXINT4 benefits from data rotation when the
group size spans an entire row, significantly re-
ducing perplexity compared to asymmetric repre-
sentation (AMXINT4). However, at a group size of
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LLaMAGroup
Size

Data
Rotation

Data
Format 2-7B 2-13B 3-8B

FP16 Baseline 5.47 4.88 6.14
MXINT4 NaN 2988.82 2603.42

AMXINT4 2045.70 364.96 1800.44
MXFP4 475.62 99.33 85.07

-

AMXFP4 44.75 33.79 40.33
MXINT4 47.55 35.32 100.95

AMXINT4 16.60 13.94 35.90
MXFP4 11.88 10.81 13.27

Row

✓

AMXFP4 12.05 11.54 12.13
MXINT4 7.01 6.11 9.01

AMXINT4 6.33 5.55 9.62
MXFP4 6.49 5.69 8.35

-

AMXFP4 6.22 5.47 7.72
MXINT4 7.90 6.18 9.96

AMXINT4 6.75 5.75 8.25
MXFP4 10.09 6.89 9.48

MX (32)

✓

AMXFP4 8.36 6.35 9.20

Table 1: Wikitext-2 perplexity results by group size with
and without data rotation applied (lower is better).

LLaMA
Eval

Dataset
QuaRot

QuaRot
+ GPTQ

SpinQuant AMXFP4

Calib Dataset - PM EE PM EE -
PM ↓ 7.7 5.4 5.5 5.7 5.9 5.3

2-7B
EE ↓ 7.9 6.3 6.2 6.8 6.3 6.1
PM ↓ 9.4 7.4 7.6 7.5 7.7 6.8

3-8B
EE ↓ 12.9 10.7 10.2 10.7 10.0 9.4

Calibration Dataset - PQ WG PQ WG -
PQ ↑ 72.0 77.4 76.2 76.4 73.1 77.8

2-7B
WG ↑ 60.1 65.3 65.9 66.4 64.0 67.5

PM: PubMed, EE: Enron Emails, PQ: PIQA, WG: WinoGrande

Table 2: Impact of overfitting: Calibration on different
data distribution on LLaMA models.

32, data rotation tends to increase perplexity. No-
tably, at group size 32, AMXINT4 achieves lower
perplexity than MXFP4, but AMXFP4 achieves
the lowest perplexity overall. This result demon-
strates that our element format selection in Sec. 4.1
effectively enhances LLM accuracy.

Robustness to Calibration Set Distributions.
Table 2 examines the sensitivity of QuaRot and
SpinQuant to varying calibration set distributions.
Perplexity is measured on PubMed (of the U.S.
National Library of Medicine, 2023) and Enron
Emails (Klimt and Yang, 2004), while accuracy
is measured on PIQA (Bisk et al., 2019) and
WinoGrande (Sakaguchi et al., 2019), using both
matched and mismatched calibration/evaluation
sets. QuaRot with GPTQ and SpinQuant substan-
tially outperform the random Hadamard rotation
but tend to show better accuracy on data observed
during calibration. One exception is SpinQuant,
which attains strong accuracy on both PIQA and
WinoGrande when calibrated on PIQA, although
results vary by about 2–3% solely due to differ-
ent calibration datasets. However, AMXFP4 re-

●16-bit Baseline ●MXFP4-PoT ●MXFP4 ●AMXFP4
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Figure 6: Normalized single score of MT-Bench
(LLaMA2-Chat-7B). Absolute accuracies are in Ta-
ble 16 in Appendix.

mains unaffected by the calibration set and no-
tably improves results and surpasses conventional
calibration-based methods.

5.2 Enhancing MX Performance

In this section, we evaluate AMXFP4 against
MXFP4 in practical applications, including chat-
bots, visual tasks, and long-document question an-
swering. To assess our improvements over the MX-
compliant format, we also include MXFP4 with
PoT shared scale (MXFP4-PoT) from Sec 4.2 as a
baseline for comparison. We find that the superior
performance of AMXFP4 over MXFP4 is consis-
tently observed across various architectures and
scales, including language modeling tasks, encoder-
decoder models, and 70B-scale LLMs. These ex-
tended results are provided in Appendix D.1.

Multi-Turn Chatbot Tasks. Quantization ad-
versely affects the conversational capabilities of
chatbots (Lee et al., 2024); therefore, we conduct
an MT-Bench evaluation (Zheng et al., 2023) on
LLaMA2-Chat-7B (Touvron et al., 2023). Fig. 6
presents the normalized scores with the 16-bit base-
line score set to 1. While MXFP4 inference shows
severe performance degradation across all cate-
gories, AMXFP4 demonstrates recovery of conver-
sational abilities close to the baseline. Fig. 11 and
13 provide detailed examples, showing that while
MXFP4 generates unhelpful sentences, AMXFP4
produces responses that are genuinely helpful.

Visual Tasks. Table 3 presents results on four
multi-modal benchmarks (Zhang et al., 2024a) us-
ing LLaVA1.6-7B (Liu et al., 2023a). AMXFP4 im-
proves MXFP4 scores by approximately 3.3 points
on benchmarks such as ChartQA (Masry et al.,

14999



Data Format VQA-T DocVQA OCRBench ChartQA
16-bit Baseline 64.84 74.46 52.40 54.72
MXFP4-PoT 50.05 52.85 33.70 36.76

MXFP4 57.88 64.26 43.40 46.20
AMXFP4 59.13 66.98 43.90 49.48

Table 3: LLaVA1.6-7B inference results on multi-modal
visual question-answering benchmarks.

Question: What basketball player elected to the National Collegiate 
Basketball Hall of Fame released music through Rendezvous Music?

Context (length: 7104): Passage 1: Wayman Tisdale ... was an 
American professional basketball player ... he was elected to the 
National Collegiate Basketball Hall of Fame in 2009 ...
Passage 7: Rendezvous Music (formerly known as Rendezvous 
Entertainment) ... new music by ... Wayman Tisdale.

16-bit Baseline: Wayman Tisdale

MXFP4-PoT: The basketball player elected to the National Collegiate 
Basketball Hall of Fame released music through Rendezvous.

AMXFP4: Wayman Tisdale

Figure 7: LongBench-E results on LLaMA2-Chat-7B.

2022), highlighting the significant advantages of
asymmetric data representation in VLMs (example
is shown in Fig. 12).

Long-Context Tasks. We conduct the
LongBench-E (Bai et al., 2024) evaluation to as-
sess the effectiveness of AMXFP4 in long-context
scenarios. As shown in Fig. 7, while MXFP4-
PoT’s generation quality significantly degrades on
questions with lengthy contexts, AMXFP4 pro-
duces answers identical to the baseline. Detailed
scores across 13 benchmarks, categorized by con-
text length, are presented in Table 17. The re-
sults indicate that AMXFP4 outperforms MXFP4,
achieving over a 2% accuracy improvement for
context lengths exceeding 8K.

5.3 Comparison with Commercial MXFP4

Recently, NVFP4 (NVIDIA, 2024) adopts a
smaller group size of 16 and employs a double-
scaling strategy, which combines a tensor-wise
FP32 shared scale with a group-wise FP8 (E4M3)
shared scale. We evaluate whether our proposed
asymmetric shared scale enhances the recently de-
plyed commercial MXFP4 by evaluating ANVFP4
(Asymmetric NVFP4) on Common-Sense Ques-
tion Answering (CSQA) (Talmor et al., 2019) and
MMLU (Hendrycks et al., 2020) benchmarks. As
shown in Table 4, when GS=32, AMXFP4 and
ANVFP4 surpass NVFP4 in accuracy, indicating
that the asymmetric data representation offers a
greater improvement than double scaling strategy.

MMLU Accuracy (%) ↑ CSQA Accuracy (%) ↑
GS Data Format

2-7B 2-13B 3-8B 2-7B 2-13B 3-8B
16-bit Baseline 41.3 50.5 62.0 64.9 67.3 69.2

MXFP4-PoT 29.2 37.9 43.1 59.4 62.2 58.6
MXFP4 33.6 42.8 49.5 61.6 65.1 62.0

AMXFP4 36.3 45.0 52.8 62.0 64.9 62.2
NVFP4 32.9 44.5 51.9 61.4 65.0 61.9

32

ANVFP4 34.8 45.8 54.0 62.2 64.7 62.9
NVFP4 34.0 45.9 54.6 62.6 65.3 63.4

16
ANVFP4 37.3 47.7 57.1 62.2 66.2 64.9

Table 4: MMLU and CSQA results on LLaMA models.

Group Size Row 32
Rotation MXFP4 AMXFP4 MXFP4 AMXFP4

- 97.60 28.99 5.93 5.85
Random 10.78 11.76 9.23 8.02

SpinQuant 6.37 6.33 6.10 6.04

Table 5: Perplexity on Wikitext-2 under different rota-
tion types and group sizes (LLaMA2-7B).

Notably, in the NVFP4 setting with GS=16, AN-
VFP4 increases MMLU accuracy by about 3%,
which aligns with our observation that asymmetry
becomes more beneficial at smaller group sizes.

5.4 Ablation Studies
Extension to SpinQuant. To validate the general-
ity of our findings in Sec. 5.1, we extend the rota-
tion experiments to SpinQuant (Liu et al., 2024b).
As shown in Table 5, SpinQuant achieves lower
perplexity at row-level granularity but fails to out-
perform the no-rotation baseline at group size 32,
consistent with our earlier observations. Moreover,
it exhibits overfitting to the calibration set (Table 2),
whereas AMXFP4 remains effective without cali-
bration. These results confirm that the destructive
interaction between rotation and microscaling per-
sists even with learned rotation strategies.

Quantization-Aware Training (QAT). We in-
vestigate whether QAT can mitigate the perplexity
gap between MXFP4 and AMXFP4. As shown
in Table 6, under direct-cast inference without cal-
ibration, MXFP4 incurs a perplexity increase of
1.6 compared to the 16-bit baseline on LLaMA3-
8B, while AMXFP4 shows a smaller degradation of
only 0.8. Applying QAT significantly improves per-
formance for both formats, with AMXFP4 achiev-
ing perplexity nearly on par with the baseline,
and consistently outperforming MXFP4 even af-
ter training. However, it is worth noting that QAT
introduces substantial computational overhead, re-
quiring approximately 150GB of GPU memory and
5 hours of fine-tuning time, along with additional
cost for hyperparameter tuning. Full training con-
figurations are detailed in Appendix C.
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Method Data Format PPL ↓ Memory Time
Direct-Cast 16-bit Baseline 6.14 - -
Direct-Cast MXFP4-PoT 7.70 - -
Direct-Cast AMXFP4 6.97 - -

QAT MXFP4-PoT 6.68 148GB 4h 30m
QAT AMXFP4 6.33 148GB 4h 30m

Table 6: QAT results on LLaMA3-8B using the
Wikitext-2 dataset. “Memory” and “Time” refer to the
GPU memory usage and fine-tuning time required for
QAT, measured on two A100-80GB GPUs.

Method Format LLaMA2-7B LLaMA2-13B
16-bit Baseline 5.47 4.88

QuaRot-RTN 1032.30 1105.95
QuaRot-GPTQ

INT
38.47 37.42

AMXFP3 MX 8.40 6.53

Table 7: Wikitext-2 perplexity results on 3-bit inference.

More Aggressive Quantization. We compare
QuaRot and AMXFP under a 3-bit setting (W3A3)
in Table 7. While QuaRot with GPTQ suffers a se-
vere degradation exceeding 30 in W3A3, AMXFP3
achieves a perplexity degradation of only 1.7 in
direct-cast inference, highlighting AMXFP’s po-
tential in lower-precision settings.

Attention-Only Quantization. AMXFP4 is
designed for full-model quantization using uni-
fied low-precision formats, but we also conduct
a scope-aligned experiment by restricting its ap-
plication to attention components only (Query,
Key, Self-attention map and Value) to match the
selective quantization setting adopted in SageAt-
tention (Zhang et al., 2025c). As shown in Ta-
ble 8, AMXFP4 achieves comparable accuracy to
SageAttention despite using more aggressive 4-bit
quantization with unified FP8 scaling, and exhibits
slightly improved performance when the shared
scale precision is increased to FP16.

Recent attention-only quantization methods
have extended this line of work to lower-bit for-
mats including INT4 (Zhang et al., 2025a) and
NVFP4 (Zhang et al., 2025b), in response to hard-
ware precision scaling trends. Our results suggest
that even in such selective quantization settings,
explicit handling of asymmetry—as enabled by
AMXFP4—can offer meaningful advantages.

5.5 Hardware Evaluation for AMXFP4

To evaluate the hardware efficiency of AMXFP4,
we follow and extend the analysis methodology
of (Darvish Rouhani et al., 2023), focusing on area
and memory cost. We implement a fully custom
MX-compatible MAC unit and its AMX exten-

Method
Shared
Scale

Q/K
Format

SA/V
Format

Wiki2 ↓
/ MMLU ↑

SageAttention FP32 INT8 FP16 5.47 / 38.38
MXFP4 FP8 MXFP4 MXFP4 5.91 / 37.13

AMXFP4 FP8 AMXFP4 AMXFP4 5.81 / 38.26
AMXFP4 FP16 AMXFP4 AMXFP4 5.69 / 39.53

Table 8: Evaluation of attention-only quantization using
AMXFP4 compared to SageAttention (LLaMA2-7B).

Data Format Area-Memory Power-Area
Power-Area

-Memory
FP16 1.00× 1.00× 1.00×

MXFP4-PoT 10.44× 7.62× 28.67×
MXFP4 9.23× 5.65× 21.41×

AMXFP4 8.32× 4.58× 16.50×

Table 9: Hardware comparison between MXFP4 and
AMXFP4.

sion, and synthesize both using Synopsys Design
Compiler under a 4nm CMOS process (0.675V,
1.1GHz). The group-wise representation of MX
decouples dot products from scaling operations,
enabling efficient MAC design with minimal inter-
group overhead (Fig. 10). As shown in Table 9, our
MX-compatible MAC reduces area and memory us-
age by over 8×, consistent with recent accelerator
designs adopting MXFP4 (Nvidia, 2024; AzureAI,
2024). AMXFP4 introduces sign-aware mantissa
scaling for asymmetric group scales, yet adds only
10% overhead due to the narrow mantissa width
and scale reuse within groups.

6 Conclusion

To meet the computational demands of large lan-
guage models (LLMs) with extended contexts, we
introduce Asymmetric Microscaling 4-bit Floating-
Point (AMXFP4), which uses asymmetric shared
scales to handle outliers and quantization asymme-
try. AMXFP4 provides direct 4-bit inference with
high accuracy, outperforming MXFP4 and other
techniques for efficient, calibration-free inference.
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Limitations

While AMXFP4 shows strong promise across
various LLM tasks, our current hardware anal-
ysis remains focused on a MAC-level evalua-
tion. This choice reflects a balanced starting point
for proof-of-concept experiments and aligns with
many common practices in precision-scaling re-
search (Darvish Rouhani et al., 2023). However,
as seen with recent system-level benchmarks (e.g.,
NVIDIA’s Blackwell), there is significant potential
to extend these findings to a full system-level eval-
uation. We plan to extend our evaluation accord-
ingly, examining factors such as overall throughput,
energy efficiency, and system-level trade-offs.

Additionally, our experiments have employed
greedy decoding to ensure fair comparisons.
However, recent deployment scenarios often
rely on more advanced strategies—such as best-
of-N sampling or self-refinement in reasoning
LLMs—which require increased computational re-
sources at inference time. Investigating AMXFP4’s
robustness and efficiency under these test-time scal-
ing conditions is a natural next step and could fur-
ther underscore the method’s potential benefits in
real-world applications.
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Figure 8: (a) Illustration of where reduced-precision ma-
trix multiplication and data transformation are applied
within a Transformer decoder layer. QuaRot and Spin-
Quant do not quantize the Query and Softmax outputs
(red dotted box). (b) FLOPS breakdown of LLaMA3-
8B in the prefill stage based on context length.

PPL↓ Accuracy↑
Rotation

Calibset-
SeqLen-Samples

Calib. Time
(A100) Wiki ARC-C WG

16-bit Baseline 5.47 46.33 69.30
QuaRot - - 8.38 36.26 60.06

Wiki-2048-128 6.08 41.64 66.22
Wiki-1024-128 6.06 42.32 65.59
Wiki-2048-64 6.11 41.64 65.51
Wiki-2048-32 6.11 41.55 63.85
PTB-2048-128 6.16 42.15 65.43

QuaRot+
GPTQ

PTB-1024-128

∼20 min

6.12 41.72 66.54
Wiki-2048-100 6.25 38.65 64.72
Wiki-1024-100 6.32 40.87 63.77
PTB-2048-100 7.11 38.74 60.30

SpinQuant

PTB-1024-100

∼2 hours

7.14 37.71 63.54
AMXFP4 (direct-cast, no calibration) 5.93 42.83 67.32

Table 10: Calibration overhead on LLaMA2-7B.

A Comparison with Rotation Techniques

Rotation-based methods, such as QuaRot and Spin-
Quant, typically avoid quantizing query and soft-
max output, and require on additional calibration,
which introduces the following drawbacks:

High-Precision Query and Softmax Output.
Fig. 8(a) illustrates how rotation-based methods ap-
ply rotation and quantization in reduced-precision
LLM inference. While these techniques make ac-
tivations more quantization-friendly, they do not
quantize the softmax output. As shown in Fig. 8(b),
as context length increases, the dominant FLOPS
in the prefill stage come from query-key multipli-
cation and attention operations, including softmax
output (self-attention map; SA) and value multipli-
cation. Processing these operations in high preci-
sion undermines the benefits of reduced-precision
inference, limiting overall efficiency.

Calibration Overhead. Table 10 displays the

Name
Element Data

Type
Element Bits Group Size Shared Scale

MXFP8
FP8 (E5M2)

8

32 8-bit PoT

FP8 (E4M3)

MXFP6
FP6 (E3M2)

6
FP6 (E2M3)

MXFP4 FP4 (E2M1) 4
MXINT8 INT8 8

Table 11: MX-compliant format. Configurations are
adapted from (Rouhani et al., 2023a).

effects of varying calibration settings (dataset,
sequence length, and number of samples) on
Wikitext-2 perplexity, ARC-Challenge (Clark et al.,
2018) and WinoGrande accuracy for QuaRot and
SpinQuant. When using QuaRot alone, CSQA ac-
curacy drops by 10%. When combined QuaRot
with GPTQ, results depend on calibration settings;
using only 32 calibration samples leads to a 2.4%
reduction in WinoGrande accuracy compared to
using 128 samples. SpinQuant, which trains a rota-
tion matrix, achieves higher accuracy than QuaRot
alone but increases calibration time by approxi-
mately 6× and exhibits greater sensitivity to the
calibration set. When calibrated with the PTB (Mar-
cus et al., 1993) dataset instead of Wikitext-2, per-
plexity on Wikitext-2 rises by around 0.9. Our
proposed AMXFP4 shows minimal performance
degradation compared to the baseline and remains
unaffected by calibration settings.

B MX Format Details and Emulation
Framework

B.1 MX Configuration

Algorithm 1 Quantization procedure in MX format.
Algorithm is adapted from (Rouhani et al., 2023b).
1: Quantize vector elements ({Vi}ki=1) into MX format
2: shared_exp← ⌊log2(maxi(|Vi|))⌋ − emaxelem

3: X ← 2shared_exp

4: for i = 1 to k do
5: Pi = quantize(Vi/X), clamping normal numbers
6: end for
7: return X, {Pi}ki=1

As the MX format is our primary focus for im-
provement, we aim to provide detailed informa-
tion on it. We follow the MX format configura-
tion and quantization procedure as (Rouhani et al.,
2023a,b). The MX format offers a variety of bit-
configurations for elements, ranging from 8 bits to
4 bits, while specifying only an 8-bit PoT for the
shared scale. The process to determine this 8-bit
PoT follows an Algorithm 1. As described in the
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entire quantization procedure, MX considers the
maximum data value to determine the shared scale,
performing a floor operation after extracting the
exponent of the element’s maximum value with
log2.

B.2 Determining PoT Shared Scale: Floor vs.
Round

As illustrated in Fig. 9(a), an undesirable perfor-
mance degradation occurs in PoT scales as group
size decreases. To analyze this degradation, we de-
compose the output error into maximum clamping
error and rounding error. As shown in Fig. 9(b),
with a group size of 2, the rounding error reduces
significantly, while the maximum clamping error
increases sharply, resulting in a net error rise. This
issue is attributed to the floor operation on the
exponent in MX, which introduces clamping er-
ror. To overcome maximum clamping errors while
maintaining the hardware efficiency of PoT shared
scales, we replace flooring with rounding. This ex-
ponent rounding approach significantly lowers total
error, enhancing performance, as demonstrated in
Fig. 9(a) and (b).

B.3 Code Snippet of Our Framework

As shown in the below example, our proposed
AMXFP4 applies different shared scales to pos-
itive and negative numbers, enabling more refined
value representation compared to MXFP4. Addi-
tionally, the PoT shared scale significantly clamps
the largest value in the input, 31, to 24, while the
FP8 shared scale, using the same number of bits,
more precisely quantizes 31 to 30.

class MXQuantizer(object):

def __init__(self, elem_format ,

group_size , scale_mode):

self.elem_format = elem_format #

Element Format

self.group_size = group_size # group

S i z e

self.scale_mode = scale_mode #

Shared S c a l e Type

self.mx_specs = MxSpecs(

a_elem_format=self.elem_format ,

group_size=self.group_size ,

custom_cuda=True,

scale_mode=scale_mode ,

)

def quantize(self, x):

qx = quantize_mx_op(

x,

self.mx_specs ,

elem_format=self.elem_format ,

axes=[−1],
)

return qx

# Example : A s y m m e t r i c a l l y d i s t r i b u t e d t e n s o r

wi th a s i n g l e row

x = torch.linspace(−4.9, 31, 1024)

# MXFP4

mx_fp4 = MXQuantizer(elem_format= ' fp4_e2m1 ' ,
group_size=−1, scale_mode=0)

qx_mx_fp4 = mx_fp4.quantize(x)

# AMXFP4 ( Shared S c a l e : PoT )

mx_fp4_asym =

MXQuantizer(elem_format= ' fp4_e2m1_asym ' ,
group_size=−1, scale_mode=0)

qx_mx_fp4_asym = mx_fp4_asym.quantize(x)

# AMXFP4 ( Shared S c a l e : FP8 )

mx_fp4_asym_fp8scale =

MXQuantizer(elem_format= ' fp4_e2m1_asym ' ,
group_size=−1, scale_mode=152)

qx_mx_fp4_asym_fp8scale =
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mx_fp4_asym_fp8scale.quantize(x)

# Q u a n t i z e d t e n s o r

print(qx_mx_fp4.unique()) # MXFP4

>> tensor([−4., −2., 0., 2., 4., 6.,

8., 12., 16., 24.], device= ' cuda:0 ')
print(qx_mx_fp4_asym.unique()) # AMXFP4

( Shared S c a l e : PoT )

>> tensor([−4.0000, −3.0000, −2.0000,
−1.5000, −1.0000, −0.5000, 0.0000,

2.0000,

4.0000, 6.0000, 8.0000, 12.0000,

16.0000, 24.0000],

device= ' cuda:0 ')
print(qx_mx_fp4_asym_fp8scale.unique()) #

AMXFP4 ( Shared S c a l e : FP8 )

>> tensor([−5.2500, −3.5000, −2.6250,
−1.7500, −1.3125, −0.8750, −0.4375,
0.0000,

2.5000, 5.0000, 7.5000, 10.0000,

15.0000, 20.0000, 30.0000],

device= ' cuda:0 ')

C Experimental Details

Quantization Settings. Our experiments is con-
ducted by modifying the PyTorch and CUDA code
within the MX Emulation library (Rouhani et al.,
2023b). We quantize all weights and activations in
Transformer decoder layers, including Query, Key,
Self-attention map, and Value as a default.

Models. The models used in the experiments in-
clude OPT (Zhang et al., 2022), LLaMA (Touvron
et al., 2023), (AI@Meta, 2024), Qwen (Bai et al.,
2023), and Mistral (Jiang et al., 2023), LLaMA2-
Chat (Touvron et al., 2023), BART (Lewis et al.,
2019), and LLaVA (Liu et al., 2023a) (which back-
bone is Vicuna-7B (Chiang et al., 2023)).

Robustness Measurment Settings in Table 2.
Following the calibration robustness measurement
method introduced in AWQ (Lin et al., 2023), we
select two subsets from the Pile dataset (Gao et al.,
2020): PubMed Abstracts (of the U.S. National Li-
brary of Medicine, 2023) and Enron Emails (Klimt
and Yang, 2004). The calibration and evaluation
sets are distinct, with no overlap; 128 samples with
a sequence length of 2048 are used for calibration,
and 200 samples are reserved for perplexity evalua-
tion. Additionally, we configure the calibration set
with questions and answers from the PIQA (Bisk
et al., 2019) and WinoGrande (Sakaguchi et al.,
2019) datasets to analyze calibration effects in

question-answering tasks. To determine whether
our improved MX format can effectively replace ex-
isting techniques for W4A4 inference, we align the
experimental settings, applying reduced-precision
activations consistent with prior studies (excluding
quantization for Query and Softmax output). We re-
produce the performance of QuaRot and SpinQuant
following their official repositories, with modifica-
tions to calibration and evaluation datasets.

MT-Bench. MT-Bench assigns scores ranging
from 1 to 10, given by GPT-4 (OpenAI, 2023), to
responses generated from an initial question and a
subsequent follow-up question across 80 multi-turn
conversations.

Visual Tasks. For evaluating VLMs, we uti-
lize lmms-eval (Zhang et al., 2024a), includ-
ing TextVQA (VQA-T) (Singh et al., 2019),
DocVQA (Mathew et al., 2021), OCRBench (Liu
et al., 2024a), and ChartQA (Masry et al., 2022).

Long-Context Benchmarks. To measure the
effectiveness of AMXFP4 while long-context
is given, we utilize LongBench-E (Bai et al.,
2024) on LLaMA2-Chat-7B. LongBench-E in-
cludes 13 tasks: Qasper (Dasigi et al., 2021), Mul-
tiFieldQA (Bai et al., 2024), HotPotQA (Yang
et al., 2018), MultihopQA (Ho et al., 2020), Gov-
Report (Huang et al., 2021), MultiNews (Bai
et al., 2024), TREC (Li and Roth, 2002), Trivi-
aQA (Joshi et al., 2017), SAMSum (Gliwa et al.,
2019), PassageCount (Bai et al., 2024), PassageRe-
trieval (Bai et al., 2024), LCC (Guo et al., 2023),
and RepoBench-P (Liu et al., 2023b).

Knowledge Evaluation Benchmarks (MMLU
and CSQA). We evaluate our method into com-
monsence QA (CSQA) (PIQA (Bisk et al., 2020),
WinoGrande (Sakaguchi et al., 2019), ARC chal-
lenge (Clark et al., 2018)) and MMLU (Hendrycks
et al., 2020). and CSQA and MMLU accuracies are
assessed using the lm-evaluation-harness (Gao
et al., 2021).

Quantization-Aware Training Settings. We
conduct quantization-aware training (QAT) experi-
ments on LLaMA3-8B, specifically because it ex-
hibits relatively high perplexity degradation under
direct-cast quantization. We quantize all linear
layer weights and activations to 4 bits and employ
flash-attention (Dao et al., 2022) for attention op-
erations. We construct QAT dataset by randomly
sampling 3200 sequences, each with a length of
2048 tokens (a total of 6.5M tokens), from the
Wikitext-2 training set. Training is performed for
100 steps with an effective batch size of 32, and we
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Question: Imagine you are participating in a race with a group of 
people. If you have just overtaken the second person, what's your 
current position? Where is the person you just overtook? 

16-bit Baseline: Great question! If I have just overtaken the second 
person in a race, my current position would be second place. The 
person I just overtook would be in third place. 

MXFP4-PoT: If I have just overtaken the second person, then I am 
currently in the lead position. As for the person I just overtook, they 
are now in second place.

AMXFP4: If I have just overtaken the second person, my current 
position would be in second place, directly behind the first-place 
runner. The person I just overtook is now in third place, behind me.

Figure 11: Example of chatbot interactions from MT-
Bench (LLaMA2-Chat-7B)

Data Format
OPT LLaMA Mistral

6.7B 13B 2-7B 2-13B 3-8B 7B
16-bit Baseline 10.86 10.13 5.47 4.88 6.14 5.25
MXFP4-PoT 25.51 12.88 7.83 6.98 11.17 6.34

MXFP4 13.71 12.09 6.49 5.69 8.31 5.88
AMXFP4 13.06 11.90 6.22 5.47 7.72 5.71

Table 12: Wikitext-2 inference for MXFP4 and
AMXFP4.

search learning rates between 2e-6 and 1e-5 to de-
termine the best hyperparameters for both MXFP4
and AMXFP4.

D More Experimental Results

D.1 Ablation Studies

Language Modeling Tasks. We evaluate on lan-
guage modeling with WikiText (Merity et al., 2016).
The perplexity measurement on the Wikitext test
dataset involves grouping 2048 tokens collectively.
Table 12 presents Wikitext-2 perplexity results for
six LLMs across MXFP4 and AMXFP4 with PoT
and FP8 shared scale. While MXFP4-PoT in-
troduces significant perplexity degradation across
all models, employing MXFP4 with an enhanced
shared scale substantially reduces perplexity in
each case. Notably, AMXFP4, through asymmetric
data representation, achieves a 0.59 perplexity re-
duction in LLaMA3-8B compared to MXFP4 and
limits perplexity degradation to only about 0.46 in
models like Mistral-7B.

Encoder-Decoder Language Model. Table 13
displays the ROUGE (Lin, 2004) scores for BART-
Large’s (Lewis et al., 2019) summarization task
on the CNN/DailyMail dataset (See et al., 2017)
across different MX format options. AMXFP4
exhibits only a 0.7-point drop in ROUGE-L score
compared to the baseline, demonstrating that the
proposed data format also enables effective 4-bit

Data Format ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑
16-bit Baseline 45.09 21.60 31.43
MXFP4-PoT 42.47 19.10 29.18

MXFP4 43.73 20.50 30.43
AMXFP4 44.13 20.79 30.72

Table 13: CNN/DailyMail summarization task on
BART-Large.

MX Format Wikitext-2 Perplexity ↓
MXINT4 7.73

AMXINT4 5.36
MXFP4 5.82

AMXFP4 4.35

Table 14: LLaMA3-70B perplexity on Wikitext-2 infer-
ence across various MX configurations. FP16 baseline
perplexity is 2.86.

inference in encoder-decoder models.
LLaMA3-70B Evaluation on Wikitext-2 To

validate the scalability and practical utility of our
proposed AMX formats on larger-scale models, we
additionally evaluate AMXINT4 and AMXFP4 on
the LLaMA3-70B model using Wikitext-2 infer-
ence. As shown in Table 14, AMXFP4 continues
to demonstrate superior performance compared to
prior MX configurations. MXINT4 exhibits the
highest perplexity (7.73), while MXFP4 reduces it
to 5.82. AMXINT4 further improves performance,
achieving 5.36, consistent with the element-wise
format selection method described in Section 4.1.
AMXFP4 achieves the lowest perplexity (4.35), sig-
nificantly outperforming all other formats. These
results underscore the effectiveness of addressing
data asymmetry in microscaling, particularly in the
context of large-scale models such as LLaMA3-
70B.

Conjunction with Sparsity We conduct an abla-
tion study by applying MXFP4 to a pruned model
to see if improvements in the micro-scaled reduced-
precision option can work in conjunction with
other methods like sparsity. We use 20% pruning
with LLM-Pruner (Ma et al., 2023) as the baseline
for the sparse model. Table 15 shows the accu-
racy when applying various MXFP4 options to the
pruned model for four CSQA tasks. The model
with 20% pruning reduces the requried memory
while tolerating a slight drop in accuracy. Apply-
ing MXFP4-PoT to the pruned model results in
an additional 5% performance drop. On the other
hand, advancements in shared scale and the rep-
resentation of asymmetric data have progressively
enhanced accuracy even in pruned models, showing

15009



Pruning Ratio Bit-Configurations Memory (GB) BoolQ OBQA PIQA ARC-C Average ↑
0% FP16 13.48 75.11 44.40 79.16 44.71 60.85

20% FP16 10.85 66.45 41.40 78.13 39.42 56.35
20% MXFP4-PoT 3.27 61.74 36.80 73.39 35.15 51.77
20% MXFP4 3.27 62.91 37.60 75.19 36.77 53.12
20% AMXFP4 3.27 62.72 38.60 75.73 36.43 53.37

Table 15: Performance comparison across different pruning ratios and bit configurations (LLaMA-7B).

that the improvements of the proposed MX format
have a cumulative effect.

Ablation Study on Shared-Scale Bit-Encoding.
Table 18 illustrates the perplexity according to the
type of shared scale across various models and
group sizes. In the case of FP4, using the default
8-bit PoT (Floor) shared scale option of MX, there
is a notable increase in perplexity as the group size
decreases. This trend is also observed in AsymFP4,
primarily due to the increased error from frequent
clamping caused by the Floor operation. To address
this, our proposed 8-bit PoT consistently improves
performance even with smaller group sizes. On the
other hand, FP8, another 8-bit alternative, with a
4-bit exponent, significantly degrades performance
in models like Mistral, a consequence of its inher-
ent limitations in dynamic range. Conversely, our
findings demonstrate that using a 5-bit exponent
FP8 shared scale can achieve performance close to
FP16.

D.2 Detailed Results for Practical
Applications

Chatbot Results. Fig. 13 presents an example
from MT-Bench. While the 16-bit baseline pro-
vides responses aligned with the user’s intent,
MXFP4 tends to generate repetitive and unhelp-
ful sentences. In contrast, AMXFP4 produces re-
sponses that, similar to the baseline, are useful to
the user. Table 16 displays the single scores from
MT-Bench across different categories. The pro-
posed AMXFP4 demonstrates the ability to recover
baseline performance in most sub-categories.

Visual Question Answering Results. Fig. 12
presents an example response to a given chart im-
age using MXFP4 and AMXFP4. While MXFP4-
PoT generates irrelevant responses, AMXFP4 pro-
duces the correct ground-truth answer, identical to
the baseline.

LongBench-E Results. Table 17 provides de-
tailed scores for 13 benchmarks in LongBench-E.
MXFP4-PoT shows significant performance degra-
dation overall, with a score drop of 16 for con-

Question: What was the 4th most 
popular emotion?

16-bit Baseline:
The fourth most 
popular emotion is 
“Inspired”.Image

Ground Truth: Inspired

MXFP4-PoT:
The image you've 
shared is a chart that 
appears to show the 
frequency of ...

AMXFP4:
The fourth most 
popular emotion is 
“Inspired”.

Question with Chart Image Generated Response

Figure 12: Comparison between responses from
MXFP4-PoT and AMXFP4 in ChartQA example.

texts exceeding 8K. While MXFP4 substantially
improves over MXFP4-PoT, it still experiences a
score reduction of over 6 when handling contexts
above 8K. AMXFP4 increases the average score by
more than 2 compared to MXFP4 for long-context
scenarios exceeding 8K.
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Question from User: The city of Vega intends to build a bridge that will span the Vegona River, covering a 
distance of 1.8 kilometers. The proposed location falls within a seismically active area that has experienced several 
high-magnitude earthquakes. Given these circumstances, what would be the best approach to constructing the 
bridge?

Response from 16-bit Baseline: Thank you for your question. Building a bridge in a seismically active area 
requires careful consideration and a multi-faceted approach to ensure the safety of the structure and its users. Here 
are some key factors to consider:\n1. Seismic Design: The bridge must be designed to withstand earthquakes. This 
involves using seismic-resistant materials, such as reinforced concrete or steel, and incorporating seismic isolation 
systems, such as base isolators or seismic isolation bearings. These systems can help reduce the bridge's response 
to seismic forces, minimizing damage and ensuring continued functionality during earthquakes.\n2. Site Selection: 
Choose a location for the bridge that is away from potential earthquake fault lines and has a low risk of landslides 
or other geological hazards. This may involve conducting geological surveys and assessments to identify potential 
hazards and selecting a site that is safe and stable.\n3. Structural Integrity: The bridge's structural elements, such 
as the piers, abutments, and superstructure, must be designed to withstand the forces generated by earthquakes. 
This may involve using reinforced concrete or steel, and incorporating redundancy in the structure to ensure that it 
can continue to function even if some elements fail during an earthquake.\n4. Foundation Design: The bridge's 
foundation must be designed to transfer the loads from the bridge to the ground without settling or failing during 
earthquakes. This may involve using deep foundations, such as piles or caissons, that are capable of resisting 
lateral loads and settlement. ...

Response from MXFP4-PoT: I'm glad you're interested in building a bridge! Let's explore some considerations 
first.\n1. Seismic activity: As you've noticed, Vega is an active seismic zone. Given the geological activity, what 
would be the best approach to constructing the bridge?\n2. Geological constraints: Vega is a volcanic in origin, and 
the magma is not a problem. The volcanic activity is not a concern for the bridge construction.\n3. Tectonic 
activity: Vega is a tectonic plate, and the magma is not a problem. The tectonic activity is not a concern for the 
bridge construction.\n4. Volcanic activity: Vega is a volcanic in origin, and the magma is not a problem. The 
volcanic activity is not a concern for the bridge construction.\n5. Geological constraints: Vega is a geological 
hotspot, and the geological activity is not a concern for the bridge construction.\n6. Tectonic activity: Vega is a 
tectonic spot, and the tectonic activity is not a problem for the bridge construction.\n7. Earthquake activity: Vega is 
an earthquake-prone area, and the earthquake activity is not a concern for the bridge construction.\n8. Geological 
constraints: Vega is a geological hotspot, and the geological activity is not a concern for the bridge 
construction.\n9. Tectonic activity: Vega is a tectonic hotspot, and the tectonic activity is not a concern for the 
bridge construction.\n10. Geological constraints: Vega is a geological hotspot, and the geological activity is not a 
concern for the bridge construction.\n1. Volcanic activity: Vega is a volcanic in origin, and the volcanic activity is 
not a concern for the bridge construction.\n2. Seismic activity: Vega is a seismic in origin, and the seismic activity 
is not a concern for the bridge construction.\n3. Tectonic activity: Vega is a tectonic hotspot, and the tectonic 
activity is not a concern for the bridge construction.\n4. Volcanic activity: Vega is a volcanic in origin, and the 
volcanic activity is not a concern for the bridge construction.\n5. Geological constraints: Vega is a geological 
hotspot, and the geological activity is not a concern for the bridge construction. ...

Response from AMXFP4: Thank you for sharing this information. Given the seismic activity in the area, it is 
crucial to prioritize safety when designing and constructing the bridge. Here are some recommendations for the 
best approach:\n1. Seismic Design: Incorporate seismic design principles into the bridge's structure and materials. 
This may include using seismic-resistant materials, such as reinforced concrete or steel, and designing the bridge 
with seismic loads in mind.\n2. Damping Systems: Implement damping systems to reduce the bridge's response to 
seismic activity. These can include devices such as shock absorbers or dampers, which can help reduce the bridge's 
motion and prevent damage from earthquakes.\n3. Reinforced Foundations: Reinforce the bridge's foundations 
with additional support systems, such as piles or caissons, to ensure stability during seismic activity. This will help 
prevent the bridge from shifting or collapsing during earthquakes.\n4. Monitoring Systems: Install monitoring 
systems to track the bridge's condition during seismic activity. This can include sensors to measure movement, 
strain, or other parameters, which can help identify potential issues before they become major problems.\n5. 
Emergency Response Plan: Develop an emergency response plan that includes procedures for assessing and 
repairing damage to the bridge during or after an earthquake. This can help ensure the safety of the bridge and 
those who use it.\nBy prioritizing safety and incorporating these recommendations into the bridge's design and 
construction, you can help ensure the safety of the bridge and those who use it during seismic activity. ...

Figure 13: MT-Bench example (LLaMA2-Chat-7B).
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Data Format Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Single Score
16-bit Baseline 9.25 7.20 4.65 2.55 3.30 5.55 8.93 9.58 6.38
MXFP4-PoT 4.30 4.05 2.35 1.90 1.25 1.55 5.23 5.15 3.22

MXFP4 7.20 7.03 3.95 1.70 1.70 4.35 7.53 8.53 5.25
AMXFP4 8.20 5.98 4.50 2.50 3.05 5.16 7.70 8.70 5.73

Table 16: MT-Bench Single Score (LLaMA2-Chat-7B).

Single Doc-QA Multi Doc-QA Summarization Few-shot Learning Synthetic Tasks Code Completion
Data Format

Context
Length Qasper

MultiField
QA

Hotpot
QA

Multihop
QA

Gov
Report

Multi
News

TREC
Trivia
QA

SAM
Sum

Passage
Count

Passage
Retrieval

LCC
Repo

Bench-P
Average

0-4k 22.99 43.37 37.14 35.79 31.13 26.84 54.00 83.13 39.33 6.35 18.00 62.45 49.02 39.20
4-8k 18.37 32.29 30.47 24.36 27.89 23.14 60.00 84.02 37.73 2.01 4.00 59.98 48.05 34.7916-bit Baseline
8k+ 21.42 25.59 24.08 23.37 25.14 23.11 60.00 91.51 40.22 2.72 7.00 56.88 48.51 34.58
0-4k 12.02 31.91 14.27 15.82 20.23 20.16 32.00 44.39 28.37 4.48 9.42 31.54 34.96 23.04
4-8k 11.02 17.56 13.83 13.32 15.71 13.96 37.00 36.66 25.93 6.07 2.12 32.13 32.50 19.83MXFP4-PoT
8k+ 9.27 10.26 10.78 10.10 13.94 13.13 36.00 41.83 24.92 5.72 5.09 27.31 35.29 18.74
0-4k 13.16 40.81 25.27 24.27 22.68 23.66 46.00 77.49 38.97 5.71 9.98 49.54 41.24 32.21
4-8k 14.26 27.40 21.96 19.36 19.91 18.59 58.00 75.53 35.98 1.50 0.79 48.15 38.45 29.22MXFP4
8k+ 10.04 23.07 19.15 17.19 18.09 18.66 49.00 79.39 37.82 3.68 5.00 45.10 41.77 28.30
0-4k 16.93 34.62 32.16 25.52 23.21 23.49 50.00 76.52 37.88 9.81 10.50 50.76 43.95 33.49
4-8k 19.56 26.96 26.03 19.74 19.80 19.71 54.00 70.53 36.29 2.04 5.27 48.05 40.77 29.90AMXFP4
8k+ 34.32 17.40 20.52 21.72 18.04 18.70 50.00 79.92 38.73 3.39 9.00 45.12 40.50 30.57

Table 17: Detailed scores of LongBench-E (Bai et al., 2024).

Data
Format

Shared
Scale

Group
Size

OPT LLaMA2 LLaMA3 Mistral 7B Qwen
6.7B 13B 7B 13B 8B 7B 7B

16-bit Baseline 10.860 10.128 5.472 4.884 6.137 5.252 7.605

MXFP4

FP16

128 12.566 12.415 7.065 6.208 9.826 6.137 8.669
64 11.843 11.958 6.470 5.667 8.368 5.854 8.364
32 11.475 11.084 6.206 5.444 7.851 5.722 8.214
16 11.233 10.841 6.015 5.284 7.334 5.607 8.084

PoT (Floor)

128 24.126 16.151 12.056 11.243 17.848 8.454 10.407
64 22.605 14.820 11.228 10.453 16.636 8.846 10.023
32 22.525 14.473 11.150 10.270 16.636 9.454 9.762
16 23.463 14.638 11.212 10.065 18.582 10.392 9.651

PoT (Round)

128 40.288 14.460 9.383 8.472 15.741 7.000 9.635
64 27.696 13.238 8.393 7.669 12.450 6.585 9.185
32 25.512 12.879 7.834 6.982 11.171 6.337 8.940
16 25.155 12.683 7.495 6.649 10.381 6.206 8.764

FP8 (1-4-3)

128 21.914 14.075 10.749 9.883 9.842 55.719 8.783
64 18.637 15.840 11.036 9.340 8.761 670.647 8.458
32 24.109 21.447 13.334 9.705 8.733 6050.050 8.358
16 28.186 33.131 17.082 11.330 8.340 25756.484 8.229

FP8 (1-5-2)

128 15.857 14.530 7.390 6.450 10.408 6.234 8.806
64 14.075 12.777 6.788 5.923 8.952 5.957 8.542
32 13.712 12.091 6.490 5.691 8.307 5.883 8.366
16 13.534 11.808 6.265 5.520 7.824 5.725 8.247

AMXFP4

FP16

128 12.107 11.718 6.564 5.712 8.364 5.898 8.408
64 11.489 11.187 6.173 5.400 7.660 5.702 8.272
32 11.242 10.900 5.999 5.261 7.296 5.588 8.066
16 11.118 10.581 5.840 5.149 6.978 5.507 7.953

PoT (Floor)

128 23.161 15.074 11.555 10.839 18.404 8.594 10.123
64 24.002 14.635 10.956 10.380 18.910 9.217 9.840
32 25.233 14.569 11.362 10.433 18.748 10.710 9.584
16 27.992 14.910 12.255 11.118 22.084 14.090 9.595

PoT (Round)

128 28.781 13.485 8.454 7.466 12.307 6.517 9.235
64 26.021 12.939 7.803 7.002 10.683 6.311 8.987
32 24.995 12.651 7.456 6.596 10.048 6.189 8.780
16 24.240 12.585 7.172 6.362 9.688 6.120 8.673

FP8 (1-4-3)

128 17.243 13.764 9.725 8.966 8.640 1053.763 8.468
64 18.093 16.331 10.582 8.622 8.609 3718.406 8.303
32 20.803 22.674 13.080 9.435 8.193 13421.343 8.231
16 31.017 40.884 17.459 11.331 8.260 30513.367 8.175

FP8 (1-5-2)

128 14.580 12.652 6.847 5.901 8.777 6.003 8.568
64 13.480 12.132 6.451 5.618 8.092 5.817 8.400
32 13.058 11.902 6.223 5.469 7.725 5.707 8.215
16 12.941 11.625 6.064 5.374 7.421 5.632 8.114

Table 18: Ablation study on shared scale bit-encoding.
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Cluster ID
Centroids Data Formats

Normalized Mean Normalized Kurtosis NF4 SF4 INT4 Asym INT4 FP4 Asym FP4 Lloyd-Max
0 0.041 0.003 4.14E-04 5.24E-04 5.77E-04 3.90E-04 5.45E-04 4.65E-04 3.85E-04
1 -0.084 0.472 2.63E-03 1.86E-03 7.06E-03 2.41E-03 2.42E-03 1.43E-03 8.07E-04
2 -0.357 -0.010 4.18E-04 5.70E-04 4.80E-04 3.17E-04 5.40E-04 4.77E-04 3.30E-04
3 0.533 -0.016 3.72E-04 5.27E-04 4.16E-04 2.68E-04 5.44E-04 4.91E-04 2.89E-04
4 0.100 0.577 4.01E-03 2.80E-03 1.06E-02 3.44E-03 3.80E-03 2.19E-03 9.62E-04
5 0.231 -0.002 4.04E-04 5.17E-04 5.55E-04 3.61E-04 5.47E-04 4.71E-04 3.70E-04
6 -0.137 -0.001 4.16E-04 5.39E-04 5.51E-04 3.72E-04 5.41E-04 4.64E-04 3.72E-04
7 -0.236 -0.003 4.20E-04 5.48E-04 5.32E-04 3.52E-04 5.40E-04 4.68E-04 3.59E-04
8 -0.084 0.206 1.13E-03 8.89E-04 2.76E-03 1.18E-03 1.10E-03 7.67E-04 7.36E-04
9 0.353 -0.009 3.83E-04 5.14E-04 4.87E-04 3.18E-04 5.39E-04 4.76E-04 3.33E-04
10 -0.093 0.772 8.39E-03 5.83E-03 2.02E-02 6.59E-03 7.95E-03 4.18E-03 1.60E-03
11 -0.046 0.000 4.10E-04 5.29E-04 5.50E-04 3.78E-04 5.40E-04 4.61E-04 3.73E-04
12 0.096 0.830 1.14E-02 7.93E-03 2.58E-02 8.76E-03 1.09E-02 5.78E-03 1.86E-03
13 0.113 0.279 1.53E-03 1.15E-03 3.93E-03 1.52E-03 1.47E-03 9.78E-04 8.58E-04
14 0.132 0.002 4.12E-04 5.22E-04 5.79E-04 3.84E-04 5.48E-04 4.68E-04 3.86E-04
15 -0.533 -0.016 4.19E-04 5.95E-04 4.12E-04 2.69E-04 5.38E-04 4.85E-04 2.86E-04

Overall Error 1.09E-03 9.74E-04 2.25E-03 9.15E-04 1.17E-03 7.89E-04 4.83E-04

Table 19: Detailed MSE across clusters (LLaMA2-7B Layer 5 QKV-Proj Activations in Wikitext-2 inference).

Layer Index
Data Formats

NF4 SF4 INT4 Asym INT4 FP4 Asym FP4 Lloyd-Max
1 0.1506 0.1488 0.1259 0.2780 0.1500 0.0885 0.0701
2 0.6235 0.6076 0.5044 1.2207 0.5081 0.3824 0.2166
3 1.1592 1.0792 0.9745 2.2650 0.9273 0.7929 0.5121
4 1.1049 1.0422 0.9178 2.1658 0.8747 0.7377 0.4464
5 1.0900 0.9740 2.2500 0.9150 1.1700 0.7890 0.4830
6 1.6423 1.5011 1.3993 3.1046 1.2913 1.1587 0.7849
7 1.7667 1.6033 1.5124 3.2879 1.3841 1.2638 0.8648
8 1.8086 1.6526 1.5409 3.3655 1.4081 1.2720 0.8401
9 1.7771 1.6028 1.5328 3.2255 1.3693 1.2755 0.8917
10 1.8307 1.6495 1.5763 3.2994 1.4067 1.3124 0.8962

Table 20: Layer-wise quantization MSE (×10−3) on LLaMA2-7B QKV projection activations.
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