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Abstract

The impact of case-sensitive tokenization on
clinical notes is not well understood. While
clinical notes share similarities with biomed-
ical text in terminology, they often lack the
proper casing found in polished publications.
Language models, unlike humans, require a
fixed vocabulary and case sensitivity is a trade-
off that must be considered carefully. Im-
proper casing can lead to sub-optimal tokeniza-
tion and increased sequence length, degrad-
ing downstream performance and increasing
computational costs. While most recent open-
domain encoder language models use uncased
tokenization for all tasks, there is no clear trend
in biomedical and clinical models. In this
work we (1) show that uncased models exceed
the performance of cased models on clinical
notes, even on traditionally case-sensitive tasks
such as named entity recognition and (2) in-
troduce independent case encoding to better
balance model performance on case-sensitive
and improperly-cased tasks.

1 Introduction

Casing is one of many ways to increase the read-
ability of written text. However, more often than
not it is not a necessity — after all we communicate
verbally without specifying, “capital a” in conver-
sation. Language models (LMs) have fixed vocab-
ularies. For them, case sensitivity is a trade-off
between retaining case information to resolve case-
sensitive ambiguities and improving efficiency as
well as robustness by introducing case-invariance.

Case-sensitive tokenization is often seen as use-
ful for resolving ambiguties, e.g., in named entitiy
recognition (NER). However, for some types of
text — such as clinical notes — the observed case is
merely an interpretation of spoken language dur-
ing transcription, which should be re-constructable
from lower-case text with sufficient context and
knowledge. This is distinct from applications
where preserving case is absolutely necessary, such

as in programming languages, where case is seman-
tically significant. Moreover, when case-sensitive
tokenization results in truncated sequences, then
the task becomes more challenging due to missing
tokens. For this application, it should be obvious
that missing case information will always be easier
to infer than truncated tokens.

Prior work in the biomedical domain has shown
mixed results on the impact of casing on down-
stream tasks, with some work showing that cased
models perform better on NER tasks (Lee et al.,
2020), and others showing that uncased models
perform better across the board (Beltagy et al.,
2019). To the best of our knowledge, no work
has been done to investigate the impact of casing
on clinical notes. Clinical notes share some simi-
larities with biomedical text such as PubMed arti-
cles with regards to their domain and in the sense
that both are littered with case-sensitive acronyms.
PubMed articles are much more polished and typi-
cally have proper casing, whereas clinical notes are
often semi-structured and lack proper casing.

In this work we (1) show that uncased models
match or exceed the performance of cased mod-
els on clinical notes within 1%, even on tradition-
ally case-sensitive tasks such as NER, and (2) in-
troduce independent case encoding to better bal-
ance the trade-off of potentially case-sensitive or
improperly-cased tasks.

2 Related Work

General-Purpose Models While the original
transformer introduced by Vaswani et al. (2017)
used cased tokens, Devlin et al. (2019) introduced
both an uncased and a cased variant of BERT. In
their work, they do not explicitly discuss the trade-
offs between the two, but used the cased version
for named entity recognition (NER) tasks.! Many
models have been released since BERT, using a

'This is further detailed in their readme github.com/google-
research/bert.
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similar (or identical) architecture. While RoBERTa
uses cased tokenization (Liu et al., 2019), most
models that are not initialized from BERT use un-
cased tokenization (Lan et al., 2020; Geiping and
Goldstein, 2022; Portes et al., 2023).

Note that we are only concerned with encoder
models, not decoder models, which typically use
cased tokenization for the output (Radford and
Narasimhan, 2018; Radford et al., 2019; Brown
et al., 2020) due to other motivating factors (e.g.,
the fact that humans prefer text with proper casing).

Biomedical Models Lee et al. (2020) introduce
BioBERT- which is initialized from the BERT
cased model and trained on PubMed Abstracts.
While Lee et al. (2020) report that a cased vocabu-
lary performs slightly better on downstream tasks,
they do not provide any further analyses or abla-
tions. Beltagy et al. (2019) introduce SciBERT,
which uses the same architecture as BERT, but was
pretrained from scratch on scientific text with a
new tokenizer. They use cased models for NER
and uncased for all other tasks following the origi-
nal BERT methodology, but note that the uncased
models sometimes performed slightly better in their
initial testing than cased ones on NER. Gu et al.
(2021) introduce PubmedBERT, which is trained
from scratch on PubMed articles and diverges from
previous work by using uncased tokenization. They
do not provide ablations to support this decision,
but note that the cased and uncased versions had
similar performance in prelimenary experiments.

Clinical Models Alsentzer et al. (2019) introduce
Clinical BERT and BioClinical BERT, the latter of
which is based on BioBERT and, thus, cased. Note
that others have also published models using the
same Clinical BERT namesake, so we will denote
this Clinical BERT as Clinical BERT,. For example,
Huang et al. (2020) train their model which we de-
note Clinical BERT}y directly from BERT uncased
on MIMIC-IIL.? At a high level, ClinicalBERT}, is
pretrained longer and with longer sequences than
Clinical BERT,, but much less than BioClinical-
BERT. Both Clinical BERT, and BioClinical BERT
are trained for less time than ClinicalBERT, on
MIMIC-III. Moreover, these do not have overlap-
ping downstream tasks, so it is not straightforward
to directly compare them. Wang et al. (2023) re-use
the Clinical BERT name to train a cased model from
scratch on clinical notes, but they do not provide

’These are concurrent work.

much detail about the training process or data.

3 Independent Case Encoding

We introduce a novel model extension by adding
independent case encoding to the existing uncased
BERT model. This is implemented similar to the
existing positional and token type embedding in
that is an additive embedding with 4 possible val-
ues: uppercase, lowercase, capitlized, or mixed
case. This case information is found during tok-
enization. While training from scratch may provide
better results, in our experiments we simply add
this embedding to the existing BERT uncased mod-
els. For this reason, we only provide independent
casing results on models that continue pre-traininig
on MIMIC-IIIL.

The motivation for independent case encoding is
to retain some useful case information without be-
ing overly burdened when the case is not important.
This gives the model the ability to easily ignore
case information, unlike the cased tokenization.

4 Experiments

4.1 Dataset Statistics

To analyze the prevalence of improper casing in
clinical data, we count the total number of tokens
and the number of sequences with greater than 128
tokens for MIMIC-III and the downstream datasets.
We also include these metrics for the C4 common
crawl] dataset (Raffel et al., 2020) to serve as a base-
line of tokenizing a different open-domain corpus.

4.2 Pretrained Models

To investigate the impact of case-sensitive tokeniza-
tion on clinical notes, we train 2 models initialized
from BERT base cased (BERT.) and BERT base
uncased (BERT) on MIMIC-III (Johnson et al.,
2015, 2016; Goldberger et al., 2000), which is a
freely available database with thousands of patients
from an ICU between 2001 and 2012. It contains
patient data, such as demographics, as well as struc-
tured timeseries data, such as vital signs, medica-
tions, imaging reports, and free-text notes by the
nurses and doctors. We preprocess the MIMIC-III
dataset using scripts provided by Alsentzer et al.
(2019) and create pretraining data using the param-
eters used by Huang et al. (2020) using the original
BERT implementation.’ Following Huang et al.
(2020) we train the models for 100k steps with a

3github.com/google-research/bert

14987


https://github.com/google-research/bert

Examples Sequence Length > 128 Num Tokens (k)

Cased Uncased 1% Cased  Uncased I %

c4 Train 364868892 269147123 263073464 2257 178.56B  171.21B 4.116
Validation 364608 269112 263040 2256 177.87TM  170.61M 4.081

MIMIC-IIT  Train 2083112 250761 159363  36.448 1.28B 1.13B 11.376
MedNLI Train 11232 120 98 18.333  446.017  417.671 6.355
Validation 1395 26 16 38.462 58.369 54.562 6.522

Test 1422 15 15 0.000 53.799 50.690 5.779

i2b2/2006  Train 44948 92 58 36.957 699.924 594722 15.030
Validation 4994 10 6 40.000 78.670 66.682  15.238

Test 18096 32 25 21.875 306.989  268.836 12.428

i2b2/2010  Train 14684 21 16 23.810 248.120 219393 11.578
Validation 1632 1 1 0.000 27.584 24390 11.579

Test 27625 39 31 20.513  484.395 433451 10.517

i2b2/2014  Train 45794 668 591  11.527  960.979  872.000 9.259
Validation 5088 80 74 7.500 107.213 97.167 9.370

Test 32587 495 447 9.697  690.789  623.234 9.779

Table 1: Datasets statistics for all dowstream tasks. For MedNLI, we use the standard train, validation, and test
splits provided by (Romanov and Shivade, 2018). For the i2b2 datasets, we split the training data into a 90/10
train/validation split and use the standard test split. For MIMIC-III, we report the sequence length of individual
sentences to better represent the number of truncated sequences. All other datasets use the full sequence length as
used by the model. For all datasets, note that uncased tokenization results in fewer overall tokens. For MIMIC-III,
we report the number of tokens in billions, for all other datasets they are in thousands.

MedNLI i2b2 2006 i2b2 2010 i2b2 2014 MNLIMM MNLIM
BERT. 78.692  94.031 £ 0.668 83.710 £0.11  92.234 £ 0.581 83.452 82.985
BERTYy 78.129  90.846 £ 0.605 85.077 £0.081  93.318 £ 0.405 83.208 82.914
BERT.: + MIMIC 200k 80.028 91.660 £1.875 87.197£0.173 92.192+1.128 82.618 82.354
BERT.: + MIMIC 900k 81.294 91.324£1.179 87.812+0.110 92.881 +0.203 81.906 81.172
BERTy + MIMIC 200k 81.224 91499+ 0.755 88.042+0.149 93.747 £0.072 83.411 83.107
BERTy + MIMIC 900k 83.333 92.533+0.321 87.969 £0.152  93.530 £ 0.091 82.567 82.313
BERT; + MIMIC 200k 80.380 91.273£1.085 87.688+£0.119 93.901 £ 0.118 83.767 83.240
BERT; + MIMIC 900k 82.841 92354 £1.776  88.192 £ 0.237 93.723 £0.151 82.577 82.252

Table 2: Downstream performance of all models on different downstream tasks. Scores are Accuracy for MedNLI
and Exact F1 for all i2b2 tasks. The best model is selected based on the validation set. Scores within the standard

deviation of the best score are in bold.

sequence length of 128 and a batch size of 64 fol-
lowed by 100k steps with a sequence length of 512
and a batch size of 16. We denote these models
as BERT; + MIMIC 200k and BERT,, + MIMIC
200k, respectively. These initial experiments show
the uncased BERT model converging slower than
the cased model, so we also train both models for a
total of 900k steps: for 100k steps with a sequence
length of 128 and a batch size of 64 followed by
800k steps with a sequence length of 512 and a
batch size of 16. With this extended training, all
models converge to a masked language modeling
loss of approximately 0.25. We denote these mod-
els as BERT. + MIMIC 900k and BERT, + MIMIC
900k. The uncased BERT models with indepen-
dent case encoding are denoted as BERT, + MIMIC
200k and BERT;, + MIMIC 900k. The BERT base
uncased models with independent case embedding

are denoted as BERT, + MIMIC 200k and BERT;
+ MIMIC 900k.

4.3 Downstream Tasks

Tasks We evaluate the performance of the mod-
els on 4 downstream tasks in the clinical domain:
MedNLI (Romanov and Shivade, 2018), the i2b2
2006 de-identification task (Uzuner et al., 2007),
the i2b2 2010 concept extraction task (Uzuner et al.,
2011), and the i2b2 2014 de-identification task
(Stubbs and Ozlem Uzuner, 2015; Stubbs et al.,
2015; Kumar et al., 2015). We use the preprocess-
ing scripts provided by Alsentzer et al. (2019) for
the i2b2 tasks.We additionally evaluate the models
on the Multi-Genre Natural Language Inference
Corpus (MNLI; Williams et al., 2018).

For MedNLI, we use the standard training, val-
idation, and test splits provided by Romanov and
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Shivade (2018). For the i2b2 datasets, we split the
training data into 90% for training and 10% for val-
idation and use the standard test splits. For MNLI,
we use the standard train and validaton splits. We
provide statistics for all datasets in Table 1.

Postprocessing We diverge slightly from
Alsentzer et al. (2019) in i2b2 prediction postpro-
cessing. All i2b2 tasks are trained using the IOB
format and the exact F1 metrics are computed on
predicted spans after post-processing. We utilize a
simple post-processing scheme to limit predictions
to valid sequences and select the prediction with
highest probability out of each valid option.
For example, given the invalid prediction “O
I-problem,” we select the tag with the next highest
probability, e.g., “O B-problem” or “O O” rather
than always selecting “O B-problem.”

Finetuning For all tasks, we finetune the mod-
els using the same sweep of hyperparameters as
Alsentzer et al. (2019): AdamW with a learning
rate € {2-107°,3-107°,5 - 107°}, a batch size
€ {16, 32}, and number of epochs € {3,4,5}. We
use a sequence length of 150 for all tasks.

Metrics We report accuracy for MedNLI and
MNLI and exact F1 for all i12b2 tasks. Exact F1 is
computed as the number of exact matches between
the predicted and true NER spans.

4.4 Computational Budget

All pretranining and finetuning experiments use
a single A100 40GB GPU and 16 threads on an
AMD EPYC 7543 CPU. Dataset preprocessing is
CPU-intensive: upwards of 24 hours for MIMIC-
III (not including downstream tasks). Pretraining
on MIMIC-III takes approximately 4-6 hours per
model to train the 200k models, plus 24 hours per
model for the 900k models.

5 Results

Dataset Statistics As shown by Table 1, there is
a trade-off between more information by maintain-
ing casing and more efficiency in terms of shorter
sequence lengths. The cased tokenizer requires
more tokens than the uncased tokenizer, especially
on clinical datasets such as MIMIC-III: While un-
cased tokenization yields 11.38% fewer tokens and
36.45% fewer sequences with length greater than
128 on MIMIC-III, on C4, uncased tokenization
only yields 4.08-4.12% fewer tokens and 2.26%
fewer documents with length greater than 128. This

demonstrates the impact that improper casing and
formatting in clinical notes has compared to generic
open-domain datasets.

Note that the model with independent case en-
coding uses the uncased tokenizer and vocabulary.

Downstream Tasks The results for all down-
stream tasks are provided in Table 2. On nearly
all tasks, an uncased or independently cased model
performs best — even on NER, which is tradition-
ally considered a case-sensitive task. The only
exception to this rule is i2b2 2006, where BERT .
outperforms BERT}, before training on MIMIC-III.

The standard BERT models are generally worse
than the models trained on MIMIC-III, but this is
to be expected, as the standard BERT models are
not trained on in-domain text. We are more inter-
ested in the relative performance of the cased and
uncased models. In this case, we see that the un-
cased models have a more clear advantage once
trained on MIMIC-III. For example, on MedNLI,
BERT. has a slightly higher accuracy of 78.692
than BERT, which has 78.129. This advantage dis-
appears once both models are trained on MIMIC-
III, where the accuracy of BERT. improves to
81.294 and BERT, to 83.333. The independently
cased model, BERT), had the second highest score
on MedNLI at 82.841. Similar to Alsentzer et al.
(2019), we find that the i2b2 2006 de-identification
task is the most challenging task for models trained
on MIMIC-III, likely due to the difference in for-
matting. However, out of the models trained on
MIMIC-III, the uncased and independently cased
model both outperform the cased model.

6 Analysis: Robustness of the
Independent Case Encoding

To demonstrate the robustness of the independent
case encoding, we construct 2 evaluation scenarios
by transforming the evaluation dataset either to all
upper-case or all lower-case. These transformations
naturally do not affect the uncased model, but have
a profound impact on the cased model. The upper
part of Table 3 shows the difference in performance
with respect to the original results for lower-cased
data. We see a small but measurable impact across
all tasks and a light increase in performance for the
independently cased model on MedNLI and MNLI
Mismatched.

However, the results on the upper-cased evalu-
ation data in the bottom part of Table 3 are much
more profound. Across all tasks, the cased model
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MedNLI  i2b2 2006 i2b2 2010 i2b22014 MNLIMM MNLIM
BERT 1.617 19.341 4.077 14.358 0.529 0.632
BERT. + MIMIC 200k 0.985 14.976 2.128 11.152 0.498 0.143
BERT. + MIMIC 900k 0.352 13.688 1.696 10.565 0.559 0.000
BERT, + MIMIC 200k -0.352 4.113 0.311 1.468 -0.081 0.071
BERT; + MIMIC 900k 0.141 6.257 0.239 1.592 -0.081 0.224
BERT. 38.115 10.774 37.781 19.899 36.381 37.779
BERT. + MIMIC 200k 33.896 9.962 23.092 13.454 32.242 32.888
BERT. + MIMIC 900k 21.519 9.833 16.387 12.484 27.278 27.224
BERT; + MIMIC 200k -0.844 1.293 0.591 0.799 0.203 0.245
BERT, + MIMIC 900k 0.070 2.518 0.228 0.800 -0.122 0.234

Table 3: Difference in performance on the lowercased (top) or uppercased (bottom) development set with respect to
the original results. A positive number implies reduced performance. Smaller absolute values mean the model is
more robust to the change in case. Uncased models are not shown as they are unaffected.

is impacted by 9.833-38.115 percentage points. In
contrast, the independent case model is impacted
by less than a percent across all tasks except for
12b2 2006, for which its performance is reduced
by 1.29 and 2.52 for the 200k and 900k variants,
respectively. Compared to the cased model, this
demonstrates a much better balance of retaining
case information where possible while ignoring it
where not necessary.

7 Conclusion

Our paper provides an analysis of the impact of
different casing strategies on clinical notes. We
find that uncased models outperform cased mod-
els on downstream tasks while requiring fewer to-
kens. Our findings highlight the trade-off of case-
sensitive tokenization, especially as it pertains to
clinical data and other text that may not have proper
casing. Finally, we introduce independent case
encoding to better balance performance on case-
sensitive and improperly-cased tasks.

Limitations

Language Models For language models, espe-
cially large open-domain language models such as
GPT, cased tokenization is, for good reason, the de-
fault. This is justifiable because the model needs to
produce text that will be read by humans — and hu-
mans prefer text with proper casing. There are also
applications where preserving case is important,
such as in programming languages, where case is
semantically significant. Beyond the obvious cased
vs. uncased conflicts if case was dropped (e.g.,
vector x vs. matrix X), case is regularly used to
distinguish between functions, types, and variables
and in Go is even used to distinguish between pub-
lic and private. Conceptually, this makes sense —

using text-to-speech for code is hardly as effective
for code as text-to-speech is for prose.

Scope We intentionally limit the scope of our
work to clinical data and, more specifically, to the
datasets used by existing ClinicalBERT models.
While all of the tasks we evaluated on showed
strong performance of uncased tokenization this
is in no way an exhaustive list of tasks. While our
findings may transfer to other domains where im-
proper casing negatively effects the performance
of cased models, more experimentation would be
required in those domains and we did not investi-
gate any such tasks. However we hope this work
motivates others to think more carefully about the
decision of cased vs. uncased tokenization both in
clinical applications and more generally.

References

Emily Alsentzer, John R. Murphy, Willie Boag, Wei-
Hung Weng, Di Jin, Tristan Naumann, and Matthew
B. A. McDermott. 2019. Publicly Available Clinical
BERT Embeddings. Preprint, arxiv:1904.03323.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT:
A Pretrained Language Model for Scientific Text.
Preprint, arxiv:1903.10676.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

14990


https://arxiv.org/abs/1904.03323
https://arxiv.org/abs/1904.03323
https://arxiv.org/abs/1903.10676
https://arxiv.org/abs/1903.10676
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jonas Geiping and Tom Goldstein. 2022. Cramming:
Training a language model on a single gpu in one day.
Preprint, arXiv:2212.14034.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jef-
frey M Hausdorff, Plamen Ch Ivanov, Roger G Mark,
Joseph E Mietus, George B Moody, Chung-Kang
Peng, and H Eugene Stanley. 2000. PhysioBank,
PhysioToolkit, and PhysioNet: Components of a new
research resource for complex physiologic signals.
Circulation, 101(23):e215-e220.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-Specific
Language Model Pretraining for Biomedical Natural
Language Processing. Preprint, arxiv:2007.15779.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath.
2020. ClinicalBERT: Modeling Clinical Notes
and Predicting Hospital Readmission. Preprint,
arxiv:1904.05342.

Alistair Johnson, Tom Pollard, and Roger Mark. 2015.
MIMIC-III Clinical Database.

Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-
wei H. Lehman, Mengling Feng, Mohammad Ghas-
semi, Benjamin Moody, Peter Szolovits, Leo An-
thony Celi, and Roger G. Mark. 2016. MIMIC-III,
a freely accessible critical care database. Scientific
Data, 3(1):160035.

Vishesh Kumar, Amber Stubbs, Stanley Shaw, and
Ozlem Uzuner. 2015. Creation of a new longitudinal
corpus of clinical narratives. Journal of Biomedical
Informatics, 58:S6-S10. Supplement: Proceedings
of the 2014 12b2/UTHealth Shared-Tasks and Work-
shop on Challenges in Natural Language Processing
for Clinical Data.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. BioBERT: A pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics (Oxford, England), 36(4):1234—1240.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv preprint, abs/1907.11692.

Jacob Portes, Alexander R Trott, Sam Havens, DANIEL
KING, Abhinav Venigalla, Moin Nadeem, Nikhil
Sardana, Daya Khudia, and Jonathan Frankle. 2023.
MosaicBERT: A bidirectional encoder optimized for
fast pretraining. In Thirty-seventh Conference on
Neural Information Processing Systems.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-Text
Transformer. Preprint, arxiv:1910.10683.

Alexey Romanov and Chaitanya Shivade. 2018.
Lessons from natural language inference in the clini-
cal domain. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1586—1596, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Amber Stubbs, Christopher Kotfila, and Ozlem Uzuner.
2015. Automated systems for the de-identification
of longitudinal clinical narratives: Overview of 2014
12b2/uthealth shared task track 1. Journal of Biomed-
ical Informatics, 58:5S11-S19. Supplement: Proceed-
ings of the 2014 i2b2/UTHealth Shared-Tasks and
Workshop on Challenges in Natural Language Pro-
cessing for Clinical Data.

Amber Stubbs and Ozlem Uzuner. 2015. Annotating
longitudinal clinical narratives for de-identification:
The 2014 i2b2/uthealth corpus. Journal of Biomedi-
cal Informatics, 58:S20-S29. Supplement: Proceed-
ings of the 2014 i2b2/UTHealth Shared-Tasks and
Workshop on Challenges in Natural Language Pro-
cessing for Clinical Data.

Ozlem Uzuner, Yuan Luo, and Peter Szolovits. 2007.
Evaluating the State-of-the-Art in Automatic De-
identification. Journal of the American Medical In-
formatics Association, 14(5):550-563.

Ozlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/VA challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Associ-

ation, 18(5):552-556.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. Preprint, arxiv:1706.03762.

14991


https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2212.14034
https://arxiv.org/abs/2212.14034
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://arxiv.org/abs/1904.05342
https://arxiv.org/abs/1904.05342
https://doi.org/10.13026/C2XW26
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1016/j.jbi.2015.09.018
https://doi.org/10.1016/j.jbi.2015.09.018
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=5zipcfLC2Z
https://openreview.net/forum?id=5zipcfLC2Z
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/10.18653/v1/D18-1187
https://doi.org/10.18653/v1/D18-1187
https://doi.org/10.1016/j.jbi.2015.06.007
https://doi.org/10.1016/j.jbi.2015.06.007
https://doi.org/10.1016/j.jbi.2015.06.007
https://doi.org/10.1016/j.jbi.2015.07.020
https://doi.org/10.1016/j.jbi.2015.07.020
https://doi.org/10.1016/j.jbi.2015.07.020
https://doi.org/10.1197/jamia.M2444
https://doi.org/10.1197/jamia.M2444
https://doi.org/10.1136/amiajnl-2011-000203
https://doi.org/10.1136/amiajnl-2011-000203
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Guangyu Wang, Xiaohong Liu, Zhen Ying, Guoxing
Yang, Zhiwei Chen, Zhiwen Liu, Min Zhang, Hong-
mei Yan, Yuxing Lu, Yuanxu Gao, Kanmin Xue,
Xiaoying Li, and Ying Chen. 2023. Optimized
glycemic control of type 2 diabetes with reinforce-
ment learning: a proof-of-concept trial.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112-1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

14992


https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101

