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Abstract
Decomposing weight matrices into quantiza-
tion and low-rank components (W ≈ Q+LR)
is a widely used technique for compressing
large language models (LLMs). Existing joint
optimization methods iteratively alternate be-
tween quantization and low-rank approxima-
tion. However, these methods tend to prioritize
one component at the expense of the other, re-
sulting in suboptimal decompositions that fail
to leverage each component’s unique strengths.
In this work, we introduce Outlier-Driven Low-
Rank Initialization (ODLRI), which assigns
low-rank components the specific role of cap-
turing activation-sensitive weights. This struc-
tured decomposition mitigates outliers’ nega-
tive impact on quantization, enabling more ef-
fective balance between quantization and low-
rank approximation. Experiments on Llama2
(7B, 13B, 70B), Llama3-8B, and Mistral-7B
demonstrate that incorporating ODLRI into the
joint optimization framework consistently re-
duces activation-aware error, minimizes quanti-
zation scale, and improves perplexity and zero-
shot accuracy in low-bit settings.

1 Introduction

Quantization (Polino et al., 2018; Jacob et al., 2018;
Nagel et al., 2021) and weight matrix factoriza-
tion (Golub et al., 1987; Saha et al., 2023) are two
widely used techniques for compressing large lan-
guage models (LLMs) to enable efficient inference
on resource-constrained hardware. Post-training
quantization (PTQ) reduces model size and com-
putational cost by mapping high-precision weights
to lower-bit representations (Tao et al., 2022; Bai
et al., 2022; Dettmers et al., 2022; Shao et al.,
2024), while matrix factorization approximates
weight matrices with compact factored representa-
tions (Li et al., 2023; Gao et al., 2024b). Recent
joint optimization approaches combine these meth-
ods to achieve extreme compression, representing
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weights as the sum of a quantization matrix and a
low-rank component: W ≈ Q+ LR (Saha et al.,
2024; Li et al., 2024b; Guo et al., 2024).

Joint optimization approaches minimize repre-
sentation error by iteratively alternating between
quantization and low-rank approximation. These
methods typically adopt either a quantize-first strat-
egy (Saha et al., 2024; Li et al., 2024b) or a low-
rank-first strategy (Guo et al., 2024). While these
differ in iteration ordering, they can be equivalently
understood as distinct initialization choices for the
low-rank components: the quantize-first approach
initializes LR to zero, while the low-rank-first ap-
proach initializes them using factorized weights.

Critically, existing methods treat these different
orderings merely as preparatory steps, assuming
iterative updates will naturally converge to optimal
solutions. However, viewing this process through
the lens of initialization reveals an underexplored
aspect of how initialization strategies might funda-
mentally affect weight decomposition quality.

In this work, we investigate the role of initial-
ization in joint optimization. Our analysis shows
that different initializations lead to distinct solution
spaces, with components maintaining persistent
roles throughout optimization. Quantize-first meth-
ods treat low-rank components as error correction
terms, while low-rank-first methods preserve them
as the primary weight representation. This finding
highlights that initialization fundamentally deter-
mines the role assignment between quantization
and low-rank components, raising a key question:

What is the optimal initialization strategy
for decomposing weights into quantized and
low-rank matrices?

Recent works have shown that quantization er-
rors are pronounced for weights associated with
activation outliers, as extreme activations amplify
weight sensitivity (Dettmers et al., 2023b; Lin et al.,
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2024; Lee et al., 2024; Huang et al., 2024; Kim
et al., 2024). Building on this insight, we introduce
Outlier-Driven Low-Rank Initialization (ODLRI),
which assigns a specific role to the low-rank compo-
nent to capture these salient weights while using the
quantized matrix to express the residuals. By han-
dling outlier-sensitive weights through the low-rank
component, our approach stabilizes quantization
and enables more precise weight decomposition.

Through extensive experiments on Llama2
(7B, 13B, 70B) (Touvron et al., 2023), Llama3-
8B (Dubey et al., 2024), and Mistral-7B (Jiang
et al., 2023), we demonstrate that incorporating
ODLRI into the joint optimization framework con-
sistently improves perplexity and zero-shot accu-
racy across extreme low-bit settings. Our analysis
shows that ODLRI reduces activation-aware error,
minimizes quantization scale, and enhances model
performance, highlighting the importance of struc-
tured initialization in low-bit quantization. These
results present a principled approach for stable and
efficient LLM compression, and provide new in-
sights into the effective decomposition of quantiza-
tion and low-rank matrices.

We summarize our contributions as follows:

• We propose a unified framework for express-
ing iterative joint optimization algorithms by
introducing the concept of initialization of
low-rank components.

• We analyze the impact of initialization on iter-
ative joint optimization algorithms, revealing
the suboptimality of conventional approaches.

• We propose Outlier-Driven Low-Rank Initial-
ization (ODLRI), which assigns a specific role
to the low-rank component LR to capture
salient weights while using the quantization
matrix Q for the remaining weights.

• Comprehensive experiments demonstrate that
incorporating ODLRI reduces activation-
aware error, minimizes quantization scale, and
improves perplexity and zero-shot accuracy.

2 Preliminaries

2.1 Post-Training Quantization

Early post training quantization (PTQ) methods (Ja-
cob et al., 2018; Nagel et al., 2021; Dettmers et al.,
2022; Shao et al., 2024) mainly focus on minimiz-
ing the direct quantization error for a given weight

matrix W ∈ Rm×n, optimizing:

argmin
Q

∥W −Q∥2F,

where Q is obtained by rounding weights to the
nearest discrete values (Banner et al., 2019; Stock
et al., 2020; Wu et al., 2020). However, this naive
rounding approach often results in significant ac-
curacy degradation. This problem is particularly
pronounced in large-scale LLMs, where even small
perturbations in weights can propagate across lay-
ers, gradually accumulating and worsening errors.

To mitigate this issue, activation-aware PTQ
methods (Dong et al., 2019; Nagel et al., 2020;
Li et al., 2021, 2024a) incorporate a calibration
dataset X ∈ Rn×d to account for the interaction
between weight quantization and activations:

argmin
Q

∥(W −Q)X∥2F.

This formulation ensures that weight quantiza-
tion preserves the statistical behavior of activa-
tions, and leads to improved model performance.
OPTQ (Frantar et al., 2023) refines activation-
aware PTQ by introducing error feedback, which
reduces cumulative quantization errors for effec-
tive low-bit quantization. QuIP (Chee et al., 2023)
and QuIP# (Tseng et al., 2024) further improve
robustness through incoherence processing, apply-
ing orthogonal transformations to W and its local
Hessian to reduce correlations, making 2-bit quan-
tization more effective.

In addition, recent studies show that effectively
controlling a small portion of activation outlier-
sensitive weights can significantly enhance quanti-
zation performance. SpQR (Dettmers et al., 2023b)
retains these critical salient weights in higher pre-
cision, while AWQ employs per-channel scaling
to protect them, effectively mitigating the adverse
effects of activation outliers during quantization.

2.2 Weight Matrix Factorization
Matrix factorization decomposes a matrix into low-
rank components for efficient representation and
computation (Golub et al., 1987; Saha et al., 2023).
Recently, it has been applied to LLM compression
by approximating weight matrices with low-rank
representations (Li et al., 2023; Gao et al., 2024b).
Given a weight matrix W ∈ Rm×n, these methods
decompose it into lower-dimensional matrices, L ∈
Rm×r and R ∈ Rr×n, by minimizing:

argmin
L,R

∥W − LR∥2F.
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By reducing the rank r, low-rank decomposition,
such as Singular Value Decomposition (SVD) ef-
fectively reduces storage and computational costs
while preserving key weight structures.

Activation-aware factorization further incorpo-
rates activation statistics to refine weight rep-
resentation, keeping the decomposition aligned
with the model’s actual computational behavior.
ASVD (Yuan et al., 2023) introduces a diagonal
scaling matrix to normalize activations, improving
numerical stability, while SVD-LLM (Wang et al.,
2025) applies truncation-aware data whitening via
Cholesky decomposition.

2.3 Quantization Error Reconstruction
Empirical studies suggest that quantization errors
W − Q often exhibit a low-rank structure (Yao
et al., 2024). This observation has led to hybrid
approaches that first quantize the weight matrix and
then approximate the resulting quantization error
using a low-rank term, which serves as an error
compensation mechanism:

Q =argmin
Q

∥W −Q∥2F

L,R =argmin
L,R

∥W −Q− LR∥2F.

Here, Q represents the quantized weight matrix,
forming the major representation of W, while LR
provide a low-rank approximation of the residual
quantization error (Liu et al., 2024).

ZeroQuant-V2 (Yao et al., 2024) estimates L
and R by applying SVD to the residual error
W − Q. Subsequent methods further refine this
process by incorporating activation-aware adjust-
ments: LQER (Zhang et al., 2024) introduces a
diagonal scaling matrix derived from activations,
while QERA (Zhang et al., 2025) improves error re-
construction by leveraging an input-space autocor-
relation matrix, and provides theoretical guarantees
for enhanced performance.

Unlike Q-LoRA (Dettmers et al., 2023a) and
other quantization-based parameter-efficient fine-
tuning (Q-PEFT) methods that focus on weight
representations optimized for fine-tuning, quanti-
zation error reconstruction methods solely aim for
efficient weight representation.

2.4 Jointly Optimized Quantization and Low
Rank Approximation

A natural extension of quantization error recon-
struction is to jointly optimize both the quantized

component Q and the low-rank component LR,
leading to the following formulation:

Q,L,R = argmin
Q,L,R

∥(W −Q− LR)∥2F.

Unlike the two-stage approach that applies quan-
tization followed by low-rank error correction once,
joint optimization methods often iteratively alter-
nate between quantization and low-rank approxima-
tion, which generally leads to better performance.
These methods typically adopt either a quantize-
first strategy (Saha et al., 2024; Li et al., 2024b) or
a low-rank-first strategy (Guo et al., 2024), distin-
guished by their iteration ordering.

Rather than distinguishing them by iteration se-
quences, we propose interpreting these approaches
through their initialization of low-rank components.
Specifically, the quantize-first approach initializes
LR to zero, whereas the low-rank-first approach
initializes them to factorized weights. Our per-
spective enables us to reframe joint optimization
methods within a unified view in Algorithm 1.

Algorithm 1 Joint Q+ LR Optimization

Input: Pretrained weight W, Num of iterations T
Output: QT ,LT ,RT

1: L0,R0 ← Initialize
2: for t = 1 to T do
3: Qt ← Quantize(W − Lt−1Rt−1)
4: Lt,Rt ← LRApprox(W −Qt)
5: end for

Return: Ŵ = QT + LT ·RT

Through Algorithm 1, we gain deeper insights
into the joint optimization procedure. This frame-
work not only allows us to explore algorithmic vari-
ations by examining different initialization strate-
gies but also suggests the potential role of initial-
ization choices in weight decomposition.

CALDERA (Saha et al., 2024), a weight-only
PTQ method jointly optimizes Q, L, and R in an
activation-aware manner, has shown significant im-
provements in quantization quality, particularly in
extreme low-bit settings. Despite its outstanding
performance, CALDERA solely examines its ap-
proach by initializing low-rank components to zero,
neglecting the potential impact of initialization on
performance. Within this CALDERA framework,
we further concentrate on how different initializa-
tion strategies for the low-rank component affect
performance, aiming to shed light on its role in the
overall optimization process.
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Figure 1: Outlier-Driven Low-Rank Initialization (ODLRI) Framework. ODLRI decomposes the weight matrix
W by first identifying salient weights, corresponding to activation outliers, using the diagonal of the Hessian. These
salient weights are then approximated via low-rank decomposition, producing L0 and R0, while the remaining
weights are quantized. This decomposition serves as initialization for the iterative joint optimization of Q+ LR.

3 Rethinking Joint Q+LR Optimization

3.1 Dependence on LR Initialization
To examine the role of initialization in joint op-
timization, we evaluate CALDERA (Saha et al.,
2024) under two distinct initialization strategies for
LR: zero initialization and matrix factorization-
based initialization. For analyzing the contribution
of quantized representation and low-rank compo-
nents to WX, we measure ∥QX∥ and ∥LRX∥ at
both the initial and final stage of iteration.

Surprisingly, as shown in Table 1, when L, R are
initialized to zero, we observe that Q persistently
reconstructs W, while LR serves as a residual
correction, closely resembling quantization error
reconstruction. Conversely, initializing L,R with
a matrix factorization of W leads to a reversed role
assignment, where LR captures most of W, and
Q quantizes the residuals throughout the iteration.

LR Initialization 0 LRApprox(W)

∥QX∥ ∥LRX∥ ∥QX∥ ∥LRX∥
First Iteration 0.999 0.014 0.158 0.915
Last Iteration 0.961 0.073 0.401 0.664

Table 1: Effect of LR Initialization in CALDERA. Ac-
tivation norms ∥QX∥ and ∥LRX∥ are reported at the
first and last iterations for the Layer 1 Key Projection
matrix of Llama2-7B over 15 iterations. Norms are
normalized by ∥WX∥ (i.e., ∥LRX∥/∥WX∥). More
results are provided in Appendix C.4.

This finding reveals that joint optimization out-
comes are highly sensitive to initialization choices,
which ultimately determine whether quantization
or matrix factorization dominates the final repre-
sentation. While existing methods have defaulted

to either zero initialization or low-rank approxima-
tion of W (i.e., LRApprox(W)), the optimality of
these conventional approaches remains unexplored.
Rather than being restricted to these established
choices, we ask:

How should we initialize L,R to achieve
optimal decomposition of W into Q+LR?

3.2 Outlier-Driven Low-Rank Initialization

For optimal decomposition of W ≈ Q+ LR, we
assign distinct roles to quantization and low-rank
approximation based on their properties. Quanti-
zation is highly sensitive to activation outliers, as
extreme activations amplify weight sensitivity, lead-
ing to discretization errors that degrade model per-
formance (Lin et al., 2024; Dettmers et al., 2023b).
In contrast, the low-rank component utilizes a prod-
uct formulation of two low-bit factors, effectively
yielding a higher bit representation than quantiza-
tion. To leverage the enhanced representational ca-
pacity of the low-rank component, we structure LR
to explicitly capture salient weights before quan-
tization, rather than treating it as a post-hoc cor-
rection term. This results in salient weights being
absorbed into the low-rank component, allowing
Q to operate on a smoother, more uniform residual,
ultimately improving quantization efficiency.

To explicitly assign the low-rank component to
capturing salient weights, we introduce Outlier-
Driven Low-Rank Initialization (ODLRI), as illus-
trated in Figure 1. More precisely, we first decom-
pose the activation matrix X into two components:

X = Xo +Xr,
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where Xo ∈ Rn×d contains only the top-k acti-
vation channels (outliers) with the highest norms,
the remaining channels are set to zero. These
top-k activation channels are identified by analyz-
ing the diagonal entries of the Hessian, computed
as H = XX⊤. The remaining activations (non-
outlier components) are then captured by Xr.

Although setting k = r (where L ∈ Rm×r and
R ∈ Rr×n) would maximize the use of low-rank
approximation, we intentionally choose k < r
to focus aggressively on outlier-related structures
rather than broadly approximating the entire weight
distribution. This targeted selection ensures that the
low-rank component prioritizes the most activation-
sensitive elements, refining the decomposition and
enhancing quantization robustness.

We then initialize L and R via outlier-aware
matrix factorization, focusing on high-variance ac-
tivation directions that are likely to induce quanti-
zation errors. Specifically, we solve the following
truncated optimization problem:

L0,R0 = argmin
L,R

∥(W − LR)Ho(W − LR)⊤∥,

where Ho = XoX
⊤
o captures the covariance of

outlier-sensitive channels. This objective ensures
that L0R0 prioritizes reconstructing weight direc-
tions that interact strongly with outlier channels in
the activation distribution. A detailed algorithm
for solving this optimization is provided in Ap-
pendix B.1, and the specific selection of k is de-
scribed in Appendix B.2.

4 Experiment

4.1 Experimental Setup

To evaluate the effectiveness of Outlier-Driven
Low-Rank Initialization (ODLRI), we integrate it
into CALDERA (Saha et al., 2024), an iterative
joint optimization framework for extreme low-bit
quantization of Q,L,R. By default, CALDERA
first quantizes the weight matrix and then optimizes
a low-rank component, effectively treating L,R as
zero-initialized correction factors.

In contrast, ODLRI replaces this zero-
initialization with an outlier-aware initialization,
ensuring that salient weights are explicitly modeled
in the low-rank component before quantization.
We conduct a comprehensive comparison against
CALDERA’s standard setup to quantify the impact
of LR initialization on final accuracy and stability.

Quantization Setup. We integrate ODLRI into
CALDERA while keeping the quantization con-
figuration largely unchanged. For Quantize, we
use a 2-Bit quantization scheme implemented via
QuIP# (Tseng et al., 2024), which employs an E8
lattice codebook for stable 2-Bit quantization. For
LRApprox, we experiment with both 16-Bit and 4-
Bit precision, where the 16-Bit setting remains un-
quantized, while the 4-Bit setting undergoes quanti-
zation. For 4-Bit precision, we adjust L and R via
the LPLR iterative algorithm (Saha et al., 2023).

CALDERA performs outer iterations alternat-
ing between Quantize and LRApprox, along with
inner iterations for the LPLR procedure. We fol-
low CALDERA’s default configuration, running 15
outer iterations, and 10 inner iterations when the
L,R components are quantized to 4-Bit.

Models. We conduct experiments on a range
of large language models, including Llama2 (7B,
13B, and 70B parameters) (Touvron et al., 2023),
Llama3-8B (Dubey et al., 2024), and Mistral-
7B (Jiang et al., 2023).

Evaluation Metrics. We evaluate quantization
performance using perplexity and zero-shot accu-
racy benchmarks. Perplexity is measured on the
test splits of WikiText-2 (Merity et al., 2017) and
C4 (Raffel et al., 2020), following each model’s
predefined context length (e.g., 4096 tokens for
Llama2 and 8192 tokens for Llama3). Zero-
shot accuracy is assessed using the EleutherAI
lm-evaluation-harness (Gao et al., 2024a), cov-
ering a range of NLP benchmarks, including
Winogrande (Sakaguchi et al., 2020), RTE (Ben-
tivogli et al., 2009), PiQA (Bisk et al., 2020),
ARC Easy (Clark et al., 2018), and ARC Chal-
lenge (Clark et al., 2018). To ensure statistical reli-
ability, most results are averaged across two inde-
pendent random seeds (Details are in Appendix A).

4.2 Effect of LR Initialization on Joint Q+LR
Optimization

We compare three initialization methods for L,R
to evaluate their impact on performance. The
first method, Zero Initialization (0), follows
CALDERA’s default setup, where L0 = 0 and
R0 = 0. The second method, LRApprox(W),
initializes L,R using a low-rank approximation
(LPLR) of W. The third method, ODLRI, is our
proposed approach, which explicitly focuses salient
weights for low-rank approximation.
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(b) Value projection
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(c) Down Projection

Figure 2: Quantization Scale across different initialization strategies. We present the quantization scale over 15
iterations, where both L and R are quantized to 4-Bit at rank 256. The three subplots display results for the Key
(left), Value (middle), and Down (right) projection layers in Layer 10 of Llama2-7B. ODLRI (red stars) consistently
achieves the lowest quantization scale, highlighting its effectiveness in low-bit quantization. Additional results are
provided in the Appendix C.5
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Figure 3: Activation-aware Error across different initialization strategies. We present the normalized activation-
aware error ∥(W −Q− LR)X∥2F/∥WX∥2F over 15 iterations, where both L and R are quantized to 4-Bit at rank
256. The three subplots display results for the Key (left), Value (middle), and Down (right) projection layers in
Layer 10 of Llama2-7B. ODLRI (red stars) consistently achieves the lowest error, demonstrating its effectiveness in
accurately representing weights. Additional results are provided in the Appendix C.5

Quantization Scale. We first examine the quan-
tization scale, which reflects the dynamic range of
the weights and directly impacts low-bit quantiza-
tion efficiency. A lower quantization scale indicates
a more compact weight distribution, enabling finer
representation in low-bit precision and reducing
overall quantization error.

Figure 2 shows that ODLRI significantly reduces
the quantization weight scale, ensuring that weights
are mapped into a range more suitable for accu-
rate quantization. In contrast, baseline methods
exhibit higher scales, making quantization more
challenging and increasing the risk of performance
degradation. This reduction in quantization scale
with ODLRI is a key factor in achieving superior
performance in extreme low-bit settings.

Additional results on other layers and different
projection types confirm consistent scale reduction
by ODLRI (see Appendix C.5).

Activation-aware Error. To further validate that
ODLRI effectively minimizes our objective, we
measure the normalized activation-aware error
for each layer’s weight component. This metric
evaluates how well the decomposition preserves
activation-dependent weight structure:

∥(W −Q− LR)X∥2F
∥WX∥2F

.

As illustrated in Figure 3, the default CALDERA
configuration with zero initialization results in sig-
nificantly higher activation-aware errors. Even
when using a low-rank approximation of W, the
error remains consistently higher across layers
compared to ODLRI. The substantial reduction
in activation-aware error achieved by ODLRI con-
firms that it represents weight approximations more
effectively. Additional results are provided in Ap-
pendix C.5.
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Model Method Rank Avg Bits PPL ↓ Zero-Shot Accuracy ↑

Wiki2 C4 Wino RTE PiQA ArcE ArcC

7B

CALDERA 64 2.1 7.34 9.50 63.85 55.23 72.69 62.25 32.04
+ODLRI 64 2.1 7.20 9.52 65.04 62.45 72.91 65.49 33.70

CALDERA 128 2.2 6.90 9.01 65.27 57.58 72.80 63.89 34.21
+ODLRI 128 2.2 6.72 8.82 64.33 57.76 75.30 62.63 33.19

CALDERA 256 2.4 6.47 8.47 65.19 60.11 74.43 66.35 34.25
+ODLRI 256 2.4 6.33 8.27 66.42 61.01 74.67 65.49 36.09

13B

CALDERA 64 2.08 5.92 7.96 66.37 58.84 75.27 69.00 38.18
+ODLRI 64 2.08 5.91 7.97 67.32 63.18 75.90 65.82 37.20

CALDERA 128 2.16 5.77 7.71 67.4 62.45 75.70 69.65 38.91
+ODLRI 128 2.16 5.73 7.71 69.69 61.37 76.50 68.69 39.32

CALDERA 256 2.32 5.56 7.39 69.13 64.08 75.98 70.26 39.88
+ODLRI 256 2.32 5.46 7.28 68.19 62.63 76.65 71.48 39.96

70B

CALDERA 128 2.1 4.09 5.91 75.93 71.84 79.38 76.98 47.10
+ODLRI 128 2.1 4.06 5.89 75.30 72.56 79.98 78.45 49.06

CALDERA 256 2.2 3.99 5.78 75.69 72.92 80.41 78.28 49.15
+ODLRI 256 2.2 3.94 5.73 75.91 70.75 80.73 77.96 49.91

Uncompressed (7B) — 16 5.12 6.63 67.3 63.2 78.5 69.3 40.0
Uncompressed (13B) — 16 4.57 6.05 69.5 61.7 78.8 73.2 45.6
Uncompressed (70B) — 16 3.12 4.97 77.0 67.9 81.1 77.7 51.1

Table 2: Comparison of our method with CALDERA on zero-shot perplexities (↓) and accuracies (↑) of Llama2
models on WikiText-2 and C4. Q is quantized 2-Bit and L,R are quantized 4-Bit. Lower perplexity and higher
accuracy values are bolded.

4.3 Zero-shot Evaluation

Following the setup in the previous section, we con-
duct zero-shot evaluations of various models with
a fixed 2-Bit Q component and an LR component
set to either quantized 4-Bit or unquantized 16-Bit.
The goal is to assess how applying ODLRI initial-
ization compares against the baseline CALDERA
under different quantization constraints.

4-Bit LR on Llama2. Table 2 reports results
where the L and R are quantized to 4-Bit, with
LPLR applied for iterative updates. Despite this ad-
ditional optimization step, ODLRI consistently im-
proves perplexity (WikiText-2, C4) and zero-shot
accuracy across multiple tasks (e.g., PiQA, RTE)
for most configurations. These results highlight
that a principled initialization strategy enhances
performance, even under aggressive quantization.

Importantly, the only modification from stan-
dard CALDERA is the LR initialization strategy,
demonstrating that even in highly constrained quan-
tization settings, ODLRI retains crucial distribu-
tional information that would otherwise can be lost.
Additional results under more extreme compres-
sion, specifically at lower ranks (r ≤ 32), can be
found in Appendix C.2.

Model Method Rank Avg Bits
PPL ↓

Wiki2 C4

7B

CALDERA 64 2.40 7.25 9.52
+ODLRI 64 2.40 7.17 9.41

CALDERA 128 2.80 6.84 8.95
+ODLRI 128 2.80 6.70 8.79

CALDERA 256 3.60 6.42 8.43
+ODLRI 256 3.60 6.18 8.23

13B

CALDERA 64 2.32 5.93 7.95
+ODLRI 64 2.32 5.90 7.96

CALDERA 128 2.64 5.77 7.69
+ODLRI 128 2.64 5.64 7.54

CALDERA 256 3.28 5.48 7.32
+ODLRI 256 3.28 5.38 7.14

Uncompressed (7B) — 16 5.12 6.63
Uncompressed (13B) — 16 4.57 6.05

Table 3: Zero-Shot Perplexity (↓) of ODLRI with
CALDERA for Llama2 models on WikiText-2 and C4.
Q is 2-Bit quantized, and L,R are 16-Bit. Lower val-
ues are bolded. Additional zero-shot accuracy results
are provided in Appendix C.1.

16-Bit LR on Llama2. We further evaluate the
models in a 16-Bit LR setting, where the LR com-
ponent is left unquantized (Table 3).

Without the need for low-bit refinement steps
on LR component, this configuration allows for a
direct assessment of ODLRI’s effectiveness. It en-
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ables L0,R0 to fully capture the benefits of outlier-
driven initialization, preserving fine-grained weight
structures that are critical for performance under ex-
treme low-bit settings. As expected, perplexity and
zero-shot accuracy improve compared to the more
constrained 4-Bit LR scenario, providing clearer
evidence of ODLRI’s effectiveness without the con-
founding effects of additional LR quantization. As
in the 4-Bit LR setting, ODLRI achieves more pro-
nounced gains, particularly at higher ranks. The
corresponding zero-shot accuracy measurements
for 16-Bit LR setting are provided in Appendix C.1.

These results demonstrate that the effectiveness
of ODLRI holds across both aggressive 4-Bit LR
settings and relaxed 16-Bit LR conditions without
additional refinement, highlighting its robustness
across diverse compression regimes.

4-Bit LR on Llama3-8B and Mistral-7B. To as-
sess the generalizability of ODLRI beyond Llama2
models, we evaluate its performance on Llama3-
8B and Mistral-7B. Table 4 presents results for
these models with 4-Bit quantization applied to the
LR component. Under a range of rank configura-
tions, ODLRI consistently improves over original
CALDERA by more effectively capturing salient
weight directions, resulting in lower perplexity on
both WikiText-2 and C4. These results demon-
strate that the effectiveness of ODLRI generalizes
beyond Llama2 models. We also provide results
on non-LLaMA models and alternative quantizers
in Appendix C.3.

Rank Method Llama3-8B Mistral-7B
Wiki2 ↓ C4 ↓ Wiki2 ↓ C4 ↓

64 CALDERA 10.58 11.35 6.37 7.11
+ODLRI 10.35 11.15 6.37 7.10

128 CALDERA 9.41 10.21 6.11 6.89
+ODLRI 9.35 10.32 6.08 6.86

256 CALDERA 8.70 9.77 5.77 6.59
+ODLRI 8.12 9.33 5.69 6.53

Table 4: Zero-Shot Perplexity (↓) of ODLRI with
CALDERA for Llama3-8B and Mistral-7B on WikiText-
2 and C4. Q is 2-Bit quantized, while L,R are 4-Bit
quantized. Lower values are bolded.

4.4 Number of Outlier Columns (k)

In ODLRI, we determine salient weight compo-
nents by explicitly targeting activation outliers, se-
lecting top-k activations corresponding to outlier-
sensitive weights. Instead of following the rank-

based selection that picks the top-r components
based solely on low-rank dimension r, we set k < r
to intensively focus on outliers.

ODLRI L, R 16-Bit L, R 4-Bit

Wiki2 ↓ C4 ↓ Wiki2 ↓ C4 ↓

Ho (k = r) 6.38 8.43 6.46 8.52
Ho (k < r) 6.18 8.23 6.33 8.27

Table 5: Comparison of OLDRI with various values
of k, specifically Ho (k = 256) and Ho (k = 16) by
perplexities (↓) of Llama2-7B on WikiText-2 and C4.
Q is 2-Bit, and L, R are either 16-Bit or quantized
4-Bit with a rank of 256. Lower perplexity values are
bolded. Details regarding selection of k are provided
in Appendix B.2.

To evaluate the impact of this selection, we mea-
sure perplexity (PPL) under different configura-
tions. Our results show that choosing k based on
activation outliers consistently outperforms select-
ing the top-r components through standard low-
rank approximation. This improvement highlights
the importance of leveraging activation statistics to
guide low-rank approximation, ensuring that the
most outlier-sensitive weights are efficiently mod-
eled in LR. These findings validate that ODLRI’s
targeted selection enhances low-rank approxima-
tion, leading to better quantization performance in
extreme low-bit settings.

5 Conclusion

In this work, we investigated the role of initializa-
tion strategies in iterative joint optimization ap-
proaches for LLM compression. We introduce
a unified framework that reformulates joint opti-
mization algorithms through the lens of low-rank
component initialization. Our analysis shows that
the choice of initialization determines the entire
trajectory of weight decomposition by assigning
persistent roles to the components. Based on these
insights, we proposed ODLRI, which assigns a dis-
tinct role to the low-rank component to capture
activation-sensitive weights while using quantiza-
tion for the remaining weights. Through exten-
sive experiments across various LLM architectures,
we demonstrated that incorporating ODLRI sig-
nificantly improves model performance and com-
pression stability. Consequently, our approach ad-
vances the practical implementation of efficient
LLM compression and steers us toward optimal
weight decomposition.
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Limitations

Our work focuses on weight-only quantization, op-
timizing the decomposition of model weights into
quantized and low-rank components. While this ap-
proach enhances low-bit quantization performance,
it does not address the quantization of activations
or KV cache, which are critical for further improv-
ing inference efficiency. Joint weight and activa-
tion quantization introduces additional challenges,
such as distributional shifts and increased sensi-
tivity to outliers, requiring specialized calibration
techniques. Similarly, KV cache quantization is
essential for reducing memory overhead in long-
context inference but remains outside the scope of
this study.

Additionally, while we evaluate ODLRI within
CALDERA, we believe that our approach can
be applied to other joint Q + LR optimization
algorithms beyond CALDERA. Exploring how
ODLRI integrates with different iterative quantiza-
tion frameworks presents an interesting direction
for future research.

Ethical Considerations

We focus on efficient compression of LLMs
through quantization and low-rank decomposition.
While these techniques improve computational ef-
ficiency and enable broader deployment, they also
present ethical considerations.

First, compressed models may inherit and am-
plify biases present in the original model. Ensuring
fairness and preventing unintended distortions due
to quantization artifacts remain critical challenges.

Second, model compression enhances accessi-
bility but may also facilitate misuse, including de-
ployment in applications without adequate ethical

oversight. Responsible usage and regulation are
essential.

We emphasize the importance of ethical AI de-
velopment and encourage continued evaluation of
the societal impact of model compression.
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A Additional Experimental Setup

Calibration Data and Hessian Computation.
We use precomputed Hessians from RelaxML
(2025) for Llama2 models. For Llama3-8B and
Mistral-7B, Hessians are computed directly to en-
sure alignment with model-specific architectures.
Hessians are computed using 256 randomly sam-
pled examples from the RedPajama dataset (We-
ber et al., 2024). Context lengths are set to 4096
tokens for Llama2 and 8192 tokens for Llama3,
maintaining consistency with each model’s native
configuration.

Hardware Environment. Experiments were
conducted on both consumer- and enterprise-grade
GPUs. The primary pipeline was executed on
NVIDIA GeForce RTX 3090, RTX 4090, and RTX
A6000 GPUs, while the quantization and evalua-
tion of the Llama2-70B model were performed on
NVIDIA L40s GPU clusters due to its large size.

Computation time for quantization and evalua-
tion varied depending on the model size and hard-
ware configuration. For Llama2-7B and Mistral-
7B, quantization was completed in 4 GPU hours
on a cluster of six GPUs. For Llama2-13B, quanti-
zation required 8 GPU hours on a six-GPU cluster.
Besides, for Llama3-8B, quantization was achieved
in 5 GPU hours on a cluster of six GPUs. For
Llama2-70B, quantization was conducted using
four NVIDIA L40S GPUs, completing within 48
hours. In the absence of parallel processing, the
estimated runtime would have increased propor-
tionally to the number of GPUs used. Evaluation
phase was carried out on the same GPUs utilized
for quantization. Perplexity measurement required
approximately 0.5 GPU hours, while zero-shot eval-
uation consumed around 1.5 GPU hours. Since pre-
trained models were used, no additional training
time was required.

All experiments were repeated using two differ-
ent random seeds, with the exception of Llama2-
70B, for which only one seed was used due to
resource constraints. Overall, the quantization and
evaluation processes accumulated approximately
4000 GPU hours in total.

CALDERA’s Default Configuration. In our ex-
periments, the CALDERA model was configured
with the following settings: hadamard_transform
was set to true, outer_iter to 15, inner_iter
to 10, rand_svd to false, Q_hessian_downdate
to false, and update_order to Q LR.

Summary of Model and Dataset. We present a
summary of the models and datasets employed in
this paper. The detailed specifications, including
sources, access methods, and licensing terms, are
summarized in Table 6. Also, the datasets and their
corresponding metadata are detailed in Table 7.

B Outlier-Aware Initialization Detail

B.1 ODLRI Method in Detail

To process outlier-sensitive weights by low-rank
approximation, we decompose our optimization
objective

WX = W(Xo +Xr) = WXo +WXr

into two distinct components. Here, Xo represents
the channels containing outliers (with other chan-
nels set to zero), while Xr indicates the remaining
channels (with outlier channels zeroed). Since the
non-zero entries of Xo and Xr are mutually exclu-
sive along the channel dimension, both Xo and Xr
retain the original matrix dimensions.

Standard activation-aware low-rank factoriza-
tion, which solves

argmin
L,R

∥(W − LR)X∥2F.

Using the empirical second-moment matrix H =
XX⊤, this objective is equivalent to:

argmin
L,R

∥(W − LR)H(W − LR)⊤∥.

However, this formulation treats all activations
equally, leading to a low-rank approximation that
does not explicitly focus on outliers, which are
often the primary bottleneck in quantization.

To ensure that the low-rank component captures
only the most challenging weight structures, we
define a restricted activation covariance matrix Ho,
a submatrix of H that prioritizes outlier-sensitive
channels:

(Ho)ij =

{
Hij , if i, j ∈ I,
0, otherwise

(1)

where the subset of indices I ⊂ {1, . . . , d} cor-
responds to the top-k (k < r) channels with the
highest diagonal values of H. These channels cor-
respond to the most dominant activation patterns,
which often align with weight outliers that distort
quantization performance.
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Model Source Accessed via License

Llama2-7B (Touvron et al., 2023) Link Llama 2 Community License
Llama2-13B (Touvron et al., 2023) Link Llama 2 Community License
Llama2-70B (Touvron et al., 2023) Link Llama 2 Community License
Llama3-8B (Dubey et al., 2024) Link Meta Llama 3 Community License
Mistral-7Bv0.1 (Jiang et al., 2023) Link Apache license 2.0

Table 6: Summary of models used in this paper.

Dataset Source Accessed via License

RedPajama-Data-1T-Sample (Weber et al., 2024) Link Apache License 2.0
Hessians-Llama-2-7b-6144 (RelaxML, 2025) Link -
Hessians-Llama-2-13b-6144 (RelaxML, 2025) Link -
Hessians-Llama-2-70b-6144 (RelaxML, 2025) Link -
Wikitext-2-raw-v1 (Merity et al., 2017) Link CC-BY-SA-3.0
C4 (Raffel et al., 2020) Link ODC-BY
lm-eval-harness (Gao et al., 2024a) Link MIT License
Winogrande (Sakaguchi et al., 2020) Link Apache License 2.0
RTE (Bentivogli et al., 2009) Link Apache License 2.0
PiQA (Bisk et al., 2020) Link Apache License 2.0
ARC Easy (Clark et al., 2018) Link CC-BY-SA-4.0
ARC Challenge (Clark et al., 2018) Link CC-BY-SA-4.0

Table 7: Summary of datasets used in this paper.

We then solve the outlier-aware optimization
problem:

L0,R0 = argmin
L,R

∥(W − LR)Ho(W − LR)⊤∥.

This is achieved by applying a Cholesky de-
composition to the selected Hessian submatrix Ho,
which encodes the activation covariance informa-
tion of high-variance channels:

Ho = SoS
⊤
o ,

where So is a lower triangular matrix.
Unlike SVD-LLM (Wang et al., 2025), which ap-

plies data whitening to the entire Hessian matrix H,
our transformation performs selective whitening on
the outlier subset Ho corresponding to Xo. This
selective whitening improves the numerical con-
ditioning for the subsequent SVD while ensuring
that the low-rank component effectively captures
the salient weight information.

Once the whitening transformation is applied,
we perform SVD on the transformed weight matrix
WSo, truncating the decomposition to rank r to

obtain the outlier-focused low-rank components:

SVD(WSo) = U:,:rΣ:r,:rV
⊤
:r,:.

Here, the Python-style slicing notation U:,:r indi-
cates that we select all rows and the first r columns
of U. Similarly, Σ:r,:r denotes the upper-left r × r
block of Σ, and V:r,: selects the first r rows of V.

To ensure that the decomposition remains
truncation-aware, we initialize the low-rank and
quantization components as follows:

L0 =U:,:r

√
Σ:r,:r

R0 =
√
Σ:r,:rV

⊤
:r,:S

−1
o .

By ensuring that the residual weight matrix
W − L0R0 has been preconditioned to remove
outlier effects, we significantly reduce quantization
error compared to conventional activation-aware
quantization approaches. This allows the quantized
component Q to operate on a more uniform weight
distribution, improving numerical stability:

Q1 = Quantize(W − L0R0).
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B.2 Rank-Dependent Outlier Selection of k
In our experiments, we denote the rank of the low-
rank components L and R as r, and we set the
number of outlier-sensitive columns k in proportion
to this rank. Specifically, we define:

k = p× n,

where n is the dimension of the calibration Hessian
H ∈ Rn×n and p is a rank-dependent percentage.

We adopt the following settings:

• For r = 64: p = 0.1%

• For r = 128: p = 0.2%

• For r = 256: p = 0.4%

For example, consider the key projection matrix
of Llama2-7B. Its corresponding Hessian matrix
has a shape of 4096× 4096. When we set the rank
r = 256, we use p = 0.4%. Thus, the number of
outlier-sensitive columns is computed as:

k = p× n = 0.4%× 4096 ≈ 16.

This means that in this example, 16 outlier-sensitive
columns are selected for the key projection.

B.3 ODLRI’s Impact on Salient Weights

Hessian ∥LRXo∥
∥WXo∥

∥ELRXo∥
∥WXo∥

∥LRXr∥
∥WXr∥

∥ELRXr∥
∥WXr∥

H 0.997 0.073 0.920 0.392

Ho 0.999 0.001 0.903 0.430

Table 8: Effect of Hessian selections in ODLRI. Re-
sults are shown for Layer 10 Key Projection matrix
of Llama2-7B when using ODLRI initialization. We
compare normalized norm of ∥Xo∥ and ∥Xr∥ for LR
and ELR when using ODLRI initialization. L2-norm is
denoted by ∥ · ∥. And ELR = W − LR.

This section validates that ODLRI effectively
captures and preserves salient weights by explic-
itly targeting outlier activations in X. Unlike stan-
dard low-rank approximations that distribute ca-
pacity across all activations, ODLRI selectively
focuses on outlier activations, ensuring that the
low-rank component is structured to represent the
most outlier-sensitive weights before quantization.

To demonstrate this, we compare two hessian for-
mulations for guiding the low-rank approximation.
The first uses the full activation matrix H = XX⊤,
while the second employs only the top-k outlier ac-
tivations, Xo, forming the restricted hessian matrix

Ho = XoX
⊤
o . The effectiveness of each approach

is assessed by evaluating the low-rank represen-
tation LR through the activation norm ∥LRXo∥
compared to ∥WXo∥.

Table 8 presents that using Ho yields a signif-
icantly closer approximation of WXo than using
H, confirming that ODLRI’s outlier-driven initial-
ization better preserves salient weights. Moreover,
the approximation for non-salient weights (Xr) re-
mains stable, demonstrating that prioritizing acti-
vation outliers does not degrade overall representa-
tion.

C Additional Results

C.1 16-Bit LR on Llama2

Table 9 presents the results of zero-shot accuracy
under the setting of 2-Bit Q and 16-Bit LR. Over-
all, the results show that the method incorporating
ODLRI outperforms the baseline CALDERA ap-
proach.

C.2 Lower Rank, Extreme Compression on
Llama2

To further evaluate the robustness of our method un-
der more aggressive compression settings, we con-
duct additional experiments at significantly lower
ranks, specifically r = 16 and r = 32. These
settings simulate extreme compression scenarios,
where the capacity of the low-rank residual be-
comes severely constrained.
We evaluate on the Llama2-7B model using the
same setup as our main experiments: Q is quan-
tized to 2 bits, and L,R to 4 bits. Table 10 reports
perplexity and accuracy across a range of zero-shot
evaluation benchmarks.
Despite the reduced rank and further limited rep-
resentational capacity, our proposed ODLRI ini-
tialization continues to yield improvements over
CALDERA. These findings confirm that ODLRI
remains effective under severe rank constraints, pre-
serving performance.

C.3 ODLRI on non-Llama Models and
Alternative Quantizers.

Abnormal outliers have been observed in Llama-
style LLMs (Yang et al., 2024; Yu et al., 2024), in-
cluding the Llama family and Mistral, possibly due
to their model architecture. To assess whether our
outlier-aware method remains effective beyond this
setting, we evaluate the robustness of ODLRI in
two distinct scenarios: (1) non-Llama architectures
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Model Method Rank Zero-Shot Accuracy ↑
Wino RTE PiQA ArcE ArcC

7B

CALDERA 64 63.73 55.59 73.4 61.93 31.27
+ODLRI 64 65.75 55.23 72.91 64.44 31.74

CALDERA 128 63.97 59.03 73.53 64.58 32.94
+ODLRI 128 63.93 59.03 73.64 64.86 33.75

CALDERA 256 66.1 60.47 74.45 64.62 34.00
+ODLRI 256 64.57 61.46 65.12 71.58 36.31

QuIP# 0 61.7 57.8 69.6 61.2 29.9

13B

CALDERA 64 67.36 58.84 75.07 68.11 37.58
+ODLRI 64 69.85 67.51 75.41 69.91 37.37

CALDERA 128 69.85 64.98 75.9 70.75 38.82
+ODLRI 128 68.98 65.83 76.14 69.59 39.93

CALDERA 256 67.12 59.02 76.24 70.28 39.08
+ODLRI 256 70.40 67.15 76.55 71.63 41.04

QuIP# 0 63.6 54.5 74.2 68.7 36.2

Uncompressed (7B) — 67.3 63.2 78.5 69.3 40.0
Uncompressed (13B) — 69.5 61.7 78.8 73.2 45.6

Table 9: Comparison of our method with CALDERA by zero-shot accuracies (↑) of Llama2 models. Q is quantized
2-Bit and L,R are 16-Bit. Higher accuracy values are are bolded.

Rank Method Avg Bits PPL ↓ Zero-Shot Accuracy ↑
Wiki2 C4 Wino RTE PiQA ArcE ArcC

16 CALDERA 2.025 7.88 10.16 62.64 51.26 72.09 60.63 31.48
+ODLRI 2.025 7.79 10.02 61.8 59.57 72.36 59.43 30.46

32 CALDERA 2.05 7.85 10.18 62.9 56.31 71.7 59.00 29.52
+ODLRI 2.05 7.47 9.75 65.03 62.45 72.52 62.28 31.65

Table 10: Comparison of our method with CALDERA on zero-shot perplexities (↓) and accuracies (↑) of Llama2
models on extreme low bit setting. Q is quantized 2-Bit and L,R are quantized 4-Bit. Lower perplexity and higher
accuracy values are bolded.

Method Llama2-7B Gemma2-2B

r = 32 r = 64 r = 32 r = 64

FP16 8.71 13.08
MXINT-base 10.62 10.38 18.72 17.65

+ODLRI 10.57 10.26 18.52 17.17

Table 11: Comparison of OLDRI with MXINT-base on
zero-shot perplexities (↓) of Llama2-7B and Gemma2-
2B on low bit setting. Q is quantized 3-Bit and L,R are
16-Bit. Lower perplexity values are bolded.

and (2) alternative quantization methods. Specifi-
cally, we conduct experiments on both Gemma2-
2B (Rivière et al., 2024) and Llama2-7B using the
MXINT (Darvish Rouhani et al., 2023) quantizer.
We replace QuIP# (Tseng et al., 2024) with MX-
INT (3-bit, block size 32) for both models.

We define MXINT-base as a baseline that fol-
lows the same quantize-then-approximate struc-
ture as CALDERA: it first applies MXINT quan-

tization and then performs low-rank approxima-
tion using the same activation-aware SVD used in
CALDERA, without any outlier-driven refinement.

Gemma2-2B serves to test whether ODLRI gen-
eralizes to architectures outside the Llama family.
In contrast, Llama2-7B is included to isolate and
examine the impact of changing the quantizer while
keeping the model architecture fixed. For both mod-
els, we adopt the same activation-aware low-rank
approximation method as CALDERA and perform
15 outer iterations alternating between quantization
and low-rank refinement.

Perplexity is measured using lm-eval-harness,
which may yield different values from those in the
main text. Hence, we also report FP16 perplexities
for reference. We note that the LR component is
kept in 16-Bit precision for all experiments. As
shown in Table 11, ODLRI consistently reduces
perplexity compared to MXINT-base. These find-
ings confirm that ODLRI remains effective across
both non-Llama models and alternative quantiza-
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tion schemes.

C.4 Effect of LR Initialization in CALDERA

Weight Type Iteration

Initialization Method

0 LRApprox(W)

∥QX∥ ∥LRX∥ ∥QX∥ ∥LRX∥

Key Proj.
First 0.999 0.014 0.158 0.915
Last 0.961 0.073 0.401 0.664

Query Proj.
First 0.999 0.014 0.148 0.924
Last 0.956 0.073 0.408 0.657

Value Proj.
First 0.993 0.072 0.378 0.885
Last 0.970 0.264 0.622 0.676

O Proj.
First 0.993 0.038 0.373 0.886
Last 0.958 0.149 0.495 0.734

Up Proj.
First 0.978 0.064 0.605 0.766
Last 0.966 0.198 0.666 0.684

Gate Proj.
First 0.986 0.048 0.443 0.824
Last 0.951 0.165 0.584 0.626

Down Proj.
First 1.000 0.013 0.071 0.976
Last 0.996 0.049 0.181 0.869

Table 12: Effect of LR initialization strategies in
CALDERA. Results are shown for Layer 1’s weight
matrices from Llama2-7B over 15 iterations. We com-
pare ∥QX∥ and ∥LRX∥, both normalized by ∥WX∥
(i.e., ∥QX∥/∥WX∥) at first and last iterations. L2-
norm is denoted by ∥ · ∥.

Weight Type Iteration

Initialization Method

0 LRApprox(W)

∥QX∥ ∥LRX∥ ∥QX∥ ∥LRX∥

Key Proj.
First 0.995 0.040 0.278 0.869
Last 0.960 0.106 0.552 0.575

Query Proj.
First 0.992 0.049 0.324 0.847
Last 0.960 0.127 0.549 0.606

Value Proj.
First 0.976 0.094 0.570 0.792
Last 0.966 0.220 0.652 0.722

O Proj.
First 0.978 0.102 0.644 0.733
Last 0.970 0.265 0.725 0.680

Up Proj.
First 0.978 0.077 0.621 0.740
Last 0.978 0.182 0.676 0.686

Gate Proj.
First 0.987 0.057 0.475 0.786
Last 0.975 0.139 0.606 0.608

Down Proj.
First 0.971 0.090 0.769 0.591
Last 0.971 0.208 0.814 0.552

Table 13: Effect of LR initialization strategies in
CALDERA. Results are shown for Layer 10’s weight
matrices from Llama2-7B over 15 iterations. We com-
pare ∥QX∥ and ∥LRX∥, both normalized by ∥WX∥
(i.e., ∥QX∥/∥WX∥) at first and last iterations. L2-
norm is denoted by ∥ · ∥.

Table 12 and Table 13 present how different LR
initialization strategies affect the final weight dis-
tributions in Layer 1 and Layer 10, respectively. In
both layers, we observe that varying the initializa-
tion leads to significantly different outcomes across
all weights. This finding reveals that joint optimiza-
tion outcomes are highly sensitive to initialization
choices, which ultimately determine whether quan-
tization or matrix factorization dominates the final
representation.

C.5 Effect of LR Initialization on Joint
Optimization for Q+LR

Figure 4 examines the quantization scale across
various layers, demonstrating that our method,
ODLRI, effectively maintains optimal scale con-
trol throughout the network. The results indicate
that ODLRI consistently outperforms baseline ap-
proaches in ensuring robust and stable quantization
across diverse layers.

Similarly, Figure 5 presents the activation-aware
error measured across multiple layers, confirming
that ODLRI reliably minimizes activation-aware
error in the preservation of intermediate activations.
These findings underscore the efficacy of our ap-
proach in reducing activation-aware error, thereby
enhancing overall model performance compared to
baseline methods.
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(a) Layer 0: Key projection
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(b) Layer 0: Value projection
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(c) Layer 0: O Projection
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(d) Layer 0: Gate projection
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(e) Layer 0: Up projection
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(f) Layer 0: Down Projection
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(g) Layer 30: Key projection
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(h) Layer 30: Value projection
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(i) Layer 30: O projection
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(j) Layer 30: Gate projection
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(k) Layer 30: Up projection
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(l) Layer 30: Down projection

Figure 4: Quantization Scale across different initialization strategies. We present the quantization scale over
15 iterations, where both L and R are quantized to 4-Bit at rank 256. Subplots display results for the Key, Value,
O, Gate, Up, and Down projection layers in Layer 0 and Layer 30 of Llama2-7B. ODLRI (red stars) consistently
achieves the lowest quantization scale, highlighting its effectiveness in low-bit quantization.
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(a) Layer 0: Key projection
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(b) Layer 0: Value projection
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(c) Layer 0: O Projection
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(d) Layer 0: Gate projection
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(e) Layer 0: Up projection
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(f) Layer 0: Down Projection
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(g) Layer 30: Key projection
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(h) Layer 30: Value projection
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(i) Layer 30: O projection
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(j) Layer 30: Gate projection
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(k) Layer 30: Up projection
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(l) Layer 30: Down projection

Figure 5: Activation-aware Error across different initialization strategies. We present the normalized activation-
aware error ∥(W −Q− LR)X∥2F/∥WX∥2F over 15 iterations, where both L and R are quantized to 4-Bit at rank
256. Lower values indicate better preservation of activation information after quantization. Subplots display results
for the Key, Value, O, Gate, Up, and Down projection layers in Layer 0 and Layer 30 of Llama2-7B. ODLRI (red
stars) consistently shows the lowest error, demonstrating its effectiveness in reducing quantization error.
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