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Abstract

Text watermarking, which modify tokens to
embed watermark, has proven effective in de-
tecting machine-generated texts. Yet its appli-
cation to low-entropy texts like code and math-
ematics presents significant challenges. A fair
number of tokens in these texts are hardly mod-
ifiable without changing the intended meaning,
causing statistical measures to falsely indicate
the absence of a watermark. Existing research
addresses this issue by rely mainly on a lim-
ited number of high-entropy tokens, which are
considered flexible for modification, and accu-
rately reflecting watermarks. However, their
detection accuracy remains suboptimal, as they
neglect strong watermark evidences embedded
in low entropy tokens modified through water-
marking. To overcome this limitation, we intro-
duce Bayes’ Rule derived Watermark Detector
(BRWD), which exploit watermark information
from every token, by leveraging the posterior
probability of watermark’s presence. We theo-
retically prove the optimality of our method in
terms of detection accuracy, and demonstrate
its superiority across various datasets, models,
and watermark injection strategies. Notably,
our method achieves up to 50% and 70% rela-
tive improvements in detection accuracy over
the best baselines in code generation and math
problem-solving tasks, respectively.

1 Introduction

Text watermarking is an effective technique for dif-
ferentiating machine-generated text from human-
written content that subtly injects an invisible
marker, i.e. watermark, into text. It serves as a
safeguard against unauthorized or malicious use
of large language models, such as creating fake
news (Augenstein et al., 2023) and election manip-
ulating (Alvarez et al., 2023).

†Corresponding author.
1Our Code is available at https://github.com/cczslp

/BRWD.
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Figure 1: Comparison of entropy-based detector and
ours. It demonstrates the misalignment between entropy
and informativeness for watermark detection, where
low-entropy positions with critical information are over-
looked, and high-entropy positions are overestimated.

Generative watermark, which integrates water-
mark during LLM’s generation process, generally
exhibits superior detectability and robustness. A
generative watermarking method injects a water-
mark through perturbing tokens’ output distribu-
tion during text generation, and subsequently com-
putes a score indicating its presence for detection.
For instance, the KGW method (Kirchenbauer
et al., 2023) partitions the model’s vocabulary into
green and red tokens at each generation step, and
increases the output probability of green tokens,
resulting in higher proportion of green tokens in
a watermarked text. Subsequent detection is per-
formed by computing the z-score of green token
occurrences in the text.

However, text watermarking exhibits subopti-
mal performance in low-entropy scenarios, such as
code generation or mathematical problem solving,
where a fair number of tokens are unmodifiable
without compromising output quality. Statistics,
such as the z-score computed for these tokens, sug-
gest the absence of a watermark, providing con-
trary evidence of its presence and thus diminishing
the effectiveness of the watermark detector. This
limitation poses a substantial barrier to detecting
malicious or unauthorized activities in software de-

14330

https://github.com/cczslp/BRWD.
https://github.com/cczslp/BRWD.


velopment, academic exams (Susnjak, 2022), and
job interviews (Canagasuriam and Lukacik, 2024),
raising concerns about social equality and ethical
use of technology. Subsequent works (Lee et al.,
2024; Lu et al., 2024) attempt to enhance detec-
tion accuracy by prioritizing high-entropy tokens,
which are considered more adjustable to watermark
perturbations, thus more indicative of watermark’s
presence. In contrast, low-entropy tokens receive
little weight during detection. Nevertheless, their
detection accuracy remains suboptimal, as they fail
to leverage the substantial information in highly
indicative low-entropy tokens, which are actually
modified through watermarking.

We identified a misalignment between the
entropy-based mechanism and the goal of detec-
tion: Entropy inadequately captures the modifia-
bility of a token, nor does it account for the actual
modification introduced by watermarking. To il-
lustrate the misalignment, consider a low-entropy
position where the probability is concentrated on
a red token but presents a green one. It serves as a
strong evidence of the watermark’s presence. How-
ever, entropy-based detectors would assign a small
weight to this position and neglect this evidence.

To address this misalignment, we propose Bayes’
Rule-derived-Watermark Dector (BRWD), which
quantifies the impact of watermark injection on ev-
ery token. We calculate the posterior likelihood of
every token altered by watermark injection with
Bayes’ rule, then aggregate it into a total score. A
token that deviates more from its original distri-
bution and consequently shows stronger evidence
of watermark injection has a greater impact on the
score. In this way, we extract more information
from every token, especially highly indicative and
low-entropy tokens, instead of neglecting them.

We prove that BRWD achieves optimal true pos-
itive rate (TPR), given any false positive rate (FPR)
limit. Our method is compatible with various water-
mark injection techniques. Extensive experiments
across multiple language models, generative tasks
and watermark injection schemes, under scenarios
with or without prompts, demonstrate the superior
performance of our approach. In particular, un-
der a 1% FPR constraint in mathematical contexts,
BRWD boosts the TPR from below 60% to over
90%. Furthermore, BRWD demonstrates adapt-
ability to general high-entropy texts and exhibits
robustness against removal attacks.

https://www.recordedfuture.com/research/i-c
hatbot

In summary, our main contributions are:

• We propose a watermark detection approach
called BRWD, which significantly improves
watermark detection accuracy in low-entropy
scenarios.

• We provide theoretical analysis on the opti-
mality of BRWD under any constraint on false
positive rate.

• We conduct experiments with various water-
marking methods in low-entropy scenarios
and empirically verify BRWD’s superiority.

2 Related Works

Text watermarking emerges as a promising so-
lution to identifying machine-generated contents.
They can be categorized into two types (Liu et al.,
2024b): generative watermarking methods and wa-
termarking applied to existing text.

Generative Watermarking Methods. Genera-
tive watermarking methods inject watermarks dur-
ing the LLM generation phase through modifying
model output logits or meticulously designed sam-
pling process.

KGW (Kirchenbauer et al., 2023) is a semi-
nal approach within logits-modifying type, and
its proposed green-red list paradigm has been
widely adopted by subsequent studies. Observing
its impact on the quality of generated text, sev-
eral studies (Huo et al., 2024; Chen et al., 2024)
have proposed improvements. For instance, TS-
watermark (Huo et al., 2024) dynamically adjusts
the watermark strength for each token based on
the preceding token. Some other works enhance
the robustness of KGW through using fixed green
list (Zhao et al., 2023) or determining the green list
by semantics (Liu et al., 2024a; Liu and Bu, 2024).
Additionally, some studies (Fernandez et al., 2023;
Wang et al., 2024; Yoo et al., 2024) focused on
injecting watermark with more information (multi-
bit watermark). Research also explored the adapt-
ability of watermarking methods to low-entropy
scenarios (Lee et al., 2024; Lu et al., 2024), such as
programming tasks. Logits-modifying watermark-
ing methods typically adopt z-score based detector.
To improve detectability in low-entropy scenarios,
Lu et al. (2024) introduced EWD detector based on
token entropy.

Sampling-based watermarking methods intro-
duce pseudo-randomness accessible during detec-
tion to influence the sampling. For example, Ku-
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ditipudi et al. (2023) employed a long random
number sequence to modify sampling and used
edit distance for detection to enhance robustness.
Dathathri et al. (2024) introduced tournament sam-
pling, achieving a balance between text quality,
detectability, and efficiency.

Watermarking for Existing Texts. This type
of watermarking methods inject hidden features
into existing texts and detect them afterwards. One
way to achieve this is using end-to-end models (Ab-
delnabi and Fritz, 2021; Zhang et al., 2024). For in-
stance, AWT (Abdelnabi and Fritz, 2021) employs
a transformer network to inject watermarks and an-
other transformer network to detect them. Some
other methods attempt to watermark existing texts
through synonym substitutions. The techniques
they adopt for synonym selection include consult-
ing an electronic dictionary (Topkara et al., 2006)
and utilizing pre-trained models (Yang et al., 2023;
Yoo et al., 2023). The quality of watermarked text
generated by such methods is constrained by the
synonym database or model used.

3 Preliminaries

As we focus on generative watermarking due to
its superior detectability and robustness, the term
"watermarking" will henceforth refer to generative
watermarking. In this section, we present the pre-
liminaries of watermark injection and detection.
Notations used throughout the paper are provided
in Appendix A.

3.1 Watermark Injection

Watermark injection is typically achieved by per-
turbing the output distribution of large language
model. Specifically, when generating the t-th token,
the language model M computes a logits vector lt
from preceding context, which is then normalized
via softmax to produce a distribution over can-
didate tokens. Watermarking methods introduce
perturbations to this distribution by modifying the
logits or sampling process.

In this study, we select two representative water-
marking approaches as research objects: the clas-
sical KGW (Kirchenbauer et al., 2023) method
and SWEET (Lee et al., 2024), the state-of-the-art
method for watermarking in low-entropy scenarios.

At generation step t, KGW adds a bias δ to the
logits of a subset of tokens in vocabulary V , namely
green list, denoted by Vg. It is determined by the
hash of preceding tokens and the proportion of Vg
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Figure 2: Reward and penalty with respect to total prob-
ablity of tokens being green. Statistics from 500 texts
in MBPP dataset.

in V is γ. The remaining tokens in V are called
"red-list", denoted by Vr. This logits perturbation
increases the probability of green tokens, resulting
in a generated text with more green tokens.

The SWEET method follows the same procedure
but restricts perturbations to high-entropy positions
only. In SWEET method, the entropy at position t
is Ht = −

∑
v∈V pvt log p

v
t where pvt is the proba-

bility of candidate token v given by M at position
t. A threshold is manually set to determine high-
entropy positions.

3.2 Watermark Detection
We present a watermark detection framework en-
compassing detectors used by KGW and SWEET.
Let x = {x0, x1, . . . , xT−1} denote the text to be
detected. Within this framework, the detector as-
signs a score to every token xt in x. These scores
are then summed and (optionally) normalized by
norm(·, ·) to produce a total score. A higher score
indicates a greater likelihood that the text has been
watermarked. Specifically, the score given to x is:

S(x) = norm(
T−1∑

t=0

s(x, t),x)

where s is the score given to token at each posi-
tion. In practice, a threshold is defined and any text
scored higher than it is identified as watermarked.

4 Method

In this section, we first illustrate our motivation
by examining the limitations of current watermark
detection methods and then present our approach.

4.1 Motivation
Although EWD and SWEET detectors achieve bet-
ter accuracy in low-entropy scenarios, their im-
provement stems from attaching more importance
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to those high entropy tokens, which are more ad-
justable to watermark perturbation. However, the
goal of watermark detection is to measure the influ-
ence of the perturbation. We explain this misalign-
ment from a token scoring perspective.

The EWD detector assigns a positive score as
a reward, if xt ∈ Vg, and a negative penalty if
xt ∈ Vr. As for token-level reward or penalty,
we have the following intuition: if a position was
likely to output a red token according to its orig-
inal distribution without watermark but a green
token appears here. It indicates the influence of
watermark and should receive a significant reward.
Inversely, a position with high probability of green
tokens but appears a red one strongly suggests that
watermark is absent, thus should receive a signifi-
cant penalty.

However, EWD does not fully exploit these criti-
cal evidences for determining the presence of the
watermark. Figure 2a illustrates the relationship
between the reward and penalty values assigned
by EWD (γ = 0.25) and the probability of green
tokens. It can be observed that both reward and
penalty exhibit a bell-shaped curve trend. The re-
ward declines when the probability of a token be-
ing green is relatively low, and the penalty declines
when this probability is relatively high, which con-
tradicts our previous intuition. Other entropy-based
methods like SWEET have the same problem.

To further analyze the impact of this misalign-
ment on token scores, we define a watermark infor-
mation score (WIS). For the t-th token xt in a text
x, its WIS is:

WIS(x, t) = 1Vg(xt)
∑

v∈Vr

pvt + 1Vr(xt)
∑

v∈Vg

pvt

This score quantifies the amount of information a
token carries about the watermark. Specifically, for
a green token, its WIS equals the total probability
of red tokens. A higher value indicates a greater
likelihood of the watermark’s presence, as the po-
sition would otherwise likely contain a red token.
For a red token, its WIS equals the total probability
of green tokens. A higher value suggests a lower
likelihood of the watermark’s presence.

We plotted a scatter diagram of the entropy and
WIS of tokens in watermarked codes. In Figure 3,
the green tokens within the black rectangle exhibit
both high WIS and low entropy. This indicates that
entropy-based detectors assign these tokens rela-
tively low importance, thereby impairing detection
performance. This observation further supports our
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Figure 3: Watermark information score (WIS) and en-
tropy of tokens in watermarked codes. Statistics from
500 watermarked codes generated using MBPP dataset
and StarCoder2-7B model.

hypothesis regarding the misalignment in entropy-
based detectors.

To address this issue, we devise a detection
method based on Bayes’ rule measuring watermark
influence. We treat the target text x, as a random
variable, and infer the likelihood of the watermark’s
presence from it.

4.2 Bayes’ Rule Derived Detection
Let w denote the presence of a watermark (0/1 bi-
nary) and Pw represent the distribution of w. Sup-
pose the distribution of all natural language (water-
marked and non-watermarked) is P and the distri-
bution given by model M is PM . Given a text x
to be detected and its corresponding prompt a, we
derive the following using Bayes’ rule:

Pw(w = 1|a;x) = P (x|a;w = 1)Pw(w = 1)∑
i=0,1 P (x|a;w = i)Pw(w = i)

(1)

Dividing both the numerator and the denomina-
tor of the above equation by P (x|a;w = 0), we
obtain (1) equals:

A(x,a)Pw(w = 1)

Pw(w = 0) +A(x,a)Pw(w = 1)
(2)

where

A(x,a) =
P (x|a;w = 1)

P (x|a;w = 0)
(3)

Pw(w = 0) and Pw(w = 1) are constants across
different x as they are the probability of text being
watermarked in the whole corpus. Therefore, the
posterior likelihood (2) increases monotonically
with A(x,a), So we can use A(x,a) to represent
the likelihood of the watermark’s presence. The
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numerator in (3) is the output probability of model
M with watermark injection, which is identical to
PM (x|a;w = 1). The denominator is the condi-
tional probability of human written texts. As large
language models are pretrained on large amount of
human written text, this probability can be approxi-
mated by PM (x|a;w = 0). (We acknowledge that
this approximation may impact the performance of
our detection method. Nevertheless, due to the inac-
cessibility of the true distribution of human-written
text, we adopt this approach. Additional analysis is
presented in Appendix B.) Consequently, our focus
reduces to computing:

Â(x,a) =
PM (x|a;w = 1)

PM (x|a;w = 0)
(4)

Applying the chain-rule PM (x|a;w) =∏
PM (xt|a, x:t;w) (x:0 denotes empty sequence)

and taking the log-transform, we have:

log Â(x,a) =

T−1∑

t=0

(
logPM (xt|a, x:t;w = 1)

− logPM (xt|a, x:t;w = 0)
)

(5)

For the KGW and SWEET (assume t is a high-
entropy position) injection method, given the origi-
nal logit of token v at position t, lvt , the perturbed
logit is l̃vt = lvt + δ · 1Vg(v). For the model
output distribution, we have PM (·|a, x:t;w =
1) = softmax(l̃t) and PM (·|a, x:t;w = 0) =
softmax(lt). By substituting these equations of
PM and l̃t into (5), we obtain:

log Â(x,a) =
T−1∑

t=0

(
δ · 1Vg(xt)− log

eδGt +Rt

Gt +Rt

)

(6)
where Gt =

∑
v∈Vg

el
v
t and Rt =

∑
v∈Vr

el
v
t are

the unnormalized total probability of green, red
tokens, respectively.

When performing watermark detection using
Equation 5, the logits lt can be generated by
a lightweight surrogate language model for effi-
ciency. In cases where the prompt a is unavailable,
a generic prompt can be used as a substitute. To
clarify the detection process, we provide an algo-
rithm description in appendix C.

Similar to the discussion on EWD, we can in-
terpret the score of a token as reward or penalty
depending on its color. Figure 2b demonstrates that
the reward given by BRWD decreases monoton-
ically, while the penalty increases monotonically
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Figure 4: Distribution of scores given by EWD and
BRWD. We use MBPP dataset, StarCoder2 model and
KGW watermark injection method for this experiment.

with the probability of token being green, consis-
tent with the intuition in 4.1.

We also present the text-level score distributions
of EWD and BRWD. Figures 4a and 4b show that
BRWD exhibits stronger discriminative ability.

4.3 Theoretical Analysis

We theoretically prove that BRWD has optimal
true positive rate within any false positive rate con-
straint, given a prompt a and model M . To for-
malize this, we need the following notations and
definitions.

• Let Ω denote the set of all possible to-
ken sequence x. Conditional probabilities
PM (·|a;w = 0), PM (·|a;w = 1) given by
M and its watermarked counterpart both en-
dow Ω with a probability measure.

• For any watermark detection method ϕ which
is a binary classifier on Ω, its effect is equiva-
lent to a split of Ω:

Ω = Kϕ ∪ Kc
ϕ

whereKϕ means the subset of sequences iden-
tified as watermarked by ϕ. For our method,
ϕ=BRWD, and the detection effect is ex-
pressed by KBRWD.

Definition 4.1. For a detection method ϕ, its false
positive rate αϕ on Ω(PM (·|a)) is:

∫

Ω
1Kϕ

(x)PM (x|a;w = 0) dx

Definition 4.2. For a detection method ϕ, its true
positive rate βϕ on Ω(PM (·|a;w = 1)) is:

∫

Ω
1Kϕ

(x)PM (x|a;w = 1) dx
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Definition 4.3. For a threshold η > 0, the BRWD
detector with this threshold, denoted as BRWD(η),
classify any sequence x with score Â(x,a) > η as
watermarked. Therefore, its positive sample subset
is:

KBRWD(η) = {x ∈ Ω|Â(x,a) > η}

Theorem 4.1. For any limit on false positive rate
σ > 0, if there exists a threshold η > 0 such that
αBRWD(η) = σ, then for any detection method ϕ
s.t. αϕ ≤ σ, its true positive rate is no greater than
that of BRWD(η)

βϕ ≤ βBRWD(η)

A proof is available in appendix D.

5 Experiments

We conduct experiments across different datasets,
models and watermark injection methods.

Tasks and Datasets. We select two tasks: code
generation and math problem solving. For code
generation, we use HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021) datasets which con-
tain python programming problems and reference
answers. For math problem solving, we select 500
samples from GSM8K (Cobbe et al., 2021), which
contains mathematical problems in English. In all
experiments, we use texts longer than 15 tokens for
detection.

Models. For code generation, we employ
StarCoder2-7B (Lozhkov et al., 2024), a model
specializes in programming, following prior re-
search (Lee et al., 2024; Lu et al., 2024). For math-
ematical problem solving, we use DeepSeekMath-
7B-Instruct (Shao et al., 2024), which is optimized
for mathematical reasoning. To assess the general-
izability of our method, we also utilize the versatile
Llama2-7B model (Touvron et al., 2023), apply-
ing it to both code generation and math problem-
solving tasks.

Watermark injection Methods. We utilize two
injection methods, KGW and SWEET. KGW acts
as a classic baseline in this field, while SWEET is
specifically optimized for low-entropy scenarios.
Detailed configurations are provided in Appendix
E. For clarity, We use subscripts I and D to denote
the corresponding injection and detection methods
(e.g., KGWI, KGWD).

Baselines and Metrics. To detect watermarks in-
jected by KGWI and SWEETI, we employ their cor-
responding detectors as baselines. We also apply
EWD as a detector for both, as it is optimized for

low-entropy scenarios. Additionally, we employ
the detection method proposed by DIPMark (Wu
et al., 2024) as another baseline, as it does not rely
on the classical z-score framework and is adaptable
to other injection methods. This detector is denoted
as DIPD. Following Lee et al. (2024) and Lu et al.
(2024), we use true positive rates at 1% and 5%
false positive rates(TPR@1%FPR, TPR@5%FPR),
along with the corresponding F1-score, as our eval-
uation metrics. True positive rate (TPR) and false
positive rate (FPR) represent the proportion of wa-
termarked text successfully detected and the pro-
portion of human-written text mistakenly classified
as AI-generated, respectively. Best F1 scores are
also reported to show the overall performance of
detectors.

Requirement for Detection Our method and
baselines, EWD and SWEET, are identical in that
they rely on logits generated by a language model
for detection. These logits can be generated using
a smaller surrogate model for efficiency. Computa-
tional experiment in Append G shows nearly equiv-
alent run time of the three detection approaches.
Traditional methods like KGW detector don’t need
a language model for detection, but perform sig-
nificantly worse than those that do in low-entropy
scenarios.

6 Results

In this section, we present and analyze experimen-
tal results from multiple settings and perspectives.

6.1 Performance with Original Prompts

Table 1 and 2 (all metrics are shown in percent-
age) demonstrate that our method exhibits substan-
tial advantages in detection accuracy for code and
mathematical text compared to baselines, and it
is applicable to different models and watermark
injection methods.

For code generation task with StarCoder2 model
and KGWI injection method, the average improve-
ments of BRWD over the best baseline, on two
datasets are 14% in TPR@1%FPR and 24% in
TPR@%5FPR. For the same task and model with
SWEETI injection method, the avergae improve-
ments of the two metrics are 23% and 27%, re-
spectively. For mathematical problem solving task
with DeepSeek model, the improvements of the two
metrics are 38%, 19% while using KGWI injection
method and 35%, 24% while using SWEETI injec-
tion method. Notably, for this model, our method
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Model Injection Detection

HUMANEVAL MBPP

1%FPR 5%FPR BEST 1%FPR 5%FPR BEST

TPR F1 TPR F1 F1 TPR F1 TPR F1 F1

StarCoder2

KGWI

KGWD 10.92 19.55 29.41 44.03 73.87 8.02 14.74 24.30 37.58 74.05
DIPD 17.65 29.79 29.41 44.03 73.22 19.09 31.83 35.57 50.62 73.81
EWD 44.54 61.27 60.50 73.47 84.13 35.14 51.67 66.38 77.47 88.28
BRWD 63.87 77.55 83.19 88.79 93.98 43.60 60.36 91.32 93.04 94.25

SWEETI

SWEETD 32.23 48.45 49.59 64.52 80.74 37.09 53.77 54.66 68.57 84.84
DIPD 9.09 16.54 32.23 47.27 82.96 35.36 51.91 67.68 78.39 86.71
EWD 38.84 55.62 54.55 68.39 83.97 32.75 49.03 62.69 74.77 88.21
BRWD 58.68 73.58 83.47 88.60 92.37 59.00 73.81 88.29 91.36 93.97

Llama2

KGWI

KGWD 58.78 73.73 74.32 83.02 84.93 28.43 43.99 61.09 73.63 84.17
DIPD 21.62 35.36 62.16 74.49 80.23 34.68 51.19 61.29 73.79 83.01
EWD 96.62 97.95 98.65 97.01 97.95 50.81 67.02 79.64 86.34 91.07
BRWD 97.97 98.64 100 97.69 99.00 66.33 79.37 98.59 96.93 97.11

SWEETI

SWEETD 84.67 91.37 90.67 92.83 94.77 49.09 65.50 77.17 84.79 88.62
DIPD 77.37 86.89 86.67 90.59 93.46 60.81 75.25 88.08 91.31 90.25
EWD 85.33 91.76 90.67 92.83 94.53 50.10 66.40 84.04 88.98 90.84
BRWD 92.00 95.50 96.00 95.68 96.75 83.64 90.69 97.98 96.61 97.19

Table 1: Detection accuracy on HumanEval, MBPP datasets using StarCoder2-7B, Llama2-7B models and KGWI,
SWEETI injection methods.

Model Injection Detection

GSM8K

1%FPR 5%FPR BEST

TPR F1 TPR F1 F1

DeepSeek

KGWI

KGWD 8.00 14.68 24.20 37.46 67.73
DIPD 1.80 3.47 7.40 13.17 67.71
EWD 52.60 68.49 78.20 85.37 87.86
BRWD 91.00 94.79 97.60 96.35 96.83

SWEETI

SWEETD 57.60 72.64 75.40 83.59 88.21
DIPD 31.20 47.20 69.40 79.86 87.23
EWD 40.40 57.14 70.40 80.27 85.47
BRWD 92.80 95.77 99.80 97.46 97.65

Llama2

KGWI

KGWD 73.35 84.23 81.16 87.28 88.35
DIPD 59.32 74.09 71.34 81.00 82.80
EWD 90.38 94.55 94.79 94.98 95.93
BRWD 90.98 94.88 95.99 95.61 95.96

SWEETI

SWEETD 84.77 91.36 93.39 94.24 94.27
DIPD 88.38 93.43 94.79 95.36 94.83
EWD 89.58 94.11 95.39 95.30 95.94
BRWD 95.99 97.56 97.60 96.44 97.57

Table 2: Detection accuracy on GSM8K dataset using
DeepSeek-math-7B-instruct, Llama2-7B models and
KGWI, SWEETI watermark injection methods.

improves the TPR@1%FPR from below 60% to
over 90%.

For Llama2 model, our detection method also
outperforms all baselines. Specifically, it achieves
an improvement of 34% in TPR@1%FPR on
MBPP dataset while using SWEETI injection
method. Although our method shows relatively
small advantages in certain settings, the baselines
have already achieved high accuracy in these set-
tings, leaving limited room for improvement.

6.2 Performance without original Prompts

In applications like cheating detection, prompts are
usually accessible, specifically the question text.
However, for code copyright protection, the orig-
inal prompt is often unavailable. Therefore, we
also conduct experiments with a general prompt
following previous studies (Lee et al., 2024; Lu
et al., 2024). The details about this setting are in
Appendix E.2. Table 3 and Table 4 show that
our method still outperforms all baselines. For the
code generation task and KGWI watermark injec-
tion method, BRWD achieves average improve-
ments of 8.49% and 16.28% in TPR@1%FPR and
TPR@5%FPR over the best baseline, respectively.
For the same task and SWEETI method, BRWD
demonstrates average improvements of 6.61% and
16.45% in TPR@1%FPR and TPR@5%FPR, re-
spectively. For mathematical task and KGWI
method, BRWD achieves improvements of 15.68%
and 11.81% for the two metrics, respectively. For
this task with SWEETI method, BRWD results in
improvements of 4.48% and 6.31% for the same
metrics. We also find that as text length increases,
the absence of the original prompts has a diminish-
ing impact on detection accuracy.

6.3 Adaptability to High-Entropy Texts

To evaluate the applicability of our detection
method in general high-entropy scenario, we con-
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Injection Detection

HUMANEVAL MBPP

1%FPR 5%FPR BEST 1%FPR 5%FPR BEST

TPR F1 TPR F1 F1 TPR F1 TPR F1 F1

KGWI

KGWD 9.65 17.46 28.95 43.42 73.57 8.03 14.74 24.30 37.58 74.05
DIPD 12.28 21.71 28.07 42.38 73.57 19.09 31.83 35.57 50.62 73.81
EWD 24.56 39.16 42.11 57.49 80.65 17.14 29.04 36.88 51.99 77.77
BRWD 29.82 45.64 44.74 60.00 87.10 28.85 44.48 66.81 77.78 86.76

SWEETI

SWEETD 19.83 32.86 37.93 53.33 77.65 9.33 16.93 32.54 47.32 77.32
DIPD 6.03 11.29 33.62 48.75 77.78 20.17 33.33 35.57 51.01 76.25
EWD 23.28 37.50 40.52 55.95 79.70 14.75 25.52 36.88 51.99 78.25
BRWD 25.86 40.82 50.00 64.80 84.43 25.38 40.21 60.30 72.97 86.33

Table 3: Detection accuracy on HumanEval, MBPP datasets using StarCoder2-7B model and KGWI, SWEETI
injection methods without original prompts.

Injection Detection

GSM8K

1%FPR 5%FPR BEST

TPR F1 TPR F1 F1

KGWI

KGWD 7.13 13.21 23.83 37.03 67.65
DIPD 1.8 3.47 7.40 13.17 67.71
EWD 11.61 20.65 40.53 55.74 78.32
BRWD 27.29 42.61 52.34 66.58 78.80

SWEETI

SWEETD 8.35 15.30 28.92 43.23 73.74
DIPD 7.20 13.31 22.40 35.16 73.63
EWD 7.13 13.21 30.96 45.58 75.05
BRWD 12.83 22.58 37.27 52.44 74.14

Table 4: Detection accuracy on GSM8K dataset us-
ing DeepSeek-math-7B-instruct model and KGWI,
SWEETI injection methods without original prompts.

duct experiments using 500 samples from C4 (Raf-
fel et al., 2023) English news dataset and the
Llama2-7B model. Detailed settings are in Ap-
pendix E.3. Table 5 shows that our detection
method outperforms the baselines.

6.4 Robustness against Removal Attack

Since malicious users tend to modify the content
generated by LLMs to escape detection, we need
to assess the robustness of our detector against re-
moval attacks. Following Lee et al. (2024), we use
variable name substitution as our attack method.
We replace 50% of the variables in each function
with random strings of 2 to 5 characters (Results
under more intense attack setting are provided in
Appendix H). The watermark injection method is
KGWI with δ = 2 and γ = 0.5. All methods show
a significant decrease in accuracy after the attack,
but our method remains the best overall.

Injection Detection 1%FPR 5%FPR Best

TPR F1 TPR F1 F1

KGWI

KGWD 99.59 99.39 99.59 97.42 99.39
DIPD 98.99 99.09 99.59 97.42 98.59
EWD 99.59 99.39 100 97.62 99.70
BRWD 100 99.60 100 97.62 100

SWEETI

SWEETD 99.80 99.50 99.80 97.53 99.70
DIPD 100 99.60 100 97.63 99.90
EWD 99.80 99.50 100 97.63 99.70
BRWD 100 99.60 100 97.63 100

Table 5: Detection performance on C4 dataset using
Llama2-7B model and KGWI, SWEETI watermark in-
jection methods.

Detection 1%FPR 5%FPR Best

TPR F1 TPR F1 F1

KGWD 5.51 10.35 13.62 22.98 70.60
DIPD 10.43 18.75 15.94 26.38 68.84
EWD 15.94 27.30 29.86 44.30 76.38
BRWD 14.78 25.56 46.96 61.83 79.83

Table 6: Detection performance on MBPP dataset after
variable substitution attack. The model and watermark
injection method used are StarCoder2-7B and KGWI

7 Conclusion

In this study, we identify the misalignment in
entropy-based watermark detectors and propose
a detector that addresses this problem. Our detec-
tor utilizes Bayes’ rule to fully leverage the dis-
tribution given by language model. We provide
theoretical analysis on its optimality and empiri-
cally verify its superiority in low-entropy scenario.
Across various models and watermark injection
methods, under scenarios with or without prompts,
our method demonstrates superior accuracy and
robustness. Notably, compared to the best baseline,
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our method achieves up to 1.5 times accuracy on
the code datasets and up to 1.7 times accuracy on
the mathematics dataset.

8 Limitations

Our detection method has two main limitations.
First, the generation tasks and datasets tested are
limited. We employ two code datasets and one
mathematics dataset for evaluation. We plan to test
our method on a broader range of low-entropy tasks
with more diverse datasets. Second, we only test
two watermark injection methods in this study. Our
approach is applicable to a variety of generative
watermark injection methods based on distribution
perturbation. We plan to implement and evaluate
our method with other watermark injection tech-
niques in future work.
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A Notations

Symbol Description
M Language model used for generation.
V Vocabulary of M .
Vg Green list.
Vr Red list.
v Token in V .
w Whether watermark exists. (0/1)
PM Distribution given by M .
P Distribution of all natural language.
Pw Distribution of w.
a Prompt used for generation.
x Text generated by M .
xt The t-th token in x.
t Generation step.
lt Model logits at the t-th step.
lvt Model logit of token v at the t-th step.
pt Distribution given by M at step t.
pvt Probability of v given by M at step t.
Ht Information entropy at step t.
S(x) Watermark detection score of x.
s(x, t) Watermark detection score given to xt.
norm Normalizer for watermark detection.
T Length of x.
γ Green-list ratio in KGW and SWEET.
δ δ in KGW and SWEET.

Table 7: Notations used throughout the paper.

B Analysis of Approximation

Our additional experiment examines the impact
of the approximation of human text distribution,
under varying levels of divergence between the
true distribution and the estimated distribution.

In this experiment, the key challenge is to ac-
quire the true distribution of unwatermarked text,
which is unattainable in practice. Therefore, we
utilized a simulated unwatermarked corpus, allow-
ing us to precisely control and analyze the true
distribution.

We generate the simulated unwatermarked cor-
pora using Llama-2-7B and the prompts in the Hu-
manEval dataset, introducing a controllable addi-
tive perturbation to its output logits. The perturba-
tion follows a uniform distribution U [0, s], where s
serves as a variable parameter to regulate the level
of divergence. We denote the output distributions
of perturbed models as Pt, which is the true distri-
bution of unwatermarked text. And the estimated
distribution of unwatermarked text is Pe, which is
the the original distribution of Llama-2-7B model.

To measure the divergence between true distri-
bution Pt and estimated distributions Pe, we com-
pute the average perplexity of unwatermarked sam-
ples in the simulated corpus using the Llama-2-
7B model. We also compute the average perplex-
ity of human-written completions in HumanEval
dataset. As perplexity indicates the extent to which
a text diverges from the model’s distribution, a syn-
thetic corpus exhibiting a perplexity close to that
of human-written corpus is likely to incur a similar
level of error when Pe is used to approximate Pt in
our method.

To quantify the effect of distribution approxi-
mation, we calculated the rigorous watermark de-
tection score logA(x,a) (computed using Pt) and
approximated detection score log Â(x,a) (com-
puted using Pe) for both watermarked and unwa-
termarked texts. Then we can compare two sets of
scores to analyze the effect of distribution approxi-
mation.

As shown in Table 8, regardless of whether log Â
or logA is used, the scores exhibit a clear distinc-
tion between unwatermarked samples and water-
marked samples.

Meanwhile, when the perplexity is similar to
human corpus’s (1.62), there is an observable
difference in the score gap of watermarked and
unwatermarked text, i.e. logA(watermarked) −
logA(unwatermarked) is larger than
log Â(watermarked) − log Â(unwatermarked).
For instance, when noise scale s = 5.75,
the mean gap of log Â(watermarked) and
log Â(unwatermarked) is 16.46 while it is 89.24
for the rigorous scores, showing that detection
performance can be further improved by using
more accurate approximation.

C Algorithm

We present the BRWD detection procedure for the
KGW watermark injection method in Algorithm 1.
For the SWEET method, it suffices to incorporate
a low-entropy token filter inside the for-loop.

D Proof of Theorem

Theorem 4.1 means that for any detection method
ϕ, when its false positive rate (FPR) is lower than
that of BRWD (i.e., αϕ ≤ αBRWD(η)), its true
positive rate (TPR) is also lower than that of BRWD
(i.e., βϕ ≤ βBRWD(η)).

To prove Theorem 4.1, it suffices to prove:

βBRWD(η) − βϕ ≥ η(αBRWD(η) − αϕ)
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noise scale PPL source detection mean 1/4 quantile 1/2 quantile 3/4 quantile

5.5 1.52
watermarked

log Â 9.15 3.56 7.18 11.25
logA 54.01 18.11 34.56 58.01

unwatermarked
log Â -8.42 -15.08 -9.89 -1.45
logA -28.53 -41.88 -31.09 -14.26

5.75 1.57
watermarked

log Â 9.15 3.56 7.18 11.25
logA 58.35 19.59 37.43 62.79

unwatermarked
log Â -7.31 -15.77 -7.29 1.59
logA -30.89 -46.96 -28.60 -9.43

6.0 1.67
watermarked

log Â 9.15 3.56 7.18 11.25
logA 62.87 21.15 40.70 67.26

unwatermarked
log Â -5.54 -12.33 -5.55 3.01
logA -28.23 -43.14 -30.18 -6.45

Table 8: Approximation analysis on HumanEval dataset and simulated unwatermarked corpus.

Algorithm 1 BRWD Detection on KGW
Require: Language model M , target text x, detec-

tion key k, window size m, detection threshold
τ , green list ratio γ, watermark bias δ

Ensure: 1 if input text is watermarked, else 0
1: Compute distribution PM = [p0, p1, . . . ] for

each token using x and M .
2: s← 0
3: for l = m,m+ 1, . . . do
4: Use k and previous m tokens xl−m:l−1 to

find green list Vg and red list Vr
5: Get green/red list total probability P (Vg)

and P (Vr) using PM

6: s← s− log
(
eδP (VG) + P (VR)

)

7: if xl ∈ Vg then
8: s← s+ δ
9: end if

10: end for
11: if s > τ then
12: return 1
13: else
14: return 0
15: end if

From Def 4.1 and 4.2, the above inequality can be
expressed as:

∫

Ω
1KBRWD(η)

(x)PM (x|a, w = 1)dx−
∫

Ω
1Kϕ

(x)PM (x|a, w = 1)dx−

η(

∫

Ω
1KBRWD(η)

(x)PM (x|a, w = 0)dx−
∫

Ω
1Kϕ

(x)PM (x|a, w = 0)dx) ≥ 0

Using the linearity of integration and combining
terms, our goal reduces to proving:

∫
Ω S(x)dx ≥

0, where

S(x) = [1KBRWD(η)
(x)− 1Kϕ

(x)]·
[PM (x|a, w = 1)− ηPM (x|a, w = 0)]

To prove this inequality, we simply classify the
discussion based on whether x is in KBRWD(η).

• For x ∈ KBRWD(η), we have
1KBRWD(η)

(x) = 1 and 1Kϕ
(x) ≤ 1

from the definition of indicator function,
therefore

1KBRWD(η)
(x)− 1Kϕ

(x) ≥ 0

From Def 4.3, we have

Â(x,a) =
PM (x|a, w = 1)

PM (x|a, w = 0)
> η

and this leads to

PM (x|a, w = 1)− ηPM (x|a, w = 0) ≥ 0

Thus S(x) ≥ 0.
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• For x /∈ KBRWD(η), we can derive

1KBRWD(η)
(x)− 1Kϕ

(x) ≥ 0

and

PM (x|a, w = 1)− ηPM (x|a, w = 0) ≥ 0

in the same way. Therefore we have S(x) ≥ 0

Since S(x) is non-negative on every point x in
Ω, its integral on Ω is also non-negative. Thus the
proof is completed.

E Detailed Experiment Configurations

E.1 Generation Settings

The sampling strategy adopted is top-p sampling
with top-p=0.95. We set temperature=0.2 during
generation. For the HumanEval dataset, we feed
the original prompts in it to language models. For
the MBPP dataset, we use three-shot prompts fol-
lowing Fried et al. (2023). For the GSM8K dataset,
we add a chain-of-thought instruction to each ques-
tion to construct our prompt. The instruction we
use is "Please reason step by step, and put your
final answer within \boxed{}.". Regarding the wa-
termark injecting methods, we set γ = 0.5 and
δ = 2 for KGWI and SWEETI. As for the entropy-
threshold in SWEETI, we set it to 0.65 for experi-
ments with Llama2 model and 0.6 otherwise.

E.2 General Prompts

For Python function completion tasks in Hu-
manEval dataset, we used the general prompt "def
solution(*args):\n ”’Generate a solution”’\n". For
programming tasks in MBPP dataset, we used the
general prompt "Write a python function to imple-
ment a specific requirement.\n". For math prob-
lem solving tasks in GSM8K dataset, the general
prompt we used is "Solve a math problem, please
think step by step.\n".

E.3 High-Entropy Dataset

For both KGWI and SWEETI, we set γ = 0.5
and δ = 2. For SWEET injection, we set the en-
tropy threshold at 0.65. The temperature is 0.7, and
the sampling strategy is top-p sampling with top-
p=0.95. The generated texts are truncated to 200
tokens, and the minimum length for detection is 15
tokens. The original prompts are used for detection
in this experiment.

metric→ TPR@1%FPR / TPR@5%FPR

parameters ↓ KGWD EWD BRWD

δ = 1.5, γ = 0.25 8.5 / 13.8 16.9 / 46.9 34.6 / 56.9
δ = 1.5, γ = 0.5 6.5 / 22.1 30.3 / 42.6 47.5 / 63.9
δ = 1.5, γ = 0.75 18.7 / 22.4 26.2 / 33.6 45.8 / 56.1
δ = 2.0, γ = 0.25 19.4 / 31.6 32.3 / 59.7 61.9 / 83.5
δ = 2.0, γ = 0.5 10.9 / 29.4 44.5 / 60.5 63.9 / 83.2
δ = 2.0, γ = 0.75 21.6 / 31.0 43.9 / 68.9 73.3 / 79.3
δ = 2.5, γ = 0.25 32.1 / 48.6 53.6 / 85.0 89.3 / 95.7
δ = 2.5, γ = 0.5 19.1 / 47.8 60.8 / 75.6 81.7 / 94.8
δ = 2.5, γ = 0.75 28.5 / 38.4 62.5 / 76.8 74.1 / 91.1

Table 9: Watermark detection accuracy with respect
to StarCoder2-7B model, KGW watermark injection
method, and HumanEval dataset. All metrics presented
in this table are percentages.

Method KGW DIP EWD SWEET BRWD

Time 0.114 0.113 0.425 0.417 0.424

Table 10: This table shows the average time (in seconds)
taken to detect 200-token text that is watermarked by
KGW method. These results represent the average of
five runs.

F Different Watermarking Hyper
Parameters

Hyper parameters, especially γ and δ, paly an im-
portant role in KGW-based watermarking methods.
To verify BRWD’s adaptability to different δ and
γ, we conducted additional experiments using the
StarCoder2-7B model, the HumanEval dataset, and
the KGW watermarking method under multiple hy-
per parameter combinations. The results of these
experiments, as shown in Table 9, demonstrate that
our method consistently outperforms the baselines
across various hyper parameter settings.

G Computational Experiment

To conduct the computational experiment, we used
a single NVIDIA Tesla V100 GPU, with 500 news
articles from C4 dataset. For each article, the first
30 tokens were used as a prompt to generate 200
tokens. We employed the Llama2-7B model and
the KGW watermarking method. The average de-
tection time per sample is shown in Table 10.

H Robustness Results under Extreme
Attack

We conducted an experiment involving 100% vari-
able name substitution. The other settings are the
same as Table 6 in our paper. The results in Ta-
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ble 11 indicate that BRWD’s performance is better
than EWD’s at 5% FPR. And at 1% FPR, BRWD’s
performance is comparable to EWD’s. Due to the
limitations of existing automated tools for other
attack methods—such as the CodePal API, which
frequently introduces critical errors, we exclude
them from our experiments.

Detection 1%FPR 5%FPR Best

TPR F1 TPR F1 F1

KGWD 3.18 6.1 10.69 18.5 67.5
DIPD 4.37 8.7 12.7 20.4 64.8
EWD 7.2 13.3 17.63 28.7 69.2
BRWD 6.7 12.4 23.7 36.9 69.2

Table 11: Detection performance on MBPP dataset after
100%variable substitution attack. The model and wa-
termark injection method used are StarCoder2-7B and
KGWI
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