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Abstract

Periodically updating Large Language Model
(LLM)-based recommender systems to adapt
to dynamic user interests—as is done for tra-
ditional ones—is impractical due to high train-
ing costs. This work explores the possibility
of achieving interest adaptation without any
model-level updates via In-context Learning
(ICL), which enables adaptation through few-
shot examples within input prompts. Using
recent interactions as ICL few-shot examples,
LLMs can directly learn the new interest in
prompt without needing model updates. While
pre-trained LLMs possess strong in-context
learning capabilities, these are often diminished
after task-specific fine-tuning in recommender
systems, and the original ICL mechanism lacks
specialization for recommendation tasks. To ad-
dress this, we propose RecICL, a framework for
recommendation-oriented ICL. It performs tun-
ing in an ICL manner, structuring new-interest
interactions as few-shot examples to capture
dynamic interests during data fitting. Exten-
sive experiments across multiple benchmarks
demonstrate RecICL’s superior performance,
achieving better results without model updates.
Our implementation is publicly available at
https://github.com/ym689/rec_icl.

1 Introduction

In recent years, LLM-based recommendation has
emerged as a rapidly evolving field, demonstrating
the substantial potential to transform recommender
systems across diverse scenarios (Wu et al., 2024;
Harte et al., 2023). Substantial efforts have been
dedicated to this area, creating various mechanisms
to align LLM capabilities with recommendation
tasks. Among these approaches, instruction tuning
on recommendation data has gained significant pop-
ularity as it addresses the fundamental limitation
that recommendation-specific tasks are inherently
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Figure 1: An illustration of user interest shift in real-
world scenarios.

absent from the original pretraining objectives of
LLMs (Zhang et al., 2023; Bao et al., 2025; Zheng
et al., 2024).

Despite progress, existing developments have
overlooked dynamic interests, a crucial aspect for
real-world applications. As shown in Figure 1,
in the real world, user interest can shift rapidly
due to the varying instant interest in dynamic en-
vironments (Chang et al., 2017; Papagelis et al.,
2005; Wang et al., 2018). Updating the model pe-
riodically with incoming data is typically used to
capture timely user interests (Chandramouli et al.,
2011; Das et al., 2007). However, due to the mas-
sive number of parameters in LLLMs, such model-
level updates incur substantial computational and
time costs for LLM-based recommendations, mak-
ing them impractical for real-world applications.
Recognizing the persistent issue of high update
costs, this study explores the possibility of adapt-
ing the model to dynamic user interests without any
model-level updates after initial training.

Among existing techniques, In-context Learning
(ICL) seems to be a promising choice for timely
learning user shift interests without model updates.
Through ICL, LLMs can learn tasks from few-
shot task examples being incorporated into their
input context, without any updates to their parame-
ters (Brown, 2020; Zhao et al., 2023). By incorpo-
rating recent user interaction data as few-shot task
examples in the input, we can expect that ICL could
effectively capture the interest shift from these ex-
amples. This enables the model to adapt to users’
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recent interests without requiring any updates to its
parameters.

However, directly applying ICL to LLM-based
recommendations is problematic. Intuitively, there
are two options: 1) applying ICL on general LLMs
and 2) applying ICL on LLMs tuned for recom-
mendations. Both approaches encounter challenges
— the first lacks alignment with recommendation
tasks, while the second often suffers from dimin-
ished ICL capabilities (See Section 2.3 for more
details). These challenges would undoubtedly
hinder the practical application of these methods.
Given these challenges, we consider possessing
recommendation-specific ICL capabilities — align-
ing the model with recommendation tasks while
preserving and even enhancing its ICL abilities.

To address these challenges, we propose Re-
cICL, which maintains ICL performance while bet-
ter aligning LLLMs with recommendation tasks. For
task misalignment, RecICL adapts recommedation-
based instruction tuning, enabling the model to
learn from real user interactions. To tackle ICL
degradation, RecICL uses a novel example selec-
tion strategy for ICL. Unlike prior work that selects
semantically similar examples (Shi et al., 2022; Gu
et al., 2023), we choose items representing recent
user interests relative to each training sample. This
trains the model to adapt quickly to changing pref-
erences using only a few contextual signals. During
inference, these examples are replaced with recent
user interactions, allowing dynamic updates based
on current behavior. Experimental results show
that RecICL significantly improves LLMs’ abil-
ity to capture evolving user interests — a critical
requirement for modern recommender systems.

The main contributions of our work are:

* To our knowledge, we are the first to ex-
plore adapting LLM-based recommenders to dy-
namic user interests without requiring any further
model-level updates.

* We propose RecICL, a novel framework for
adapting ICL in LLMs to recommendation tasks,
enabling quick alignment with users’ latest inter-
ests and personalized recommendation delivery.

* Experimental results demonstrate that our
method significantly outperforms existing ap-
proaches and can also maintain robust perfor-
mance over extended periods.

2 Preliminary

In this section, we first present the problem formu-
lation (§ 2.1) for the studied user interest shift prob-
lem. Next, we present preliminary studies (§ 2.2) to
illustrate the importance of timely adapting LLM-
based recommenders to new user interests and ana-
lyze the potential of applying ICL to address this
problem (§ 2.3).

2.1 Problem Definition

In recommendation systems, users are expected to
continuously interact with the system, resulting in
a steady stream of interaction data. We represent
the streaming data 7" as { Dy, ..., Dy, ..., }, where
D denotes a set of recommendation data points.
and D; denotes the data collected at t-time pe-
riod. During the process, their interest could evolve.
To ensure the recommendation performance, we
usually update the recommenders using the newly
collected data to capture the new interest. How-
ever, updating LLM-based recommender models is
costly. Therefore, we usually need to train a model
with {Dy, ..., Dp} (denoting the trained model as
fr), but need it to serve for many periods, e.g., K
periods, from Dpy1 to Dry k. In this work, we
consider developing a method that could capture
the user’s new interest from the new data without
requiring model updates after the initial rating'.

2.2 Importance of Adapting to New Interests

We conduct preliminary experiments using two rep-
resentative LLLM-based models, TALLRec (Bao
et al., 2023) and BinLLM (Zhang et al., 2024),
to verify the importance of adapting LLM-based
recommenders to users’ evolving interests. Our
analysis is based on Amazon-Books and Amazon-
Movies datasets. Specifically, we uniformly di-
vide the data according to the timestamp and use
{Dy, ..., Dr} totrain TALLRec and BinLLM, ob-
taining the trained model fr. Additionally, we train
the model on {Dy, ..., Dp4x} to obtain more up-
dated model, fr k. We then compare the perfor-
mance of the models on D41 and Dy gy1. We
define two metrics according to the performance
difference between models to demonstrate the im-
portance of capturing users’ new interests:

e PDT: This metric evaluates the performance
gap of the same model across two distinct test-
ing periods, where smaller differences indicate

'In all our experiments, we set T =4 and K = 4.
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Figure 2: A comparative analysis of TALLRec, Bin-
LLM, and HashGNN models using both Amazon-Book
and Amazon-Movie datasets for performance assess-
ment. A higher “PDM” indicates a greater benefit of up-
dating the model. A higher “PDT” signifies a more sig-
nificant impact of shifts in user interests on the model’s
performance.

stronger robustness to user interest shift. We
compute PDT as:

PDT = AUC(fr; Dr+1) — AUC(fr; Dr1k+1). (1)

e PDM: This metric measures the gap between
the model and its upper bound (obtained by re-
training with all the data before the test period)
using a fixed test set. It aligns with real-world
scenarios where retraining models with new data
is a common practice (Yang et al., 2024; Xu et al.,
2020a). Performance differences before and after
retraining provide the potential benefits of model
updates. A smaller gap suggests strong adaptabil-
ity to new test environments, reducing the need
for frequent updates. We compute PDM as:
PDM = AUC(fryx; Dryx+1)—AUC(fr; DT+K?21)),
where AUC(f; D) represents the AUC evalu-
ated for model f on dataset D.

Results. Figure 2 summarizes the results, with
a traditional recommender model (HashGNN) in-
cluded as a reference. From the figure, we can
make the following observations: 1) Both TALL-
Rec and BinLLM exhibit positive values on met-
ric PDT, indicating that as the testing data shifts
from D41 to D14 k41, the model fr experiences
a noticeable performance decline. 2) TALLRec
and BinLLM also show positive values on met-
ric PD M, meaning that the more updated model
(fr+xK) outperforms the less updated model (fr)
when tested on D7 g 11. This demonstrates that
updating the model leads to improved results. The
results of LLM-based recommenders are generally
consistent with those of traditional models. All
the results confirm that LLM-based recommenders
also need to adapt to users’ evolving interests; oth-
erwise, they risk sub-optimal performance.
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Figure 3: Performance improvement brought by using
in-context learning of TALLRec, BinLLM, and General
LLM on each dataset, where in-context learning refers
to selecting the four most recent interactions for each
user to formulate the few-shot examples.

2.3 The Potential of ICL

ICL holds great promise for addressing shifts in
user interests. It empowers large language models
(LLMs) to rapidly adapt to new tasks by leveraging
just a few examples, without requiring any changes
to their parameters. Consequently, we can antici-
pate that incorporating user feedback as few-shot
examples will significantly enhance the model’s
ability to generate recommendations aligned with
emerging interests.

However, applying ICL to existing LLM-based
recommenders may not work well, as they can
lose ICL capabilities during tuning. We compare
ICL capabilities between these models and gen-
eral LLMs by evaluating the performance improve-
ments that ICL brings. Specifically, following the
setting in §2.2, we train BinLLM and TALLRec
on{Dy,...,Dr}, comparing their performance
(AUC) with and without ICL to measure improve-
ments, noted as Delta AUC. A higher value of this
metric indicates greater improvement brought by
ICL to the model. Figure 3 summarizes the results
on D74 i +1. The findings indicate that TALLRec
and BinLLM gain little to no performance boost
with ICL, indicating a loss of ICL capabilities in
LLM-based recommenders. Moreover, we cannot
rely on the ICL abilities of general LLMs alone for
recommendations as they lack sufficient capabil-
ity (Bao et al., 2023). This motivates us to preserve
the ICL abilities when equipping LLMs with rec-
ommendation capabilities.

3 Proposed Method - RecICL

With the insight of keeping the ICL abilities when
tuning LLMs to recommendation tasks, we pro-
posed RecICL for achieving adaptive personalized
recommendation. The core lies in directly organiz-
ing the training example in an ICL format, making

14280



ICL-based data

ICL-based Tuning \

Yes/No X/
N
Yes/No?

Dynamic Interest Adaption)

/ Data Construction
XX

o & e

Sample N - 2
Sample N - 1

Sample N

Question: A user has given high
ratings to the following books:
<ItemTitleList>.Leverage the
information to predict whether
the user would enjoy th

titled <TargetltemTitle>?

\ :'r::;wi(h "Yes" or "No".

( .
ETilY-Y EE-XvIXE
\_'_I

\ [ Construct ICL Instruction with Current Feedhack]

al
ts whether a user will
abook based on their

o
preferences. Below are a few
examples:

Figure 4: Overview of our RecICL pipeline, primar-
ily consists of three stages: Data Construction, Model
Training, and Dynamic Interest Adaption. Here we de-
fine the few-shot number as 4.

the ICL usable during tuning while capturing users’
dynamic interests. As Figure 4 shows, our total Re-
cICL framework includes three main components:
(1) Data Construction (2) ICL-based Tuning, and
(3) Dynamic Interest Adaption.

3.1 Data Construction

In our framework, each user interaction would be
formatted as an instruction, as shown on the left
side of Figure 4, where the task is described using
language text. Let (h,, i, y) denote an interaction
between a user u and item ¢ in the dataset, where y
is the interaction label, and h,, denotes the user’s
interaction history (including both interacted items
and their labels). Next, we use the prompt template
outlined in the “Data Construction” part of Figure
4 — feeding h, and ¢ into the ‘<ItemTitleList>’
field and ‘<TargetltemTitle>’ field in the prompt
template, respectively. Let x represent the prompt
generated for the interaction (h,, 7, y); it can finally
be expressed as (z,y).

For each user, we convert her/his all interactions
as above, obtaining a series of transformed data
points:

[($0yy0)>'"a(xnayn)a"'v(xNny)]v (3)
where (x,, Y ) represents the n-th interaction and
N is the total number of interactions for the user.
Here, the interaction are organized in chronological
order based on the interaction timestamps.

3.2 ICL-based Tuning

To maintain the model’s ICL abilities while tun-
ing it on recommendation data, we propose a new
ICL-based tuning method. Instead of tuning the
model to predict y,, based solely on z,, for each
interaction (zy, y, ), we incorporate several of the
most recent interactions for each user to help the
predictions. These data points are integrated in an

ICL format. Specifically, for each (zy,, y», ), we con-
catenate z,, with the most recent M interactions?
(denoted as {(xn—1,Yn—1),-- - (Tn—n1, Yn—n1)})
as few-shot examples to construct the ICL instruc-
tion data, following the prompt template shown in
the "ICL-based Tuning" section of Figure 4. Let
x, represent the resulting prompt. Formally,

2y = Pren({(@n—1,yn—1), -, (Tn-nr, Yn—m)}; $n)(74)

where Py (+) denotes the process for construct-

ing the ICL instruction. Then each training data
point can be represented by (x, , 4y,).

After generating all the ICL instruction data, we
use it to tune the model, ensuring that it retains its
ICL capabilities while learning the recommenda-
tion task. Specifically, we fine-tune the LLM by
minimizing the following optimization objective:

mim’emize Z (20 0), k), 5)
(z,,y%)
where 6 represents the LLM’s parameters, f(x};0)
denotes the model’s prediction for z}, and ¢ is the
commonly used cross-entropy loss.

By adopting this approach, we can achieve two
goals simultaneously. On the one hand, we can
align the LLM with recommendation scenarios by
training it on user interaction data. On the other
hand, we can prevent the LLM from experiencing
catastrophic forgetting of ICL ability. More im-
portantly, this method teaches the model how to
leverage the users’ most recent interests from the
few-shot examples during the training process, en-
abling it to capture users’ real-time interests at the
inference stage.

3.3 Dynamic Interest Adaption

During recommendation period, the tuned LLM,
with its ICL abilities preserved, can capture a user’s
new interests without requiring model updates.
During the decoding time, we use the most-recent
user feedback data as the few-shot example in ICL,
allowing the model to access the user’s newest in-
terests. The process of constructing ICL instruction
data for inference is identical to that used in train-
ing. Let 2’ represent a test data point represented in
ICL instruction format; the final prediction is made
as

g=f,0), (6)

where 6* are the LLM model parameters tuned
according to Equation (5).

2We set M as 4 by default.
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In real-world applications, RecICL can be em-
ployed in the re-ranking stage to refine final rec-
ommendation results by predicting the likelihood
of a user’s positive interaction with an item. This
enables the efficient filtering of irrelevant items
through binary relevance predictions.

4 Experiments

In this section, we will introduce the experiment set-
ting and answer the following research questions:
RQ1: How does RecICL perform under user inter-
est shifts compared to full-data-updated models?
RQ2:Whether RecICL performance more stable
across all time periods when comparing with other
baselines? RQ3: What’s the effect of few-shot se-
lection 3 of RecICL?RQ4: Can RecICL effectively
adapt to the most extreme cases of user interest
shifts when no historical data for the target user is
available during training?

4.1 Experimental Settings
4.1.1 Datasets

We conduct our experiments on the following two
real-world datasets*: (1) Amazon-Books refers
to the “book” subset of Amazon Review datasets
3. This dataset consists of user reviews of book
products from the Amazon platform between 1996
and 2018, with rating scores ranging from 1 to 5.
We chose 4 as the threshold. Those with scores
higher than 4 are labeled as “Yes”; otherwise, they
are labeled “No”. (2) Amazon-Movies refers to
the “movie” subset of Amazon Review datasets.
Similar to the Amazon-Book datasets, we choose
the threshold as 4.

To better simulate real-world scenarios that pre-
vent data leakage (Ji et al., 2023) while modeling
user interest shifts, we divided the dataset into 10
parts similar to §2.2. Consistent with our setup
in the preliminary experiments, by default, we
set ' = 4 and K = 4, which means we use
Diyain = {Do, ..., Dy} as the training set. The
last 5,000 samples from D, are separated to form
the validation set and we randomly select 5,000
samples from Dy to serve as the test set for user
interest shift. Specifically, for Amazon-Books, we
preserved user interactions from the year 2017, and

3We also analysis the impact of few-shot number in Ap-
pendix §C

*We also conduct experiments on the additional two
datasets in Appendix §D

5https://cseweb.ucsd.edu/~jmcau1ey/datasets/
amazon_v2/.

for Amazon-Movies, we preserved user interac-
tions from the year 2014 to 2016. Besides, fol-
lowing the setting in BinLLM (Zhang et al., 2024),
we filtered out users and items with fewer than 20
interactions to ensure data quality. ©

4.1.2 Evaluation and Metrics

To demonstrate the effectiveness of our approach,
we compared it with a range of methods, including
traditional recommendation models (MF (Koren
et al., 2009), SASRec (Kang and McAuley, 2018),
and HashGNN (Tan et al., 2020)) and current LLM-
based recommendation models (TALLRec (Bao
et al., 2023) and BinLLM (Zhang et al., 2024)). ’
For evaluation metrics, we use AUC, a common
metric in recommender systems quantifying the
overall prediction accuracy, and PD M, as we de-
fined in Equation (2), to evaluate our model’s per-
formance. As for PD M, similar to §2.2, we define
it as the model’s performance between the fully
updated model and the less updated model testing
on Dg, which indicates how close we are to the
upper bound of performance.

4.2 Main Results (RQ1)

Table 1 presents the overall performance of our
method on two datasets following significant user
interest shifts. From this table, we can draw the
following conclusions:

* Compared to all other methods, RecICL signif-
icantly improves the AUC metric compared to
other methods, enhancing model performance
during user interest shifts. Moreover, when ex-
amining P DM performance, we observe that the
benefit of updating the RecICL model is minimal
(0.0031 and 0.0057 for each dataset). It demon-
strates stability and maintains high performance
over extended periods without updates.

* When comparing traditional recommender sys-
tems with LLM-based recommender systems,
a notable performance gap in their ability to
adapt to changing user interests. In detail, tradi-
tional models are more sensitive to user interest
shift, with PDM metrics near 0.1 (except for the
hashGNN model on the Amazon-book dataset),

®The detailed data statistics are shown in Table 3.

"The default approach for all LLM methods is to use
Qwen1.5-0.5B with full-finetuning and use Llama3.1-8B com-
bined with LoRA for training. More details and implementa-
tions for all baselines are described in the Appendix §A and
§B.
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Table 1: Overall performance comparison on the Amazon-Book and Amazon-Movie datasets on the Dy. 1 indicates
higher values are better, while | indicates lower values are better. “Rel Imp” denotes the relative improvement
of RecICL compared to baselines on the AUC metric. “Collab.” refers to the traditional collaborative methods.
“LLMRec (ICL)” refers to the use of in-context learning with corresponding methods. Note that, ICL-LLM does
not have PDM value since the general LLM is no need to update. All LLM methods employing Llama3.1-8B are
indicated with a footnote; otherwise, Qwen1.5-0.5B is used. The best performance for each metric is bolded.

Dataset Amazon-Books Amazon-Movies
Methods AUC(1) Rellmp(t) PDM(]) | AUC(T) Rellmp(t) PDM()
MF 06193 35.65% 00882 | 05901  5730%  0.1565
Collab. SASRec 05734 4651% 01125 | 06554  41.62%  0.1029
HashGNN 07396  13.59% 00285 | 0.6628  40.04%  0.1100
ICL-LLM 07133 17.77% - 07434 24.53% -
ICL-LLM p10ma 05821  4432% 00214 | 07101  3056%  0.0285
LLMRec (ICL) ICL-TALLRec 07290  1524% 00214 | 07763  19.56%  0.0285
ICL-BinLLM 07708 8.99% 00053 | 07835  18.64%  0.0604
TALLRec 07005 1902% 00428 | 07415  25.18%  0.0392
LLMRec TALLRecsiama 06905  21.67% 00127 | 07648  2137%  0.0328
BinLLM 07787  7.88% 00145 | 07658  2121%  0.0547
BinLLM_iama 07809  7.58% 00191 | 07639  2151%  0.0737
RecICL-TALLRec 0.8401 - 0.0031 | 09145 - 0.0057
Ours ReclCL-TALLRecriome | 0.8399 ; 0.0030 | 0.9282 ] 0.0043
RecICL-BinLLM 0.8353 ] 0.0104 | 0.9055 ] 0.0143
RecICL-BinLLMjama | 0.8197 ; 00164 | 09212 } 0.0028

indicating a need for frequent updates. In con-
trast, LLMs show robustness against such shifts,
suggesting their potential as a solution to the
challenge of evolving user interests.

* In our comparison of two datasets, we observe
that baseline models are more adversely affected
by the Amazon-Movie dataset. This effect is par-
ticularly pronounced in HashGNN, where per-
formance metrics significantly change due to
the dataset’s broader time span and the resulting
user interest shift. Addressing this shift is vital
for enhancing the effectiveness of recommenda-
tion systems. Furthermore, when evaluating the
two LLM-based methods across both datasets,
we find that BinLLM is less impacted on the
Amazon-Books dataset. We speculate that this
is because BinLLLM is heavily influenced by its
collaborative models.

* When comparing RecICL-TALLRec and
RecICL-BinLLM, we observe that their per-
formance is remarkably similar. Contrary to
expectations, the advantage of BinLLM’s use
of collaborative information is not clearly
evident within the RecICL framework. This
unexpected outcome may be attributed to two
factors: (1) The global collaborative information
provided by the collaborative model may not
accurately reflect user interests as effectively as
the user’s most recent interactions. (2) There
might be an ongoing issue with the collaborative
model’s performance degradation. Despite these

—»— RecICL
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Figure 5: The performance of the model on different test
sets after training on Dy,.q;r. The x-axis represents prac-
tical data partitions, with larger subscripts indicating a
greater shift in user interests compared to the training
set. The y-axis shows the corresponding AUC metric
for each data partition.

observations, it’s important to note that when
comparing RecICL-BinLLM with the standalone
BinLLM, we still see a significant performance
improvement. This contrast underscores the
effectiveness and high adaptability of our
proposed RecICL method.

Next, we will further analyze the RecICL
method, our subsequent experiments will be based
on RecICL-TALLRec since it shows the best per-
formance in our main experiment.

4.3 Robust Analysis (RQ2)

To show the robustness of RecICL, validate its per-
formance across different time periods, we present
the results of several methods trained on Dy, and
evaluated on datasets Ds, Dg, D7, Dg, and Dg in
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Figure 5, respectively. For the sake of convenience,
we utilize Qwen1.5-0.5B in our experimental anal-
ysis. The main findings are as follows:

* In terms of comparative performance, RecICL
demonstrates consistent advantages across all
periods, further validating the effectiveness of
our approach. Even more encouraging is that
when tested on D5, where user interests have not
undergone dramatic changes, our method still
shows significant improvements over baseline ap-
proaches. We attribute this to the fact that while
employing ICL, we essentially provide more per-
sonalized user input (each user’s most recent in-
teraction and its feedback), enabling the model
to better model the user. This effectively person-
alizes the input prompt, leading to substantial
improvements.

* When comparing all other LLM-based meth-
ods, we found that ICL performance remains
relatively stable. Although ICL yields the low-
est performance, it does not overfit user prefer-
ences from specific periods due to the absence
of domain-specific fine-tuning. This further ex-
plains the stable performance of RecICL.

* Furthermore, by examining the performance of
HashGNN and BinLLLM in both datasets, we ob-
serve that BinLLM is more susceptible to the
influence of the collaborative models it relies
on, i.e., HashGNN. When the collaborative mod-
els are significantly affected by shifts in user in-
terests, BinLLM is also substantially impacted.
Nevertheless, BinLLM still demonstrates greater
stability compared to HashGNN, underscoring
the robustness of LLLM-based approaches.

4.4 In-depth Analysis (RQ3)

Few-shot Selection. We first delve into the few-
shot selection strategy of RecICL, and aim to
answer the following question: How impactful
is leveraging users’ recent interactions and feed-
back? Specifically, we fist present a ablation study,
which compare the performance ammong TALL-
Rec, RecICL-random using four randomly selected
interactions as few-shot examples, and RecICL. As
shown in the figure 6, we observe that with random
interactions, RecICL-random does not always show
performance improvement compared with TALL-
Rec, demonstrating the importance of choosing the
most recent interaction as few-shot examples. This
further verified that when using RecICL, we need

TALLRec RecICL-random = RecICL

0.90 0.95
0.85 0.90
g 0.80 g 0.85
< <o.80
0.75
0.75
0.70

0.70

D. Doy

5 D Dy
(a) Amazon-Books

5
(b) Amazon-Movies

Figure 6: Performance comparison of TALLRec, Re-
cICL, and RecICL using random select few-shot sam-
ples on D5 and Dy.

to perform instance-level personalization to capture
the user’s dynamic interest thereby improving the
recommendation accuracy.

Performance on Unseen Users. Apart from the
ablation study, we also consider the most extreme
scenario of user interest shift is when models have
never seen a user during their training phase. Con-
sequently, this user’s interests are entirely unknown
to the model, and we can only learn about the user’s
preferences through their real-time feedback. To
validate that RecICL is also effective on this sce-
nario, we divided the interactions in the test set
into two categories based on whether the user has
appeared in the training set. We then calculated the
recommendation performance for each category
separately. The results are illustrated in Figure 7.
Our findings indicate that RecICL demonstrates
significant performance improvements compared
to the baseline for users not present in the training
set. This can be attributed to RecICL’s ability to
effectively leverage recent interactions from new
users to model their interests. Besides, for Re-
cICL, we also observed that in addition to smaller
performance gains among user groups previously
encountered by the model, the overall performance
was also slightly lower compared to unseen users.
This phenomenon may be caused by the fact that
new users tend to have more focused interest pref-
erences closely related to their recent interactions,
while old users might have more complex, long-
term interests that are not fully captured by our ICL.
input.

Large Scale Datasets We conducted experi-
ments on a larger-scale dataset. Specifically, we
used the Amazon-Books dataset from 2015 to 2017,
which includes 5 million user interactions. Our data
processing method is similar to that described in
the previous section. Finally, we trained four mod-
els: TALLRec trained on Dy,.q;n, RecICL trained
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Table 2: Performance on large-scale Amazon Book
datasets (5M interactions).

Methods Books
AUC(t) PDM()
TALLRec 0.758 0.012
RecICL 0.873 0.001
Lo LLM+ICL BinLLM Lo LLM+ICL BinLLM
0.9 TALLRec m ReclICL 0.9 TALLRec  ReclCL
It} 0.8 %) 0.8
=2 =2
< 0.7 < 0.7
0.6 0.6
051 " 0.5

Book: M Book: Movi

(a) Unseen (b) Seen

Figure 7: Performance comparison on seen (right) and
unseen (left) users on Amazon-Books and Amazon-
Movies datasets.

on Dyyqin » TALLRec trained on the full dataset
except Dg (TALLRec upper bound), and RecICL
trained on the full dataset except Dg (RecICL upper
bound), with all models tested on the Dg dataset.
The model performance is shown in the Table 2,
A direct comparison of performance shows that
RecICL maintains a clear advantage. Besides, the
PDM metric reveals that even on a larger-scale
dataset, RecICL’s need for updates is significantly
lower than the baseline, demonstrating the effec-
tiveness of our approach.

5 Related Work

In this section, we introduce two key topics central
to our work: Streaming Recommender Systems and
LLM-based Recommender Systems. The relevance
of streaming recommender systems lies in their fo-
cus on addressing dynamic user interest shifts and
leveraging real-time user interactions, which aligns
with our goal of adapting to evolving user pref-
erences. Meanwhile, LLM-based Recommender
Systems build upon prior works that explore the
application of LLMs in recommender systems.

5.1 Streaming Recommender System

Streaming recommender systems have gained sig-
nificant attention in the past years due to their abil-
ity to handle dynamic user interest and item cat-
alogs (Das et al., 2007; Song et al., 2008; Wang
et al., 2018). Unlike traditional batch-based recom-
mender systems which only train and test on static
fixed datasets, streaming approaches can efficiently
process continuous streams of data and provide

up-to-date recommendations (Chandramouli et al.,
2011; Papagelis et al., 2005; Vinagre et al., 2014).

Early work in this area focused on adapting tra-
ditional collaborative filtering techniques to stream-
ing environments (Vinagre et al., 2014). More re-
cently, researchers tend to apply continual graph
learning techniques for streaming recommender
systems (Wang et al., 2020, 2022; Xu et al., 2020b;
He et al., 2023a). Additionally, Graphpro (Yang
et al., 2024) leverages pre-training and fine-tuning
techniques on the graph to address streaming rec-
ommendation tasks on dynamic data. However,
they primarily rely on timely updates and iterations
of the model parameters, which can be challeng-
ing for LLMs due to their high cost. In this paper,
we draw inspiration from these previous studies
and propose to tackle the challenge of streaming
recommendations in the domain of LLMs for rec-
ommendation.

5.2 LLM-based Recommender System

Recently, inspired by the powerful and comprehen-
sive capabilities of LLMs, an increasing number
of researchers have been exploring various ways
to leverage LLLMs for recommendation (Wu et al.,
2024; Lin et al., 2025; Bao et al., 2024; Fan, 2024,
Xu et al., 2025). Some researchers have attempted
to effectively transfer the knowledge and capabili-
ties of LLMs to traditional recommendation mod-
els (Liu et al., 2024; Cui et al., 2024; Xi et al., 2024,
Yuan et al., 2023; Wei et al., 2024). While these
methods can address the issue of user interest shift
through the iterative process of traditional mod-
els, such methods often require fine-tuning LL.Ms
on static data to optimize embeddings, which can
significantly impact the model’s representational
capabilities when data is updated or user interests
change.

Another group of people focuses on harnessing
the generative power of LLMs to produce recom-
mendations directly (Lin et al., 2023; Liao et al.,
2024; Wang et al., 2024; Zhang et al., 2025; Tan
et al., 2024; Yang et al., 2023; He et al., 2023b).
In detail, those researchers have noted that LLMs
are exposed to limited recommendation data dur-
ing their training phase, necessitating an alignment
approach to learning recommendation tasks. Al-
though achieving great success, these methods fo-
cus on static and fixed datasets where user interest
is stable. However, in real-world scenarios, data is
constantly updated, user interests are changing, and
new user feedback is continually generated (Chang
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et al., 2017; Papagelis et al., 2005; Wang et al.,
2018). Therefore, in this paper, we will delve into
discussing how LLM recommendations perform
in scenarios with user interest shift and explore
methods to mitigate this issue by utilizing newly
generated user feedback.

6 Conclusion and Future Work

In this paper, we highlight the challenges faced by
LLMs in recommender systems when dealing with
user interest shift. Unlike traditional models, LLMs
cannot timely update their parameters due to high
training costs. To address this issue, we propose
RecICL, which ensures that the LLM aligns with
the recommendation scenario while preserving and
enhancing its in-context learning capabilities in the
recommendation context. During deployment, it
can utilize the user’s most recent feedback by in-
putting this feedback as few-shot examples to the
model, allowing it to capture the user’s dynamic
interests. Extensive experimental results also illus-
trate the effectiveness and adaptability of RecICL,
successfully adapting to dynamic user interest with-
out any model-level updates. In the future, we plan
to explore ways to enable LLMs to better utilize
collaborative information from updated traditional
models.
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Limitations

This paper primarily focuses on the issues and chal-
lenges that arise when deploying LLMs for dy-
namic user interest adaptation, particularly focus-
ing on strengthening the ICL capabilities of LLMs
in recommendation scenarios.

However, our study has several limitations: 1)
The experiments conducted in this study are solely
based on the Qwenl.5-0.5B and Llama3.1-8B
model, lacking validation with a broader range of
models. In the future, we aim to expand experi-
ments accordingly. 2) While the method proposed
in this paper provides parameter options that can
balance inference time and performance?, it still

8See Appendix §C

encounters efficiency challenges when applied to
real-world recommendation scenarios. A potential
solution to address the inference efficiency issue
is to leverage techniques such as employing pre-
fill (Kwon et al., 2023) methods to mitigate these
challenges. However, due to the limitations of our
experimental setup, further exploration of this ap-
proach remains constrained.

Ethical Considerations

In this paper, we introduce RecICL to enhance the
recommendation-specific ICL capability to timely
capture the user’s dynamic interest. We utilize pub-
licly accessible data while diligently steering clear
of sensitive information. Additionally, the imple-
mentation of LLLMs could unintentionally reinforce
hidden societal biases. We advise conducting thor-
ough risk assessments and caution users about the
possible risks involved in deploying the model.
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A Baselines.

To fully investigate the performance of our RecICL,
we mainly consider two types of baseline models,
one is conventional recommender systems, and an-
other is the recommender systems based on LLM.
In detail, we select the following baselines:

* MF (Koren et al., 2009) refers to Matrix Factor-
ization, which is a popular collaborative filtering
technique, which works by decomposing the user-
item interaction matrix and representing latent
factors for users and items for predictions.

* SASRec (Kang and McAuley, 2018) refers
to Self-Attentive Sequential Recommendation,
which leverages the self-attention mechanism to
capture long-term user preferences and item rela-
tionships, allowing it to model complex sequen-
tial patterns in user behavior.

* HashGNN (Tan et al., 2020) refers to Hashing
with GNNs, which consists of a GNN encoder
and a hash layer for encoding representations to
hash codes. It can be viewed as a representa-
tion of the GNN-based method for collaborative
filtering.

* ICL refers to how we directly apply the in-
context learning techniques to prompt the LLM
to determine whether the user will enjoy the item
by giving the most recent interactions and the
feedback of the user.

e TALLRec (Bao et al., 2023) is a representation of
LLM-based recommender systems that directly
use instruction-tuning to finetune the LLM on
recommendation data and achieve moderate per-
formance.

e BinLLM (Zhang et al., 2024) is currently a state-
of-the-art (SOTA) method for aligning LLMs
with recommendation. It introduces collaborative
information to LLMs by compressing the embed-
ding from traditional recommender systems to
32-bit binary sequences and feeding it into the
LLMs.

B Implementation Details

Similar to BinLLM (Zhang et al., 2024), for tradi-
tional recommender systems, we employ Binary
Cross-Entropy (BCE) as the optimization loss and
use the Adam optimizer (Kingma and Ba, 2015),
unless otherwise specified by the original paper.
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Figure 8: The performance of RecICL trained with vary-
ing numbers of few-shot samples (left) and its inference
overhead on the entire test set (right). Note that when
the number of few-shot samples is 0, it is equivalent to
TALLRec.

For hyperparameter tuning, we explore the learning
rate in [le—2, le—3, le—4] and tune the weight de-
cay in the range of [le—2,1le—3,...,1le—7]. For
embedding size, we perform tuning within the
range of [16, 32, 64, 128, 256,

512]. For SASRec, we set the maximum length of
historical interaction sequences according to the
average user interaction count in the training data,
as specified in the original paper. For all LLM-
based methods, we employ the AdamW optimizer
and adjust the learning rate within the range of
[le—3,le—4,1le—5]. We set up 200 to the warm-
up steps in our training process. Regarding the
input interaction sequence length, we follow the
TALLRec (Bao et al., 2023) approach by setting the
maximum sequence length to 10. For BinLLM, we
utilize the optimal HashGNN and adapt it for binary
sequence embedding. As for the backbone, we opt
for Qwen1.5-0.5B (Bai et al., 2023), considering
its convenience and efficiency and we also apply
Llama3.1-8B (Dubey et al., 2024) with lora-tuning
to further validate the method’s effectiveness.

C Influnce of Few-shot Number

We first analyze the number of few-shot samples
when applying RecICL, as shown in Figure 8. The
figure illustrates the model’s performance on Ds
and Dy and the inference time changes for all 5000
samples. We can draw the following conclusions:

* When considering the overall performance, re-
gardless of the number of few-shot samples cho-
sen, the model’s performance shows a qualita-
tive improvement compared to zero samples (i.e.,
TALLRec). When considering Table 1, even Re-
cICL with just one few-shot sample demonstrates
a clear performance advantage over the previous
SOTA method, BinLLM, which further demon-
strates the effectiveness of our approach.
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¢ Besides, we found that as the number of few-
shot samples increases, the model continues to
improve its recommendation performance. How-
ever, the most significant performance boost oc-
curs when the number of few-shot samples in-
creases from O to 1. This further indicate the im-
portance of user’s most recent interaction which
directly reflect their current preference.

* When looking at the right figure, we observed
that the inference time grows approximately
linearly with the increase in few-shot samples,
mainly due to the increased input length. This is-
sue could potentially be addressed through prefill
optimization.

In summary, there is a trade-off between the per-
formance gains and the increased inference time
brought by few-shot samples. When prioritizing
performance, more few-shot samples can be used;
when seeking balance, using 1 or 2 few-shot sam-
ples can bring noticeable performance improve-
ments.

D Performance on Other Datasets

We conducted additional experiments on the
Amazon-CDs and Amazon-Sports datasets using
the Qwen 1.5-0.5B model. The data process-
ing pipeline follows a similar pipeline to that of
Amazon-Books and Amazon-Movies. For the CDs
dataset, we utilize data from 2008, while for the
Sports dataset, we use data starting from 2014,
ensuring a comparable scale with the datasets in
our main experiments. Following the approach de-
scribed in Section §4, we employ { Dy, ..., D4} as
the training set. The last 5,000 samples from D,
are reserved for validation, and we randomly select
5,000 samples from Dyg to construct the test set for
evaluating user interest shift. On these datasets, we
compare two LLM-based methods, TALLRec and
BinLLLM, as baselines. Similar to our analysis ex-
periments, we focus on RecICL-TALLRec due to
its superior performance in the main experiments.

The results, summarized in Table 4, demonstrate
that consistent with the findings on the Books and
Movies datasets, TALLRec and BinLLM exhibit
significant performance degradation as user inter-
ests shift, as reflected by higher PDM values. In
contrast, our method not only maintains strong
performance but also shows greater resilience to
changes in user interest. This further validates that
our approach effectively adapts to dynamic user in-

Table 3: Data statistics of the datasets.

Dataset #Interaction  #User #ltem
Amazon-Books 775,635 22,127 34,076
Amazon-Movies 378,329 11,799 14,632
Amazon-CDs 310,904 9,782 14,680
Amazon-Sports 253,972 10,968 24,731

Table 4: Performance Comparison on CDs and Sports
Datasets

Methods CDs Sports
AUC(T) PDM() AUC(T) PDM()
TALLRec  0.5948 0.0410 0.5725 0.0864
BinLLM 0.5815 0.1280 0.5781 0.0802
RecICL 0.8162 0.0088 0.7592 0.0329

terests and provides personalized recommendations
based on users’ most recent preferences.

In addition to the Amazon datasets, we also
performed experiments on the MIND dataset, a
widely-used benchmark for news recommendation.
Given that the MIND dataset contains a substantial
imbalance in its label distribution—over 90% of
the samples are negative—directly training on this
dataset would likely lead to model collapse, where
the model consistently predicts “No” for all queries.
To address this issue, we applied a sampling strat-
egy, retaining only approximately 10% of the neg-
ative samples for training. After preprocessing,
the resulting dataset comprised roughly 1 million
interactions, with a balanced positive-to-negative
sample ratio of approximately 3:7. The dataset
splitting approach we adopted is consistent with
the methodology used for the Amazon datasets.
Our performance evaluation demonstrates that Re-
cICL maintains a clear advantage over competing
methods. Specifically, in terms of the PDM metric,
RecICL achieves a score of 0.025, significantly out-
performing TALLRec, which scores 0.043. Anal-
ysis of the PDM metric further highlights that in
the fast-evolving news recommendation scenario,
RecICL exhibits a considerably reduced need for
frequent updates compared to the baseline, under-
scoring its efficiency and adaptability in dynamic
environments.

E Case Study

Case E.1: An Example

User History: ['Lost and Found’, ’Nora & Ket-
tle (A Paper Stars Novel)’, ’Stillhouse Lake’,
"Twenty-Eight and a Half Wishes (A Rose Gard-
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[ ner Mystery)’, ’A Beautiful Poison’, ’ Above |
the Bridge’, *The Moonglow Cafe’, *Three Sil-
ver Doves’, "Mistletoe at Moonglow’, "Hutchins
Creek Cache’, ’Midnight Crossroad (A Novel
of Midnight, Texas)’, ’Day Shift (Midnight,
Texas)’, ’Cry of the Peacock’, ’Fairchild’]
Item: Mind If I Come In (A Kat Parker Novel
Book 1) - Kindle Edition
User Feedback: Does Not Like
User History: [’Lost and Found’, "Nora & Ket-
tle (A Paper Stars Novel)’, *Stillhouse Lake’,
"Twenty-Eight and a Half Wishes (A Rose Gard-
ner Mystery)’, ’A Beautiful Poison’, *Above
the Bridge’, ’The Moonglow Cafe’, *Three Sil-
ver Doves’, "Mistletoe at Moonglow’, "Hutchins
Creek Cache’, ’Midnight Crossroad (A Novel
of Midnight, Texas)’, ’Day Shift (Midnight,
Texas)’, ’Cry of the Peacock’, *Fairchild’]
Item: Talking with the Dead (A Kat Parker
Novel Book 2) eBook
User Feedback: Does Not Like
User History: ['Lost and Found’, ’Nora & Ket-
tle (A Paper Stars Novel)’, ’Stillhouse Lake’,
"Twenty-Eight and a Half Wishes (A Rose Gard-
ner Mystery)’, A Beautiful Poison’, *Above
the Bridge’, *’The Moonglow Cafe’, *Three Sil-
ver Doves’, "Mistletoe at Moonglow’, "Hutchins
Creek Cache’, ’Midnight Crossroad (A Novel
of Midnight, Texas)’, ’Day Shift (Midnight,
Texas)’, ’Cry of the Peacock’, ’Fairchild’]
Item: Getting a Head (A Kat Parker Novel Book
3) eBook
TALLRec: Yes

| RecICL: No

In this example, a model that fails to incorpo-
rate the user’s latest feedback might infer that the
user enjoys mystery or thriller genres based on
their history with books like “Stillhouse Lake” and
“Twenty-Eight and a Half Wishes”. Consequently,
it might predict that the user would enjoy “Getting
a Head (A Kat Parker Novel Book 3)”. However,
by examining the user’s recent feedback, we can
see that they disliked the first two books in the
Kat Parker Novel series (Mind If I Come In and
Talking with the Dead). Therefore, it is reason-
able to conclude that the user is unlikely to enjoy
the third book in the same series. This highlights
the importance of leveraging the most up-to-date
user feedback to refine recommendations and avoid
misleading predictions.
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